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Preface

Dynamics is the third volume of a three-volume textbook on Engi-
neering Mechanics. Volume 1 deals with Statics; Volume 2 contains
Mechanics of Materials. The original German version of this series
has been the bestselling textbook on mechanics for more than two
decades and its 11th edition has just been published.

It is our intention to present to engineering students the basic
concepts and principles of mechanics in the clearest and simp-
lest form possible. A major objective of this book is to help the
students to develop problem solving skills in a systematic manner.

The book developed out of many years of teaching experience
gained by the authors while giving courses on engineering me-
chanics to students of mechanical, civil and electrical engineering.
The contents of the book correspond to the topics normally co-
vered in courses on basic engineering mechanics at universities
and colleges. The theory is presented in as simple a form as the
subject allows without being imprecise. This approach makes the
text accessible to students from different disciplines and allows for
their different educational backgrounds. Another aim of the book
is to provide students as well as practising engineers with a solid
foundation to help them bridge the gaps between undergraduate
studies, advanced courses on mechanics and practical engineering
problems.

A thorough understanding of the theory cannot be acquired
by merely studying textbooks. The application of the seemingly
simple theory to actual engineering problems can be mastered
only if the student takes an active part in solving the numerous
examples in this book. It is recommended that the reader tries to
solve the problems independently without resorting to the given
solutions. In order to focus on the fundamental aspects of how the
theory is applied, we deliberately placed no emphasis on numerical
solutions and numerical results.
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1.4 Summary ......................................................... 85

Objectives: We will first learn how one describes the mo-
tion of a point mass by its position, velocity, and acceleration in
different coordinate systems and how such quantities can be deter-
mined. Subsequently, we will concern ourselves with the equations
of motion, which prescribe the relation between forces and motion.
An important role will again be played by the free-body diagram
with whose help we will be able to properly derive the equations
of motion. Further, we will discuss important physical concepts
such as momentum, angular momentum, and work-laws and their
applications.

D. Gross et al., Engineering Mechanics 3, 
DOI 10.1007/978-3-642-14019-8_1, © Springer-Verlag Berlin Heidelberg 2011



1.1 Kinematics 5

1.11.1 Kinematics

1.1.1 Velocity and Acceleration

The subject of kinematics is the description of motion in space.
Kinematics can be thought of as the geometry of motion indepen-
dent of the cause of the motion.

The position of a point mass M in space is given by a point
P and is uniquely described by its position vector r (Fig. 1.1a).
This vector shows the momentary or instantaneous location of
M relative to a fixed reference point in space, 0. If M changes
location with time t, then r(t) describes the trajectory or path of
M .

ex 0
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z

x

z
r

ez

0

P

path

r(t+Δt)
P

yy

Δr

s

v(t)

Δv

P ′

P

v(t+Δt) v(t)v(t+Δt)

P ′

r(t)

ey

a b c
x

y0

z

Fig. 1.1

Let us now consider two neighboring locations for M , P and
P ′, at two different times t and t + Δt (Fig. 1.1b). The change
in the position vector over the time interval Δt is given by Δr =
r(t + Δt) − r(t). The velocity of M is defined as the limit of the
change in position with respect to time:

v = lim
Δt→0

r(t + Δt)− r(t)
Δt

= lim
Δt→0

Δr

Δt
=

dr

dt
= ṙ . (1.1)

Thus, the velocity v is the time derivative of the position vector
r. We will usually denote time derivatives with a superposed dot.

Velocity is a vector. Since the change of the position vector, Δr,
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in the limit as Δt→ 0 points in the direction of the tangent to the
trajectory of M , the velocity is always tangent to this curve. The
velocity points in the direction that the mass traverses the path in
space. In order to determine the magnitude of the velocity vector,
we introduce the arc-length s as a measure of distance covered
by M along its trajectory. Assume that the mass has moved a
distance s up to the location P and a distance s + Δs up to the
location P ′. With |Δr| = Δs, one obtains from (1.1) the speed

|v| = v = lim
Δt→0

Δs

Δt
=

ds

dt
= ṡ . (1.2)

Velocity and speed have dimensions of distance/time and are often
measured in units of m/s. The units of km/h, which are used in
transportation applications, are related as 1 km/h = 1000

3600 m/s
= 1

3.6
m/s or 1 m/s = 3.6 km/h.

In general, velocity depends on time. In neighboring positions
P and P ′ (Fig. 1.1c) the considered point mass has velocities v(t)
and v(t + Δt). Thus, the change in the velocity is given by Δv =
v(t + Δt) − v(t). The acceleration is defined as the limit of this
change with respect to time:

a = lim
Δt→0

v(t + Δt)− v(t)
Δt

= lim
Δt→0

Δv

Δt
=

dv

dt
= v̇ = r̈ . (1.3)

Thus the acceleration a is the first derivative of v and the se-
cond derivative of r. Acceleration is a vector. But since Δv (see
Fig. 1.1c) does not have an obvious relation to the trajectory, we
can not easily make statements about its direction and magni-
tude. Acceleration has dimensions of distance/time2 and is often
measured in units of m/s2.

Velocity and acceleration have been introduced independent of
a coordinate system. However, to solve specific problems, it is
useful to introduce particular coordinates. In what follows, we
will consider three important coordinate systems.
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1.1.2 Velocity and Acceleration in Cartesian Coordinates

If we want to describe motion in Cartesian coordinates, we can
choose 0 as the origin of a fixed (in space) system x, y, z. With unit
vectors (basis vectors) ex, ey, ez in the three coordinate directions
(Fig. 1.1a), the position vector is given as

r(t) = x(t)ex + y(t)ey + z(t)ez . (1.4)

This is a parametric description of the trajectory with t as the
parameter. If one can eliminate time from the three component
relations in (1.4), then one has a time independent geometric de-
scription of the trajectory (cf. e.g. Section 1.2.2).

Using (1.1), one finds the velocity via differentiation (the basis
vectors do not depend on time):

v = ṙ = ẋex + ẏ ey + ż ez . (1.5)

Further differentiation gives the acceleration as

a = v̇ = r̈ = ẍ ex + ÿ ey + z̈ ez . (1.6)

Thus the components of the velocity and acceleration in Cartesian
coordinates are given as

vx = ẋ, vy = ẏ, vz = ż,

ax = v̇x = ẍ, ay = v̇y = ÿ, az = v̇z = z̈.
(1.7)

The magnitudes follow as

v =
√

ẋ2 + ẏ2 + ż2 and a =
√

ẍ2 + ÿ2 + z̈2. (1.8)

1.1.3 Rectilinear Motion

Rectilinear motion is the simplest form of motion. Even so, it has
many practical uses. For example, the free fall of a body in the
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earth’s gravitational field or the travel of a train over a bridge are
rectilinear motions.

If a point mass M moves along a straight line, then we can
assume without loss of generality that the x-axis is coincident with
this line (Fig. 1.2). Then according to (1.4), the position vector r

to its current location P only has an x-component – likewise for
the velocity v and the acceleration a according to (1.5) and (1.6).
Thus, we can dispense with the vector character of the position,
velocity, and acceleration and obtain from (1.7)

v = ẋ, a = v̇ = ẍ . (1.9)

In the case that v or a is negative, this means that the velocity
respectively the acceleration is in the negative x-direction. An
acceleration that decreases the magnitude of the velocity is known
as a “deceleration”.

0

P

x x Fig. 1.2

In a case of rectilinear motion, if the position x is known as a
function of time t, then the velocity and acceleration can be found
via differentiation as indicated in (1.9). Often, however, problems
are encountered where the acceleration is known and the velocity
and position need to be determined. In these cases, integration
is needed – a situation that is in general mathematically more
difficult than differentiation. The determination of kinematic un-
knowns from given kinematic variables constitute basic kinematic
problems. We take up these basic questions in what follows, whe-
re we will restrict ourselves to the most important special cases
– those where the given kinematic variable depends on only one
other variable. If the acceleration is taken as the given variable,
there are five basic kinematic problems which we would like to
treat.

1. a = 0 If the acceleration is zero, then according to (1.9)
a = v̇ = dv/dt = 0. Integration then says that the velocity is
constant:

v = const = v0 .
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A motion with a constant velocity is known as a uniform motion.
The position x can be found from v = v0 = dx/dt via integration.
To do so, a statement about the start of the motion is needed,
a so-called initial condition. Let us denote initial values by the
subscript 0, so that at time t = t0 the position is assumed as
x = x0. With integration we can follow two procedures:

a) Indeterminate Integration. After separation of variables, dx =
v0 dt, indeterminate integration gives∫

dx =
∫

v0 dt → x = v0 t + C1 .

The constant of integration C1 is determined by exploiting the
initial value:

x0 = v0 t0 + C1 → C1 = x0 − v0 t0 .

Thus the desired position as a function of time is

x = x0 + v0 (t− t0) .

b) Determinate Integration. After separation of variables, dx =
v0 dt, a determinate integration (where the lower integration limits
are the initial values t0, x0) gives

x∫
x0

dx̄ =

t∫
t0

v0 dt̄ → x− x0 = v0 (t− t0)

or

x = x0 + v0 (t− t0) .

Note that the variables under the integral sign are denoted with
a bar, so that they are not confused with the upper limits of
integration.

In what follows we will alternatively use both integration me-
thods. Thus the initial conditions will either be used to determine
constants of integration or will be used to set the lower limits of
integration.
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2. a = a0 A motion with a constant acceleration is called a
uniform acceleration. Let us assume that t0 = 0 and the initial
conditions for the velocity and position are

ẋ(0) = v0 , x(0) = x0 .

Then via integration of (1.9) the velocity and position follow as

dv = a0 dt →
v∫

v0

dv̄ =

t∫
0

a0 dt̄ → v = v0 + a0 t ,

and

dx = v dt →
x∫

x0

dx̄ =

t∫
0

(v0 + a0 t̄ ) dt̄

→ x = x0 + v0 t + a0
t2

2
.

Fig. 1.3 shows the acceleration a, velocity v and position x

as functions of time. One sees from the graphs, that a constant
acceleration a0 leads to a linear velocity a0t+v0 and to a quadratic
position-time dependency a0t

2/2 + v0t + x0.
In nature, for example, one encounters uniform acceleration du-

ring free fall and other vertical motions in the earth’s gravitational
field. Galilei (1564–1642) discovered in 1638, that all bodies (igno-
ring air resistance) have a constant acceleration during free fall.
This acceleration is called the earth’s gravitational acceleration g.
At the earth’s surface, it has the value g = 9.81 m/s2, where small
variations with geographical latitude are neglected.

In what follows we will examine free fall and other vertical
motions of a body K. As shown in Fig. 1.4a, we introduce a z-
coordinate axis perpendicular to the earth’s surface with the po-
sitive direction taken as upwards. For initial conditions, assume
that

ż(0) = v0, z(0) = z0 .
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diagram

v0

t

v

v0

a0t
x0

t

x
a0t

2/2

v0t

x0
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velocity-time
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acceleration-time position-time

Fig. 1.3

Then taking into account the sign of the earth’s acceleration (in
the negative z-direction), we obtain

z̈ = a = − g,

ż = v = − g t + v0, (1.10)

z = − g t2

2
+ v0 t + z0.

Let us now consider the special case of free fall. The body is
dropped from a height z0 = H with zero initial velocity (v0 = 0).
Then from (1.10)

a = − g, v = − g t, z = − g t2

2
+ H .

If we wish to determine the time T that it takes for the body to
fall to the ground, then we simply have to set z = 0 to find

z = 0 = − g T 2

2
+ H → T =

√
2 H

g
.

If we insert this time into the expression for the velocity, then we
will find the impact velocity

vI = v(T ) = − g T = − g

√
2 H

g
= −

√
2 gH .

The minus sign shows that the velocity is oriented in the direction
opposite to the positive z-direction (i.e., the negative z-direction).
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Fig. 1.4b shows the position of the body as a function of time.

�����
�����
�����
�����

�����
�����
�����
�����

d

H

g

z

a

z

T t
b

H

K
H

z

T t
c

K

H v0

Fig. 1.4

We will now examine the vertical motion of a body that is
thrown vertically at time t = 0 from the earth’s surface (z0 = 0)
with initial velocity v0 (Fig. 1.4c). It follows from (1.10), that

a = − g, v = − g t + v0, z = − g t2

2
+ v0 t .

The body will reach its highest point (H), when the velocity is
zero. The time that it takes to reach this point follows as

v = 0 = − g T + v0 → T =
v0

g
.

Substituting this time into the expression for position, one finds
the value for the highest point on the trajectory:

H = z(T ) = − g T 2

2
+ v0 T = − g

2
v2
0

g2
+ v0

v0

g
=

v2
0

2 g
.

Fig. 1.4d shows the dependency of the body’s position with time.
Comparing this result with that of free fall, one sees the close
relationship between the two motions: a body that falls from a
height H hits the ground with a velocity |vI | =

√
2 g H, whereas a

body that is thrown vertically with a velocity v0 reaches a height
of H = v2

0/2 g.

3. a = a(t) In this case, the velocity v and the position x can be
directly found via two successive integrations of (1.9) with respect
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to time. With initial conditions v(t0) = v0, x(t0) = x0 one has

dv = a(t) dt → v = v0 +

t∫
t0

a(t̄) dt̄, (1.11)

dx = v(t) dt → x = x0 +

t∫
t0

v(t̄) dt̄ . (1.12)

4. a = a(v) In this case the acceleration is a given function of
the velocity. Thus from (1.9) via separation of variables

a(v) =
dv

dt
→ dt =

dv

a(v)
.

Determinate integration (with the lower limit as the initial condi-
tion t = t0, v(t0) = v0) gives

t∫
t0

dt̄ =

v∫
v0

dv̄

a(v̄)
→ t = t0 +

v∫
v0

dv̄

a(v̄)
= f(v) . (1.13)

In this manner, the time t is given as a function of the velocity
v. If one can solve this relation to find v = F (t) (i.e., find the
inverse function F = f−1), then the position can be determined
from (1.12) as

x = x0 +

t∫
t0

F (t̄) dt̄ . (1.14)

In this way, the position x is now given as a function of time t.
From a(v) one can directly determine the position x as a func-

tion of v. Using the chain rule

a =
dv

dt
=

dv

dx

dx

dt
=

dv

dx
v

and applying separation of variables gives

dx =
v

a
dv .
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Determinate integration using the initial values v0 and x0 gives

x = x0 +

v∫
v0

v̄

a(v̄)
dv̄ . (1.15)

As an illustrative example, let us consider the motion of a point
mass whose acceleration a = −kv, where k is a constant. Such
motions occur, for example, for bodies moving in viscous fluids
(cf. Section 1.2.4). Let x(0) = x0 and v(0) = v0 be given as initial
conditions.

From (1.13) it follows that

t =

v∫
v0

dv̄

−kv̄
= − 1

k
ln v̄

∣∣∣v
v0

= − 1
k

ln
v

v0
= f(v) .

Solving for v (determining the inverse function), gives

v = v0 e−kt = F (t).

Then from (1.14), one finds

x = x(t) = x0 +

t∫
0

v0 e−kt̄ dt̄ = x0 +
(
−v0

k

)
e−kt̄

∣∣∣t
0

= x0 +
v0

k
(1− e−kt) .

Using instead (1.15), we alternately have

x = x(v) = x0 +

v∫
v0

v̄

−kv̄
dv̄ = x0 − 1

k
(v − v0) .

If we substitute the velocity v = v0 e−kt, then we recover the
previously determined position-time relation

x = x0 − 1
k

(v0 e−kt − v0) = x0 +
v0

k
(1− e−kt) = x(t) .

The result is shown in Fig. 1.5. Because the acceleration a is
proportional to −v, the point continuously decelerates. Thus the
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v0

v

v0

k
x0

x

x0

ttFig. 1.5

velocity v continuously decreases and with smaller magnitude v

the deceleration also decreases. Only in the limit t → ∞ does
the velocity reach zero. The position of the point asymptotically
approaches x0 + v0/k. This value follows from x(t) in the limit as
t→∞ or from x(v) as v → 0.

5. a = a(x) Let us once again use the chain rule

a =
dv

dt
=

dv

dx

dx

dt
=

dv

dx
v

and separation of variables:

v dv = a dx. (1.16)

Integration with initial conditions v(t0) = v0, x(t0) = x0 gives

1
2

v2 =
1
2

v2
0 +

x∫
x0

a(x̄) dx̄ = f(x) → v =
√

2 f(x) . (1.17)

In this way, we determine the dependency of velocity v in terms of
position x. From the relation v = dx/dt, one finds after applying
separation of variables and integrating, that

dt =
dx

v
=

dx√
2 f(x)

→ t = t0 +

x∫
x0

dx̄√
2 f(x̄)

= g(x) . (1.18)

Thus, time t is now known as a function of position. If one can
invert the relation t = g(x) to yield x = G(t), then one also
obtains position as a function of time.
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As an example, let us study a motion with the given accele-
ration relation a = −ω2x, where ω2 is a given constant. At time
t0 = 0 assume x(0) = x0 and v(0) = v0 = 0. Substitution into
(1.17) gives

1
2
v2 =

x∫
x0

(−ω2 x̄) dx̄ = −ω2

(
x2

2
− x2

0

2

)
=

ω2

2
(x2

0 − x2) = f(x)

→ v = ±ω
√

x2
0 − x2 .

From (1.18) one obtains the time response as

t = t(x) = ±
x∫

x0

dx̄

ω
√

x2
0 − x̄2

= ± 1
ω

arcsin
x̄

x0

∣∣∣x
x0

= ± 1
ω

(
arcsin

x

x0
− π

2

)
= ± 1

ω
arccos

x

x0
.

Inverting, one then finds the position as a function of time:

x = x0 cos ωt.

This motion is a harmonic oscillation (cf. Chapter 5). By diffe-
rentiation, one can also obtain the velocity and acceleration as
functions of time:

v(t) = ẋ = −ωx0 sin ωt, a(t) = ẍ = −ω2x0 cosωt = −ω2x(t) .

Fig. 1.6a displays the mass’s position and velocity as functions of
time.

t=T = 2π
ωt= π

ω

v

xx0

ωx0

t=0

t= 3π
2ω

t= π
2ω

x

π 2π ωt

ẋ= −ω x0 sin ωt

ẋ
x=x0 cos ωt

ba Fig. 1.6
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Often one is also interested in the dependency of the velocity
on the position. We can geometrically display this dependency in
an x, v-diagram as a phase curve or phase trajectory.

For the oscillation example, we have v = ±ω
√

x2
0 − x2. Thus

it follows, that

v2 = ω2(x2
0 − x2) →

(
x

x0

)2

+
(

v

ωx0

)2

= 1 .

The phase curve is an ellipse with semi-axes x0 and ωx0 (Fig. 1.6b).
Each point x, v on the phase curve corresponds to particular ti-
me points t: time is a parameter. Since the curve is closed in this
example, the motion repeats itself after each pass (oscillation =
periodic event). The figure shows distinct times and the directi-
on of the motion. The time it takes to complete a single cycle,
T = 2 π/ω, is known as the period of oscillation or for short the
period (cf. Chapter 5).

In other cases when velocity and position are known functions
of time, one needs to eliminate time from the relations ẋ(t) and
x(t) in order to determine the phase curve.

As closure to the developments up to this point, Table 1.1 sum-
marizes the important relations associated with the basic kinema-
tic questions.

Table 1.1

Given Sought

a(t) v = v0 +
t∫

t0

a(t̄) dt̄ x = x0 +
t∫

t0

v(t̄) dt̄

a(v) t = t0 +
v∫

v0

dv̄

a(v̄)
x = x0 +

v∫
v0

v̄ dv̄

a(v̄)

a(x) v2 = v2
0 + 2

x∫
x0

a(x̄) dx̄ t = t0 +
x∫

x0

dx̂√
v2
0 + 2

x̂∫
x0

a(x̄) dx̄
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E1.1 Example 1.1 A vehicle travelling on a straight path has, at time
t0 = 0, a velocity v0 = 40 m/s and acceleration a0 = 5 m/s2. It
then experiences a linearly decreasing acceleration in time to a
value of a = 0 at t = 6 s. Next, it travels a distance s2 = 550
m in uniform motion and finally in a third phase of travel it is
uniformly decelerated with an acceleration |a3| = 11 m/s2 until it
stops.

At what time and in what location does the vehicle come to
a stop? Sketch the acceleration-, velocity-, and position-time dia-
grams.

Solution For each of the three time intervals of the motion, we
will introduce a new time variable (Fig. 1.7a). Variables at the
end of a time interval will be denoted with a star. The position
x will be computed relative to the location of the vehicle at time
t0 = 0.

1. Linear acceleration (0 � t1 � t∗1).
The time variation of the acceleration can be represented as a1 =
a0(1−t1/t∗1). Considering the initial conditions x1(t1 =0) = 0 and
v1(t1 = 0) = v0 one obtains from (1.11) and (1.12) the velocity

v1 = v0 +

t1∫
0

a0

(
1− t̄1

t∗1

)
dt̄1 = v0 + a0

(
t1 − t21

2 t∗1

)
and position

x1 =

t1∫
0

v1 dt̄1 = v0 t1 + a0

(
t21
2
− t31

6 t∗1

)
.

At the end of this interval of the motion (t1 = t∗1 =6 s) we have

v∗
1 = v0 + a0

t∗1
2

= 40 + 5 · 3 = 55
m
s

,

x∗
1 = v0 t∗1 + a0

t∗21

3
= 40 · 6 + 5 · 62

3
= 300 m .
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2. Uniform motion (0 � t2 � t∗2).
In the second interval of the motion, the velocity is a constant
with value v2 = v∗1 = 55 m/s. Thus the position is given by

x2 = x∗
1 + v2 t2 .

At time t∗2 the vehicle has traveled a total distance of

x∗
2 = x∗

1 + s2 = 300 + 550 = 850 m .

From s2 = v2 t∗2 = 550 m, follows the time

t∗2 =
s2

v2
=

550
55

= 10 s .

t∗3
m
s

t∗1t1 t3

t2 t∗2

t0

50

0 6 16 t21 s

v

tfinal

c

21 s

t
0

6

a

16
5

m
s2

b
0 6 16 t21 s

x

m
500

xfinal

d

a

tfinal

Fig. 1.7

3. Constant deceleration (0 � t3 � t∗3).
The final conditions of the second time interval (x∗

2, v
∗
2 = v2) are

the initial conditions for the third time interval. Thus we find (a3
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is the magnitude of the deceleration)

v3 = v∗
2 − a3 t3,

x3 = x∗
2 + v∗2 t3 − a3

t23
2

.

The time at which the vehicle comes to a stop follows from

v∗3 = v∗2 − a3 t∗3 = 0 → t∗3 =
v∗2
a3

=
55
11

= 5 s ,

and the final position is obtained as

xfinal = x∗
3 = x∗

2 + v∗2 t∗3 − a3
t∗23

2

= 850 + 55 · 5− 11 · 52

2
= 987.5 m .

The total time of travel is

tfinal = t∗1 + t∗2 + t∗3 = 6 + 10 + 5 = 21 s .

Figs. 1.7b-d show the acceleration-, velocity-, and position-time
diagrams. At the time where the acceleration has a jump, the ve-
locity has a change in slope. In the position-time curve there is no
such change in slope as the vehicle has not experienced any jumps
in velocity. (Jumps in v only occur during impacts, cf. Section
2.5).

E1.2 Example 1.2 A point mass M moves according to Fig. 1.8a along
a straight line. The square of the velocity decreases linearly with
x. The mass passes the location x = 0 at t = 0 with a velocity
v0 > 0 and at the location x = x1 > 0 it has the velocity v1 = 0.

At what time does the point mass reach the position x1 and
what is its acceleration?

Solution First, we need to describe the velocity. A linear relation
between v2 and x can be generally written as v2 = b x + c. The
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a

v0

v
t = 0

t = t1

x1 x

b

0

P

x1 x

Fig. 1.8

constants b and c follow from consideration of the given values:

v(x=0) = v0 → c = v2
0, v(x=x1) = 0 → b = − c

x1
= − v2

0

x1
.

Thus,

v = v(x) = v0

√
1− x

x1
.

Figure 1.8b shows v(x) in the phase plane. From v = dx/dt it
follows by separation of variables and indeterminate integration
that

t =
∫

dx

v0

√
1− x

x1

= − 2
x1

v0

√
1− x

x1
+ C.

The integration constant C is determined from the initial condi-
tion x(0) = 0:

0 = − 2
x1

v0

√
1 + C → C = 2

x1

v0
.

With this, the time t1 when the mass reaches x = x1 is found as

t1 = t(x1) = C = 2
x1

v0
.

The acceleration is determined by application of the chain rule:

a=
dv

dt
=

dv

dx

dx

dt
=

dv

dx
v=− v0

2 x1

1√
1− x

x1

v0

√
1− x

x1
=− v2

0

2 x1
.
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Since a = const, we see that the motion is a uniform acceleration.
As a check, we can compute the velocity and position via inte-

gration from the known acceleration:

v = a t + v0 = − v2
0

2 x1
t + v0,

x = − v2
0

4 x1
t2 + v0 t.

Elimination of t leads to the given velocity-position relation.

E1.3 Example 1.3 A point mass M with current position P moves, as
shown in Fig. 1.9, along the x-axis with acceleration a = k

√
v,

where the constant k = 2 (m/s3)1/2. At time t = 0, M passes the
location x0 = 1/3 m with a velocity v0 = 1 m/s.

Find the location x1 of M at time t1 = 2 s. What are the
velocity and acceleration at this time?

x00

P

x1 x Fig. 1.9

Solution The acceleration is given as a function of velocity. Ac-
cording to (1.13), we have

t =

v∫
v0

dv̄

k
√

v̄
=

2
k

(
√

v−√v0) → v = v(t) =
(

k t

2
+
√

v0

)2

.

Indeterminate integration of v gives

x =
∫

v dt =
1
3

2
k

(
k t

2
+
√

v0

)3

+ C .

The integration constant C is found using the initial condition
x(0) = x0:

1
3

=
1
3

2
2
(
√

1)3 + C → C = 0 .
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Thus, we arrive at the result

x =
2

3 k

(
k t

2
+
√

v0

)3

,

v = ẋ =
(

k t

2
+
√

v0

)2

,

a = v̇ = ẍ = k

(
k t

2
+
√

v0

)
.

At time t = t1 we find

x1 = x (t1) =
2

3 · 2
(

2 · 2
2

+
√

1
)3

= 9 m,

v1 = v (t1) =
(

2 · 2
2

+
√

1
)2

= 9
m
s

,

a1 = a (t1) = 2
(

2 · 2
2

+
√

1
)

= 6
m
s2

.

As a check, we can easily see that the result is compatible with
the initially given acceleration formula: a = k

√
v.

