
Contents lists available at ScienceDirect

Journal of Building Engineering

journal homepage: www.elsevier.com/locate/jobe

Compressive strength prediction of environmentally friendly concrete using
artificial neural networks

Hosein Naderpour⁎, Amir Hossein Rafiean, Pouyan Fakharian
Faculty of Civil Engineering, Semnan University, Semnan, Iran

A R T I C L E I N F O

Keywords:
Compressive strength
Recycled aggregate concrete
Artificial neural networks
Construction debris

A B S T R A C T

Solid waste in the form of construction debris is one of the major environmental concerns in the world. Over 20
million tons of construction waste materials are generated in Tehran each year. A large amount of these ma-
terials can be recycled and reused as recycled aggregate concrete (RAC) for general construction, pavement and
a growing number of other works that drive the demand for RAC. This paper aims to predict RAC compressive
strength by using Artificial Neural Network (ANN). The training and testing data for ANN model development
were prepared using 139 existing sets of data derived from 14 published literature sources. The developed ANN
model uses six input features namely water cement ratio, water absorption, fine aggregate, natural coarse ag-
gregate, recycled coarse aggregate, water-total material ratio. The ANN is modelled in MATLAB and applied to
predict the compressive strength of RAC given the foregoing input features. The results indicate that the ANN is
an efficient model to be used as a tool in order to predict the compressive strength of RAC which is comprised of
different types and sources of recycled aggregates.

1. Introduction

Considerations for sustainable development such as through en-
vironmental regulations and natural resources protection play a sig-
nificant role in new requirements of the construction industry. The
production of construction debris and demolition waste all over the
world has been substantially increasing due to rehabilitation activities.
In Tehran, the production of construction waste has been estimated to
be as much as 20 million tons annually. Demolished materials are not
used for any purpose and may adversely affect useful land spaces if
dumped around cities. It is also a well-known fact that concrete is
among the world's most common construction materials today where
the annual global consumption of natural aggregate for concrete pro-
duction is estimated at 8–12 billion tons [1]. Such aggregates are
considered as essential components of concrete and potentially pose
detrimental effects to the environment if associated debris is not man-
aged responsibly. The sheer volume of produced construction waste will
undoubtedly result in major environmental concerns.

In recent years, researchers have utilized different techniques to
anticipate and evaluate various properties of recycled aggregate con-
crete (RAC). Methods that are based on the machine learning body of
knowledge such as artificial neural networks (ANN) are increasingly
gaining traction. However, ANN techniques are rarely adopted to pre-
dict performance of RAC and concretes in general due to their complex

composition. Topcu and Saridemir (2008) [2] attempted to predict the
compressive and splitting tensile strength of RAC that contains silica
fume. Duan et al.[3], proposed an ANN model with 14 input features
using 168 sets of data. Chopra et al. [4], performed a regression analysis
to establish the relationship between recycled coarse aggregate (RCA)
properties and the associated compressive strength based on 20 sets of
data.

In studying the properties of RAC, Poon et al. [5] highlighted the
effect of moisture levels in both natural and recycled that affect the
strength of RAC.

Zega and Maio [6], exposed RCA to high temperatures in order to
evaluate and compare the characteristics of concrete made of different
natural aggregates. Lin et al. [7], outlined the optimal mixture for RAC
and proposed a procedure to provide a better way for understanding the
real engineering behavior of RAC. Domingo-Cabo et al. [8], worked on
creep and shrinkage of RAC and presented an experimental program to
assess the different characteristics of RAC while Gomez-Soberon (2002)
[9], studied the porosity of RAC. Gonzalez-Fonteboa and Martínez-
Abella [10], Yang et al. [11], Gonçalves et al. [12], Guti et al. [13], Kou
and Poon [14] and Duan and Poon [15], worked on various properties
of RAC particularly from resulting mechanical aspects such as com-
pressive strength and presented several conclusions.

In 2016, Pour and Alam [16] investigated the influence of RAC on
the strength of bonds between concrete and steel bars. By considering
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144 push-out tests, they concluded that under constant mix propor-
tions, an increase in the bar size and the embedment length to bar
diameter ratio would lead to a reduction in the bond strength.

Table 1 provides a structured review of some of the primary works
on compressive strength prediction. It can be observed that relatively
fewer works have been done on compressive strength prediction of RAC
wherein most previous studies were particularly centric about high-
performance concrete (HPC) containing blast furnace slag (BFS), flay
ash (FA) and superplasticizer.

The database utilized in this study, was populated from existing
tests documented in the literature on RAC to investigate the relation-
ship between various variables on the resulting compressive strength.
Correspondingly, a new model based on ANN is developed and pre-
sented herein.

2. Recycled aggregate

The inherent characteristics of recycled aggregate (RA) are often
inferior when compared to natural aggregate (NA), due to presence
attached mortar and old cement paste. This includes 20–30% of the
volume of recycled concrete, and is generally relatable to the original
properties of the parent concrete from which it is extracted from.

The salient points below briefly highlight the benefits of using RA
over NA:

• Lower bulk

• Higher water absorption

• Inferior strength

Table 1
Summary of existing models.

Previous work Sample size Method R2 Concrete type Input variables

Yeh (1998) [17] 727 ANN 0.914 HPC Cement; FA; BFS; water; superplasticizer; coarse and fine aggregates; curing age
Linear regression 0.574

Gupta et al. (2006)
[18]

864 Neural-expert system 0.5776 HPC Concrete mix grade; size and shape of specimen; curing technique and period;
maximum temperature; relative humidity and velocity; period of strength

Zarandi et al. 2008
[19]

458 Fuzzy polynomial neural
networks

0.8209 HPC Coarse and fine aggregates; superplasticizer; coarse and fine aggregate; curing
age

Yeh and Lien (2009)
[20]

1196 Genetic operation trees 0.8669 HPC Cement; FA; BFS; water; superplasticizer; coarse and fine aggregate; curing age
ANN 0.9338

Chou et al. (2011)
[21]

1030 ANN 0.9091 HPC Cement; FA; BFS; water; superplasticizer; coarse and fine aggregate; curing age
Multiple regression 0.6112
SVM 0.8858
Multiple additive
regression trees

0.9108

Bagging regression trees 0.8904
Deepa et al. (2010)

[22]
300 Multilayer perceptron

(ANN)
0.625 HPC Cement; FA; BFS; water; superplasticizer; coarse and fine aggregate; curing age

Linear regression 0.491
M5P model tree 0.787

Atici (2011) [23] 135 ANN 0.9801 Concrete contains
BFS and FA

Cement; BFS; FA; ultrasonic; pulse velocity; rebound number; curing age
Multiple regression 0.899

Erdal et al. (2013)
[24]

1030 ANN 0.9088 HPC Cement; FA; BFS; water; superplasticizer; coarse and fine aggregate; curing age
Bagged ANN 0.9278
Gradient-boosted ANN 0.927
Wavelet bagged ANN 0.9397
Wavelet gradient-
boosted ANN

0.9528

Omran et al. (2014)
[25]

144 M5P model tree 0.9476 Concrete contains
FA,

Cement type; curing age; water; cementitious material; FA; sand; pea gravel;
Haydite LWA; Micro AirM5-Rules 0.9482

REPTree 0.9217 Haydite LWA, and
PLCMultilayer perceptron

(ANN)
0.97

SMOreg (SVM) 0.968
Gaussian processes
regression

0.9843

Additive regression 0.9843
Bagging 0.9816

Table 2
Inputs and output.

W/C Water-cement ratio
Wm Water absorption
FA Fine aggregate
RCA Recycled coarse aggregate
NCA Natural coarse aggregate
W/T Water-total material ratio
fcu 28-day compressive strength

Table 3
Statistical properties of experimental data.