1.1.4 Planar Motion, Polar Coordinates

When a point mass M moves in a plane (e.g. in the x, y-plane),
one often finds it easiest to describe the motion using Cartesian
coordinates according to relations (1.4) to (1.8) (ignoring the com-
ponent orthogonal to the plane of motion). However, it is often
also useful to describe its current position P using polar coordina-
tes r, ϕ; see Fig. 1.10a. Let us introduce orthogonal basis vectors
er and eϕ, such that er always points from the fixed point 0 to
M . In this case, the position vector is

r = r er . (1.19)

To find expressions for the velocity and acceleration we need
to differentiate the position vector. Because the location of M

changes with time, the directions of er and eϕ also change with
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Fig. 1.10

time. In contradistinction to the fixed-in-space basis vectors in a
Cartesian coordinate system, in polar coordinates the basis vectors
must also be differentiated. The basis vector er is assumed to be
a unit vector. Its change due to an infinitesimal rotation dϕ over
a time dt gives according to Fig. 1.10b a vector der, which is
orthogonal to er (i.e. it points in the direction of eϕ) and has a
magnitude 1 · dϕ. Thus we can write

der = dϕeϕ → ėr =
der

dt
=

dϕ

dt
eϕ = ϕ̇eϕ .

In a similar fashion, one can compute the change in the basis
vector eϕ from Fig. 1.10b:

deϕ = − dϕer → ėϕ =
deϕ

dt
= − dϕ

dt
er = − ϕ̇er .

It then follows from (1.19) that the velocity is given by

v = ṙ = ṙ er + r ėr = ṙ er + rϕ̇ eϕ . (1.20)

It has a radial component vr = ṙ and an angular component vϕ =
r ϕ̇. As noted before, the velocity is tangential to the trajectory.

Differentiation of (1.20) provides an expression for the accele-
ration:

a = v̇ = r̈ er + ṙ ėr + ṙϕ̇eϕ + rϕ̈ eϕ + rϕ̇ ėϕ

= (r̈ − rϕ̇2)er + (rϕ̈ + 2 ṙϕ̇)eϕ . (1.21)

It has a radial component ar = r̈−rϕ̇2 and an angular component
aϕ = rϕ̈ + 2 ṙϕ̇. As noted earlier, one can not easily make general
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statements about the orientation of the acceleration with respect
to the trajectory.

In summary, we have the following relations for planar motion
in polar coordinates:

r = r er,

v = vr er + vϕ eϕ = ṙ er + rϕ̇ eϕ, (1.22)

a = ar er + aϕ eϕ = (r̈ − rϕ̇2)er + (rϕ̈ + 2 ṙϕ̇)eϕ .

Over a time interval dt the position vector changes by an angle
dϕ. The time rate of change of this angle, ϕ̇ = dϕ/dt, is known
as the angular velocity. It is usually denoted by the letter ω:

ω = ϕ̇ . (1.23)

The angular velocity has dimensions of 1/time.
Differentiation of ω leads to the angular acceleration

ω̇ = ϕ̈ . (1.24)

The angular acceleration is denoted by many authors by the letter
α but we will usually not adopt this convention. It has dimensions
of 1/time2.

An important special case of planar motion is circular motion;
see (Fig. 1.11a) where r = const. In this case

r = r er, v = rω eϕ, a = − rω2 er + rω̇ eϕ . (1.25)

The velocity has only an angular component

v = vϕ = rω, (1.26)

which points in the direction tangent to the circular path of the
point mass (Fig. 1.11b). The acceleration has a component in the
tangential direction

aϕ = rω̇ (1.27)
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and a component in the radial direction (orthogonal to the tra-
jectory, Fig. 1.11c)

ar = − rω2 . (1.28)

The minus sign indicates that the radial component points inwards
– towards the origin. This component is called the centripetal ac-
celeration.

If in addition to r = const, the angular velocity ω = const, then
the velocity has a constant magnitude rω, and the tangential acce-
leration is zero. In spite of this, there is still a radial acceleration of
magnitude rω2. It is needed to change the direction of the velocity
vector.

path

dA

r

P

dϕ

a

rdϕ

C Fig. 1.12

Another important case of planar motion is central motion. In
this case, the acceleration vector is assumed to continuously point
towards a single point, the center C (Fig. 1.12). This occurs, for
example, with the motion of the planets, where the sun serves as
the center C. If we place the origin of our coordinate system at the
center, then the angular component of the acceleration disappears:

aϕ =0 → rω̇ + 2 ṙω=
1
r

d
dt

(r2 ω) = 0 → r2 ω=const . (1.29a)
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We can give this result a clever interpretation. Fig. 1.12 shows
that the ray r sweeps out an area dA = 1

2
rrdϕ in a time interval

dt. Calculating the differential ratio

dA

dt
=

1
2

r2 dϕ

dt
=

1
2

r2ω (1.29b)

shows that the rate of change of this area in a central motion is
constant (cf. (1.29a)). This observation is known as Kepler’s 2nd
Law of planetary motion (Friedrich Johannes Kepler, 1571-1630):
the ray from the sun to a planet sweeps out equal areas in equal
times. The result is also known as the Law of Equal Areas.

E1.4Example 1.4 A ship S moves as shown in Fig. 1.13a with a velocity
of constant magnitude v, where the angle α between the velocity
vector and the connecting line to the lighthouse L remains con-
stant.

What is the magnitude of the acceleration and what is the
trajectory of the ship?

r0

L

v

vr

vϕ α

r
S

L

v

x

a b

y
α

ϕ

Fig. 1.13

Solution To describe the motion, we introduce polar coordinates
with the origin at L (Fig. 1.13b). The velocity has in this case
constant components

vr = v cosα, vϕ = v sin α .

Since vr = ṙ and vϕ = rϕ̇ (cf. (1.22)), it follows that

ṙ = v cosα, ϕ̇ =
v sin α

r
.
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Upon further differentiation, one finds

r̈ = 0, ϕ̈ =
dϕ̇

dr
ṙ = − v sin α

r2
v cosα = − v2 sin α cosα

r2
.

Thus we find for the acceleration components

ar = r̈ − rϕ̇2 = − v2 sin2 α

r
,

aϕ = rϕ̈ + 2 ṙϕ̇ = − v2 sin α cosα

r
+ 2 v cosα

v sin α

r

=
v2 sin α cosα

r
.

The magnitude of the acceleration is then found as

a =
√

a2
r + a2

ϕ =
v2 sinα

r

√
sin2 α + cos2 α =

v2 sin α

r
.

The desired trajectory follows from

ṙ = v cosα → dr = v cosα dt,

rϕ̇ = v sin α → rdϕ = v sin α dt

via elimination of dt and separation of variables:

dr

r
=

dϕ

tan α
.

Indeterminate integration gives

ln r =
ϕ

tan α
+ C .

Assuming that the ship is a distance r0 from the origin at angle
ϕ = 0, then C = ln r0. Substituting, one finds

ln r =
ϕ

tan α
+ ln r0 → ln

r

r0
=

ϕ

tan α

or

r = r0 e
ϕ

tan α .

This is the expression for a logarithmic spiral.
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E1.5Example 1.5 A flywheel (diameter d = 60 cm) is uniformly accele-
rated from a standstill such that at time t1 = 20 s it has reached
a rotation rate of n = 1000 rpm (rpm = revolutions per minute).

a) What is the magnitude of the angular acceleration ω̇ of the
flywheel? b) How many revolutions N has the flywheel made at
time t1? c) What are the velocity and acceleration of a point on
the perimeter at time t2 = 1 s?

Solution a) For a uniformly accelerated circular motion the an-
gular acceleration is constant: ω̇ = ω̇0 = const. Noting the in-
itial condition ω(0) = 0, the angular velocity is ω = ω̇0 t. With
ω(t1) = ω1 it follows that

ω̇0 =
ω1

t1
.

Rotation rate n (in rpm) and angular velocity ω are easily related
to one another: with a rotation rate n one has an angle of revolu-
tion of n · 2 π after one minute. Angular velocity is usually given
in units of 1/s (or equivalently rad/s); in this case

ω =
n · 2 π

60
.

With the given rotation rate, it follows that

ω̇0 =
1000 · 2 π

60 · 20
= 5.24 s−2 .

b) Integration of ω = ω̇0 t with initial condition ϕ(0) = 0 gives
the rotation angle

ϕ =
1
2

ω̇0 t2 .

With the given values, we have at t = t1 a rotation angle

ϕ1 = ϕ(t1) =
1
2
· 5.24 · 400 = 1048 rad .

Thus the number of revolutions is

N =
ϕ1

2 π
= 166 .

c) From (1.26) the angular velocity component is obtained as
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v = rω = rω̇0 t .

The radial velocity is zero. From (1.27) and (1.28) the two acce-
leration components are

aϕ = rω̇0, ar = − rω2 = − r(ω̇0 t)2 .

For the given numerical values, at t = t2 we have

v = rω̇0 t2 = 30 · 5.24 · 1 = 157.2 cm/s,

aϕ = 30 · 5.24 = 157.2 cm/s2,

ar = − 30 · (5.24 · 1)2 = − 823.7 cm/s2

and

a =
√

a2
ϕ + a2

r = 838.6 cm/s2 .

The centripetal acceleration ar, which points towards the center of
the flywheel, grows quadratically with t and is thus, after a short
time, much larger than the time-independent angular acceleration
aϕ.

1.1.5 Three-Dimensional Motion, Serret-Frenet Frame

The general motion of a point mass in three dimensions can be
described with the previously introduced formulae either by Car-
tesian coordinates x, y, z or through cylindrical coordinates r, ϕ, z.
By cylindrical coordinates, we mean a three-dimensional genera-
lization of polar coordinates (Fig. 1.14), whereby the basis vector
ez is a constant, so that with (1.22) one has in cylindrical coordi-
nates:

r = r er + z ez,

v = ṙ er + rϕ̇ eϕ + ż ez,

a = (r̈ − rϕ̇2)er + (rϕ̈ + 2 ṙϕ̇)eϕ + z̈ ez .

(1.30)
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Fig. 1.14
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Note that r is not the magnitude of the vector r, but rather the
magnitude of its projection in the x, y-plane.

In many cases it is useful to introduce a third method of descri-
bing motion. To this end, we will introduce a means of describing
motion that moves with the point mass M along its trajectory.
The method of description is based upon the Serret-Frenet frame
(or triad). This triad of basis vectors at a point on the trajecto-
ry (Fig. 1.15a) is defined by three orthonormal vectors: et in the
tangential direction, en in the direction of the principal normal,
and eb in the direction of the binormal. The vectors et, en and eb,
in this order, create a right-handed system. The tangent and the
principal normal lie in the so-called osculating plane. The vector
en locally points towards the center of curvature C. If M is loca-
ted at P , the trajectory can be locally approximated by a circle,
whose radius ρ (distance CP ) is called the radius of curvature.
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Using the arc-length s(t), it follows from the expression for the
position vector

r = r(s(t))

that the velocity is given by

v = ṙ =
dr

dt
=

dr

ds

ds

dt
.

Since dr points in the direction of the tangent and |dr| = ds, one
has dr = ds et. Noting that the speed (cf. (1.2)) is

v = |v| = ds

dt
= ṡ (1.31)

we get

v = v et . (1.32)

Differentiation of (1.32) yields the acceleration

a = v̇ = v̇ et + v ėt .

We determine the time rate of change of the tangent vector, ėt,
analogously to Section 1.1.4. The unit vector et changes its di-
rection by an angle dϕ between two neighboring points P and P ′

on the trajectory (Fig. 1.15b). The change det points towards the
center of curvature C and has a magnitude of 1 ·dϕ. As the change
in arc-length ds between P and P ′ can be expressed in terms of
the angle dϕ and the radius of curvature ρ (ds = ρ dϕ), it follows
that

det = 1 · dϕen =
ds

ρ
en → ėt =

det

dt
=

1
ρ

ds

dt
en =

v

ρ
en .

Substituting back gives an expression for the acceleration vector
in terms of the Serret-Frenet frame:

a = at et + an en = v̇ et +
v2

ρ
en . (1.33)
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Fig. 1.16
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The acceleration is composed of two components: one is in the
direction of the tangent to the trajectory, namely the tangential
acceleration at = v̇, and one in the direction of the principal
normal, namely the normal acceleration an = v2/ρ. Note that
the entire vector lies in the osculating plane.

In the special case of circular motion, ρ = r = const, s = rϕ

and ϕ̇ = ω. This gives the following velocity and acceleration
components:

v = ṡ = rω, at = v̇ = rω̇, an =
v2

r
= rω2 . (1.34)

One can see that this result is consistent with (1.25) when one
notes that the direction of the principal normal en is opposite to
that of er.

Between the kinematic variables for rectilinear motion and ge-
neral three-dimensional motion, one has the following analogous
relations:

Rectilinear Motion Three-Dimensional Motion

x s

v = ẋ v = ṡ

a = v̇ = ẍ at = v̇ = s̈
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Thus all the formulae for rectilinear motion from Section 1.1.3
can be used for three-dimensional motion with the appropriate
variable substitutions. For example from Table 1.1, if one is given
at(v), then the arc-length s can be determined from

s = s0 +

v∫
v0

v̄ dv̄

at(v̄)
.

The Serret-Frenet frame can, of course, also be used to des-
cribe planar motions. Fig. 1.16 illustrates three possibilities for
constructing an expression for the velocity vector v in the special
case of planar motion:

a) Cartesian Coordinates v = ẋ ex + ẏ ey,

b) Polar Coordinates v = ṙ er + rϕ̇ eϕ,

c) Serret-Frenet Frame v = v et.

E1.6 Example 1.6 A point mass M moves in the x, y-plane along the
trajectory y = (α/2)x2 with a constant speed v0 (Fig. 1.17).

Find the magnitude of its acceleration.

path

v0
P

y

x Fig. 1.17

Solution From (1.33) it follows that a constant speed implies zero
tangential acceleration: at = 0. Thus for this question the normal
acceleration an and the acceleration magnitude a are one and the
same. In order to determine the normal acceleration, we need to
find the radius of curvature ρ, which follows for planar curves as

1
ρ

=

d2y

dx2[
1 +

(
dy

dx

)2
]3/2

.
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For the example then,

1
ρ

=
α

[1 + (αx)2]3/2

and we obtain

a = an =
v2

ρ
=

αv2
0

[1 + (αx)2]3/2
.

As a check on our calculation, we can also solve the problem
using Cartesian coordinates. From the expression for the trajec-
tory it follows by differentiation with respect to time that

ẏ = αx ẋ .

Between the velocity components we also have the constraint that

ẋ2 + ẏ2 = v2
0 .

From these two relations we obtain the result that

ẋ2 =
v2
0

1 + (αx)2
, ẏ2 =

(αx)2 v2
0

1 + (αx)2
.

Differentiating again, gives

2 ẋ ẍ=− v2
0

[1 + (α x)2]2
2 α2x ẋ → ẍ=− α2 x v2

0

[1 + (α x)2]2
,

2 ẏ ÿ=
2 α2 x v2

0

[1 + (α x)2]2
ẋ → ÿ=

α2 x v2
0

[1 + (α x)2]2
ẋ

ẏ
=

α v2
0

[1 + (α x)2]2
.

With these expressions we obtain our previously derived result

a =
√

ẍ2 + ÿ2 =

√
[(α x)2 + 1]α2 v4

0

[1 + (α x)2]4
=

α v2
0

[1 + (α x)2]3/2
.

In this example, the magnitude of the acceleration is maximal at
x = 0.
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1.2 1.2 Kinetics

1.2.1 Newton’s Laws

Up to now we have only utilized kinematic quantities (position,
velocity, acceleration) to describe motion. We know, however, from
experience that motion involves forces in general. We have already
studied the concept of forces in detail in Statics (cf. Volume 1). It
is now necessary to couple the concept of force to the kinematic
quantities. For this purpose, we will restrict our attention in this
chapter to the motion of a point mass. In a sense, we wish to
consider a body whose dimensions have no influence on its motion.
Therefore, the body can be represented as a point with a fixed
mass m. In what follows, we will usually refer to the body simply
as “mass m”.

The foundations of kinetics are established in Newton’s three
laws (1687). They are a summary of all experimental experience
and all inferences that can be drawn from them are compatible
with common experience. We take these laws – without proof –
to be true; i.e. we accept them as axioms.

Newton’s 1st Law

The momentum of a point mass is constant when it is free
of external forces.

By momentum we mean the kinetic variable p, which is the pro-
duct of the mass m and the velocity v:

p = m v . (1.35)

Momentum is a vector that points in the direction of the velocity.
Newton’s 1st Law can thus be stated as:

p = m v = const . (1.36)

It says that a point mass executes a uniform rectilinear motion as
long as it experiences no net force. Galilei had already formulated
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this experimental observation in 1638 as the Law of Inertia (v =
const).

The special case of statics is contained in Newton’s 1st Law by
considering the case where v = 0 (i.e. the body remains still for
all times).

Newton’s 2nd Law

The time rate of change of the momentum of a mass m is
equal to the net external force acting upon it.

In equation form, this law says:

dp

dt
=

d(m v)
dt

= F . (1.37)

Since it is assumed here that the mass is constant, (1.37) can also
be written as

m
dv

dt
= m a = F . (1.38)

In our study of the kinetics of a point mass, we will usually employ
this form of Newton’s 2nd Law, that says in words

Mass × Acceleration = Force.

The acceleration a has the same direction as the force F .
When the resultant external force is zero, Newton’s 1st Law

(1.36) follows from (1.37). Thus Newton’s 1st Law is simply a
special case of Newton’s 2nd Law. It is only for historical reasons
that we still state them as two separate laws.

The validity of Newton’s 2nd Law is subject to two restrictions:
a) The law as stated in (1.38) is valid only in an inertial refe-

rence system. For the majority of applications, the earth can be
considered as an inertial system. How one treats problems when
the reference system is non-inertial, i.e. when the reference system
is accelerating, will be shown in Chapter 6.

b) In the case where velocities approach the speed of light
(c ≈ 300, 000 km/s), one needs to consider the special theory
of relativity due to Einstein (1905). This is seldom the case in
engineering.
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If one releases a body in the vicinity of the earth’s surface, it will
move under the influence of the earth’s gravitational acceleration
g in the direction of the center of the earth (g = 9.81 m/s2).
Substituting g into (1.38), we see that during free fall the only
force acting on a body is the weight W , where

W = m g . (1.39)

A mass m in the earth’s gravitational field has a scalar weight
W = mg.

If one considers mass, position, and time as the fundamental
quantities, then force, according to (1.38), is a derived quantity
(cf. Volume 1, Section 1.6). The common unit for force is the
Newton (1 N = 1 kg ms−2).

Newton’s 3rd Law
To each force there is an equal and opposite force:

actio = reactio.

The reaction force law (cf. Volume 1, Section 1.5) will make pos-
sible the transition from point masses to systems of point masses
and then finally to bodies of arbitrary extent.

In addition to these fundamental laws, in the study of kinetics
we will also utilize all the basic principles associated with forces
(e.g. force parallelograms, section cuts, free-body diagrams) that
we know from Statics.

1.2.2 Free Motion, Projectiles

Corresponding to the three possibilities for motion in space, a
point mass has three degrees of freedom. If the motion is not res-
trained in any direction, one speaks of a free motion. This motion
is described by the three components of the vector relations (1.38).
Considering this, one can pose two types of questions:

a) What are the necessary forces when the trajectory of the
motion is known? The solution to this question follows directly
from (1.38).
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b) What is the motion when the forces are known? This type
of question occurs often in engineering situations. From (1.38)
the forces directly lead to an expression for the acceleration. If we
wish to know the mass’s velocity and position we need to integrate
once and twice, respectively. For complicated force systems, the
integration of the equations of motion can be mathematically quite
difficult.

z

zh

xh xd

α
x

W

z

α

α′

xd

m

xxd max

ba

v0
α

Fig. 1.18

As a simple example, let us consider the case of projectile moti-
on. A projectile, modeled as a point mass m, is launched at time
t = 0 at an angle α with respect to the x-axis with an initial ve-
locity v0 (Fig. 1.18a). If the air resistance is negligible, then the
only force acting on the mass is the weight W in the negative z-
direction. In Cartesian coordinates, the equations of motion (1.38)
read

mẍ = 0, mÿ = 0, mz̈ = −W = −mg .

Double integration, after cancellation of m, gives:

ẋ = C1, ẏ = C3, ż = − g t + C5,

x = C1 t + C2, y = C3 t + C4, z = − g
t2

2
+ C5 t + C6 .

Out of the three second order differential equations, 3 · 2 = 6
integration constants appear. These are determined from the 6
initial conditions:

ẋ(0) = v0 cosα → C1 = v0 cosα, x(0) = 0 → C2 = 0,

ẏ(0) = 0 → C3 = 0, y(0) = 0 → C4 = 0,

ż(0) = v0 sin α → C5 = v0 sin α, z(0) = 0 → C6 = 0 .
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Substituting back provides a parametric solution (parameter t):

ẋ = v0 cosα, ẏ = 0, ż = − g t + v0 sin α,

x = v0 cosα · t, y = 0, z = − g
t2

2
+ v0 sin α · t .

(1.40)

One sees that the point mass, which was launched in the x, z-
plane, remains in this plane for all time (y ≡ 0). In hindsight, this
should have been expected as a point mass can not move in the
y-direction when there is no force in this direction and the initial
velocity ẏ(0) is zero. It is also worth noting that the motion is
independent of the magnitude of the mass m.

By elimination of the time t from (1.40) one obtains the equa-
tion for the curve describing the motion:

z(x) = − g

2 v2
0 cos2 α

x2 + tanα · x . (1.41)

This is a quadratic curve, a parabola: the motion of a point mass
projectile, launched at an angle, moves on a parabolic trajectory .

The projectile distance xd follows from (1.41) under the condi-
tion z(xd) = 0:

xd = tan α
2 v2

0 cos2 α

g
=

v2
0

g
sin 2 α . (1.42a)

Because sin 2 α = sin(π−2 α) = sin 2 (π/2−α), one obtains the sa-
me projectile distance for the same initial velocity v0 with launch
angles α and α′ = π/2 − α (shallow and steep launch angle,
see Fig. 1.18b). The maximum projectile distance occurs when
α = π/4, and results in

xd max =
v2
0

g
. (1.42b)

The projectile time of flight td follows by substitution of the
projectile distance xd into (1.40) as

td =
xd

v0 cosα
= 2

v0

g
sin α . (1.43)

Comparing a shallow to a steep launch, one sees from (1.43) that
the time of flight is larger for a steeper launch angle.
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The maximal height zh of the projectile is found from the con-
dition that at the apex the slope will be zero (the tangent will be
horizontal) (Fig. 1.18a):

dz

dx
= − g

v2
0 cos2 α

x + tan α = 0 → xh =
1
2

v2
0

g
sin 2α

→ zh = z(xh) =
1

2 g
(v0 sin α)2 . (1.44)

Due to the symmetry of the trajectory, xh = 1
2
xd. Thus the ma-

ximal height only depends upon the z-component ż(0) = v0 sin α

of the initial velocity.

E1.7Example 1.7 A point mass is thrown from a tower (Fig. 1.19a) with
an initial velocity v0 at an angle α with respect to the horizontal.
It lands at a distance L from the base of the tower.
a) What is the height H of the tower?
b) How long is the mass in the air?
c) What is the speed of the mass at impact?

������

α

v0

b
L

α

v0

H

z

x

aFig. 1.19

Solution a) To start, let us introduce a coordinate system with
origin at the top of the tower (Fig. 1.19b). The coordinates of the
impact point are then x = L and z = −H . Substituting into the
equation for the trajectory (1.41) yields

H =
g

2 v2
0 cos2 α

L2 − L tan α .

b) Since the initial and final locations of the mass do not have
the same elevation, we can not determine the time of travel from
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(1.43). We need to use the parametric representation (1.40) with
x = L and t = T , which gives

T =
L

v0 cosα
.

c) The velocity at impact time t = T has, according to (1.40),
two components

ẋ = v0 cosα, ż = − g T + v0 sin α

and thus the magnitude

v =
√

ẋ2 + ż2 =

√
v2
0 cos2 α +

(
v0 sin α− g

L

v0 cosα

)2

=

√
v2
0 − 2 g L tanα + g2

L2

v2
0 cos2 α

=
√

v2
0 + 2 g H .

The value of the impact speed is seen to be independent of the
initial angle α.

1.2.3 Constrained Motion

When a point mass is restricted to move on a pre-defined surface or
curve, then one speaks of a constrained motion. In this situation,
the number of degrees of freedom is reduced from the three degrees
of freedom associated with the free motion in space.

The number of degrees of freedom is equal to the number of
coordinates necessary to uniquely specify the location of the mass.
If the mass moves on a pre-defined surface, then it has two degrees
of freedom, as a point on a surface requires two coordinates for its
specification. Any motion orthogonal to the surface is prevented
by the constraints. If the point mass is constrained to move on a
space-curve, then it has only one degree of freedom and its position
is specified by a single arc-length coordinate s.

In addition to the applied forces F (a) (e.g. the mass’s weight),
which are independent of the constraints, one also has constraint
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forces F (c), which emanate directly from the constraint surface
or curve. These constraint forces are reaction forces that act or-
thogonal to the mass’s trajectory. They can be visualized using a
free-body diagram which also aids in determining them. With the
forces acting on a mass, F (a) and F (c), the dynamical law (1.38)
for a constrained mass can be written as

ma = F (a) + F (c) . (1.45)
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As an example, let us consider the motion of a mass m on a
frictionless semi-circle of radius r (Fig. 1.20a). The mass is relea-
sed without an initial velocity at the highest point. As the mass
moves on the pre-defined curve (a circle), it has only one degree of
freedom. As a coordinate, we choose the angle ϕ with respect to
the horizontal (Fig. 1.20b). Shown in the free-body diagram are
the applied force W = mg and the constraint force N . If we des-
cribe the motion using a Serret-Frenet frame, then in components
(1.45) gives

man = F (a)
n + F (c)

n , mat = F
(a)
t

(constraint forces do not have tangential components). In the fol-
lowing, we will indicate the direction of an equation of motion by
a properly oriented arrow (↑ :). For the example, we obtain with
an = rϕ̇2 and at = rϕ̈ the equations in the normal and tangential
directions:

↗ : m rϕ̇2 = N −W sinϕ,

↘ : m rϕ̈ = W cosϕ .

These are two equations for the unknowns ϕ and N . From the se-
cond relation using ϕ̈ = dϕ̇

dϕ
dϕ
dt = ϕ̇ dϕ̇

dϕ and separation of variables,
one has ϕ̇dϕ̇ = g

r cosϕdϕ (cf. Section 1.1.3). By integration and
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using the initial condition, ϕ̇(ϕ = 0) = 0, one obtains

ϕ̇2

2
=

g

r
sin ϕ .

The speed is thus v = rϕ̇ =
√

2 gr sin ϕ; it takes on its largest value
vmax =

√
2 gr at the lowest point of the trajectory, ϕ = π/2. If

one wishes to determine the path ϕ(t), then by further separation

of variables one is led to the integral
∫ dϕ√

sin ϕ
, which is no longer

integrable in terms of elementary functions.
The constraint force can be determined from the first equation

of motion via substitution of the expression for ϕ̇2:

N = mr 2
g

r
sinϕ + W sin ϕ = 3 W sin ϕ .

At the lowest point on the trajectory, the constraint force is three
times as large as it would be in a static situation.

E1.8 Example 1.8 A horizontal circular plate rotates with constant an-
gular velocity ω0 (Fig. 1.21a). A point mass m moves in the radial
direction within a frictionless slot in the plate. Find the forces
acting on the mass under the requirement that it moves with a
constant velocity v0 relative to the plate.