Input nodes W (%)m W
C

FA kg m( / )3 RCA kg m( / )3 NCA kg m( / )3 W
T

f MPa( )cu

Mean 8.73 0.53 714.71 589.04 411.56 0.09 40.42
Minimum 0.4 0.34 325 0 0 0.04 9.74
Maximum 28.58 0.86 1398 1219 1301 0.21 80.5
Standard deviation 5.88 0.09 192.51 382.42 421.17 0.03 13.24
Coefficient of variation 0.67 0.19 0.27 0.65 1.02 0.38 0.33
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• More angular in shape

• Presence of contaminants

• Lower resistance to mechanical and chemical actions

Regarding the above mentioned details, it would be appropriate to
strictly use RCA and not recycled fine aggregate (RFA) as recycled ag-
gregate in RAC applications. Along the same challenge, it is also notably
advisable to use RAC in non-structural items. The experimental result

on the compressive strength indicated that recycled aggregate (RA)
with good quality can be used as an alternative for natural aggregate
(NA) to produce concrete with mechanical properties comparable to
those made with NA [15].

When completely dried RA is used, this implies reduced effective
water-cement ratio which increases the compressive strength of the
RAC due to higher absorption rate of dried RA [8].

The initial slump of RAC is mildly affected by the aggregates’ re-
lative water absorption while the rate of slump loss increases with the
increase of the aggregates capability to absorb water [11].

Experimental results show that properties of conventional concretes
and RAC with similar compressive strength can hardly be varied when
the amount of RCA that is used is less than 20 percent. An exception to
the latter is the elasticity modulus in which there is potential a 10
percent reduction in recycled aggregate. The tensile strength and drying
shrinkage of RAC are similar to conventional concrete with the same
compressive strength for RAC percentage lower than 50% [13].

Form an environmental point of view, 0.0046 million tonnes of
carbon emissions is released in order to produce one tonne of natural
aggregate while the similar weight of produced aggregate only releases
0.0024 million tonnes of carbon emissions. Given that the global con-
sumption of aggregate for concrete production is approximately 10
billion tonnes per year, there is a significant room for improving carbon
footprint from concrete production by replacing NA with RA [26].

3. Neural network modeling

Appropriate selection of input features is essential for accurate
prediction of RAC compressive strength of using ANN models.
Parameters that affect the RAC compressive strength are provided in
Table 2. A total of six input parameters were identified based on pre-
vious experimental works and which are also perceived to be essential
variables in determining compressive strength.

Table 4
The scaling equation for input and target nodes.

Parameter Scaling equation

Wm = − − − +W W W W W[(0.9 0.1)( )/( )] 0.1mscaled m m m mmin max min
W/C = − − − +W C W C W C W C W C/ [(0.9 0.1)( / / )/( / / )] 0.1scaled min max min
FA(kg/m3) = − − − +FA FA FA FA FA[(0.9 0.1)( )/( )] 0.1scaled min max min
RCA(kg/m3) = − − − +RCA RCA RCA RCA RCA[(0.9 0.1)( )/( )] 0.1scaled min max min
NCA(kg/m3) = − − − +NCA NCA NCA NCA NCA[(0.9 0.1)( )/( )] 0.1scaled min max min
W/T = − − − +W T W T W T W T W T/ [(0.9 0.1)( / / )/( / / )] 0.1scaled min max min
fcu(MPa) = − − − +f f f f f[(0.9 0.1)( )/( )] 0.1cuscaled cu cu cu cumin max min

Fig. 1. Schematic diagram of ANN models.

Fig. 2. Correlation coefficient NN 6-n-1.
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From experimental results and existing strength models in the lit-
erature, it can be inferred that the compressive strength of RAC is
primarily affected by water (W), cement (C), water-cement coefficient
(W/C), water absorption (Wm), percentage of fine aggregate (FA), re-
cycled coarse aggregate (RCA), natural coarse aggregate (NCA) and
water-total material coefficient (W/T). In order to provide sufficient
data for validating the trained neural network, a general set of test
results on the compressive strength of RAC specimens was compiled.
The selected database consists of 139 test results containing results
from important test programs conducted in recent years.

The six parameters as listed above (W/C, Wm, FA, RCA, NCA, W/T)

are utilized as the input layer with one hidden layer in the architecture
of the ANN model. All nodes in the ANN model utilize the log-sigmoid
function as their activation. The output neuron is then intended to
predict the compressive strength of concrete. Statistical properties of
experimental data are summarized in Table 3.