Solution The free-body diagram of the mass is shown in Fig. 1.21b.
It shows the two forces acting on the mass: a force Fr, which is
necessary to achieve a constant velocity v0, and a force N1, which
constrains the mass to remain in the slot.

ϕ

m v0

ω0

0
r

Fr

N1

b
0

a

Fig. 1.21
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In polar coordinates, the equations of motion (1.45) read

↗ : mar = Fr, ↖ : maϕ = N1 .

From (1.22) with the help of

ϕ̇ = ω0 → ϕ̈ = 0, ṙ = v0 → r̈ = 0

we can obtain the acceleration components

ar = − rω2
0 , aϕ = 2 v0 ω0 .

Substituting into the equations of motion gives the desired forces

Fr = −m r ω2
0, N1 = 2 m v0 ω0 .

The minus sign in Fr indicates that this force must act inwards.
For completeness, it should be mentioned that an additional force
N2 acts orthogonal to the plate; it holds the weight W of the mass
in equilibrium: N2 = W .

1.2.4 Resistance/Drag Forces

Resistance forces or drag forces hold a special place in the technical
theory of mechanics. These are forces that arise due to motion and
can be dependent upon the motion itself. Such forces are always
tangential to the trajectory and oppose the motion. Common ex-
amples include frictional forces between bodies and drag forces in
aerodynamics.

Let us first consider dry friction. We have already seen Cou-
lomb’s Friction Law

R = μN (1.46)

in Volume 1. Here, N is the normal force and μ the coefficient of
friction. The friction force R is independent of the magnitude of
the sliding velocity.

As an example, consider a block of mass m, which, as shown in
Fig. 1.22a, slides on a rough plane with inclination angle α. Figure
1.22b shows a free-body diagram with all acting forces: weight W ,
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normal force N and friction force R. The equations of motion in
the tangential direction x and in the normal direction y are

↘ : mẍ = mg sin α−R, ↗ : mÿ = N −mg cos α .

With the fact that ÿ = 0 (the body is constrained to remain on
the plane) it follows from the second equation that N = mg cosα.
Substitution of the friction law (1.46) into the first equation gives
the acceleration

ẍ = g (sin α− μ cosα) = const .

From this expression one can directly determine the position and
velocity via integration with respect to time. Assuming the initial
conditions ẋ(0) = 0, x(0) = 0, one has

ẋ = g (sin α− μ cosα) t , x = g (sin α− μ cosα)
t2

2
.

If the block is released from a height h (see Fig. 1.22c), then it
will slide the distance xE = h/ sinα in the time

tE = t(xE) =

√
2 xE

g (sin α− μ cosα)
=

√
2 h

g sin α(sin α− μ cosα)

with a final velocity of

vE = ẋ(tE) = g (sin α− μ cosα) tE =

√
2 gh

sin α
(sin α− μ cosα) .
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For α = 90◦ (vertical wall, free fall), N = 0. In this case, there will
be no frictional force and the final velocity vE will be the same as
the impact velocity vE =

√
2 gh from Section 1.1.3.

For the motion of a solid body in a liquid or gaseous medium,
one also has resistance forces, which are normally known as drag
forces. Out of the multitude of drag forces that one can determine
experimentally, we will focus our attention on two idealized cases.

At low velocities, flows are laminar. The drag force Fd in this
situation is proportional to the velocity:

Fd = kv. (1.47a)

Here, the constant k depends upon the shape of the body and
the viscosity η of the fluid. George Gabriel Stokes (1819-1903)
determined in 1854 the relation for the drag force on a sphere of
radius r in a fluid with velocity v (or on a sphere which moves
with velocity v in a stationary fluid) as

Fd = 6 π η r v . (1.47b)

A linear relation between velocity and resistance force will also
be seen to be a common assumption in the analysis of damped
oscillations (Chapter 5).

At larger velocities, the flow becomes turbulent. In this case,
the drag force can be estimated as

Fd = kv2 , (1.48a)

where the constant k depends upon the geometry of the body and
the density of the fluid. This relation is often written in the form

Fd = Cd
ρ

2
Av2 . (1.48b)

Here, A is the projected area of the body onto the plane orthogonal
to the direction of the flow and the drag coefficient Cd accounts
for all other parameters. For example, for modern automobiles, it
has a value smaller than 0.3.

As an illustrative example, let us consider the velocity of a body
during free fall with drag. A body with weight W is released from
an arbitrary height with zero initial velocity. The drag force on
the body is assumed to be given by (1.48a). Using the notation
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introduced in Fig. 1.23a, the equation of motion reads

↓ : mẍ = W − Fd = mg − kẋ2 .

Introducing for convenience the constant κ2 = mg/k, one has

ẍ = g

(
1− ẋ2

κ2

)
. (a)

x

ẋ

ẋT

a b

α

t

Fd

W

Fig. 1.23

By separation of variables and integration, we find
dẋ

g

(
1− ẋ2

κ2

) = dt → t =
κ

g
tanh−1 ẋ

κ
+ C .

Since at time t = 0 the velocity ẋ(0) = 0, we note that C = 0.
Solving for ẋ, gives the velocity function

ẋ = κ tanh
g t

κ
.

For increasing t, the velocity asymptotically approaches the li-
miting value ẋT = κ, since the hyperbolic tangent approaches
unity for large arguments. The motion becomes uniform. We can
also determine the terminal velocity ẋT directly from (a) under
the condition ẍ = 0; this allows us to simply read-off the result
ẋT = κ.

Figure 1.23b shows the time history of the velocity. At the start
of the motion, the velocity is zero and thus according to (a) the
acceleration ẍ = g: the initial slope dẋ/dt (equivalently the angle
α) is determined by the gravitational acceleration. For increasing t

the velocity ẋ approaches the limiting value ẋT , which it achieves
only in infinite time.
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E1.9Example 1.9 A conveyer belt moves with constant velocity vB =
3 m/s. At time t = 0 (see Fig. 1.24a) a crate with weight W = mg

and horizontal velocity v0 = 0.5 m/s is placed on the belt at
position A; the coefficient of friction is μ = 0.2.

How long does the crate slide with respect to the belt? What is
the position of the crate once it stops sliding with respect to the
initial position it had on the belt?

A∗

sC

a

R

N

W

b

A s∗C b
s∗B

s

t = 0 t∗

c

vB

A

v0

W

Fig. 1.24

Solution Because vB > v0, a frictional force R acts on the crate to
the right (Fig. 1.24b). From the equations of motion for the crate

→: ms̈C = R ,

it follows with N = mg and the friction law

R = μ N = μ mg ,

that the acceleration is given by

s̈C = μg.

Using the initial conditions ṡC(0) = v0 and sC(0) = 0, we find via
integration

ṡC = vC = μg t + v0, sC = μg
t2

2
+ v0 t .

The sliding ends at time t∗, when the crate’s velocity equals the
conveyer belt’s velocity vB :

vC = vB → μ g t∗ + v0 = vB .
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Using the given values, it follows from this result that the sliding
process occurs for a time

t∗ =
vB − v0

μg
=

3− 0.5
0.2 · 9.81

= 1.27 s .

At time t∗, the crate has moved a distance

s∗C = sC(t∗) = μg
t∗2

2
+ v0 t∗

= 0.2 · 9.81 · 1.272

2
+ 0.5 · 1.27 = 2.2 m .

In the same time, the location A on the conveyer belt has moved
a distance

s∗B = sB(t∗) = vB t∗ = 3 · 1.27 = 3.8 m

to the position A∗ (Fig. 1.24c). The distance b between the crate
and its initial location on the conveyer belt is thus

b = s∗B − s∗C = 3.8− 2.2 = 1.6 m .

E1.10 Example 1.10 A sphere (mass m, radius r) is dropped in a contai-
ner filled with liquid (Fig. 1.25a).

Determine the motion under the assumptions that the drag
force is given by Stoke’s Law and that the buoyancy force is ne-
gligible.

z

ta b c

z

1/k

Fd

t

W

ż

żT

m

Fig. 1.25

Solution As shown in Fig. 1.25b, let us take the positive z-
coordinate as pointing down. According to (1.47b), the motion can
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be described by the equation

↓ : mz̈ = W − Fd = mg − 6 π η r ż .

Using the shorthand,
6 π η r

m
= k, gives

z̈ = g − k ż .

Separation of variables and integration lead to

dż

g − kż
= dt → − 1

k
ln

(
1− kż

g

)
= t + C1 .

If we assume the initial condition ż(0) = 0, then C1 = 0. Inverting
this relation, one obtains the expression for the velocity:

ż =
g

k
(1− e−kt) .

With an additional integration, one can determine the position of
the mass:

z =
g

k

(
t +

1
k

e−kt + C2

)
.

Using the initial condition z(0) = 0 gives C2 = −1/k and thus

z =
g

k

[
t− 1

k
(1− e−kt)

]
.

As kt → ∞ (the long-time limit), ż tends towards the limiting
value

żT =
g

k
= const .

In this limit, the position becomes a linear function of time. For
large k, e.g. for large viscosity η, this limit is practically instantly
reached. A measurement of the constant velocity żT can then serve
as a means for determining η. Figure 1.25c shows the time history
of the velocity and position.
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1.2.5 Impulse Law and Linear Momentum, Impact

If one integrates Newton’s 2nd Law

d
dt

(m v) = F

with respect to time, one obtains the Impulse Law or principle of
impulse and linear momentum

m v −m v0 =

t∫
t0

F dt̄ . (1.49)

Thus, the change in the momentum p = m v between time t0 and
an arbitrary time t is equal to the time integral of the force. If F

is zero over this time interval, then the momentum is unchanged
(conservation of linear momentum):

p = m v = m v0 = const .

The Impulse Law is often used to study impact processes. An
impact is defined by a large force that acts over a very short time
span (impact duration ti). In this situation, the mass experiences
a sudden change in velocity but the change in its position is negli-
gible. The precise time variation of F during the impact is usually
unknown. In order to determine the velocity after an impact, we
introduce the concept of linear impulse F̂ , the time integral of the
impact forces over the impact interval:

F̂ =

ti∫
0

F dt . (1.50)

Thus from (1.49) for an impact process

m v −m v0 = F̂ . (1.51)

Let us consider now a body modelled as a point mass, which as
shown in Fig. 1.26a, obliquely strikes a wall. In what follows, we
will denote the velocity before the impact as v and after impact
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as v̄. With the given coordinate system, (1.51) reads

→: m v̄x −m vx = F̂x, ↑: m v̄y −m vy = F̂y , (1.52)

where the arrow (e.g. → :) shows in which direction the Impulse
Law has been written. From Fig. 1.26a, we can see that

vx = − v cosα, vy = v sin α,

v̄x = v̄ cos ᾱ, v̄y = v̄ sin ᾱ .
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ᾱ

α x

v

Fmax

F

x

t

F̂C F̂R

y v̄

a c

F

y

ti
b

Fig. 1.26

Let us further assume that the wall is frictionless. Then, no
forces can be generated in the y-direction and with F̂y = 0 it
follows from (1.52) that

v̄y = vy . (1.53)

The velocity component in the y-direction does not change during
frictionless impact.

To determine the x-component of the velocity, we will decom-
pose the impact interval into two parts: the compression phase,
in which the body represented by the point mass is compressed
and its center of mass comes nearer to the wall, and the resti-
tution phase, during which the center of mass of the body moves
away from the wall. The force Fx = F , acting on the body during
the impact process (Fig. 1.26b), increases during the compression
phase to a maximal value Fmax and decreases during the restitu-
tion phase back to zero (Fig. 1.26c). We now write the Impulse
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Law in the x-direction for the two phases:

Compression phase: m · 0−m vx = F̂C ,

Restitution phase: m v̄x −m · 0 = F̂R

(1.54)

(at the moment of maximal force the velocity is zero). The two
equations (1.54) contain three unknowns: the velocity v̄x and the
two linear impulses F̂C and F̂R. To complete the system of equa-
tions, we need to make an assumption about the impact process
itself. There are three basic cases (or models) that are commonly
applied:

a) Ideal-elastic impact

We assume that the deformations and forces in the compression
phase and the restitution phase are mirror images of each other.
In this case, the linear impulses in both phases are assumed to be
equal. From F̂R = F̂C , it follows that

m v̄x = −m vx → v̄x = − vx

and from (1.53) it follows that

v̄ = v and ᾱ = α .

In an ideal-elastic impact (Fig. 1.27a), the incident and ricochet
angles and velocities are equal (cf. Reflection Law of Optics).
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v
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ᾱ =
π

2

v

v̄

e = 1

v̄x

vx

y

vy
v

0 < e < 1b

v̄

y

a

y

e = 0c

v̄

Fig. 1.27
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b) Ideal-plastic impact

The deformation experienced by the body during the compression
phase is permanent; we assume that the linear impulse of the
restitution phase vanishes (F̂R = 0). Then according to (1.54), it
follows that

v̄x = v̄ cos ᾱ = 0 → ᾱ =
π

2
.

The body is observed to slide with velocity v̄ = v̄y = vy = v sin α

along the frictionless wall after impact (Fig. 1.27c).

c) Partially elastic impact

A real body responds in a fashion intermediate to the two limi-
ting cases of ideal-elastic and ideal-plastic impact. To model a real
body, one assumes a simple proportionality relation between the
linear impulses of compression and restitution. The proportiona-
lity constant e is known as the coefficient of restitution:

F̂R = e F̂C . (1.55)

In the limiting cases of ideal-elastic impact and ideal-plastic im-
pact, e = 1 and e = 0, respectively. For partially elastic impact,
the coefficient of restitution lies between these two limits; i.e.,

0 � e � 1 . (1.56)

Substitution of (1.54) into (1.55) gives

m v̄x = e (−m vx) → v̄x = − e vx . (1.57)

According to Fig. 1.27b this implies that tan ᾱ =
v̄y

v̄x
=

vy

−evx
=

1
e

tan α. Because e < 1 for partially elastic impact, tan ᾱ > tan α

and thus ᾱ > α.
Using equation (1.57), one can also construct a working de-

finition of the coefficient of restitution in terms of the velocity
components orthogonal to the wall before and after the impact:

e = − v̄x

vx
. (1.58)
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The minus sign appears because the two velocities are taken as
positive in the same direction. In the example, vx is negative and
thus e is positive.

The coefficient of restitution e can be determined experimental-
ly. If one drops a mass from a height h1 onto a horizontal surface,
then the (downward) incident velocity is according to Section 1.1.3

v =
√

2 g h1 .

After impact, if the body has a (upwards) rebound velocity v̄,
then it will reach a height

h2 =
v̄2

2 g
→ v̄ =

√
2 g h2 .

Taking proper account of the signs, it follows from (1.58) that

e = − v̄

v
=
√

2 g h2√
2 g h1

→ e =
√

h2

h1
. (1.59)

Using this method, the coefficient of restitution can be directly
calculated from the heights before and after the impact. For an
ideal-elastic impact, h2 = h1 since e = 1; for an ideal-plastic
impact h2 = 0 since e = 0.

E1.11 Example 1.11 A man (weight W1 = m1 g) stands on the runners of
a sled (weight W2 = m2 g) and kicks-off the ground at uniformly
separated times (separation Δt), such that the initially stationary
sled begins to move (Fig. 1.28a). The friction coefficient μ between
the ground and the sled is given. To simplify the situation it will
be assumed that each kick occurs over a short time ts (ts � Δt)
and with a constant horizontal force P .

How large is the velocity v directly after the n-th kick?

Solution We can model the system (sled and man) as a point
mass (Fig. 1.28b). A horizontally oriented force P acts on the
mass during each impact of duration ts. Further, a friction force
R = μN acts on the mass over all times. Up through the n-th
kick, a time T = (n − 1)Δt passes. Assuming an initial velocity
v0 = 0 at time t0 = 0, one computes from the Impulse Law (1.49)
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a

W2

m1+m2

N

W1+W2

b

R

(P )
W1

Fig. 1.28

for the total mass

←: (m1 + m2) v =

T∫
0

F dt = n

ts∫
0

P dt−
T∫

0

μ(W1 + W2) dt .

The sought velocity after the n-th kick is then

v =
n P ts

m1 + m2
− μ g (n− 1)Δt .

E1.12Example 1.12 A hockey puck strikes a frictionless wall with velo-
city v at an angle α = 45◦ and bounces off at an angle β = 30◦

(Fig. 1.29).
Find the ricochet velocity v̄ and the coefficient of restitution.

Fig. 1.29
����������������������

x

α β

v

v̄

Solution For a frictionless wall the momentum parallel to the wall
must be conserved:

→: m v̄ cosβ = m v cosα .
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From this, it follows that the velocity after the impact is

v̄ = v
cosα

cosβ
=

√
2
3

v .

Using the velocity components orthogonal to the wall,

vx = − v sin α, v̄x = v̄ sin β ,

one can determine the coefficient of restitution e from (1.58):

e = − v̄ sin β

− v sin α
=

√
2
3

1
2

1
2

√
2

=
√

3
3

.

1.2.6 Angular Momentum Theorem

In the study of statics (cf. Volume 1), we introduced for the mo-
ment of a force relative to a point 0 the moment vector

M (0) = r × F . (1.60)

An analogous kinetic variable is the moment of momentum L(0).
It is defined as the vector product of r and p:

L(0) = r × p = r ×m v . (1.61)

The vector L(0) is also known as the angular momentum vector. It
is orthogonal to the plane containing the position vector r (from
a fixed point 0 to the moving point mass) and the velocity vector
v (Fig. 1.30a). Its magnitude is given by the product of the ortho-
gonal projection r⊥ (to the velocity) and the linear momentum
magnitude mv as L(0) = r⊥mv.

We wish now to determine a relation between angular momen-
tum and moment. To this effect, we form the vector product of
the position vector with Newton’s 2nd Law (1.38):

r ×
(

m
dv

dt

)
= r × F . (1.62)
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m
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r
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Fig. 1.30

The right-hand side is the moment as defined in (1.60). The left-
hand side can be re-written with the help of the identity

d
dt

(r ×m v) = ṙ ×m v + r ×m
dv

dt
,

which follows directly from the chain rule of differentiation. The
first term in this identity on the right-hand side vanishes since
ṙ = v. Thus,

r ×m
dv

dt
=

d
dt

(r ×m v) =
dL(0)

dt
.

This allows us to write (1.62) as

dL(0)

dt
= M (0) . (1.63)

This is the angular momentum theorem: the time rate of change of
the angular momentum of a point mass relative to a fixed arbitrary
point 0 is equal to the moment of the force acting on the point
mass relative to 0.

If the moment M (0) is zero, then the angular momentum re-
mains constant (conservation of angular momentum):

L(0) = r ×m v = const .

A visual interpretation of angular momentum can be found by
considering Fig. 1.30b. In a time increment dt the position vector
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r sweeps out an area with magnitude dA = 1
2 |r × dr|. If we

introduce the corresponding vectorial quantity

dA =
1
2
(r × dr) =

1
2
(r × v dt) ,

then the time rate of change of the swept out area is
dA

dt
=

1
2
(r × v) .

Substituting back into (1.61) results in

L(0) = 2 m
dA

dt
. (1.64)

Thus, the angular momentum is proportional to the time rate of
change of the swept out area.

If for a given motion, the force points continuously towards a
fixed point 0, then the moment relative to 0 will vanish. In this
case, the angular momentum and the time rate of change of the
swept out area, according to (1.64), will be constant. For planetary
motion, this result is known as Kepler’s 2nd Law (or the Law of
Equal Areas): the ray from the sun to a planet sweeps out equal
areas in equal times (cf. Sec. 1.1.4).

If a point mass moves only in the x, y-plane (Fig. 1.31), then
the angular momentum vector and the moment vector only have
non-zero z-components. Thus in the angular momentum theorem
(1.63) only one component remains:

dL
(0)
z

dt
= M (0)

z . (1.65)

y

y

x

x
0
r⊥

m

vy

vx

v

Abb. 1.31

m

ϕ

v

0

ω

r

Abb. 1.32
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In this case we can drop the subscript z for simplicity. The angular
momentum – analogous to the moment – can either be expressed
using the orthogonal (with respect to the velocity) distance r⊥
from the reference point or via components vx and vy and the
explicit expression for the vector product:

L(0) = r⊥ m v or L(0) = m(x vy − y vx) . (1.66)

In the special case of circular motion (Fig. 1.32), we find using
v = r ω that the angular momentum is

L(0) = m r v = m r2ω .

Let us introduce the symbol Θ(0) for the term mr2. This is known
as the mass moment of inertia or simply moment of inertia. Thus
the angular momentum can be expressed as L(0) = Θ(0)ω, and
using the connection ω = ϕ̇ allows the angular momentum theo-
rem (1.65) to be written as

Θ(0)ϕ̈ = M (0) . (1.67)
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Fig. 1.33

As an example, let us consider the motion of a pendulum as
shown in Fig. 1.33a. There are two forces acting on m: a support
force S (pointing towards A) and the gravitational force W = mg

(Fig. 1.33b). Introducing a positive rotation angle ϕ as indicated
allows us to express the angular momentum and moment relative
to the fixed point A as

L(A) = l m v = l m lϕ̇ = ml2 ϕ̇, M (A) = −mg l sin ϕ .
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The angular momentum theorem (1.65) then furnishes an expres-
sion for the equation of motion:

ml2 ϕ̈ = −mg l sin ϕ → ϕ̈ +
g

l
sin ϕ = 0.

For small angles (sin ϕ ≈ ϕ), this can be written as ϕ̈ +
g

l
ϕ = 0

(simple harmonic oscillation of an ideal pendulum, cf. Chapter 5).
With Θ(A) = ml2 one can also determine the equation of motion
from (1.67).

E1.13 Example 1.13 A mass m executes a circular motion with an angu-
lar velocity ω0 on a frictionless horizontal plane. The mass is held
at a radius r0 with a string (Fig. 1.34a, b). The string is threaded
through a hole A at the center of the plane.
a) If the string is pulled, such that the mass moves on a circular

trajectory with radius r, what will the angular velocity be?
b) What is the corresponding change of the force in the string?
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Fig. 1.34

Solution a) Let us denote the force in the string in the initial
state as S0 (Fig. 1.34c); this force has no moment about A. Thus
according to (1.65), the angular momentum must be constant du-
ring the motion and will remain so even after the string has been
pulled. The initial angular momentum about A is

L
(A)
0 = r0(m r0 ω0) = m r2

0 ω0

and after pulling the string

L(A) = r(m rω) = m r2 ω .
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Setting the two expressions equal gives

ω =
(r0

r

)2

ω0 .

The angular velocity is inversely proportional to the square of the
radius of the trajectory.

b) Noting that the centripetal acceleration an = v2/r = rω2,
the equation of motion in the initial state (Fig. 1.34c) gives

↙ : m an = S0 → S0 = m r0 ω2
0 .

In the same manner, for the final state, we have

S = m r ω2 = m r
(r0

r

)4

ω2
0 =

(r0

r

)3

m r0 ω2
0 =

(r0

r

)3

S0 .

The force in the string is inversely proportional to the cube of the
radius of the trajectory.

1.2.7 Work-Energy Theorem, Potential Energy, Conservation of

Energy

If we form the scalar product of Newton’s 2nd Law (1.38) with
dr, then we find

m
dv

dt
· dr = F · dr .

Substituting dr = v dt and integrating between two points r0 and
r1 on a mass’s trajectory, gives

v1∫
v0

m v · dv =

r1∫
r0

F · dr → mv2
1

2
− mv2

0

2
=

r1∫
r0

F · dr , (1.68)

where v0 and v1 are the mass’s velocity at these two points. The
right-hand side expresses the work U done by the force F (cf. Vo-
lume 1, Chapter 8). The scalar quantity 1

2 m v2 = 1
2 m v2 is called

the kinetic energy T :

T =
mv2

2
. (1.69)
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Using this, we obtain from (1.68) the work-energy theorem

T1 − T0 = U . (1.70)

The work done by the forces acting on a mass between two points
on its trajectory is equal to the change in the mass’s kinetic energy.

Just as with work U , the dimensions of kinetic energy T are
force × distance. In many applications it is expressed using the
unit Joule, 1 J = 1 Nm, (James Prescott Joule, 1818-1889).

The forces acting on a point mass are composed of externally
applied forces F (a) and constraint forces F (c). Since the constraint
forces are orthogonal to the trajectory of a mass, they do no work.
Thus, the work integral is given by

U =

r1∫
r0

F (a) · dr . (1.71)

As an example application consider a block sliding down a
rough inclined plane (Fig. 1.35a). The block is acted upon by an
applied gravitational force W = mg and a friction force R = μN ,
in addition to the constraint force N (Fig. 1.35b).

In moving from position 0 to position 1 the gravitational force
and the friction force do work:

UW = mg sin α x, UR = −Rx = −μN x = −μmg cosα x

������
������
������
������
������
������

������
������
������
������
������
������

μh
R

N mg

α

a b

1

0

x

Fig. 1.35

(the constraint force N does no work). If the block is released
from position 0 with zero initial velocity, then the work-energy



1.2 Kinetics 65

theorem (1.70) tells us that

m
v2
1

2
= mg sinα x−mg μ cosαx .

Introducing the height h = x sin α allows us to express the velocity
in position 1 as

v1 =
√

2 gh(1− μ cotα) .

The result shows that the motion is only possible if μ cotα < 1,
i.e. μ < tan α.

The work done per unit time dU/dt is known as the power P .
Writing dU = F · dr gives

P = F · v . (1.72)

The most common unit of power is the Watt (James Watt, 1736-
1819):

1 W = 1
Nm
s

.

Another common unit for power is horsepower (hp); its relation
to Watt is given as

1 hp = 0.735 kW, 1 kW = 1.36 hp .

As with work done, the power due to constraint forces F (c) is zero,
as they are orthogonal to a point mass’s velocity v.

In all machines, energy is lost due to frictional effects in sup-
ports and guides. Thus a part of all input or applied work is sim-
ply lost. One expresses the relationship between output or usable
energy UO and input or applied energy UA as the efficiency η:

η =
UO

UA
. (1.73)

As a per unit time quantity, one has the instantaneous efficiency
as the ratio of the corresponding powers:
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η =
PO

PA
. (1.74)

Due to the ever present losses η < 1.
As an example application let us compute the output drive

force F of an automobile with a motor rated at PA = 30 kW
that is traveling at a velocity of v = 60 km/h on a flat road. We
will assume an efficiency η = 0.8. The output or drive power is
PO = Fv, thus from (1.74)

η =
Fv

PA
→ F =

PA η

v
=

30 · 0.8
60/3.6

= 1.44 kN .

The work-energy theorem (1.70) takes on a particularly sim-
ple form when the applied forces emanate from a potential. Such
forces are known as conservative forces. Forces of this type are
characterized by the fact that the work they perform between two
fixed points in space 0 and 1 (Fig. 1.36) is independent of the
path taken between these points (cf. Volume 1, Chapter 8). Wri-
ting F = Fx ex + Fy ey + Fz ez and dr = dxex + dy ey + dz ez

the work done between the two points is given by

U =

1∫
0

F · dr =

1∫
0

{Fx dx + Fy dy + Fz dz} . (1.75)

The integral is path independent only when the integrand is an
exact differential (total differential), which we will denote as −dV :

− dV = Fx dx + Fy dy + Fz dz . (1.76)

x

0

y

z

1

path II

path I

Fig. 1.36
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The function V (x, y, z) is called the potential energy or potential of
the force F ; the minus sign in the definition has been introduced
due to its utility with respect to physical interpretation as we will
see later.

A comparison of the exact differential

dV =
∂V

∂x
dx +

∂V

∂y
dy +

∂V

∂z
dz

with (1.76) gives the relations

Fx = − ∂V

∂x
, Fy = − ∂V

∂y
, Fz = − ∂V

∂z
. (1.77)

If we introduce the gradient

gradV =
∂V

∂x
ex +

∂V

∂y
ey +

∂V

∂z
ez ,

then (1.77) can be written in vector form as:

F = − gradV . (1.78)

If we take the derivative of the first expression in (1.77) with
respect to y and the derivative of the second expression with re-
spect to x, then the right-hand sides of the two equations will be
the same. Thus one has that ∂Fx/∂y = ∂Fy/∂x. Cyclic permuta-
tion of the coordinates further shows that, if a potential exists for
a force, then

∂Fx

∂y
=

∂Fy

∂x
,

∂Fy

∂z
=

∂Fz

∂y
,

∂Fz

∂x
=

∂Fx

∂z
. (1.79)

Using these relations, one can easily check if a force F (x, y, z) can
emanate from a potential. If we introduce the definition of the
rotation of a force F
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rotF =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣∣∣
=

(
∂Fz

∂y
− ∂Fy

∂z

)
ex

+
(

∂Fx

∂z
− ∂Fz

∂x

)
ey +

(
∂Fy

∂x
− ∂Fx

∂y

)
ez ,

then the conditions (1.79) can be compactly written in vector form
as

rotF = 0 (1.80)

(irrotational force field).
If a force has a potential, then from (1.75) and (1.76) one has

dU = − dV, (1.81)

and it follows that the work done by the force is

U =

1∫
0

dU = −
1∫

0

dV = −(V1 − V0) .

The potential energy itself is dependent upon a reference location;
its difference between two points 0 and 1 , however, is indepen-
dent of the reference location.

Substituting for U in (1.70) leads to the Conservation of Energy
Law

T1 − T0 = V0 − V1

or

T1 + V1 = T0 + V0 = const . (1.82)
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When the applied forces possess a potential, then the sum of the
potential and the kinetic energy remains a constant along the
trajectory of the system.

We wish now to review two classes of potentials which we have
already considered in Volume 1.

a) Potential of the gravitational force mg at a distance z from
the surface of the earth (gravitational potential near the earth’s
surface) :

V = mg z . (1.83)

b) Potential of a linear elastic translational spring force (with
spring constant k) at a displacement x and of a linear elastic
rotational spring torque (with spring constant kT ) at a rotation
ϕ:

V =
1
2

k x2 , V =
1
2

kT ϕ2 . (1.84)

In contrast to gravitational forces and spring forces, frictional
forces do not possess a potential energy. They are non-conservative;
the work they perform is path dependent. With motion, systems
subject to non-conservative forces dissipate energy which appears
as heat. Thus, one also calls such forces dissipative. The Conser-
vation of Energy Law (1.82) is no longer valid with such forces.
In this case, one needs to use the work-energy theorem (1.70), if
one is interested in the work of the forces.

The use of the conservation of energy or the work-energy theo-
rem often occurs when one wishes to find the velocity as a function
of position (or vice-versa).

E1.14Example 1.14 A point mass slides down a rough inclined plane
(coefficient of friction μ) from a point A with zero initial velo-
city. The plane transitions smoothly (with same tangent) onto a
frictionless circular track (Fig. 1.37a).

At which height h above the apex B of the circular track must
the mass start in order that it remains on the track at B?

Solution The point mass will remain on the track up to the point
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α

a b

r

h

l

α

mg

B

N

A

B
rough

smooth

Fig. 1.37

B, if the normal force N only first becomes zero at the apex. From
the equation of motion in the radial direction (cf. Fig. 1.37b)

↓ : m an = m
v2

B

r
= mg + N

the required velocity at B follows from the condition N = 0:

v2
B = rg . (a)

The relation between vB and the desired height h is found from
the work-energy theorem. The work of the gravitational forces
between A and B is U1 = mgh. The frictional force, which is
oriented opposite to the motion, performs work U2 = −Rl. With
R = μN = μ mg cosα and l=(h+r+r cosα)/ sinα, it follows that
U2 =−mgμ cotα(h+r+r cosα). The kinetic energy at position A

is zero and at B it is TB = 1
2
mv2

B . Substituting into (1.70) gives

1
2

mv2
B = mgh−mgμ cotα (h + r + r cosα) .

From (a) we can find the desired height:

1
2

mrg = mgh (1− μ cotα)−mgμr cotα (1 + cosα)

→ h = r
1
2 + μ (1 + cosα) cotα

1− μ cotα
. (b)

In the case that the plane is frictionless (μ = 0), we can use the
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Conservation of Energy Law (1.82). Noting

TA = 0, TB =
1
2

mv2
B , VA = mgh, VB = 0

it follows that 1
2mv2

B = mgh and with relation (a) that

1
2

mrg = mgh → h =
1
2

r .

The same result also follows from (b), if one simply sets the coef-
ficient of friction to zero.

E1.15Example 1.15 A mass m is positioned at a height h above the
reference position of a spring (spring constant k); see Fig. 1.38.
The mass is released towards the spring with an initial vertical
velocity v0 in a frictionless guide.

Find the maximum compression of the spring.

Fig. 1.38
�����
�����
�����
�����

m

k 1
x

v0

0

h

Solution Since both gravitational and elastic spring potentials
exist, we can use the Conservation of Energy Law (1.82) to sol-
ve this problem. In the initial position 0 the mass has kinetic
energy T0 = mv2

0/2 and potential energy V0 = mgh (the refe-
rence position is taken at the end of the uncompressed spring). At
maximal compression, xmax, the mass will be in position 1 with
kinetic energy T1 = 0. The potential energy at this position will
be composed of the potential energy of the spring 1

2
k x2

max and
the gravitational potential −mg xmax:

V1 =
1
2

k x2
max −mg xmax .

Thus conservation of energy says
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1
2

mv2
0 + mgh = 0 +

1
2

k x2
max −mg xmax .

Solving this quadratic equation gives

xmax =
mg

k

⎡⎣1 (±)

√
1 +

kv2
0

mg2
+

2 hk

mg

⎤⎦ .

In the special case where h = 0 and v0 = 0, it follows that xmax =
2 mg/k. Thus if one suddenly releases a mass directly above an
uncompressed spring, then the maximal compression is twice as
large as it is in the static case xstat = mg/k (which can be achieved
by slowly releasing the mass).

1.2.8 Universal Law of Gravitation, Planetary and Satellite

Motion

In addition to his three fundamental laws (cf. Section 1.2.1), New-
ton also formulated the Gravitational Law. According to this law,
between any two masses m and M there is a force (Fig. 1.39a):

F = G
Mm

r2
. (1.85)

Here, G is the universal gravitational constant

G = 6.673 · 10−11 m3

kg s2

and r is the distance between the masses.
One can show that Newton’s gravitational force emanates from

a potential. It follows from (1.81) that

V = −
∫

(−F ) dr = −G
Mm

r
+ C (1.86)

(F is oriented opposite dr). If one sets the potential to zero at
infinity (r →∞), then C = 0 and

V = −G
Mm

r
. (1.87)
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In the special case that the mass M is the earth, then a mass m

above the earth’s surface experiences a gravitational force (weight)
F = mg. If the earth’s radius is R, it follows from (1.85) that

mg = G
Mm

R2
→ g =

GM

R2
.

Eliminating G in the Gravitational Law, we obtain the gravita-
tional force as a function of the distance from the center of the
earth:

F = mg

(
R

r

)2

. (1.88)

For the potential it follows from (1.86) that

V = −mg
R2

r
+ C .

Setting the potential to zero at the earth’s surface r = R gives
C = mg R and with r = R + z (Fig. 1.39b) it follows that

V = −mg
R2

R + z
+ mg R =

mg

R + z
Rz . (1.89)

Near the earth’s surface (z � R) the gravitational potential sim-
plifies to (cf. (1.83)):

V = mgz .

Fig. 1.39

Earthr

m

M

F

F

R

m

F

a b

z

With Newton’s Gravitational Law we can also describe the mo-
tion of planets and satellites. Such objects can be treated as point
masses as their dimensions are small in comparison to their paths.
We will denote the mass of a planet (or satellite) as m and the
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mass of the sun (respectively the earth) as M . The mass M will
be assumed stationary. As the motion of m is typically in a pla-
ne, it will be useful to utilize polar coordinates. In this context,
Newton’s 2nd Law (1.38), along with (1.22) and (1.85), gives in
the radial direction

m (r̈ − rϕ̇2) = −G
mM

r2
(1.90)

and in the angular direction

m (rϕ̈ + 2 ṙϕ̇) = 0 → m
1
r

d
dt

(r2ϕ̇) = 0 .

The second relation expresses Kepler’s 2nd Law (cf. (1.29a)), whe-
reby the rate of change of the area swept out by the position vector
is a constant:

r2ϕ̇ = C . (1.91)

To solve the first equation, we introduce a new variable u = 1/r.
With (1.91) and ṙ = (dr/dϕ)ϕ̇, one has

ϕ̇ =
C

r2
= Cu2, ṙ =

dr

dϕ

C

r2
= −C

d
dϕ

(
1
r

)
= −C

du

dϕ
.

Differentiating once more gives

r̈ = −C
d2u

dϕ2
ϕ̇ = −C2 u2 d2u

dϕ2
.

Substituting into (1.90) leads to

−C2 u2 d2u

dϕ2
− 1

u
C2 u4 = −GMu2

or after rearrangement

d2u

dϕ2
+ u =

GM

C2
.

This second order inhomogeneous differential equation has the
general solution (cf. Chapter 5)
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u = B cos (ϕ− α) +
GM

C2
.

The distance r must therefore satisfy the following relation:

r =
1
u

=
1

B cos (ϕ− α) +
GM

C2

.

Here, B and α are constants of integration. If one measures ϕ from
the point on the trajectory where ṙ vanishes, then α = 0 and one
obtains the path equation

r =
p

1 + ε cosϕ
(1.92a)

with

p =
C2

GM
, ε =

BC2

GM
. (1.92b)

Equation (1.92a) is the focal point relation for a conic section
whose type depends on the eccentricity ε. For ε < 1, the path
will be an ellipse. This is Kepler’s 1st Law: Planetary motion is
elliptical and the sun is located at a focal point with distance e

from the center of the ellipse (Fig. 1.40).

p

ea

m
r

M

b a

e = εa =
√

a2 − b2ϕ

Fig. 1.40

With the constant in the Law of Equal Areas (1.91) and the
area of an ellipse A = π ab (a, b = semi-axes), one can determine
the orbital period T :

dA

dt
=

1
2

r2ϕ̇ =
C

2
→ A =

C

2
T → T =

2 A

C
=

2 π ab

C
.
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Considering (1.92b), the equation of motion (1.90), and the ellipse
parameter p = b2/a one finds

|ar| = |r̈ − rϕ̇2| = GM

r2
=

C2

pr2
=

4 π2 a2 b2

T 2
b2

a
r2

=
4 π2 a3

r2 T 2

and thus

T 2 =
(2 π)2 a3

GM
. (1.93)

This is Kepler’s 3rd Law : the square of the orbital period T of a
planet is proportional to the cube of the semimajor axis of the
planet’s trajectory.

According to (1.92a), a body in a gravitational field moves on
a parabolic path if ε = 1 and on a hyperbolic path if ε > 1. In
the computation of satellite motions, one must take into account
the gravitational fields due to multiple heavenly bodies (the many
body problem).

E1.16 Example 1.16 What is the minimal amount of energy needed to
launch a satellite of mass m into a circular orbit with altitude h?

m

v

rF

Earth
R

h

1

0

Fig. 1.41

Solution According to Newton’s Gravitational Law (1.88), a force
F = mg (R2/r2) acts on the satellite (Fig. 1.41). When the satel-
lite moves in a circular path with distance r = R + h from the
earth’s center, it has a velocity v that is found from the equation
of motion in the radial direction:

m an = F → m
v2

r
= mg

R2

r2
→ v2 = g

R2

R + h
.
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The potential energy of the satellite is found from (1.89). At the
surface of the earth and in orbit is takes on the values

V0 = 0 and V1 = mg
R

R + h
h ,

respectively. The corresponding kinetic energies are

T0 = 0 and T1 =
mv2

2
= mg

R2

2 (R + h)
.

Thus the minimal amount of energy needed at launch, ΔE, is

ΔE = E1 − E0 = (T1 + V1)− (T0 + V0)

= mg R

(
R

2 (R + h)
+

h

R + h

)
=

mg R

2

(
R + 2 h

R + h

)
.

1.31.3 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E1.17Example 1.17 A point P moves on a given path from A to B

(Fig. 1.42). Its velocity v decreases linearly with the arc-length s

from the value v0 at A to zero at B.
How long does it take P to reach point B?

Fig. 1.42 l s

v

s

B

P

A

s = l

v

v0

Result: see (B) tB →∞ .
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E1.18 Example 1.18 A radar screen tracks a rocket which rises vertically
with a constant acceleration
a (Fig. 1.43). The rocket is
launched at t = 0.

Determine the angular ve-
locity ϕ̇ and the angular acce-
leration ϕ̈ of the radar screen.
Calculate the maximum an-
gular velocity ϕ̇ and the cor-
responding angle ϕ.

����������������������

ϕ

l Fig. 1.43

Results: see (B) ϕ̇(t) =
a t

l
· 1
D

, D =

[
1 +

(
a t2

2l

)2
]

,

ϕ̈(t) =
(

a

l
− 3 a3 t4

4 l3

)
· 1
D2

, ϕ̇max =

√
3
√

3
8

a

l
, ϕ = 30◦ .

E1.19 Example 1.19 Two point masses P1 and P2 start at point A with
zero initial velocities and travel on a circular path. P1 moves with
a uniform tangential acceleration at1 and P2 moves with a given
uniform angular velocity ω2.
a) What value must at1 have

in order for the two masses
to meet at point B?

b) What is the angular veloci-
ty of P1 at B?

c) What are the normal acce-
lerations of the two masses
at B?

r

P2

P1

A B

Fig. 1.44

Results: see (A) at1 =
2rω2

2

π
, ω1(tB) = 2ω2 ,

an1 = 4rω2
2 , an2 = rω2

2 .

E1.20 Example 1.20 A child of mass m jumps up and down on a trampo-
line in a periodic manner. The child’s jumping velocity (upwards)
is v0 and during the contact time Δt the contact force K(t) has a
triangular form.

Find the necessary contact force amplitude K0 and the jumping
period T0.
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Fig. 1.45

K
K0

t
Δt T0

z

Results: see (A) T0 =
2v0

g
+ Δt , K0 = 2

( 2v0

gΔt
+ 1

)
mg .

E1.21Example 1.21 A car is travelling in a circular arc with radius R

and velocity v0 when it starts to brake.
If the tangential deceleration is at(v) =

−(a0 + κv), where a0 and κ are given con-
stants, find the time to brake tB, the stopping
distance sB, and the normal acceleration an

during the braking.

v0

R

s

Fig. 1.46Results: see (A) tB =
1
κ

ln
(
1 +

κv0

a0

)
,

sB =
a0

κ2

[
κv0

a0
− ln

(
1 +

κv0

a0

)]
,

an =
a2
0

Rκ2

{(
1 +

κv0

a0

)
e−κt − 1

}2

.

E1.22Example 1.22 A point P moves on the quadratic parabola
y = b(x/a)2 from A to B. Its positi-
on as a function of the time is given
by the angle ϕ(t) = arctanω0 t (see
Fig. 1.47).

Determine the velocity v(t) of
point P . How much time elapses un-
til P reaches point B? Calculate its
velocity at B.

r

B

P

a xA

y

b

ϕ

Fig. 1.47

Results: see (B)

v(t) =
a2

b
ω0

√
1 + 4ω2

0 t2 , tB =
b

a ω0
, vB =

a2

b
ω0

√
1 + 4

b2

a2
.
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E1.23 Example 1.23 A rod with length l rotates about support A with
angular position given by ϕ(t) = κ t2.
A body G slides along the rod with po-
sition r(t) = l(1− κ t2).
a) Find the velocity and acceleration of

G when ϕ = 45o.
b) At what angle ϕ does G hit the sup-

port?
Given: l = 2 m, κ = 0.2 s−2. A

l

B

r G

ϕ(t)

Fig. 1.48Results: see (A)

v = 1.62 m/s , a = 2.57 m/s2 , ϕE = 1 = (=̂57.3◦) .

E1.24 Example 1.24 A mouse sits in a tower (with radius R) at point A

and a cat sits at the center 0.
If the mouse runs at a constant

velocity vM along the tower wall and
the cat chases it in an Archimedian
spiral r(ϕ) = R ϕ/π, what must the
cat’s constant velocity vC be in order
to catch the mouse just as the mou-
se reaches its escape hole H? At what
time does it catch the mouse?

L

R

0
r

A

ϕ

Fig. 1.49

Results: see (A) T =
πR

vM
, vC = 0.62 vM .

E1.25 Example 1.25 A soccer player kicks the ball (mass m) so that
it leaves the ground at an angle α0 with the initial velocity v0

(Fig. 1.50). The air exerts the drag force Fd = k v on the ball; it
acts in the direction opposite to the velocity.

Determine the velocity v(t) of the ball. Calculate the horizontal
component vH of v when the ball reaches the team mate at the
distance l.

Results: see (B) ẋ(t) = v0 cosα0 e−kt/m ,

ż(t) =
mg

k
−
(mg

k
+ v0 sin α0

)
e−kt/m , vH = v0cosα0− k l

m
.
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l

α0

v0

x

z

Fig. 1.50

E1.26Example 1.26 A body with mass m

starts at a height h at time t = 0
with an initial horizontal velocity v0.

If the wind resistance can be
approximated by a horizontal force
H = c0 m ẋ2, at what time tB and
location xB does it hit the ground?

z

m

x

h

B

v0

Fig. 1.51

Results: see (A) tB =
√

2h

g
, xB =

1
c0

ln
(

1 + c0v0

√
2h

g

)
.

E1.27Example 1.27 A mass m slides on a rotating frictionless and mass-
less rod S such that it is pressed
against a rough circular wall (with
coefficient of friction μ).

If the mass starts in contact with
the wall at a velocity v0, how many
rotations will it take for its velocity
to drop to v0/10?

Result: see (A) n =
ln 10
2πμ

.

r
S

m

μ

Fig. 1.52

E1.28Example 1.28 A car (mass m) is travelling with the constant ve-
locity v along a banked circular curve (radius r, angle of slope
α), see Fig. 1.53. The coefficient of static friction μ0 between the
tyres of the car and the surface of the road is given.
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μ0

Abb. 1.53

Determine the region of the allowable velocity so that sliding
(down or up the slope) does not take place.

Result: see (B)
tan α− μ0

1 + μ0tan α
≤ v2

g r
≤ tan α + μ0

1− μ0tan α
.

E1.29 Example 1.29 A car (mass m) has the velocity v0 at the begin-
ning of a curve (Fig. 1.54). Then it slows down with the constant
tangential acceleration at = −a0. The coefficient of static friction
between the road and the tyres is μ0.

Calculate the velocity v of the car as a function of the arc-length
s. What is the necessary radius of curvature ρ(s) of the road so
that the car does not slide?

s

v0

m

M
ρ(s)

Fig. 1.54

Results: see (B) v(s) =
√

v2
0 − 2a0s , ρ(s) ≥ v2

0 − 2a0 s√
μ2

0g
2 − a2

0

.

E1.30 Example 1.30 A bowling ball (mass m) moves with the constant
velocity v0 on the frictionless return of a bowling alley. It is lifted
on a circular path (radius r) to the height 2r at the end of the
return. The upper part of the circular path has a frictionless guide
of length r ϕG (Fig. 1.55).

Given the angle ϕG, determine the velocity v0 such that the
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bowling ball reaches the upper level.

Fig. 1.55 ���������������
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g

v0 mr

ϕ
G

Result: see (B)

v2
0 = (2 + 3 cosϕG) g r for ϕG < ϕ∗

G = arccos 2/3 ,

v2
0 = 4 g r for ϕG > ϕ∗

G .

E1.31Example 1.31 A point mass m is sub-
ject to a central force F = mk2r, whe-
re k is a constant and r is the distance
of the mass from the origin 0. At time
t = 0 the mass is located at P0 and
has velocity components vx = v0 and
vy = 0.

Find the trajectory of the mass.

α

y

F

m

x

r0

Z

P0

r

v0

Fig. 1.56

Result: see (A)
(

x

v0/k

)2

+
(

y

r0

)2

= 1 .

E1.32Example 1.32 A centrifuge with radius r ro-
tates with constant angular velocity ω0. A
mass m is to be placed at rest in the centri-
fuge and accelerated within a time t1 to the
angular velocity ω0.

What will be the needed (constant) mo-
ment M acting on the mass? What is the
power P of this moment?

ω0

mr

Fig. 1.57Results: see (A) M =
r2mω0

t1
, P =

r2mω2
0

t1
.

E1.33Example 1.33 A skier (mass m) has the velocity vA = v0 at point
A of the cross country course (Fig. 1.58). Although he tries hard
not to lose velocity skiing uphill, he reaches point B with only
the velocity vB = 2 v0/5. Skiing downhill between point B and
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the finish C he again gains speed and reaches C with vC = 4 v0.
Between B and C assume that a constant friction force acts due
to the soft snow in this region; the drag force from the air on the
skier can be neglected.

Calculate the work done by the skier on the path from A to B

(here the friction force is negligible). Determine the coefficient of
kinetic friction between B and C.
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finish

10h

B

3h

C

A

h

Fig. 1.58

Results: see (B) U = m(gh− 21v2
0/50) , μ ≈ 3

10
− 4

5
v2
0

g h
.

E1.34 Example 1.34 A circular disk (radius R) ro-
tates with the constant angular velocity Ω.
A point P moves along a straight guide; its
distance from the center of the disk is given
by ξ = R sin ω t where ω = const (Fig. 1.59).

Determine the velocity and the accelera-
tion of P .

P

R ξ

Ω

Fig. 1.59

Results: see (B) v = R ω cosωt er + R Ω sin ωt eϕ ,

a = −R (ω2 + Ω2) sin ωt er + 2 R ω Ω cosωt eϕ .

E1.35 Example 1.35 A chain with length l and mass m hangs over the
edge of a frictionless table by an amount e.

If the chain starts with zero initial ve-
locity, find the position of the end of the
chain as a function of time.

Result: see (A) x(t) = e cosh
√

g

l
t .

������
������
������
������
������

������
������
������
������
������

e

Fig. 1.60
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1.41.4 Summary
• Velocity is the time derivative of the position vector: v = ṙ. It

is tangential to the trajectory.
• Acceleration is the time derivative of the velocity vector: a = v̇.
• For circular motion, the velocity, tangential acceleration, and

normal acceleration are given by

v = r ϕ̇ , at = r ϕ̈ , an = r ϕ̇2 = v2/r .

• Newton’s 2nd Law: m a = F .
• In general the following steps are required to determine the

motion of a point mass:
� Sketch a free-body diagram of the point mass.
� Choose an appropriate coordinate system.
� Determine the equations of motion.
� Integrate the equations of motion and use the initial con-

ditions.

• Impulse Law: m v −m v0 =
t∫

t0

F (t̄)dt̄ = F̂ ,

p = m v linear momentum.

• Angular momentum theorem: L̇
(0)

= M (0),

L(0) = r × p = r ×m v angular momentum with respect to 0,

r position vector from 0 to the point mass.

• Work-energy theorem: T1 − T0 = U ,

U work of the forces between trajectory points 0 und 1 ,

T = m v2/2 kinetic energy.

• Conservation of Energy Law: T + V =const,

V potential energy (e.g. mgz, kx2/2, kT ϕ2/2).

N.B.: all forces must possess a potential (conservative

system).
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Objectives: Up to now we have concerned ourselves with
the study of single point masses. We now wish to extend the ideas
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2.12.1 Fundamentals
Having concentrated so far on point masses, we now wish to study
systems of point masses. A system of point masses is understood
to be a finite collection of point masses that interact with each
other.

In natural and engineered systems one often finds systems com-
posed of multiple bodies that can be idealized as point masses for
the purpose of the analysis of their motion. In other problems,
one can idealize single bodies as being composed of multiple point
masses. From this point of view, one also recognizes that an under-
standing of the behavior of a system of point masses is a stepping
stone on the way to understanding the behavior of continuum
bodies with distributed mass.

In discussing the interactions of point masses in a system, one
distinguishes between two classes of interactions: kinematic coup-
lings and physical couplings. Typical kinematic couplings are of
the form of kinematic constraints, which are relations between the
coordinates of the masses. They are given by so-called geometric
or kinematic constraint equations. A simple example is shown in
Fig. 2.1a, where the two masses are connected by an inextensible,
massless rope. Let x1 and x2 be their vertical displacements from
arbitrary reference positions, then the vertical motion of one com-
pletely specifies the motion of the other (excluding the possibility
of horizontal motions). In this example the geometric constraint
equation is simply x1 = x2.

If the distance between two points in a system does not change,
then the constraint is termed a rigid constraint. As a simple ex-
ample, consider the dumbbell shown in Fig. 2.1b. The two point
masses m1 and m2 are connected by a rigid, massless rod which
enforces a constant separation l between them. This relation can
be expressed by the geometric relation (kinematic constraint):

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = l2 . (2.1)

From the number of masses and the number of kinematic cons-
traints one can determine the number of degrees of freedom, f ,
of a system. This latter number, tells us how many independent
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coordinates are needed to uniquely specify the configuration of a
system – that is the location of each mass in the system. In the
example shown in Fig. 2.1a, there is only one degree of freedom.
Of the two coordinates x1 and x2, only one can be independently
specified due to the geometric constraint equation x1 = x2. For
the system shown in Fig. 2.1b, there are five degrees of freedom.
The locations of the two masses are given by 2 · 3 = 6 coordinates
(three for each point mass in three-dimensional space); however,
because of the geometric constraint equation (2.1), one only needs
to specify five of them (f = 2·3−1 = 5 degrees of freedom) in order
to determine all six. This could include the three independent
translations (in the x-, y-, and z-directions) and rotations about
two axes (neither co-linear with the dumbbell axis). Note that a
rotation about the dumbbell axis does not produce a change in
the configuration of the point masses and is thus not a degree of
freedom of the system.

In general, the number of degrees of freedom, f , of a system
composed of n masses in three-dimensional space is given by the
number of individual mass coordinates 3 n minus r, the number
of kinematic constraints:
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f = 3 n− r . (2.2)

Accordingly, the 3-mass system shown in Fig. 2.1c with three rigid
constraints has f = 3 · 3− 3 = 6 degrees of freedom. If additional
point masses are rigidly connected to this system, the number
of degrees of freedom will remain at six as the rigid couplings
will not permit additional degrees of freedom. As a consequence,
a rigid body, which can be thought of as being composed of an
infinite number of point masses, has six degrees of freedom in
three-dimensional space.