In order to reduce unwanted feature scaling effects, normalization/
scaling was performed for all of the data sets before training the ANN.

This was an important pre-processing step because log-sigmoid
transfer functions can only recognize values from 0 to 1. To scale the
data from 0.1 to 0.9, minimum and maximum values were taken into
account for application in the linear relationship between the values.
Statistical properties of experimental data are listed in Table 4 shows
needed equations for scaling each parameter value into interval of
0.1–0.9 [27–29].

4. Methods

The network type utilized in this study is the Back-propagation
ANN. It is the generalized learning of Widrow-half to multi-layer net-
works and differentiable transfer functions. A typical neuron in the
network contains biases, a sigmoid activation function and a linear
output layer which is able to approximate any function having a finite
number of discontinuities. The term ‘back-propagation’ indicates a
method in which the correction gradient is calculated for nonlinear
multi-layer networks [30].

Network training is performed by back-propagating the computed
errors followed by subsequent adjustment of neuron weights. Post
training, the application of the developed ANN in this study only op-
erates strictly in a feed-forward manner, although it should be re-
marked that other techniques such as recurrent neural networks may
operate with back propagation, more than often in real time throughout
its life span.

A feed-forward network has a layered structure; each layer receives
its input from units in a layer below and sends its output to units in the
upper layers. There are typically no inter-connections between units
within the same layer.

The architecture of the developed ANN in this article is short-termed
NN6-n-1 where the first digit indicates the number of input features,
and as shown in Fig. 1, n is the number of hidden nodes with one target
output which is to predict the concrete's compressive strength.

The mean square error (MSE) was used as the ANN stop training
criterion. In this regard, lower values are correspond to more idealized
network performance. Regression values (R-values) are utilized to
measure the correlation between outputs and targets in the networks
wherein an R-value of unity indicate strong relationships. MSR and R-
values were applied as the criteria for evaluation of the generated
networks performance.

In Fig. 2 regression values of the networks having various numbers

Fig. 3. Maximum squared error (MSE) versus numbers of hidden-
layer neurons.

Fig. 4. The performance of NN 6–18–3.

Fig. 5. Training state of NN 6–18–3.
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of hidden nodes is presented. In Fig. 3, another filtering in the pre-
evaluation of networks is provided in which the MSE was calculated for
all networks.

5. Application and results

The results from sensitivity analyses indicate that the best perfor-
mant networks are NN6-7-3 and NN6-18-3. In order to preserve the
initial intent of a single output node which predicts concrete

compressive strength, the NN6-18-1 is selected for this study. It exhibits
favorable results in the case of R-values and has the smallest MSE
among all networks investigated. A summary of the NN6-18-1 training
results is provided in Figs. 4–6.

Fig. 4 shows the network MSE which depicts a decreasing pattern as
expected for a well-trained ANN which is also a good indication of the
network's learning process. The plot figure contains three lines since the
139 inputs and target vectors are randomly segmented into three sets.
Iterative training of the ANN on the designated training vectors

Fig. 6. Regression of training, validation and test
simulated by NN 6–18–3.

Fig. 7. Verification of simulated results against experimental
data.
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continues until convergence is achieved for the network's error when
tested against the validation vectors. After successfully operating on the
training set (at the expense of generalizing more poorly) the training
stops which inherently circumvents the problem of over-fitting.

Verification of simulated results against experimental data are
presented in Fig. 7. As it can be seen, it may be concluded that the ANN
model learnt and predicted the experimental data with acceptable de-
gree of precision.

6. Sensitivity analysis

In the broad field of ANN research, the majority of efforts have
focused on developing new rules for learning, improving network ar-
chitecture as well as expansion into new fields of ANN applications.
There are not enough investigations dealing with development of fun-
damental knowledge which leads to understand the nature of the in-
ternal representations generated by an ANN in response to a given
problem. More than often, an ANN is presented to its users as a black
box with complicated internals which work to convert inputs into de-
sirable outputs. For an ANN of considerable complexity, it is typically
not possible to ascertain or understand the detailed mechanisms un-
derlying weights of the network or the activation values of hidden
neurons with regards to the problem under study. Hence, unlike clas-
sical statistical models, the task to determine the relationship between
each explicative and dependent variable in an ANN is highly non-tri-
vial [31].