For planar motions, i.e. those restricted to a two-dimensional
space, the number of degrees of freedom is given by

f = 2 n− r . (2.3)

For a 3-mass system with three rigid constraints in a plane, there
are f = 2·3−3 = 3 degrees of freedom. Analogous to the discussion
above, a rigid body constrained to move in a two-dimensional
space, will have three degrees of freedom.

In contrast to a kinematical coupling, a physical coupling de-
fines a relation between the positions of the masses of a system
and the forces acting between them; see, for example, the spring
coupling in Fig. 2.1d and the gravitational coupling in Fig. 2.1e. In
these examples, the physical coupling is given by force-separation
relations – the spring law (Hooke’s law) and the gravitational law
(Newton’s law of gravitation), respectively.

In what follows, we will consider a system of n point masses
mi (i = 1, ..., n) in three-dimensional space with arbitrary coup-
lings (Fig. 2.2). Conceptually, these masses will be separated from
masses outside of the system by an imaginary system boundary
that encloses all n of them.

Each point mass mi is subject to both internal as well as exter-
nal forces. The external forces Fi emanate from outside the system
boundary. They can be applied forces (e.g. weight) or reaction
forces (e.g. support or constraint forces). The index i indicates
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that force Fi acts on mass mi. The internal forces Fij act between
the masses of the system. The indices on Fij indicate a force that
mass mj exerts on mass mi. Alternately, Fji is a force that mi

exerts on mj . The line of action of the internal forces is always
directed along the connecting line between the two masses in ques-
tion. Because “ actio = reactio ” (Newton’s 3rd Law), Fij and Fji

must have the same magnitude and be oppositely directed:

Fji = −Fij . (2.4)

The motion of the masses of a system can be determined by
applying Newton’s 2nd Law (1.38) to each mass mi. With position
vectors ri, it follows that

mi r̈i = Fi +
∑

j

Fij , (i = 1, . . . , n) . (2.5)

The sum over j includes all internal forces acting on mi. Addi-
tionally, one needs to employ the kinematic and physical coupling
relations that express interactions between the masses for a com-
plete system of equations.

E2.1 Example 2.1 The system shown in Fig. 2.3a consists of two weights
W1 = m1 g and W2 = m2 g that are connected by an inextensible,
massless rope via a set of massless pulleys.

Find the accelerations of the masses and the forces in the rope
when the system is released from rest.
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Solution The system is first separated using a free-body diagram
and the internal forces, Si, and the external forces, Wi, are ex-
plicitly drawn-in (Fig. 2.3b). If we assume that W2 moves down-
wards, then W1 will move upwards. Thus we will measure the
positions of the masses using coordinates, x1 and x2, that are ta-
ken as positive in opposite directions. In this case, the equations
of motion (2.5) for m1 and m2 read

m1 ẍ1 = −m1 g + S1 + S2, m2 ẍ2 = m2 g − S3 .

Here, the internal forces in the rope correspond to the coupling
forces in the system. Since the pulleys are assumed to be massless,
S1 = S2 = S3 = S. Thus it follows that

m1 ẍ1 = −m1 g + 2S, m2 ẍ2 = m2 g − S . (a)

The coordinates x1 and x2 are not independent: the system has
only a single degree of freedom. If m2 moves downwards a distance
x2, then m1 will move upwards half that distance. The kinematic
constraint can be expressed as

x1 =
1
2

x2 → ẋ1 =
1
2

ẋ2 → ẍ1 =
1
2

ẍ2 . (b)

Between (a) and (b), we have three equations for the determina-
tion of the three unknowns ẍ1, ẍ2, and S. Solving, gives
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ẍ1 =
1
2

ẍ2 = g
2 m2 −m1

m1 + 4 m2
, S =

3 m1 m2 g

m1 + 4 m2
.

If W1 = 2 W2, then ẍ1 = ẍ2 = 0, S = W2, and the system is seen
to be in equilibrium.

2.2 2.2 Linear Momentum for a System of Point
Masses

From the equations of motion (2.5) for the individual point masses
(cf. Fig. 2.2)

mi r̈i = Fi +
∑

j

Fij ,

the laws of motion that hold for the whole system can be derived.
If we sum the equations of motion over all n masses, then we

have∑
i

mi r̈i =
∑

i

Fi +
∑

i

∑
j

Fij . (2.6)

The double sum on the right-hand side includes all internal forces
acting between the masses in the system. As these are pairwise
equal and opposite (Fij = −Fji), the double sum is zero. Thus,∑

i

mi r̈i = F , (2.7)

where F =
∑
i

Fi is the resultant force of all the external forces

acting on the system.
In order to simplify the left-hand side of (2.7), we introduce

the position vector rc for the system’s center of mass or center of
gravity C (cf. Volume 1, Chapter 4):

rc =
1
m

∑
i

mi ri → mrc =
∑

i

mi ri . (2.8)
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Here, m =
∑
i

mi is the total mass of the system. Taking two time

derivatives of (2.8) and using definitions v = ṙ and a = v̇ = r̈,
yields

m vc =
∑

i

mi vi and m ac =
∑

i

mi r̈i . (2.9)

Substituting into (2.7) yields the equation of motion for the center
of mass:

m ac = F . (2.10)

It has the same form as the equation of motion (1.38) for a single
point mass. In words, (2.10) says:

The center of mass of a system moves as though it
were a point mass (with same total mass) subject to
the totality of forces acting on the whole system.

The equation of motion (2.10) is known as the law of motion for
the center of mass. Note that the internal forces have no influence
on the motion of the center of mass.

The vector equation (2.10) corresponds to three scalar equati-
ons – one for each component. For example, in Cartesian coordi-
nates

m ẍc = Fx , m ÿc = Fy , m z̈c = Fz .

The total linear momentum p =
∑
i

pi =
∑
i

mi vi of the system

can be expressed using (2.9) as

p = m vc . (2.11)

Thus, the total linear momentum can be determined from the
product of the total mass m and the center of mass velocity vc.

If we take the time derivative of (2.11) and substitute into
(2.10), then we see that
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ṗ = F . (2.12)

In words: the time rate of change of the total linear momentum
is equal to the total resultant of the external forces. As with the
single point mass case, we can integrate (2.12) with respect to
time to give an Impulse Law

p− p0 =

t∫
t0

F dt̄ = F̂ , (2.13)

where we have used the initial condition p0 = p (t0). The diffe-
rence in the linear momentum between two moments in time is
equal to the linear impulse – i.e. the time integral of the external
forces acting on the system, F̂ .

In the special case that the external resultant is zero (F = 0),
then (2.13) gives

p = m vc = p0 = const . (2.14)

The linear momentum of the system is a constant (conservation
of linear momentum) and the center of mass moves uniformly
and in a straight line. Relation (2.14) is known as the principle of
conservation of linear momentum.

E2.2 Example 2.2 A mass m in zero gravity moves with velocity v at an
angle α = 30◦ with respect to the horizontal. The mass suddenly
splits into three equal pieces m1 = m2 = m3 = m/3 (Fig. 2.4).
After splitting, masses m1 and m2 travel at angles β1 = 60◦ and
β2 = 90◦, respectively. Mass m3 stays at rest.

Determine the velocities v1 and v2.

Solution The mass m, before the split, and the masses m1, m2,

and m3 afterwards will constitute our system. No external forces
are acting on the system, thus according to (2.14) the linear mo-
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mentum of the system does not change (linear momentum before
splitting = linear momentum after splitting). Componentwise, the
principle of conservation of linear momentum gives

→ : m v cosα = m1 v1 cosβ1,

↑ : m v sin α = m1 v1 sinβ1 −m2 v2 sin β2 .

Thus, one has two equations for the two unknowns v1 and v2.
Solving, gives

v1 = v
m cosα

m1 cosβ1
= 3

√
3 v,

v2 =
m1 v1 sinβ1 −m v sin α

m2 sin β2
= 3 v .

2.32.3 Angular Momentum Theorem for a System
of Point Masses

According to the angular momentum theorem (1.63), for each
point mass mi, one has that L̇

(0)
i = M

(0)
i . Noting that mi is

subject to external forces Fi as well as internal forces Fij (cf.
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Fig. 2.2), one finds

(ri ×mi vi)� = ri × Fi +
∑

j

ri × Fij .

Summing over all n masses gives∑
i

(ri ×mi vi)� =
∑

i

ri × Fi +
∑

i

∑
j

ri × Fij . (2.15)

The left-hand side of this relation is simply the time derivative of
the total angular momentum of the system

L(0) =
∑

i

L
(0)
i =

∑
i

(ri ×mi vi) (2.16)

with respect to the fixed point 0. Since the internal forces are
pairwise equal and opposite, Fij = −Fji, and act along the line
connecting masses mi and mj , the double sum on the right-hand
side of (2.15) can be shown to be zero – only the total moment of
the external forces remains:

M (0) =
∑

i

M
(0)
i =

∑
i

ri × Fi . (2.17)

Thus we find from (2.15) the angular momentum theorem for a
system of point masses:

L̇(0) = M (0) . (2.18)

The theorem states that the time rate of change of the total an-
gular momentum of a system of point masses relative to a fixed
point 0 is equal to the resultant moment of all the external forces
about the same point.

If the resultant external moment is zero (M (0) = 0), then
L̇(0) = 0 and the angular momentum is constant (conservation
of angular momentum).

As an important special case, let us examine a system of point
masses rotating about a fixed axis a-a to which they are rigidly
attached (Fig. 2.5). Without loss of generality, we place the origin
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0 on the axis of rotation and align the z-axis with it. Following
Section 1.2.6, the z-component of the angular momentum of a
mass mi is given by

Liz = Lia = mi r2
i ϕ̇ . (2.19)

Here, ri is the orthogonal distance of mi from the axis of rotation.
For the components Liz and Lia, we have replaced the superscript
denoting the point of reference by a second subscript denoting
the axis of rotation (here z and a-a, respectively). This notational
convention can also be applied to the components of moments and
will often be used in what follows.

As all the masses move with the same angular velocity ϕ̇, sum-
ming (2.19) over all masses gives

Lz = La =
∑

i

Lia =
∑

i

mi r2
i ϕ̇ = Θa ϕ̇ . (2.20)

The variable

Θa =
∑

i

mi r2
i (2.21)

Fig. 2.5
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is called the mass moment of inertia of the system relative to the
rotation axis a-a.

If one observes that Θa = const (rigid constraints), then the
time derivative of (2.20) gives with the help of (2.18)

Θa ϕ̈ = Ma . (2.22)

This equation of motion for the rotation of a rigid system of point
masses about a fixed axis is analogous to the equation of motion
for the translation of a point mass m (e.g. mẍ = Fx). In place of
mass, we have the mass moment of inertia, in place of accelera-
tion we have angular acceleration, and in place of force we have
moment (cf. Table 3.1).

When applying (2.22), one should pay attention to the assumed
positive sense of rotation for ϕ and moment Ma. If, for example,
ϕ is taken as positive for clockwise rotation, then Ma should also
be measured as positive for clockwise moments about a-a and
vice-versa.

E2.3 Example 2.3 A pendulum consisting of a rigid, massless rod with
two masses m1 and m2 is suspended from a frictionless pivot A

(Fig. 2.6a). If the system is displaced from the equilibrium position
and released, then it will oscillate under the action of gravity in
the indicated plane.

Determine the equations of motion for the pendulum.

A

m1g

m2g

m1

m2

2l sinϕ

l sinϕ

A

m2

m1

l

l

ϕ

ba Fig. 2.6
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Solution The system executes a pure rotation about an axis a

through the fixed point A. To describe its motion we will use the
angular momentum theorem. The angle ϕ will be taken as positive
for counter-clockwise rotations with the reference position being
the equilibrium position (the vertical position); see Fig. 2.6b.

With the mass moment of inertia

Θa = m1 l2 + m2(2 l)2 = (m1 + 4 m2) l2

and the moment of the external forces (here the weights) about
the axis a (mind the positive sense of rotation)

Ma = −m1 gl sin ϕ−m2 g(2 l sin ϕ) = − lg(m1 + 2 m2) sin ϕ ,

one obtains the equation of motion from (2.22) as

(m1 + 4 m2)l2ϕ̈ = − lg(m1 + 2 m2) sinϕ

→ ϕ̈ +
g

l

m1 + 2 m2

m1 + 4 m2
sinϕ = 0 .

For small angles (sin ϕ ≈ ϕ), this equation describes a harmonic
oscillation (cf. Chapter 5).

2.42.4 Work-Energy Theorem and Conservation of
Energy for a System of Point Masses

Following Section 1.2.7, the work-energy theorem for a single mass
mi in a system of point masses says

T1i − T0i = Ui , (2.23)

where T1i = miv
2
i /2 is the kinetic energy of mass mi at a time

t1 and T0i is the kinetic energy at an initial time t0; Ui is the
work of the forces acting on mi between times t0 and t1. With the
notation Fi for the external forces and Fij for the internal forces,
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we can write the work as

Ui =

r1i∫
r0i

(
Fi +

∑
j

Fij

)
· dri = U

(e)
i + U

(i)
i , (2.24)

where U
(e)
i =

∫
Fi · dri is the work of the external forces and

U
(i)
i =

∫ ∑
Fij · dri is the work of the internal forces.

Using the definitions U =
∑

Ui and T =
∑

Ti and summing
(2.23) over all n masses, yields the work-energy theorem for a
system of point masses:

T1 − T0 = U (e) + U (i) = U . (2.25)

The sum of the work of all the external and internal forces is equal
to the change in the total kinetic energy of the system.

For rigid constraints the work of the internal forces, U (i), is zero.
In order to show this, consider masses mi and mj and the internal

x

driz

y

Fij Fjimi mj

drj
dri

drij

Fig. 2.7

forces acting between them: Fij and Fji = −Fij (Fig. 2.7). For
infinitesimal displacements dri and drj , it follows that

drj = dri + drij ,

where drij must be orthogonal to the line connecting the two
masses due to their fixed separation; thus drij is also orthogonal
to Fji. The work dU

(i)
ij of both forces is then given as

dU
(i)
ij = Fij · dri + Fji · drj = Fji · drij = 0 .
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The work U
(i)
ij =

∫
dU

(i)
ij for a finite motion is thus also zero;

this result further holds for all other internal forces in the system.
For systems composed of only rigid constraints, the work-energy
theorem reads

T1 − T0 = U (e) = U . (2.26)

If the external and internal forces are conservative forces, i.e. are
derivable from potentials V (e) and V (i) (e.g. gravitational forces,
spring forces), then the work of the forces is equal to the negative
of the difference in the potentials at times t1 and t0:

U (e) = − (V (e)
1 − V

(e)
0 ), U (i) = − (V (i)

1 − V
(i)
0 ) .

Substituting into (2.25) results in the conservation of energy law

T1 + V
(e)
1 + V

(i)
1 = T0 + V

(e)
0 + V

(i)
0 = const . (2.27)

This equation states that the sum of the kinetic energy and the
potential energy is an invariant of the motion. In this situation,
one calls the system a conservative system. If the internal forces
do no work (e.g. rigid constraints), then U (i) = −(V (i)

1 −V
(i)
0 ) = 0,

and from (2.27) we have

T1 + V
(e)
1 = T0 + V

(e)
0 = const . (2.28)

E2.4Example 2.4 The system in Fig. 2.8a (cf. Example 2.1) is released
from rest.

Assuming that the rope is massless and inextensible, and that
the pulleys are massless, find the velocity of mass m1 as a function
of its displacement.

Solution Since only conservative forces (weights) are acting on
the system and the internal forces do not contribute to the work
(inextensible rope), we can employ the conservation of energy re-
lation (2.28). We measure the coordinates x1 and x2 (Fig. 2.8b)
from the initial position and assume the potentials to be zero for
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x1 = x2 = 0. Accounting for the kinematic constraint

x2 = 2 x1 → ẋ2 = 2 ẋ1

we have that

V
(e)
0 = 0, V

(e)
1 = m1 g x1 −m2 g x2 = (m1 − 2 m2) g x1,

T0 = 0, T1 =
1
2

m1 ẋ2
1 +

1
2

m2 ẋ2
2 =

1
2

(m1 + 4 m2) ẋ2
1 .

Substituting into (2.28) gives the velocity ẋ1 as a function of po-
sition x1:

1
2

(m1 + 4 m2) ẋ2
1 + (m1 − 2 m2) g x1 = 0

→ ẋ1 = ±
√

2
2 m2 −m1

m1 + 4 m2
g x1 .

Since the term under the radical must be positive, if 2 m2 > m1,
then x1 must also be positive (m1 moves upwards). In this case the
positive sign for the square-root applies. In the case that 2 m2 <

m1, then x1 must be negative and the negative sign for the square-
root applies (ẋ1 < 0).



2.5 Central Impact 105

2.52.5 Central Impact
The sudden collision of two bodies which causes a change in their
velocities is called an impact. During a very short period of time
large forces are exerted on the bodies. Since these forces lead to
time-dependent deformations in the vicinity of the points of con-
tact, a comprehensive treatment of a problem involving impact is
rather difficult. However, applying several idealizations will allow
us to determine the changes of the velocities in a relatively simple
way. We assume:

a) The impact duration ti is so small that the changes in the
positions of the bodies during the impact can be neglected.

b) The impulsive forces at the points of contact are so large
that all the other forces (e.g., the weights of the bodies) can be
neglected during impact.

c) The deformations of the bodies are so small that they may
be neglected when describing the changes of the velocities (i.e.,
the bodies are assumed to be rigid when the laws of motion are
formulated).

Fig. 2.9a shows two bodies during impact. The point of contact
P lies in the plane of contact. The normal to the contact plane
that passes through P is called the line of impact. We refer to a
collision as being direct if the velocities of the points of contact of
both bodies have the direction of the line of impact immediately
before the impact. An impact that is not direct is called oblique. If
the line connecting the centers of mass of the two bodies coincides
with the line of impact, the impact is called central, otherwise it
is eccentric. In this section we restrict ourselves to central impact

contact tangent
contact tangent

contact normal C2C1

eccentric impact central impact

a

P

C2

C1

b
Fig. 2.9



106 2 Dynamics of Systems of Point Masses

as it occurs, for example, in the collision of two spheres (Fig. 2.9b).
At first let us consider problems involving direct impact. Fig.

2.10a shows two bodies, modelled as point masses m1 and m2

which move along a straight line with velocities v1 and v2, respec-
tively (v1 > v2). At time t = 0, contact begins. The force F (t)
which the two bodies exert on each other first increases with time
(Fig. 2.10b). It attains its maximum value at time t = t∗. During
the time interval t < t∗, the compression phase, both bodies are
compressed in the vicinity of P . At time t∗ (largest compression),
both masses have the same velocity v∗.

Subsequently, the deformations are partially reduced or com-
pletely removed and the impulsive force decreases. The restitution
phase ends at t = ti where ti is the impact duration. Afterwards
the force F is zero and the two masses move independently with
the velocities v̄1 and v̄2 (Fig. 2.10a).

plastic impact

m1 v̄1 m2 v̄2

m1 m2

v2m1 v1 m2

F F F

during impact

t∗ttit∗

F (t)

F̂R

cb d

a

after impactbefore impact

tti tt∗ = ti

F̂C F̂R = 0F̂C

elastic impact

F̂C = F̂R

Fig. 2.10

Since the precise time variation of F (t) (Fig. 2.10b) during the
impact is usually unknown, we apply the concept of linear impulse
F̂ as we did in Section 1.2.5. We write down the linear impulse for
the compression phase and for the restitution phase, respectively:
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F̂C =

t∗∫
0

F (t) dt, F̂R =

ti∫
t∗

F (t) dt . (2.29)

The total linear impulse is then given by

F̂ =

ti∫
0

F (t) dt = F̂C + F̂R . (2.30)

If the two bodies behave ideally elastic, the linear impulses in the
compression phase and in the restitution phase are assumed to
be equal: F̂C = F̂R (Fig. 2.10c). On the other hand, if the bodies
display an ideally plastic behavior, the deformations experienced
during the compression phase are permanent. The force F is then
reduced to zero at t = t∗ (Fig. 2.10d) and we obtain F̂R = 0. In
this case, both masses have the same velocity v∗ after the collision.

A real body responds in a fashion intermediate to the two li-
miting cases. A partially elastic impact is modelled by (cf. (1.55))

F̂R = e F̂C with 0 � e � 1 . (2.31)

The constant e is the coefficient of restitution. It depends on the
materials of the bodies, their form, and to a certain extent on
the velocities. It can be determined experimentally. In the case
of an ideal-elastic impact we have e = 1, an ideal-plastic impact
is characterized by e = 0, and for a partially elastic impact we
have 0 < e < 1 (see (1.56)). Table 2.1 displays several values
of the coefficient of restitution for two spheres made of the same
material.

During an impact, the masses experience sudden changes in
their velocities (the changes in the positions are negligible). To
determine the changes of the velocities we apply the Impulse Law
to both masses. Note that the forces and therefore also the li-
near impulses which are exerted on m1 and m2 are of the same
magnitude but of opposite directions (action = reaction). Thus,
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Table 2.1

material coefficient of restitution e

wood/wood ≈ 0.5

steel/steel 0.6 . . . 0.8

glass/glass 0.94
cork/cork 0.5 . . . 0.6

the Impulse Law (1.51) for the compression phase is given by

m1(v∗ − v1) = − F̂C ,

m2(v∗ − v2) = + F̂C

(2.32)

and the Impulse Law for the restitution phase reads

m1(v̄1 − v∗) = − F̂R,

m2(v̄2 − v∗) = + F̂R .
(2.33)

If the coefficient of restitution e is known, we have five equations
(2.31) - (2.33) for the five unknowns v̄1, v̄2, v

∗, F̂C and F̂R. They
can be solved, for example, for the velocities after the impact:

v̄1 =
m1 v1 + m2 v2 − e m2(v1 − v2)

m1 + m2
,

v̄2 =
m1 v1 + m2 v2 + e m1(v1 − v2)

m1 + m2
.

(2.34)

In the case of an ideal-plastic impact (e = 0), (2.34) yields

v̄1 = v̄2 =
m1 v1 + m2 v2

m1 + m2
.

This is the velocity v∗ at the end of the compression phase.
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An ideal-elastic impact (e = 1) leads to

v̄1 =
2 m2 v2 + (m1 −m2)v1

m1 + m2
, v̄2 =

2 m1 v1 + (m2 −m1)v2

m1 + m2
.

In the special case of two equal masses (m1 = m2 = m) this
results in

v̄1 = v2, v̄2 = v1 .

In this case an exchange of the velocities takes place. If, for ex-
ample, mass m2 is at rest before an impact, then it takes on the
initial velocity of m1 after the impact, whereas m1 will be rest.

Regardless of the type of impact, the total momentum of the
system (masses m1 and m2) remains unchanged:

m1 v̄1 + m2 v̄2 =
1

m1 + m2
[m2

1 v1 + m1 m2 v2 − e m1 m2(v1 − v2)

+ m1 m2 v1 + m2
2 v2 + e m1 m2(v1 − v2)]

= m1 v1 + m2 v2 .

If we calculate the difference v̄2 − v̄1 of the velocities after the
impact, we obtain

v̄2 − v̄1 =
e (v1 − v2)(m1 + m2)

m1 + m2
= e (v1 − v2) .

Here, (v1 − v2) is the relative velocity of approach (just before
the impact) of the masses, and (v̄2− v̄1) is the relative velocity of
separation (immediately after impact). Thus, we have

e = − v̄1 − v̄2

v1 − v2
. (2.35)

Accordingly, the coefficient of restitution is equal to the ratio of
the relative velocity of separation to the relative velocity of ap-
proach. In the following, we will usually apply (2.35) instead of
(2.31).

The loss of mechanical energy (plastic deformation, generation
of heat) during impact is given by the difference ΔT of the kinetic
energies before and after impact. Applying (2.34) we obtain
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ΔT =
(

m1 v2
1

2
+

m2 v2
2

2

)
−

(
m1 v̄2

1

2
+

m2 v̄2
2

2

)
=

1− e2

2
m1 m2

m1 + m2
(v1 − v2)2 .

(2.36)

There is no loss of energy in the case of an elastic impact (e = 1),
whereas ΔT attains a maximum value for a plastic impact (e = 0).

In certain applications, for example, during forging or while
driving a pile into the ground, the mass m2 is at rest before the
impact (v2 = 0). We define the blow efficiency η as the ratio of
the energy loss ΔT (= work done to cause the deformation) to
the applied energy T = 1

2
m1 v2

1 . Then we obtain with (2.36)

η =
ΔT

T
= (1− e2)

m2

m1 + m2
= (1− e2)

1

1 +
m1

m2

. (2.37)

It is the aim of forging to deform bodies plastically. Here, the
blow efficiency η should be large. This can be achieved using a
small ratio m1/m2 (large mass m2 of the anvil including the work
piece). On the other hand, a pile or a nail should not deform during
driving. Therefore, m1/m2 should be sufficiently large (large mass
m1 of the hammer).

We now extend our investigation to analyse oblique central
impact. For simplicity we restrict ourselves to plane problems
(Fig. 2.11a). We assume that the surfaces of the masses are smooth
(frictionless); rough surfaces will be considered in Section 3.3.3.
Then the contact force F (t) and hence also the linear impulse F̂

have the direction of the line of impact (Fig. 2.11b). Using the
coordinate system shown in Fig. 2.11a, the Impulse Law in the
y-direction yields

m1 v̄1y −m1 v1y = 0 → v̄1y = v1y,

m2 v̄2y −m2 v2y = 0 → v̄2y = v2y .
(2.38)

Thus, the components of the velocities perpendicular to the line
of impact remain unchanged in the case of smooth surfaces.

The equations in the direction of the line of impact (the x-axis)
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m1

v2v1
m1 m2

m2

v̄2v̄2y

v1y

contact normal

tangent
contact

v̄1

F̂

y

x

v̄2x

ba

v1x

x

Fig. 2.11

and Equation (2.35) are the same as those of direct impact. Note,
however, that the velocities of a direct collision have to be replaced
now by the velocity components in the direction of the line of
impact. In contrast to (2.32) and (2.33) we will write here the
Impulse Laws for the total impact duration ti:

m1v̄1x −m1 v1x = − F̂ ,

m2v̄2x −m2 v2x = + F̂ .
(2.39)

Equation (2.35) now becomes

e = − v̄1x − v̄2x

v1x − v2x
. (2.40)

These are three equations for the three unknowns v̄1x, v̄2x and F̂ .
Solving for v̄1x and v̄2x yields the results which are already known
from (2.34).

E2.5Example 2.5 Two masses (m1 = m, m2 = 2 m) collide in a straight
path (Fig. 2.12). The velocity v1 of m1 is given.

Determine v2 so that m1 is at rest after the collision (coefficient
of restitution e). Calculate the velocity of m2 after the impact.

Fig. 2.12
����������������������������

m1 m2v1 v2
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Solution The velocities after the collision in a direct central impact
are given by (2.34). We assume that positive velocities are directed
to the right. Then we obtain (note the direction of v2)

v̄1 =
m1 v1 −m2 v2 − e m2 (v1 + v2)

m1 + m2
,

v̄2 =
m1 v1 −m2 v2 + e m1 (v1 + v2)

m1 + m2
.

The condition v̄1 = 0 leads to

m1 v1 −m2 v2 − e m2(v1 + v2) = 0

→ v2 = v1
m1 − e m2

m2(1 + e)
= v1

1− 2 e

2 (1 + e)
.

Inserting v2 into v̄2 yields

v̄2 =
1

3 m

[
mv1 − 2 mv1

1− 2 e

2 (1 + e)
+ e m

(
v1 + v1

1− 2 e

2 (1 + e)

)]
= v1

3 e

2 (1 + e)
.

Mass m2 has to be at rest before the collision for e = 1/2. If
e > 1/2, the direction of v2 is reversed. In this case, mass m2 has
to move to the right before impact.

E2.6 Example 2.6 A mass m1 slides down a smooth path from rest at
point A. It collides with a mass m2 = 3 m1 which is at rest at
point B (Fig. 2.13). The path is horizontal at B.

Determine the coefficients of restitution e which lead to a mo-
tion where mass m1 moves uphill after the collision. Calculate the
height h∗ which is attained by m1 for e = 1/2 and determine the
travel distance w of m2.

Solution The velocities of m1 and m2 immediately before impact
are v1 =

√
2 gh (conservation of energy) and v2 = 0. Equation
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m1A

h

h
h∗

Fig. 2.13

(2.34) yields the velocities after impact:

v̄1 =
m1 − e m2

m1 + m2
v1 =

1− 3 e

4

√
2 gh,

v̄2 =
m1(1 + e)
m1 + m2

v1 =
1 + e

4

√
2 gh .

If m1 is supposed to move uphill, the velocity v̄1 has to be negative.
Therefore, the coefficient of restitution has to satisfy the condition

1− 3 e < 0 → e >
1
3

.

In the special case e = 1/2 we obtain

v̄1 = −1
8

√
2 gh, v̄2 =

3
8

√
2 gh .

The height h∗ is found from the conservation of energy:

1
2

m1 v̄2
1 = m1 gh∗ → h∗ =

v̄2
1

2 g
=

h

64
.

The distance w follows from (1.41) with α = 0 and z(x = w) =
−h:

w = v̄2

√
2 h

g
=

3
4

h .
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E2.7 Example 2.7 A mass m1 (velocity v1) collides with a mass m2

which is at rest. The plane of contact has the direction given by
the angle 45◦ (Fig. 2.14a). The surfaces of the bodies are smooth.

Determine the velocities of the masses after the impact (coeffi-
cient of restitution e).

v1

m2

m1

v1

m2

m1 m1

m2

x

y

v̄2

F̂

v1y

v1x

b ca

45◦

v̄1y

45◦
v̄1x

v̄1

ᾱ1

x

Fig. 2.14

Solution We choose the coordinate system shown in Fig. 2.14b;
the x-axis is the line of impact. Since the surfaces are smooth,
the linear impulse F̂ acts in the direction of the line of impact
(Fig. 2.14c). The Impulse Laws for both masses and the hypothesis
(2.35) are given by

m1(v̄1x − v1x) = − F̂ , m1(v̄1y − v1y) = 0,

m2(v̄2x − v2x) = + F̂ , m2(v̄2y − v2y) = 0,

e = − v̄1x − v̄2x

v1x − v2x
.

With

v1x = v1y =
√

2
2

v1, v2x = v2y = 0

we obtain the velocities after the impact:

v̄1x =
√

2
2

v1
m1 − e m2

m1 + m2
, v̄1y =

√
2

2
v1 ,

v̄2x =
√

2
2

v1
m1(1 + e)
m1 + m2

, v̄2y = 0 .
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Thus, mass m2 moves with the velocity v̄2 = v̄2x in the direction
of the line of impact (Fig. 2.14b). The velocity v̄1 and the angle
ᾱ1 are given by

v̄1 =
√

v̄2
1x + v̄2

1y =
v1

m1 + m2

√
m2

1 + (1− e)m1 m2 +
1
2
(1 + e2)m2

2 ,

tan ᾱ1 =
v̄1y

v̄1x
=

m1 + m2

m1 − e m2
.

2.62.6 Bodies with Variable Mass
Up to now we have always assumed that the mass of a system is
constant. We will now extend the theory to systems which have a
variable mass. An example for the motion of such a system is the
flight of a rocket whose mass decreases with time.

Let us first consider a body B which initially has mass m0 and
velocity v0 (Fig. 2.15). At a certain time a mass Δm is ejected
from B with the velocity w. Then the mass of the body is reduced
to m0−Δm and the velocity is changed to v1 = v0+Δv. The mass
flow velocity w is the velocity of Δm relative to the body after the
ejection. The mass Δm therefore has the absolute velocity v1 +w

(cf. Chapter 6). We assume that the system under consideration
consists of both masses. Then, only internal forces act during the
ejection.

m0−Δmm0

v1 =v0 + Δv
BB

v0

v1+w

v1Δm

w

after ejection

before ejection

Fig. 2.15
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The momentum of the system before the ejection

p0 = m0 v0

and the momentum afterwards

p1 = (m0 −Δm)v1 + Δm(v1 + w)

have to be equal according to (2.14): p0 = p1. This yields the
change in the velocity of the body B due to the ejected mass:

Δv = v1 − v0 = − Δm

m0
w . (2.41)

This change increases with an increasing mass Δm and an incre-
asing velocity w. The negative sign in (2.41) indicates that Δv

and w are oppositely directed. If a mass Δm hits the body B

with a relative velocity w and is absorbed by B (the body gains
mass instead of losing mass), then the algebraic sign in (2.41) is
reversed.

m

v+dv
B

F +dF

dm∗

m− dm∗

time t

B
time t+dt

v+dv+w

path of B

vF

Fig. 2.16

Consider now a body B which ejects mass continuously and
which is subjected to an external force F (Fig. 2.16). The body
has mass m and velocity v at time t. During a time interval dt it
ejects mass dm∗ with a mass flow velocity w. At time t + dt its
mass is therefore m − dm∗; its velocity has been changed by dv.
The momentum of the system at time t is given by

p(t) = m v
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and at time t + dt it is

p(t + dt) = (m− dm∗)(v + dv) + dm∗(v + dv + w)

= m v + m dv + dm∗ w = p(t) + dp .

Thus, (2.12) yields

dp

dt
= m

dv

dt
+

dm∗

dt
w = F (2.42)

where dm∗/dt = μ is the mass which is ejected per unit time (the
rate at which mass is being ejected). The rate of change of the
mass dm/dt of the body is given by −dm∗/dt (rate of mass loss):

dm

dt
= − dm∗

dt
= −μ . (2.43)

Now we introduce the thrust T :

T = −μw . (2.44)

Then (2.42) can be written as

m
dv

dt
= F + T . (2.45)

This equation has the same form as Newton’s law of motion. Note,
however, that the mass of the body now depends on time: m =
m(t). Also, it contains the thrust T in addition to the external
force F . The thrust describes the action of the ejected mass on
the body. It is proportional to the ejected mass μ and to the mass
flow velocity w; it acts on the body in the direction opposite to w.
For example, if a rocket expels mass backwards, the thrust acts
on the rocket forwards. The thrust increases with increasing mass
flow velocity w.

As an illustrative example let us consider a rocket which has
the initial mass mI (including the fuel); see Fig. 2.17a. It takes
off vertically from the surface of the earth with a constant thrust
and a constant rate of expelled mass. The forces acting on the
rocket are the thrust T (directed opposite to the velocity w) and
the time-dependent weight m(t) g (Fig. 2.17b). We neglect the
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mI

m(t)g

m(t)

v

T

ba Fig. 2.17

aerodynamic drag and assume g to be constant. Then the motion
of the rocket is described according to (2.45) by

m(t) v̇ = −m(t) g + T

where

T = μw = − ṁw .

(The condition for lift off is v̇(0) > 0. Therefore, the thrust has to
satisfy T > mI g). Inserting yields

dv

dt
= − g − 1

m

dm

dt
w .

Since T and μ are assumed constant, we also have w = const.
Thus, integration and application of the initial condition v(0) = 0
yields the velocity

v(t) = − gt−w

m(t)∫
mI

dm̄

m̄
= − gt− w ln

m(t)
mI

= w ln
mI

m(t)
− gt .

From ṁ = −μ we obtain m(t) = mI − μt which leads to

v(t) = w ln
mI

mI − μt
− gt .
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The maximum velocity is reached at the time t = tF when the
fuel has run out. With the final mass m(tF ) = mF it follows as

vmax = w ln
mI

mF
− gtF .

It increases with increasing w and increasing ratio mI/mF .

E2.8Example 2.8 A boat (total mass m0) at rest can move without
resistance in the water. Two masses m1 and m2 are thrown off
the boat in the same direction with a mass flow velocity w.

Determine the resulting velocities of the boat if
a) the two masses are thrown at the same time and
b) if mass m1 is thrown first and subsequently mass m2.

m2

vb

m1

v∗
b

w−vb

va

b

a
m0, v0 =0 m0−(m1+m2)

m0, v0 =0 m0−m1

m1+m2

(m0−m1)−m2

w−va

Fig. 2.18

Solution Fig. 2.18a shows the situations before and after the ejec-
tion of the masses in case a). The ejected mass m1 + m2 moves
relative to the boat with the velocity w to the left. If the boat
moves with the velocity va to the right, then the masses m1 + m2

have the absolute velocity w− va to the left. Since the initial mo-
mentum is zero (v0 = 0), the principle of conservation of linear
momentum for the total system is given by

(m0 −m1 −m2) va − (m1 + m2)(w − va) = 0 .

Solving for the velocity va of the boat after the ejection yields

va =
m1 + m2

m0
w .
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In case b) the velocity v∗b of the boat after the ejection of the
first mass m1 (Fig. 2.18b) is obtained as

(m0 −m1) v∗b −m1(w − v∗b ) = 0 → v∗
b =

m1

m0
w .

Application of the principle of conservation of linear momentum
to the system (m0−m1) before and after the ejection of the second
mass m2 leads to

(m0 −m1) v∗b = (m0 −m1 −m2) vb −m2(w − vb)

→ vb =
(

m1

m0
+

m2

m0 −m1

)
w .

After simple algebraic manipulation the velocity vb can be written
as

vb =
(

m1 + m2

m0
+

m1 m2

m0(m0 −m1)

)
w = va +

m1 m2

m0(m0 −m1)
w .

Since m0 > m1, the velocity of the boat in case b) is larger than
the velocity in case a).

The results for va and vb can also be obtained by a repeated
application of (2.41).

E2.9 Example 2.9 The end of a chain with mass m0 and length l is
pulled upwards with a constant acceleration a0 (Fig. 2.19a).

Determine the necessary force H .

��
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a 0

ba

H

z
m(t)g

T
Fig. 2.19
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Solution We consider the part of the chain which is already
suspended to be a body whose mass is continuously increasing.
This body is subjected to the force H , the time-dependent weight
m(t) g and the “ thrust ” T . We assume the force T to be acting
upwards (Fig. 2.19b). With the z-coordinate of the point of app-
lication of H as shown, Equation (2.45) yields

m(t)z̈ = H −m(t) g + T , (a)

where the thrust is given according to (2.43) and (2.44):

T = ṁ w . (b)

The part of the chain which is still at rest has a “ velocity ” in the
negative z-direction relative to the part moving with the velocity
ż. Thus,

w = − ż . (c)

Integration of the given acceleration a0 and application of the
initial conditions ż(0) = 0 and z(0) = 0 leads to the velocity and
the position (= length of the moving part):

z̈ = a0, ż = a0 t, z =
1
2

a0 t2 . (d)

This yields the mass of the body and its change of mass:

m = m0
z

l
=

m0 a0

2 l
t2, (e)

ṁ =
m0 a0

l
t . (f)

If we introduce (b)-(f) into (a) and solve for H we obtain

H =
m0 a0(3 a0 + g)

2 l
t2 = m0(3 a0 + g)

z

l
.

This result is valid only as long as the mass of the body changes
(z < l).
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2.7 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E2.10 Example 2.10 Two vehicles (masses m1 and m2, velocities v1 and
v2) crash head-on, see Fig. 2.20. After a plastic impact the vehicles
are entangled and slide with locked wheels a distance s to the right.
The coefficient of kinetic
friction between the wheels
and the road is μ.

Calculate v1 if v2 and s

are known.
��������������������������

v1 v2

m1 m2

Fig. 2.20

Result: see (B) v1 =
m2

m1
v2 +

(
1 +

m2

m1

)√
2 μ g s .

E2.11 Example 2.11 A block (mass m2) rests on a horizontal platform
(mass m1) which is also initially at rest (Fig. 2.21). A constant
force F accelerates the plat-
form (wheels rolling without
friction) which causes the
block to slide on the rough
surface of the platform (co-
efficient of kinetic friction
μ).

����������������������

m2
F

m1

l

μ

Fig. 2.21

Determine the time t∗ that it takes the block to fall off the
platform.

Result: see (A) t∗ =
√

2lm1

F − μg (m1 + m2)
.

E2.12 Example 2.12 A railroad wagon (mass m1) has a velocity v1 (Fig.
2.22). It collides with a wagon (mass m2) which is initially at rest.
Both wagons roll without friction after the collision. The second
wagon is connected via a spring (spring constant k) with a block
(mass m3) that lies on a rough surface (coefficient of static friction
μ0).

2.7
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Assume the impact to be plastic and determine the maximum
value of v1 so that the block stays at rest.

������������������������������������

v1

m3

km1 m2 μ0

Fig. 2.22

Result: see (B) v1max =
μ0 m3 g

m1

√
m1 + m2

k
.

E2.13Example 2.13 A point mass m1 strikes a point mass m2 which is
suspended from a string (length l, negli-
gible mass) as shown in Fig. 2.23. The
maximum force S∗ that the string can
sustain is given.

Assume an elastic impact and de-
termine the velocity v0 that causes the
string to break.

����

l

m1 m2

v0

Fig. 2.23

Result: see (B) v0 >
m1 + m2

2 m1

√
l (S∗/m2 − g) .

E2.14Example 2.14 A ball 1 (mass m1) hits a second ball 2 (mass
m2, velocity v2 = 0) with a velocity v1 as shown in Fig. 2.24.
Assume that the impact
is partially elastic (coeffi-
cient of restitution e) and
all surfaces are smooth.
Given: r2 = 3 r1, m2 =
4 m1.

Determine the veloci-
ties of the balls after the
collision.

��������������������������

1
v1

m2

m1

r2
2

r1

Fig. 2.24

Results: see (A) v̄1 =
1− 3e

4
v1 , v̄2 =

√
3

8
(1 + e) v1 .

E2.15Example 2.15 A hunter (mass m1) sits in a boat (mass m2 =
2 m1) which can move in the water without resistance. The boat
is initially at rest.
a) Determine the velocity vB1 of the boat after the hunter fires a

bullet (mass m3 = m1/1000) with a velocity v0 = 500 m/s.
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b) Find the direction of the velocity of the boat after a second
shot is fired at an angle of 45◦ with respect to the first one.

Results: see (A) a) vB1 = 0.167 m/s , b) α = 22.5◦ .

E2.16 Example 2.16 A car 2 goes into a skid on a wet road and co-
mes to a stop sideways across the road as shown in Fig. 2.25. In
spite of having fully applied the brakes a distance s1 from car 2

a second car 1 (sliding with the coeffi-
cient of kinetic friction μ) collides with
car 2 . This causes car 2 to slide a distan-
ce s2. Assume a partially elastic central
impact. Given: m1 = 2 m2, μ = 1/3, e =
0.2, s1 = 50 m, s2 = 10 m.

Determine the velocity v0 of car 1

before the breaks were applied.
s1

2
m2

v0

1
m1

s2

Fig. 2.25
Result: see (A) v0 = 74.6 km/h .

E2.17 Example 2.17 Two cars (point masses m1 and m2) collide at an
intersection with the velocities v1 and v2 at an angle α (Fig. 2.26).
Assume a perfectly plastic
collision.

Determine the magnitu-
de and the direction of the
velocity immediately after
the impact. Calculate the
loss of energy during the col-
lision.

β
m1

m2

α

v2

v1

Fig. 2.26Results: see (A)

v̄ =
1

m1 + m2

√
(m1v1)2 + 2m1m2v1v2 cosα + (m2v2)2 ,

tanβ =
m2v2 sin α

m1v1 + m2v2 cosα
,

ΔT =
m1m2

2(m1 + m2)
(v2

1 + v2
2 − 2v1v2 cosα) .
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E2.18Example 2.18 A bullet (mass m) has a velocity v0 (Fig. 2.27). An
explosion causes the bullet to break into two parts (point mas-
ses m1 and m2). The directions α1 and α2 of the two parts and
the velocity v1 immediately after
the explosion are given.

Calculate m1 and v2. Determi-
ne the trajectory of the center of
mass of the two parts.

v2m2

m

m1

v1

α2

y

xv0

α1 =
π

2

Fig. 2.27

Results: see (A)

m1 = m
v0

v1
tan α2 ,

v2 =
v0

cosα2 − v0
v1

sinα2
, yc = 0 .

E2.19Example 2.19 A ball (point mass m1) is attached to a cable. It is
released from rest at the height h1 (Fig. 2.28). After falling to the
vertical position at A it collides with
a second ball (point mass m2 = 2 m1)
which is also initially at rest. The co-
efficient of restitution is e = 0.8.

Determine the height h2 which the
first ball can reach after the collision
and the velocity of the second ball im-
mediately after impact.

�������
�������
�������
�������

��������

m2

h1

m1

A

Fig. 2.28

Results: see (A) h2 = 0.04 h1 , v̄2 = 0.6
√

2gh1 .

E2.20Example 2.20 The rigid rod (negligible
mass) in Fig. 2.29 carries two point mas-
ses. It is struck by an impulsive force F̂

at a distance a from the support A.
Determine the angular velocity of the

rod immediately after the impact and
the impulsive reaction at A. Calculate a

so that the reaction force at A is zero.

����

m

m

a

F̂l

l

A

Fig. 2.29

Results: see (B) ω̄ =
F̂ a

5 l2 m
, Âx =

(
1− 3a

5 l

)
F̂ , a = 5 l/3 .
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2.8 2.8 Summary
• Determination of the motion of the individual point masses:
� Derivation of the equations of motion.
� Formulation of the kinematic equations.

• Law of motion for the center of mass: m ac = F ,

ac acceleration of the center of mass of the system,

F resultant of the external forces.

• Conservation of linear momentum:

p = m vc =
∑

i mivi = const,

vc velocity of the center of mass of the system.

Note: no external forces are acting.

• Angular momentum theorem: L̇
(0)

= M (0),

L(0) =
∑

i(ri ×mi vi) moment of momentum.

• Work-energy theorem: T1 − T0 = U (e) + U (i),

in the case of rigid constraints U (i) = 0 .

• Conservation of energy: T + V (e) + V (i) = const,

in the case of rigid constraints T + V (e) = const.

• Impact problems:
� Choice of a coordinate system: line of impact (x), tangent

(y).
� Application of the Impulse Law for each point mass.
� Application of the hypothesis e = − v̄1x − v̄2x

v1x − v2x
.

• Systems with variable mass: m a = F + T ,

T = −μ w = ṁ w thrust,

w mass flow velocity.
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Objectives: A rigid body may be considered to be a sys-
tem of an infinite number of particles whose relative distances
remain unchanged when the body is loaded. As was explained in
Section 2.1, it has six degrees of freedom in space: three transla-
tions (in the x-, y-, and z-directions) and three rotations (about
the x-, y-, and z-axes). In the following chapter we will derive the
equations which describe the motion of rigid bodies and we will
explain how these equations are applied to specific problems. Of
particular interest will be plane motion and the rotation about a
fixed axis.

D. Gross et al., Engineering Mechanics 3, 
DOI 10.1007/978-3-642-14019-8_3, © Springer-Verlag Berlin Heidelberg 2011
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3.13.1 Kinematics
In this section we will study the kinematics of a rigid body, i.e.,
the geometry of motion without reference to its cause.

A rigid body may be considered to be a system of an infinite
number of particles whose relative distances remain unchanged
when the body is loaded. It has six degrees of freedom in space (see
Section 2.1). Three translations (in the x-, y-, and z-directions)
and three rotations (about the x-, y-, and z-axes) correspond to
the six degrees of freedom. In the following we will show how
the general motion of a rigid body may be understood as the
composition of a translation and a rotation.

3.1.1 Translation

A motion that leaves the direction of the straight line between any
two arbitrary points A and P of a rigid body unchanged is called
a translation (Fig. 3.1). In this case, every particle of the body
undergoes the same displacement dr during a time interval dt.
Therefore, all the particles have the same velocity and the same
acceleration:

v =
dr

dt
, a =

dv

dt
=

d2r

dt2
. (3.1)

Fig. 3.1

path of A

r A

yx

z

P
P ′

A′

dr
path of P

The paths of different points all have the same shape. Thus, the
motion of a single point of the body arbitrarily chosen represents
the motion of the complete body.
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3.1.2 Rotation

During a rotation all the particles of a rigid body move about a
common axis. In the special case that this axis is fixed in space,
the motion is called a rotation about a fixed axis. If on the other
hand the axis only passes through a fixed point without keeping
its direction, then the motion is referred to as a rotation about a
fixed point or a gyroscopic motion.

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

ϕ, ω,
·
ω

of rotation

r

er

P eϕ

fixed axis

Fig. 3.2

Let us first consider the motion of a rigid body about a fixed
axis (Fig. 3.2). In this case each point of the body moves in a
circle whose plane is perpendicular to the axis. The radius vectors
from the axis to the individual points of the body sweep out the
same angle dϕ during the same time interval dt. Thus, the angular
velocity ω = ϕ̇ and the angular acceleration ω̇ = ϕ̈, respectively,
are the same for every point. The velocity and the acceleration of
an arbitrary point P at a distance r from the axis are therefore
the same as for a particle in a circular motion (see (1.25) - (1.28)):

vP = vϕ eϕ, aP = ar er + aϕ eϕ (3.2a)

where

vϕ = rω, ar = − rω2, aϕ = rω̇ . (3.2b)

We now consider the rotation about a fixed point A (Fig. 3.3).
Let the instantaneous direction of the axis of rotation be given by
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the unit vector eω. Assume that the body undergoes a rotation
about this axis with the angle dϕ during the time interval dt.
Then all the particles of the body instantaneously move in circles.

Fig. 3.3
instantaneous
axis of rotation

x

z

y

eω

dϕ

A

rAP

r

drP

P ′

P

rP

rA fixed point

The displacement drP of an arbitrary point P is given by (see
Fig. 3.3)

drP = (eω × rAP ) dϕ . (3.3)

Here, the vector eω×rAP is perpendicular to eω and rAP ; its ma-
gnitude is equal to the orthogonal distance r of point P from the
instantaneous axis of rotation. We now introduce the infinitesimal
vector of rotation dϕ and the angular velocity vector ω:

dϕ = dϕeω and ω =
dϕ

dt
= ϕ̇eω = ω eω . (3.4)

Then the velocity vP = drP /dt of point P follows from (3.3):

vP = ω × rAP . (3.5)

It should be noted that the infinitesimal rotation dϕ and the
angular velocity ω = dϕ/dt are vectors, however, a finite rotation
cannot be represented by a vector. In order to show this we subject
a body to different finite rotations from an initial position to a final
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ϕy =
π

2

final position

ϕy =
π

2

final position

ϕx =
π

2

ϕx =
π

2

b

a
initial position

z

z

x

z

z
z

z

x x

x
x

y y y

initial position

yy y

x

Fig. 3.4

position. For example, if the block in Fig. 3.4 is first rotated about
the x-axis (angle of rotation ϕx = π/2) and subsequently rotated
about the y-axis (angle of rotation ϕy = π/2), then the final
position shown in Fig. 3.4a is attained. On the other hand, if we
first rotate the body about the y-axis and then about the x-axis,
we obtain a different final position, see Fig. 3.4b. According to
the commutative law of vector addition, the result of an addition
of vectors has to be independent of the sequence of the addition.
Since finite angles of rotation do not obey this law, they cannot
be classified as vectors.

The acceleration of P is obtained through differentiation of
(3.5):

aP =
dvP

dt
= ω̇ × rAP + ω × ṙAP .

Since point A is fixed in space (ṙA ≡ 0), we have ṙAP = ṙP =
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= vP = ω × rAP . Thus,

aP = ω̇ × rAP + ω × (ω × rAP ) . (3.6)

Equations (3.5) and (3.6) reduce to (3.2a,b) in the special case
of a rotation about a fixed axis.

3.1.3 General Motion

The general motion of a rigid body can be understood as a com-
position of a rotation and a translation. To show this, we first
consider the case of plane motion, where all the particles move in
the x, y-plane or in a plane parallel to it (Fig. 3.5a). Position vec-
tors to arbitrary points P and A which are fixed in the body are
connected by rP = rA + rAP . Let us introduce the unit vectors er

(in the direction from A to P ) and eϕ (perpendicular to rAP ).

rP

rA

x

rAP

y

yA

xP

P

A

der

er

deϕ

ϕ

ba

c d

yP

er

xA

dϕ
eϕ

eϕ

rω̇ cosϕ
ϕ

y

x

ϕ

ϕ
rω2 sinϕar

AP
=rω2

ẍA

A

rω2 cosϕ

ẋA

y

A

x

vA

ϕ

r

P rω̇ sinϕ
ϕ

vAP =rω

aA

rω cosϕ
aϕ
AP

=rω̇

ÿA

ẏA

rω sinϕ

r

P

Fig. 3.5
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They are also fixed in the body and therefore move with the body.
Since rAP = r er, we can write

rP = rA + r er.

Note that r = const. Therefore, differentiation yields ṙP = ṙA +
rėr . The vector ėr is found through the following considerations.
If the vector rAP rotates through the angle dϕ during the infinite-
simal time interval dt, then the vectors er and eϕ are also rotated
by dϕ. According to Fig. 3.5b we have der = dϕeϕ and therefore
ėr = der/dt = ϕ̇eϕ. Similarly, we obtain ėϕ = −ϕ̇er (cf. Section
1.1.4). Thus, the velocity of P is given by

ṙP = ṙA + r ω eϕ

where ω = ϕ̇, and the acceleration is found to be

r̈P = r̈A + r ω̇ eϕ + r ω ėϕ = r̈A + r ω̇ eϕ − rω2er .

In summary we have

rP = rA + rAP ,

vP = vA + vAP ,

aP = aA + ar
AP + aϕ

AP

(3.7a)

with

rAP = r er, vAP = r ω eϕ,

ar
AP = − rω2er, aϕ

AP = r ω̇ eϕ .
(3.7b)

Each of the relations (3.7a) consists of two parts. The quanti-
ties rA, vA and aA represent the translation of the body, whereas
the other terms (see (3.7b)) represent a rotation (circular motion
of P about A, cf. (3.2a,b)). The vectors vAP and aϕ

AP are perpen-
dicular to rAP ; the vector ar

AP points in the direction from P to A

(centripetal acceleration). Thus, the velocity (acceleration) of an
arbitrary point P is equal to the sum of the velocity (acceleration)
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of an arbitrary point A and the velocity (acceleration) of point P

due to the rotation about A.
Frequently we have to express the velocity and acceleration of

P in a Cartesian coordinate system. To do so, we first write down
the coordinates of P (see Fig. 3.5a):

xP = xA + r cosϕ, yP = yA + r sin ϕ .