Sensitivity analysis is aimed to study how the uncertainty in the
output of a mathematical model or system can be allocated to various
sources of uncertainty in its inputs.

The procedure of recalculating outcomes under alternative as-
sumptions in order to determine the effect of variable under sensitivity
analysis can be considered as an efficient method to gain an increased
understanding of underlying relationships between the input and
output variables in a model.

In this study the relative importance study for input factors has been
done based on the importance of weights using the method proposed by
Milne [32], see Eq. (1).
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Where IIF is the importance of input factors, ninput is the number of
inputs, nhidden is the number of units and noutput is the number of out-
puts.

Table 5 shows the results obtained after training the ANN with
experimental data. The sensitivity analysis and the importance of
weights were computed using the training set as data, while Milne's
method was applied only to the connection weights in the network.

Fig. 8 showcases the effect of each parameter on the compressive
strength of RAC, whereby it is clear that W T/ and Wm are the most
important parameters that influence the compressive strength.

Table 5
Weights derived from idealized neural network.

Wm (%) W/C (%) FA (kg/m3) RCA (kg/m3) NCA (kg/m3) W/T (kg/m3) fcu (MPa)

1.4622 0.70748 0.68073 0.83191 0.22194 1.2585 0.69913
−0.34182 0.39612 −1.317 0.60341 1.6359 0.71238 −0.1777
1.3589 −0.93009 0.99769 −1.0944 1.5659 0.73108 1.1302
1.561 0.1371 −1.3235 1.1935 −0.029352 0.024743 −0.45966
1.3292 −0.78244 −0.13488 1.417 0.55182 1.081 1.1583
−0.93147 1.3755 0.1578 −0.94098 0.070731 −1.0721 0.58369
−0.73957 1.4828 1.6791 0.084281 0.62355 −0.287 −0.24656
−0.73074 0.24787 −1.3069 −0.63656 −1.4781 −0.60988 1.1076
0.72372 0.65179 1.0694 0.48432 1.3757 −1.0653 −0.13008
−1.8109 −0.52302 0.32968 −0.048906 −0.088824 −1.9736 0.41404
−0.94917 0.52571 −0.42926 1.2575 1.677 1.3268 0.7456
1.0098 −0.48502 1.478 0.15371 0.83623 −1.348 0.32165
−0.8511 −0.12944 0.34932 0.098631 0.1711 1.9971 1.6993
−1.6957 1.1203 −0.090003 −1.479 −0.9359 0.77579 −0.62917
1.474 −0.65453 1.027 −0.51811 −0.70121 −1.7373 1.2804
0.15752 −1.2415 −0.47742 −0.53983 0.99757 −1.3931 −0.34914
−1.0143 −0.54567 1.3189 1.332 0.55869 0.82627 −0.88838
0.063572 −0.016576 0.53757 2.0176 −0.036502 0.037237 −0.1641

Fig. 8. Influence of each input parameter on compressive strength
of RAC.
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7. Conclusion

In this study, an artificial neural network is developed to evaluate
the strength properties of recycled aggregate concrete based on key pre-
determined input variables. The regression values of the chosen net-
work for training, validation and testing are 0.903, 0.89 and 0.829
respectively. The best validation performance was observed in epoch 5.
The MSE of the model was 0.004447 and it is concluded that the ANN
method is capable of high accuracy predictions for RAC compressive
strength. It is concluded that the ANN method is capable of high ac-
curacy predictions for RAC compressive strength. The water absorption
and water-total material ratio with about 20 percent of importance play
important role in the compressive strength of RAC. It is also worth to
mention that the maximum size of aggregates, water absorption values
and saturated surface dry (SSD) specific density are generally affect the
resulting properties of recycled aggregates.
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