If we differentiate once (ϕ = ϕ(t); chain rule!) we obtain the com-
ponents of the velocity vector and a second time those of the
acceleration vector (ϕ̇ = ω):

vPx = ẋP = ẋA − rω sin ϕ,

vPy = ẏP = ẏA + rω cosϕ,

aPx = ẍP = ẍA − rω̇ sin ϕ− rω2 cosϕ,

aPy = ÿP = ÿA + rω̇ cosϕ− rω2 sin ϕ .

The meaning of the individual terms can be seen in Figs. 3.5c,d.
Equations (3.7a,b) can be used to determine the velocity (acce-

leration) of point P graphically with the aid of a velocity diagram
(acceleration diagram). The directions of the individual velocity
vectors (acceleration vectors) have to be taken from a layout dia-
gram which represents the geometrical properties of the problem.
Consider, for example, the body in Fig. 3.6a. We assume that
vA, aA, ω and ω̇ are known in the position shown, i.e., at a given
instant. According to (3.7a) the velocity vP is the sum of the vec-
tors vA and vAP (Fig. 3.6b). The vector vAP has the magnitude
vAP = rω (see (3.7b)); it is orthogonal to AP .

The acceleration aP (Fig. 3.6c) is obtained as the sum of aA,
ar

AP (in the direction from P to A, ar
AP = rω2) and aϕ

AP (or-
thogonal to AP , aϕ

AP = rω̇). In the case of a purely graphical
solution, the velocity diagram and the acceleration diagram ha-
ve to be drawn to scale. If we want to solve the problem with a
mixed graphical/analytical method (see Volume 1, Section 2.4) it
suffices to sketch the diagrams but not necessarily to scale and
apply trigonometry.
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P

A

a c

acceleration diagramvelocity diagram

vA

aϕ
AP

=rω̇

vAP =rω

b

vA

ar
AP

=rω2

r
ω, ω̇

aA

aA

vP
aP

layout diagram

Fig. 3.6

As an example, consider the rod in Fig. 3.7a. The velocity vA
and acceleration aA of point A in the position shown are given;
let us find the velocity vB and acceleration aB of point B at this
instant. We first solve the problem analytically by introducing an
x, y-coordinate system and the angle ϕ as shown in Fig. 3.7b. Note
that the horizontal displacement of B is zero. The coordinates of
B can be expressed as

xB = xA − l sin ϕ = 0, yB = l cosϕ .

Differentiating yields (ẋA = vA)

ẋB = vA − lϕ̇ cosϕ = 0 → ϕ̇ = ω =
vA

l cosϕ
,

vB = ẏB = − lω sin ϕ = − vA tan ϕ .

We differentiate again and use v̇A = aA to obtain

ẍB = aA − lω̇ cosϕ + lω2 sin ϕ = 0

→ ω̇ =
aA

l cosϕ
+

v2
A sin ϕ

l2 cos3 ϕ
,

aB = ÿB = − lω̇ sin ϕ− lω2 cosϕ = − aA tan ϕ− v2
A

l cos3 ϕ
.

The problem can also be solved with a mixed graphical/analyti-
cal method. The magnitude and the direction (horizontal) of the
velocity vA are known. We also know the direction of vAB (ortho-
gonal to AB, vAB = lω) and the direction of vB (vertical). This
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enables us to sketch the velocity diagram (Fig. 3.7c) from which
we obtain

lω =
vA

cosϕ
, vB = vA tanϕ .
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AB

= lω2

aϕ
AB

= lω̇
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vA aA

vAB = lω

ϕ

Fig. 3.7

To construct the acceleration diagram (Fig. 3.7d) we start with
the given acceleration aA (horizontal). We also know ar

AB (in the
direction from B to A, ar

AB = lω2) and the directions of aϕ
AB (or-

thogonal to AB) and aB (vertical). Now the acceleration diagram
can be sketched. It yields the magnitude of aB :

aB = aA tanϕ +
lω2

cosϕ
.

If we insert ω (which is known from the velocity diagram) we
obtain the same result as in the analytical solution.

We will now show that the general spatial motion of a rigid bo-
dy can always be decomposed into a translation and a rotation.
To this end we introduce the x̄, ȳ, z̄-coordinate system as shown
in Fig. 3.8. Its origin coincides with an arbitrary point A of the
body and it undergoes a translation as the body moves, i.e., the
directions of the axes remain unchanged (translating coordinate



138 3 Dynamics of Rigid Bodies

system). With respect to an observer located at the origin A of
this system and fixed to the translating axes, the rigid body un-
dergoes a rotation. The corresponding velocity and acceleration,
respectively, of a point P are given by (3.5) and (3.6). In additi-
on, we have to account for the velocity vA and acceleration aA of
point A (i.e., of the x̄, ȳ, z̄-system) with respect to the fixed sys-
tem x, y, z. Thus, the general motion of a rigid body in space is
described by

rP = rA + rAP ,

vP = vA + ω × rAP ,

aP = aA + ω̇ × rAP + ω × (ω × rAP ).

(3.8)

rP

rA

x
y

rAP

x̄

P

z

A

z̄

ȳ

Fig. 3.8

Equations (3.8) are also valid in the case of a plane motion.
Assuming that the motion takes place in the x, y-plane (cf. Fig.
3.5a), we can write

ω = ω ez, ω̇ = ω̇ ez, rAP = r er .

Inserting into (3.8), we obtain Equations (3.7a,b) for the position,
velocity and acceleration of P :

rP = rA + r er,

vP = vA + ω ez × r er = vA + rω eϕ,

aP = aA + ω̇ ez × r er + ω ez × (ω ez × r er)

= aA + rω̇ eϕ + ω ez × rω eϕ = aA + rω̇ eϕ − rω2er .
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E3.1Example 3.1 A slider crank mechanism consists of a crankshaft
0A and a connecting rod AK (Fig. 3.9a). The crankshaft rotates
with a constant angular velocity ω0.

Determine the angular velocity and the angular acceleration of
the connecting rod as well as the velocity and the acceleration of
the piston K in an arbitrary position.
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r l
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a b

Kα=ω0t

Fig. 3.9

Solution We choose an x, y-coordinate system and the angles α

and ϕ as shown in Fig. 3.9b. The piston K can move only in the
horizontal direction. Therefore, its vertical displacement is zero:

yK = r sinα− l sin ϕ = 0 . (a)

This yields the relation

sin ϕ =
r

l
sin α → cosϕ =

√
1− r2

l2
sin2 α (b)

between the angles α and ϕ. If we differentiate (a), we obtain the
angular velocity ϕ̇ and the angular acceleration ϕ̈ of the connec-
ting rod (α̇ = ω0 = const):

ẏK = rω0 cosα− lϕ̇ cosϕ = 0

→ ϕ̇ = ω0
r

l

cosα

cosϕ
,

ÿK = − rω2
0 sinα + lϕ̇2 sin ϕ− lϕ̈ cosϕ = 0

→ ϕ̈ = −ω2
0

r

l

sinα

cosϕ
+ ϕ̇2 sin ϕ

cosϕ

= ω2
0

r

l

[
− sin α

cosϕ
+

r

l

cos2 α sin ϕ

cos3 ϕ

]
.
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The velocity ẋK and the acceleration ẍK of the piston follow from
the position xK and (b):

xK = r cosα + l cosϕ,

ẋK = − rω0 sin α− lϕ̇ sin ϕ = − rω0 sinα

[
1 +

r

l

cosα

cosϕ

]
,

ẍK = − rω2
0 cosα− lϕ̇2 cosϕ− lϕ̈ sin ϕ

= − rω2
0

[
cosα− r

l

(
sin2 α

cosϕ
− cos2 α

cos3 ϕ

)]
.

The angle ϕ can be replaced by the angle α with the aid of (b). If
the velocity and the acceleration have to be determined as functi-
ons of the time t (instead of functions of the angle α), α has to be
replaced by α = ω0t, where the initial condition α = 0 for t = 0
has been assumed.

E3.2 Example 3.2 The arm 0A and the disk in Fig. 3.10a rotate with
constant angular velocities ω1 and ω2, respectively.

Determine the velocity and acceleration of point P as functions
of the angle ψ.

0

r
ω1

P

vP

vA = lω1

b

aAP =rω2
2

aP

aA = lω2
1

c

vAP =rω2

a

ψ

l

A

ω2

ψ

ψ

Fig. 3.10

Solution We solve the problem with a graphical/analytical me-
thod. The center A of the disk moves in a circle about 0. Thus,

vA = lω1 (perpendicular to 0A) ,

aA = lω2
1 (in the direction from A to 0 since ω̇1 = 0) .
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Point P follows a circular path about A:

vAP = rω2 (perpendicular to AP ) ,

aAP = rω2
2 (in the direction from P to A since ω̇2 = 0) .

Now we are able to sketch the velocity diagram (Fig. 3.10b) and
the acceleration diagram (Fig. 3.10c). The law of cosines yields

v2
P = (lω1)2 + (rω2)2 − 2 lrω1 ω2 cos(π − ψ)

→ vP =
√

(lω1)2 + (rω2)2 + 2 lrω1 ω2 cosψ

and

aP =
√

(lω2
1)2 + (rω2

2)2 + 2 lrω2
1 ω2

2 cosψ .

Maximum (minimum) values are obtained for ψ = 0 (ψ = π). For
example, the maximum acceleration is given by

aPmax
= lω2

1 + rω2
2 .

3.1.4 Instantaneous Center of Rotation

According to Section 3.1.3 plane motion of a rigid body is compo-
sed of a translation and a rotation. Alternatively, a plane motion
may also be considered at each instant to be a pure rotation about
a certain point Π. This point is referred to as the instantaneous
center of rotation or the instantaneous center of zero velocity.

We will verify this statement by showing that there always
exists a point A (= instantaneous center of rotation Π) which
has a vanishing velocity. With vA = 0, (3.8) leads to the velocity
(3.5) of an arbitrary point P during a pure rotation about A:

vP = ω × rAP .

We can solve this equation for rAP if we take the cross product
of both sides with ω and insert vP = vP eϕ, rAP = rP er and
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ω = ω ez (ez is perpendicular to er and eϕ):

0 = ω × (ω × rAP )− ω × vP

= ω2 rP ez × (ez × er)− ω vP (ez × eϕ)

= −ω2 rP er − ω vP (ez × eϕ)

→ rAP = rP er = − vP

ω
(ez × eϕ) .

Thus, the vector rAP is orthogonal to the velocity vP (Fig. 3.11);
it has the magnitude rP = vP /ω. This uniquely determines the
location of the instantaneous center of rotation Π. The instanta-
neous motion of a rigid body may therefore indeed be considered
as being a pure rotation about Π.

A=Π

ω

P

rAP

Q

rP
rQ

αP

vP

vQ

αQ =αP

Fig. 3.11

The velocities of two arbitrary points P and Q can thus be
given by (circular motion)

vP = rP ω, vQ = rQ ω , (3.9)

where ω is the magnitude of the angular velocity vector (which
is orthogonal to the plane of the motion) and rP and rQ are the
distances of P and Q from Π. The velocity vectors are perpendi-
cular to the vectors rΠP (from Π to P ) and rΠQ (from Π to Q),
respectively (Fig. 3.11). Hence, the location of Π can be found if
the directions of the velocities of two points of the rigid body are
known: it is given by the point of intersection of the two straight
lines which are perpendicular to the velocities. Note that the in-
stantaneous center of rotation may lie outside the body. If there
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exists a point of the body with zero velocity, then this point is the
instantaneous center of rotation. It should be emphasized that the
instantaneous center of rotation is not a fixed point: it moves.

One can also eliminate the angular velocity ω from Equations
(3.9). Then one obtains vP /rP = vQ/rQ which means that the
angles αP and αQ are equal (Fig. 3.11). This fact is used when
problems are solved graphically with the aid of the instantaneous
center of rotation (see Example 3.3).
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a b

A

l

c

vA

vCC

A

P

B

C′

vB

vP

C

A′

B

ϕr

x

rP
r

vB

Π

l

ϕ

centrode

rA

rB

Π

Fig. 3.12

As an illustrative example let us consider a wheel that moves on
a horizontal plane. Its center C has the velocity vC (Figs. 3.12a,b).
We assume that the wheel rolls (no slipping at point A). As the
wheel moves, its center C travels a distance x along a straight
horizontal line, point A moves to the location A′, and the wheel
undergoes a rotation of angle ϕ. The arc length rϕ and the distan-
ce x have to coincide: x = rϕ. Differentiating and using ẋ = vC

and ϕ̇ = ω yields

vC = r ω . (3.10)

The point of contact A with the ground momentarily has zero
velocity (no slipping!): it is the instantaneous center of rotation
Π (Fig. 3.12b). According to (3.9) and (3.10), the velocity of an
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arbitrary point P of the wheel is given by

vP = rP ω = vC

rP

r
.

The velocity vector is perpendicular to the straight line ΠP . The
maximum velocity is found at point B. With rB = 2 r we get
vB = 2 vC .

Let us now reconsider the motion of the rod in Fig. 3.7a. The
given velocity vA is horizontal, the unknown velocity vB is vertical
(see Fig. 3.12c). The rod momentarily rotates about the instanta-
neous center of rotation Π which is given by the point of intersec-
tion of the straight lines which are perpendicular to the velocities.
The angular velocity ω of the rod can immediately be obtained
from (3.9):

vA = rA ω = lω cosϕ → ω =
vA

l cosϕ
.

This leads to the velocity of point B:

vB = rB ω = lω sin ϕ = vA tan ϕ .

As mentioned before, the instantaneous center of rotation Π
is not a fixed point. Its location depends on the location of the
rod. The locus of points which represent the instantaneous center
of rotation in the space-fixed plane is called the centrode. In the
present example it is a quarter-circle with radius l (Fig. 3.12c).

E3.3 Example 3.3 The pulley system shown in Fig. 3.13a consists of two
pulleys 1 and 2 and a disk 3 . The pulleys rotate with angular
velocities ω1 and ω2, respectively.

Determine the angular velocity of the disk and the velocity of
its center C. Assume that the disk does not slip on the cable.

Solution The velocities of the points A′ and B′ of the pulleys
(Fig. 3.13b) are given by

vA′ = r1 ω1, vB′ = r2 ω2 .
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vA =vA′ =r1ω1

C

r1 r2

vB =vB′ =r2ω2

A′ B′

vA′

C
vC Π

rA

BA

ω1 ω2

r3

vB′

1

3

2

a b

αB

αA

Fig. 3.13

Since there is no slipping of the cable, the velocities of the points
A and B on the disk coincide with the velocities of A′ and B′:

vA = vA′ , vB = vB′ .

To find the center of zero velocity Π of the disk, we first draw a
straight line that is perpendicular to the direction of the velocities
vA and vB. Then we connect the tips of the arrows of vA and vB

with another straight line to ensure that the angles αA and αB are
equal: αA = αB. The point of intersection of these straight lines is
point Π (Fig. 3.13b). From the figure we obtain with the theorem
of intersecting lines

rA

r1 ω1
=

2 r3 − rA

r2 ω2
→ rA = 2 r3

r1 ω1

r1 ω1 + r2 ω2
.

The angular velocity ω3 of the disk follows from (3.9):

vA = rA ω3 → ω3 =
vA
rA

=
r1 ω1 + r2 ω2

2 r3
.

The velocity of point C is given by

vC = (rA − r3)ω3 =
1
2
(r1 ω1 − r2 ω2) .

In the special case of r1 ω1 = r2 ω2 the motion of the disk is a pure
rotation (vC = 0).
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E3.4 Example 3.4 Link 1 of the mechanism in Fig. 3.14a rotates with
angular velocity ω1.

Find the velocities of points A and B and the angular velocities
of links 2 and 3 at the instant shown.

a b

A
B

B

a

a

a

D=Π3

√
2 a

A

α

ω3

ω2

α

Π2

ω1

vA

√
2 a

C =Π1

vB

ω1 1

2

3

a a

a

a

Fig. 3.14

Solution Links 1 and 3 rotate about the points C and D, respec-
tively (Fig. 3.14b). Thus, these points are the centers Π1 and Π3

of zero velocity of the respective links. Therefore, the directions of
the velocities of A and B are known. The points A and B are also
points of link 2 . Its center Π2 of zero velocity is given by the point
of intersection of the two straight lines that are perpendicular to
vA and vB. From Fig. 3.14b we obtain

Π1 : vA =
√

2 aω1,

Π2 : vA = 2
√

2 aω2 → ω2 =
ω1

2
,

vB = 2 aω2 → vB = aω1,

Π3 : vB = aω3 → ω3 = ω1 .



3.2 Kinetics of the Rotation about a Fixed Axis 147

3.23.2 Kinetics of the Rotation about a Fixed Axis
In Section 3.1 we studied the motion of a rigid body without
referring to forces as a cause or as a result of the motion. Now
we will investigate motions under the influence of forces. In this
section we restrict ourselves to the rotation about a fixed axis.

3.2.1 Principle of Angular Momentum

As the body in Fig. 3.15 rotates about the fixed axis a-a, each
point of the body undergoes a circular motion. Therefore, the
principle of angular momentum (1.67) for an infinitesimal mass
element dm of the body is given by

dΘa ω̇ = dMa (3.11)

Fig. 3.15
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r

a

a

dm dF (e)+dF (i)

ω, ω̇

where ω̇ = ϕ̈. Here, dΘa = r2dm is the mass moment of inertia
of dm and dMa is the sum of the moments of the external forces
dF (e) and the internal forces dF (i) with respect to the axis of
rotation. The superscripts in (1.67) that refer to the reference
point are now replaced by subscripts which refer to the axis a-
a. If we integrate over the complete body and assume that the
moments of the internal forces cancel (cf. Section 2.3), then we
obtain the principle of angular momentum
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Θa ω̇ = Ma (3.12)

where

Θa =
∫

r2dm (3.13)

is the mass moment of inertia of the body and Ma is the resultant
moment of the external forces with respect to the axis a-a.

The angular momentum of a mass element dm is given by
dLa = rv dm = r2ω dm (cf. Section 1.2.6). Integration yields the
angular momentum of a rotating body with respect to the axis
a-a:

La =
∫

dLa = ω

∫
r2dm → La = Θa ω . (3.14)

Thus, (3.12) can be written in the form

L̇a = Ma . (3.15)

Integration from time t0 to time t results in

La(t)− La(t0) =

t∫
t0

Ma dt̄ → Θa(ω − ω0) =

t∫
t0

Ma dt̄ . (3.16)

Thus, the change of the angular momentum is equal to the time
integral of the applied moment. In the special case of a vanishing
moment Ma, the angular momentum La = Θa ω does not change
(conservation of angular momentum).

Equations (3.12), (3.15) and (3.16) are analogous to the equa-
tions of motion (1.38), (1.37) and (1.49) for a particle or for the
translation of a rigid body. To obtain the equations for the rota-
tion of a rigid body about a fixed axis, we have only to replace
the mass with the mass moment of inertia, the velocity with the
angular velocity, the force with the moment, and the linear mo-
mentum with the angular momentum. This is called an analogy
between a translation and a rotation for fixed axis rotations (cf.
Section 3.2.3).
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3.2.2 Mass Moment of Inertia

According to (3.13) the mass moment of inertia, which is also
called the axial moment of inertia, is defined as

Θa =
∫

r2dm , (3.17)

where r is the perpendicular distance of an arbitrary element dm

from the axis a-a.
In some cases it is helpful to use the radius of gyration rg:

Θa = r2
g m . (3.18)

One may interpret rg as the distance from the axis a-a at which
the total mass m can be imagined as being concentrated so that
it has the same moment of inertia as the body.

If the density ρ of the material of the body is constant, then
we use dm = ρ dV and obtain from (3.17)

Θa = ρ

∫
r2 dV . (3.19a)

If, in addition, the shape of the cross section does not change
through the length of the body (example: cylinder, see Fig. 3.16a),
then we get with dV = l dA

Θa = ρl

∫
r2 dA = ρl Ip . (3.19b)

Here, Ip is the polar moment of area (see Volume 2, Section 4.2).
The mass moments of inertia obey the parallel-axis theorem,

just as the second moments of area do (see Volume 2, Section
4.2.2). In order to derive this theorem, we consider two parallel
axes as shown in Fig. 3.16b. The axis c-c passes through the center
of mass C of the body. With x = xc + x̄ and y = yc+ ȳ (Fig. 3.16c)
we obtain

Θa =
∫

r2dm =
∫

(x2 + y2) dm = (x2
c + y2

c )
∫

dm

+ 2 xc

∫
x̄ dm + 2 yc

∫
ȳ dm +

∫
(x̄2 + ȳ2) dm .
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a

l

r a

dA

a b c

a

c

dm

r

c

z

x
C

A

r̄

y

rc

a

yc

xc

x̄

y

y

x x

x̄

ȳ
r

ȳ

A

dm

rc

C

r̄

Fig. 3.16

The first moments
∫

x̄dm and
∫

ȳ dm about axes through the
center of mass are zero (cf. Volume 1, Section 4.3). Therefore,
using

Θc =
∫

r̄2dm =
∫

(x̄2 + ȳ2) dm, x2
c + y2

c = r2
c , m =

∫
dm

the parallel-axis theorem is obtained:

Θa = Θc + r2
c m . (3.20)

From (3.18) we find the relation r2
ga = r2

gc + r2
c for the radii of

gyration.

r

r
l

A

a

dr

C

dm

b

c

t

c
dA

R
m dr

Fig. 3.17

As an illustrative example we consider a slender homogeneous
rod (mass m), see Fig. 3.17a. With dm/m = dr/l we obtain the
moment of inertia

ΘA =
∫

r2 dm =
m

l

l∫
0

r2 dr =
ml2

3
(3.21a)
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with respect to an axis that is perpendicular to the rod and passes
through point A. Here, we replaced the subscript a (reference axis)
by the subscript A (reference point). In the following we will use
both notations. If we choose a reference axis that passes through
the center C of the rod, (3.20) leads to

ΘC = ΘA −
(

l

2

)2

m =
ml2

12
. (3.21b)

We now determine the moment of inertia of a homogeneous
circular disk with mass m, thickness t, and radius R. We choose
the reference axis c-c that is perpendicular to the plane of the disk
and passes through its center (Fig. 3.17b). With the area element
dA = 2 πr dr we obtain

Θc =
∫

r2 dm = ρt

∫
r2 dA = 2 πρt

R∫
0

r3 dr =
π

2
ρtR4 =

mR2

2
.

(3.22)
The moment of inertia Θc depends on the mass m and the radius
R; it is independent of the thickness t. Therefore, the result (3.22)
is also valid for a circular cylinder of arbitrary length.

E3.5Example 3.5 Determine the moment of inertia of a homogeneous
solid sphere (mass m, radius R) with respect to an axis that passes
through the center C.

Fig. 3.18

c

C

r
R

c

dz

z

Solution We consider the sphere as being composed of circular
disks with infinitesimal thickness dz (Fig. 3.18). According to
(3.22), the moment of inertia of a disk (radius r =

√
R2 − z2)

with respect to the axis c-c is given by

dΘc =
1
2
dm r2 =

1
2
(ρr2 π dz) r2 =

π

2
ρ(R2 − z2)2 dz .
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Integration yields the moment of inertia of the sphere:

Θc =
∫

dΘc =
π

2
ρ

+R∫
−R

(R2 − z2)2 dz =
8
15

πρ R5 .

With the mass m = ρV and the volume V = 4
3

π R3 of the sphere,
this can be written as

Θc =
2
5

m R2 .

E3.6 Example 3.6 A homogeneous square plate (weight W = mg) is
suspended by a pin at A (Fig. 3.19a). It is displaced from the
position of equilibrium and then released.

Find the equation of motion.

ϕ

A

aa

√
2

2
a sinϕ

mg

C

√
2

2
a

W

a

ax

y

A

dy

x

y

dx

r

b ca Fig. 3.19

Solution The plate rotates about the fixed axis that is perpendicu-
lar to the plane of the plate and passes through A. We introduce
the angle ϕ as shown in Fig. 3.19b and apply the principle of
angular momentum:

A: ΘA ϕ̈ = MA (a)
with

MA = −mg

√
2

2
a sin ϕ . (b)

The symbol A: characterizes the point of reference and the positive
sense of rotation.

To find the moment of inertia we use (3.17) and the notation
in Fig. 3.19c. With the thickness t of the plate and
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dm = ρ dV = ρt dxdy, m = ρa2t, r2 = x2 + y2

we obtain

ΘA =
∫

r2 dm = ρt

a∫
0

a∫
0

(x2 + y2) dxdy =
2
3
ρta4 =

2
3
ma2 .

Inserting ΘA and MA (see (b)) into (a), the equation of motion
becomes

2
3

ma2 ϕ̈ = −mg

√
2

2
a sinϕ → ϕ̈ +

3
√

2
4

g

a
sin ϕ = 0 .

3.2.3 Work, Energy, Power

Assume that a rigid body rotates about a fixed axis a-a. Then the
kinetic energy T of the body follows from (1.69) with v = rω:

T =
1
2

∫
v2 dm =

1
2

ω2

∫
r2 dm

or

T =
1
2

Θa ω2 . (3.23)

The moment Ma of the external forces does work dU = Madϕ

during an infinitesimal rotation of angle dϕ. Therefore, the work
during a finite rotation from ϕ0 to ϕ is obtained as the integral

U =

ϕ∫
ϕ0

Madϕ̄ (3.24)

and the power is given by

P =
dU

dt
= Ma ω . (3.25)
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If we integrate the principle of angular momentum (3.12) from
ϕ0 to ϕ, we get the work-energy theorem (note that dϕ = ωdt

and ω̇ω = (1
2
ω2)�)

Θa

ϕ∫
ϕ0

ω̇dϕ̄ =

ϕ∫
ϕ0

Madϕ̄ → Θa

t∫
t0

ω̇ωdt̄ =
1
2
Θaω2 − 1

2
Θaω2

0 =

ϕ∫
ϕ0

Madϕ̄

or

T − T0 = U . (3.26)

In the special case that the moment Ma can be derived from a
potential V , we have U = − (V − V0) and obtain a statement of
conservation of energy:

T + V = T0 + V0 = const . (3.27)

Table 3.1

Translation Rotation about a fixed axis a-a

s displacement angle ϕ

v = ṡ velocity angular velocity ω = ϕ̇

a = v̇ = s̈ acceleration angular acceleration ω̇ = ϕ̈

m mass moment of inertia Θa

F force (in the direction moment (about a-a) Ma

of the displacement)

p = mv linear momentum angular momentum La = Θa ω

ma = F principle of linear principle of angular Θa ω̇ = Ma

momentum momentum
T = 1

2mv2 kinetic energy T = 1
2Θa ω2

W =
∫

F ds work U =
∫

Ma dϕ

P = Fv power P = Ma ω

In Section 3.2.1 it was already mentioned that there exists an
analogy between the rotation of a rigid body about a fixed axis
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and the translation of a particle (a body). Accordingly, we obtain
the equations for the rotation from those of the translation if we
replace the mass by the moment of inertia, the velocity by the
angular velocity, the force by the moment, etc. This is also valid
for the quantities that were derived in this section (work, energy,
power) and for the principles (e.g., the conservation of energy).
Table 3.1 shows these analogies.

E3.7Example 3.7 A drum (moment of inertia ΘA) rotates at time t0
with the angular velocity ω0. For t > t0, a brake (coefficient of
kinetic friction μ) acts on the drum (Fig. 3.20a).

Determine the number of rotations until the drum comes to a
stop. Assume F = const.

l
a

ba

A

F

μ

F

R

r

N

N

R

A ϕ

r

ω0

ΘA

Fig. 3.20

Solution We separate the drum and the lever; the free-body dia-
gram is shown in Fig. 3.20b (note: R is the friction force). Moment
equilibrium of the lever yields the normal force

N =
l

a
F.

If we apply the principle of angular momentum (3.12) to the drum,
we obtain

A : ΘA ϕ̈ = − rR.

Using Coulomb’s law of friction R = μN = μ
l

a
F leads to

ϕ̈ = − κ,
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where the parameter κ =
rμlF

aΘA
has been introduced. We use the

initial conditions ϕ̇(0) = ω0, ϕ(0) = 0 and integrate twice:

ϕ̇ = − κt + ω0, ϕ = − 1
2

κt2 + ω0t .

The time ts, the angle ϕs and the number of rotations ns until
the drum comes to a stop follow from the condition ϕ̇ = 0:

ts =
ω0

κ
, ϕs = ϕ (ts) =

ω2
0

2 κ
, ns =

ϕs

2 π
=

ω2
0

4 πκ
.

The problem can also be solved with the aid of the work-energy
theorem. The kinetic energy of the drum at time t0 = 0 (i.e.,
ϕ = 0) is given by

T0 =
1
2

ΘA ω2
0 .

At time ts (i.e., ϕ = ϕs) we have

Ts = 0.

The work of the external forces done during the time interval from
0 to ts is

U =

ϕs∫
0

MA dϕ = −
ϕs∫
0

r R dϕ = − r R ϕs.

Thus, (3.26) yields

− 1
2

ΘA ω2
0 = − r R ϕs → ns =

ϕs

2 π
=

ΘA ω2
0

4 π r R
=

ω2
0

4 π κ
.

E3.8 Example 3.8 Determine the velocity of the block (mass m1) as a
function of its displacement if the system in Fig. 3.21a is released
from rest. Neglect the mass of the pulley R and assume both
pulleys are ideal (frictionless).
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r

b ca

m2
A

W =m1g

R

ϕ

x
rϕ̇

rϕ̇

ΠR

(amplified)

r

ẋ

ϕ̇

pulley R

Fig. 3.21

Solution The only external force (the weight W ) acting on the
system is a conservative force. Since the velocity has to be de-
termined as a function of the displacement of the block, it is of
advantage to use the conservation of energy:

T + V = T0 + V0 .

We denote the displacement of the block from the initial position
with x and the corresponding rotation of the upper pulley with ϕ

(Fig. 3.21b). Then the kinetic and the potential energy are given
by

T0 = 0, V0 = 0

in the initial position and by

T =
1
2

m1 ẋ2 +
1
2

ΘA ϕ̇2, V = −m1 gx

in a displaced position. The kinetic energy results from the transla-
tion of the block and the rotation of the pulley. With the kinematic
relation (see Fig. 3.21c)

ẋ =
1
2

r ϕ̇ → ϕ̇ = 2
ẋ

r

and the moment of inertia ΘA = 1
2m2r

2 (see (3.22)) we find[
1
2

m1 ẋ2 +
1
2

(
1
2
m2 r2

)(
4

ẋ2

r2

)]
−m1 gx = 0
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→ v = ẋ = ±
√

2 m1

m1 + 2 m2
gx .

In the special case of a negligible mass of the pulley (m2 � m1)
we obtain the velocity v2 =

√
2 gx of the free fall of a point mass.

3.3 3.3 Kinetics of a Rigid Body in Plane Motion

3.3.1 Principles of Linear and Angular Momentum

Let us consider a rigid body whose particles move in the x, y-plane
or in a plane parallel to it (Fig. 3.22). Then the body is said to
undergo a plane (planar) motion. The external force dF that acts
on a mass element dm has the components dFx and dFy . Internal
forces need not be taken into account in the case of a rigid body
(cf. Chapter 2). Let A be an arbitrary point that is fixed in the
body. Since

ξ = r cosϕ, η = r sin ϕ (3.28)

(see Fig. 3.22) the coordinates of the element dm are given by

x = xA + ξ = xA + r cosϕ, y = yA + η = yA + r sin ϕ .

If we differentiate these equations, use ϕ̇ = ω and (3.28), we obtain
the components of the velocity and acceleration:

ẋ = ẋA − rω sinϕ = ẋA − ωη, ẏ = ẏA + rω cosϕ = ẏA + ωξ,

(3.29a)

ẍ = ẍA − rω̇ sinϕ− rω2 cosϕ ÿ = ÿA + rω̇ cosϕ− rω2 sin ϕ

= ẍA − ω̇η − ω2ξ, = ÿA + ω̇ξ − ω2η . (3.29b)
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Fig. 3.22

yA

y

y

xA x x

ϕ
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A

η

dFy

dF

dm dFx

r

ξ

Thus, the equations of motion for the element dm are

ẍ dm = ẍA dm− ω̇ η dm− ω2 ξ dm = dFx,

ÿ dm = ÿA dm + ω̇ ξ dm− ω2 η dm = dFy .

Integration yields the forces Fx, Fy and the moment MA with re-
spect to point A (note the positive sense of rotation!):

Fx =
∫

d Fx = ẍA

∫
dm− ω̇

∫
η dm− ω2

∫
ξ dm,

Fy =
∫

d Fy = ÿA
∫

dm + ω̇
∫

ξ dm− ω2
∫

η dm,
(3.30a)

MA =
∫

ξ dFy −
∫

η dFx = ÿA
∫

ξ dm + ω̇
∫

ξ2 dm

−ω2
∫

ξη dm− ẍA

∫
η dm + ω̇

∫
η2 dm + ω2

∫
ξη dm .

(3.30b)

We now choose point A to be the center of mass C of the bo-
dy. Then the first moments

∫
ξ dm and

∫
η dm are zero. With

m=
∫

dm and ΘC =
∫

r2 dm=
∫
(ξ2 + η2)dm Equations (3.30a,b)

reduce to

mẍc = Fx, mÿc = Fy, (3.31a)

ΘC ϕ̈ = MC . (3.31b)

Here, Fx and Fy are the resultants in the x- and y-directions, re-
spectively, of the external forces and MC is the resultant external
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moment with respect to C. Equations (3.31a) describe the moti-
on of the center of mass. They are analogous to the equations of
motion (1.38) of a particle and are referred to as the principle of
linear momentum. Equation (3.31b) describes the rotation of the
body about the mass center; it represents the principle of angular
momentum . The point of reference thereby has to be the center of
mass C. The principles of linear and angular momentum describe
the general plane motion of a rigid body. In the special case of a
body at rest (ẍc = 0, ÿc = 0, ϕ̈ = 0) Equations (3.31a,b) reduce
to the equilibrium conditions in statics.

If the body undergoes a translation (ϕ̇ = 0, ϕ̈ = 0), then (3.31b)
requires

MC = 0 . (3.32a)

Hence, the moment of the external forces with respect to the center
of mass C has to be zero. Then the motion of C and thus of any
point of the body can be found from

mẍc = Fx, mÿc = Fy . (3.32b)

We now refer to the special case of a planar motion where the
body undergoes a pure rotation about a fixed point A. Then we
obtain from (3.30b) with ẍA = ÿA = 0 and

∫
(ξ2 + η2)dm = ΘA

ΘA ϕ̈ = MA . (3.33)

This is the result that we already found in the case of a rotation
about a fixed axis (see Section 3.2.1). The axis is perpendicular to
the x, y-plane and it passes through point A. In this case, the point
of reference in the principle of angular momentum may either be
the center of mass C or the fixed point A.

As an illustrative example we consider a homogeneous solid
sphere that moves down a rough inclined plane (Fig. 3.23a). We
first assume that the sphere rolls without slipping. The free-body
diagram (Fig. 3.23b) shows the forces acting on the sphere. The
coordinates that describe the motion are the position xc of the
center of the sphere and the angle ϕ of rotation. With ÿc = 0,
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Fig. 3.23

the principles of linear and angular momentum yield

↘ : mẍc = mg sin α−H, (a)

↗ : 0 = N −mg cosα → N = mg cosα, (b)

C: ΘC ϕ̈ = r H. (c)

The moment of inertia of the sphere is given by ΘC = 2
5

mr2 (see
Example 3.5).

Since it is assumed that the sphere rolls without slipping, the
kinematic relation

ẋc = rϕ̇ → ϕ̈ =
ẍc

r
(d)

holds (see (3.10)). Thus, (a), (c), and (d) yield the acceleration of
the center of mass C:

mẍc = mg sinα− ΘC

r2
ẍc → ẍc =

g sin α

1 +
ΘC

mr2

=
5
7

g sin α .

The friction force during rolling follows from (a):

H = m(g sinα− ẍc) =
2
7

mg sin α .

Now we are able to formulate the condition which must be satisfied
by the coefficient of static friction μ0 in order to ensure rolling of
the sphere:
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H � μ0N → μ0 � H

N
=

2
7mg sin α

mg cosα
=

2
7

tan α .

If μ0 does not satisfy this condition, the sphere will slip on the
inclined plane. Then the friction force H has to be replaced by
the dynamic friction force R in Fig. 3.23b and in (a) and (c):

mẍc = mg sin α−R, N = mg cosα, ΘC ϕ̈ = r R . (e)

In addition we have to use the friction law

R = μN . (f)

When the sphere is slipping, no relation exists between ẍc and ϕ̈:
they are independent of each other. From (e) and (f) we obtain
the accelerations

ẍc = g(sin α− μ cosα), ϕ̈ =
5 μg

2 r
cosα .

E3.9 Example 3.9 A simplified model of a car is shown in Fig. 3.24a.
It consists of a rigid body (weight W = mg, center of mass at C)
and massless wheels.

Find the maximum acceleration of the car on a rough horizontal
surface (coefficient of static friction μ0), if the engine only drives
a) the rear wheels (the front wheels are rolling freely), b) the front
wheels (the rear wheels are rolling freely).

���������
���������
���������
���������h

a/2 a/2

W

μ0

C C C

xx

a
N1

mg

N2

H

c
N2

H

N1

mg

b

Fig. 3.24

Solution a) Fig. 3.24b shows the free-body diagram if the engine
drives the rear wheels. Since the rigid body undergoes a transla-
tion in the horizontal direction, the forces in the vertical direction
and the moments with respect to the center of mass have to be in
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equilibrium. Thus, the principles of linear and angular momentum
yield

→ : mẍ = H,

↑ : 0 = N1 + N2 −mg,

C : 0 =
a

2
N1 − a

2
N2 − hH ,

which leads to

N1 =
mg

2
+

h

a
H, N2 =

mg

2
− h

a
H .

We now consider the limiting case of impending slip at the rear
wheels. Then the condition

Hmax = μ0 N1

has to be satisfied. We insert N1 to obtain

Hmax = μ0

[
mg

2
+

h

a
Hmax

]
→ Hmax =

mg

2
μ0

1− μ0
h

a

.

Since mẍmax = Hmax, the maximum acceleration is found to be

ẍmax =
g

2
μ0

1− μ0
h

a

.

Note that this result is not valid if N2 < 0. Then the front wheels
lift off the ground.
b) We now assume that the engine drives the front wheels (Fig. 3.24
c). Then, the principles of linear and angular momentum remain
unchanged, whereas the condition of limiting friction is now given
by

Hmax = μ0 N2 .

This yields the maximum acceleration
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ẍmax =
g

2
μ0

1 + μ0
h

a

which, for this model, is smaller than the one obtained in part a)
of the example.

E3.10 Example 3.10 A wheel (weight W = mg, moment of inertia ΘC)
rolls without slipping on its hub on a horizontal track (Fig. 3.25a).

Determine the acceleration of the center of mass C and the
contact forces between the wheel and the track. Assume F =
const.

������������������

c<b

c>b

rotation

rotation

x C

H N

FF

b c
ϕmg

F

F

cba

xc

C

W =mgΘC ,

Fig. 3.25

Solution The free-body diagram (Fig. 3.25b) shows the forces that
act on the wheel. We introduce the coordinates x and ϕ. Then the
principles of linear and angular momentum yield

→ : mẍc = F −H,

↑ : 0 = N −mg,

C : ΘC ϕ̈ = bH − cF .

In addition, we have the kinematic relation
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ẋc = b ϕ̇ → ϕ̈ =
ẍc

b

between ẋc and ϕ̇ (rolling without slip). Thus, we have four equati-
ons for the four unknowns N, H, ẍc and ϕ̈. We solve the equations
to obtain the acceleration of the center of mass:

ẍc = −
F

(c

b
− 1

)
m

(
1 +

ΘC

mb2

) .

The acceleration is negative for c > b (motion to the left) and it
is positive for c < b (motion to the right). The directions of the
motion are illustrated in Fig. 3.25c.

The contact forces between the wheel and the track are found
to be

N = mg, H = F
1 +

mb2

ΘC

c

b

1 +
mb2

ΘC

.

E3.11Example 3.11 A homogeneous slender rod (weight W = mg) is
pin-supported at point A (Fig. 3.26a). It is released from rest
when it is horizontal.

Find the angular acceleration, the angular velocity and the sup-
port reactions as functions of the position of the rod.

l

A

a b

l
2
sin ψ

ψ
A

x

l
2
cos ψ

mg

AV AH

W

C

y

Fig. 3.26
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Solution The rod rotates about the fixed point A. Therefore, we
apply the principle of angular momentum (3.12). With the angle
ψ as introduced in Fig. 3.26b we obtain

: ΘAψ̈ = mg
l

2
cosψ .

This yields the angular acceleration

ψ̈ =
3 g

2 l
cosψ

where the moment of inertia ΘA = ml2/3 has been introduced.
The angular velocity is obtained through integration and app-

lication of ψ̈ =
dψ̇

dψ
ψ̇:

ψ̇2

2
=

∫
ψ̈ dψ =

3 g

2 l
sin ψ + K .

To calculate the constant of integration K we use the initial con-
dition ψ̇(ψ = 0) = 0 which yields K = 0. Thus,

ψ̇ = ±
√

3
g

l
sin ψ .

The support reactions follow from the principle of linear mo-
mentum:

→: mẍc = AH , ↑: mÿc = AV −mg .

Starting with the coordinates of the center of mass C (Fig. 3.26b)
we obtain the acceleration of C through differentiation and inser-
tion of ψ̇ and ψ̈:

xc =
l

2
cosψ, yc = − l

2
sin ψ,

ẋc = − l

2
ψ̇ sin ψ, ẏc = − l

2
ψ̇ cosψ,

ẍc = − l

2
ψ̈ sin ψ − l

2
ψ̇2 cosψ ÿc = − l

2
ψ̈ cosψ +

l

2
ψ̇2 sin ψ

= − 9
8

g sin 2 ψ, =
3
8

g(1− 3 cos 2 ψ) .
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Hence,

AH = mẍc = − 9
8

W sin 2 ψ,

AV = mg + mÿc = W (
11
8
− 9

8
cos 2 ψ) .

In the initial position (horizontal rod: ψ = 0) we get AH = 0
and AV = W/4. For ψ = π/2 (vertical rod) we find AH = 0 and
AV = 5W/2.

E3.12Example 3.12 A block (mass m1) can move horizontally on a
smooth surface (Fig. 3.27a). A homogeneous rod (mass m2) is
connected to the block by a pin. The rod is displaced from its
equilibrium position and then released.

Find the equations of motion for the special case m1 = m2.
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2a a/2

m1 1

2

b

ϕ

x

C∗
ϕ

c

−x1

a

y

Ax

Ay
N

x1

x

W =m2g

a sin ϕ

m1g

m2g

Ax

Ay

C
a cosϕ

Fig. 3.27

Solution The system has two degrees of freedom. We separate
the two rigid bodies in the free-body diagram and we introduce a
coordinate system x, y and the angle ϕ (Fig. 3.27b). For block 1

we obtain

→: m1ẍ1 = −Ax,

↑: 0 = N −m1g −Ay

(a)

and for rod 2

→ : m2ẍc = Ax, (b)
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↑ : m2ÿc = Ay −m2 g, (c)

C: ΘC ϕ̈ = − a cosϕAx − a sinϕAy (d)

where

ΘC =
m2(2 a)2

12
=

m2 a2

3
.

The motion of the block and the motion of the rod are kinemati-
cally related:

xc = x1 + a sinϕ, yc = − a cosϕ,

ẋc = ẋ1 + a ϕ̇ cosϕ, ẏc = aϕ̇ sin ϕ,

ẍc = ẍ1 + a ϕ̈ cosϕ− aϕ̇2 sinϕ, ÿc = a ϕ̈ sinϕ + aϕ̇2 cosϕ .

(e)

We can solve this system of equations to find the equation of
motion for the angle ϕ(t). Using (e), (a) and m1 = m2 = m, we
find from (b) and (c)

Ax =
ma

2
(ϕ̈ cosϕ− ϕ̇2 sin ϕ),

Ay = mg + ma(ϕ̈ sin ϕ + ϕ̇2 cosϕ) .
(f)

Substituting into (d) leads to

ϕ̈(8 − 3 cos2 ϕ) + 3ϕ̇2 sin ϕ cosϕ + 6
g

a
sin ϕ = 0 .

If a solution of this nonlinear differential equation is known, we
can find the displacement x1 from (f) and (a).

A kinematic relation between x1 and ϕ may also be obtained
in the following way. There is no external horizontal force acting
on the system. Therefore the center of gravity C∗ (Fig. 3.27c) of
the complete system can not undergo a horizontal displacement
(if it was at rest initially). If we now measure the coordinate x

from C∗ (at a distance a/2 from the pin), we obtain the relation
x1 = −a/2 sinϕ. In this example, the motion of the system with
two degrees of freedom can be described by only ϕ or only x1.
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3.3.2 Impulse Laws, Work-Energy Theorem and Conservation of

Energy

We will now integrate Equations (3.31a,b) from t0 to t. Using the
notations xc0 = xc(t0) etc, we obtain

mẋc −mẋc0 = F̂x, mẏc −mẏc0 = F̂y, (3.34a)

ΘC ϕ̇−ΘC ϕ̇0 = M̂C . (3.34b)

Equations (3.34a,b) are referred to as the Impulse Laws. In par-
ticular, (3.34a) is the principle of linear impulse and momentum;
(3.34b) is called the principle of angular impulse and momentum.
The quantities with the caret placed over the letter symbol denote
the time integrals of the forces or the moments, respectively. For
example,

F̂x =

t∫
t0

Fx dt̄ .

When the body rotates about a fixed point, the principle of
angular impulse and momentum (3.34b) may also be applied with
respect to this point. In particular, we will use Equations (3.34a,b)
to solve problems involving impacts (see Section 3.3.3).

Let us now determine the kinetic energy T of a rigid body in
planar motion. If we choose the center of gravity C as the point of
reference, the components of the velocity of an arbitrary particle
of the body are given by ẋ = ẋc−ωη and ẏ = ẏc+ωξ (see (3.29a)).
Thus,

T =
1
2

∫
v2 dm =

1
2

∫
(ẋ2 + ẏ2) dm

=
1
2

{
(ẋ2

c + ẏ2
c )

∫
dm− 2 ẋc ω

∫
η dm

+ 2 ẏc ω

∫
ξ dm + ω2

∫
(ξ2 + η2) dm

}
.
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The first moments
∫

ξ dm and
∫

η dm with respect to the center of
mass are zero. Therefore, using ẋ2

c + ẏ2
c = v2

c and
∫
(ξ2 + η2) dm =

ΘC , we obtain the kinetic energy:

T =
1
2

m v2
c +

1
2

ΘC ω2 . (3.35)

It is composed of two parts: the translational kinetic energy m v2
c/2

and the rotational kinetic energy ΘC ω2/2.
The work-energy theorem which was derived for particles and

systems of particles is also valid for rigid bodies:

T − T0 = U . (3.36)

Here, U is the work done by the external forces (moments) during
the motion of the body from an initial position 0 to an arbitrary
position. If the external forces (moments) can be derived from a
potential V , then with U = −(V − V0) we obtain from (3.36) the
conservation of energy relation

T + V = T0 + V0 = const . (3.37)

E3.13 Example 3.13 A homogeneous slender rod hits the support A with
velocity v as shown in Fig. 3.28a. At the instant of impact, the
rod latches onto the support and starts to rotate about point A

without rebounding.
Calculate the angular velocity of the rod immediately after the

impact. Determine the loss of kinetic energy.

l/3

v

l

v̄
A

m

a b

l/6

F̂

˙̄ϕCA

Fig. 3.28

Solution The changes of the velocities due to the impact are des-
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cribed by the principles of impulse and momentum (3.34a,b). The
center of gravity of the rod has velocity v before the impact and
the angular velocity of the rod is zero. Immediately after the im-
pact we have the corresponding velocities v̄ and ˙̄ϕ, respectively.
There are no horizontal components of the velocity or the impact
force. Therefore, using the notation in Fig. 3.28b, we get

↓ : m v̄ −m v = − F̂ ,

C : ΘC
˙̄ϕ =

l

6
F̂ .

The rod is still in the horizontal position immediately after the
impact. Since it undergoes a rotation about point A, the kinematic
relation between ˙̄ϕ and v̄ is given by

v̄ =
l

6
˙̄ϕ .

We can solve these equations to obtain the angular velocity of the
rod (ΘC = ml2/12):

˙̄ϕ =
3
2

v

l
.

It is also possible to calculate the angular velocity from only one
equation. To do this we apply the principle of angular momentum
and choose the fixed point A as the reference point. There exists
no external moment with respect to A (the weight W can be
neglected during the impact). Therefore the angular momentum
is conserved:

:
l

6
mv = ΘA

˙̄ϕ → ˙̄ϕ =
lmv

6 ΘA

=
lmv

6

[
ml2

12
+ m

(
l

6

)2
] =

3
2

v

l
.

The loss of kinetic energy is the difference between the kinetic
energies before the impact (pure translation) and after the impact
(pure rotation about A):

ΔT = T0 − T =
1
2
mv2 − 1

2
ΘA

˙̄ϕ2
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=
1
2
mv2 − 1

2

[
ml2

12
+ m

(
l

6

)2
]

9
4

v2

l2
=

3
8
mv2 =

3
4
T0 .

E3.14 Example 3.14 The center of a homogeneous wheel (mass m, radius
r) has the velocity v0 in the initial position as shown in Fig. 3.29.
The wheel rolls without slipping.

Calculate the velocity v of its center in the position shown by
the broken lines.
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Fig. 3.29

Solution The only external force that acts on the system is the
weight W of the wheel; it is a conservative force. Therefore conser-
vation of energy immediately leads to the solution. With v0 = rω0

(the wheel rolls) and ΘC = 1
2mr2 we have

V0 = 0, T0 =
1
2

mv2
0 +

1
2

ΘC ω2
0 =

3
4

mv2
0

in the initial position. In the final position (height difference h)
we have

V = −mgh, T =
3
4

mv2 .

Substituting into (3.37) yields

v =

√
4
3

gh + v2
0 .

E3.15 Example 3.15 A rope is wrapped around the circumference of a
wheel (mass m2, moment of inertia ΘC), guided over an ideal
pulley and attached to a block (mass m1) as shown in Fig. 3.30a.
The system is released from rest (unstretched spring).
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Determine the velocity of the block as a function of the distance
travelled. Assume that the wheel rolls without slipping and neglect
the masses of the rope and pulley.
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Fig. 3.30

Solution We introduce the coordinates x1, xc and ϕ, measured
from the initial position (Fig. 3.30b). In this position, the potential
and the kinetic energy are zero:

V0 = 0, T0 = 0 .

Using the kinematic relations

xc = rϕ, x1 = 2 xc → ẋc = rϕ̇, ẋ1 = 2 ẋc

we obtain the energies in a displaced position:

V = −m1 g x1 +
k

2
x2

c = −m1 g x1 +
k

8
x2

1,

T =
1
2

m1 ẋ2
1 +

(
1
2

m2 ẋ2
c +

1
2

ΘC ϕ̇2

)

=
1
2

ẋ2
1

(
m1 +

m2

4
+

ΘC

4 r2

)
.

Conservation of energy T + V = T0 + V0 (see (3.37)) leads to the
unknown velocity of the block:

ẋ1 = ±

√√√√√√ 2 m1 g x1 − k

4
x2

1

m1 +
m2

4
+

ΘC

4 r2

.

In the special case of a vanishing numerator (x1 = 0 or x1 =
8 m1 g/k), the velocity of the block is zero and the direction of
the velocity reverses.
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3.3.3 Eccentric Impact

In Section 2.5 we had to restrict ourselves to the investigation of
problems involving central impact. The Equations (3.34a,b) allow
us now to consider also problems where eccentric impact occurs
(Fig. 3.31a). In such problems, the line connecting the centers
of mass of the two bodies does not coincide with the normal to
the plane of contact. In the following, we will always choose this
normal (the line of impact) to be the x-axis.

a

rough (no slip)smooth (no friction)b c

y

C1 C2

vP
2

vP
1

x

F̂x

F̂x

F̂y

F̂y

F̂x

F̂x

P

1 2

1 12 2

vP
1x vP

2x

Fig. 3.31

A collision may be direct or oblique. We refer to a collision as
being direct, if the velocities vP

1 and vP
2 of the points of contact P

of both bodies have the direction of the line of impact immediately
before the impact. An impact that is not direct is called oblique. If
the surfaces of the bodies are smooth, the direction of the contact
force coincides with the direction of the line of impact (Fig. 3.31b).
If the surfaces are sufficiently rough, the bodies do not slip at
point P during the impact. Then the contact force also has a
component perpendicular to the line of impact in the case of an
oblique collision (Fig. 3.31c).

The approach to a problem involving eccentric collision is ana-
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logous to the treatment in the case of a central collision. We have
to apply the impulse laws (3.34a,b) to both bodies. In addition, we
use the hypothesis (2.40) which we formally extend to an eccentric
impact:

e = − v̄P
1x − v̄P

2x

vP
1x − vP

2x

. (3.38)

The quantities with a bar are the components of the velocities just
after the impact (see Section 2.5). According to (3.38), the coef-
ficient of restitution e is equal to the ratio of the relative velocity
of separation (immediately after impact) to the relative velocity
of approach (just before impact) of the contact points P on both
bodies.

In the case of bodies with rough surfaces where no slipping
occurs during the contact, we need an additional equation: the
components of the velocities at P in the plane of impact (i.e.,
perpendicular to the line of impact) are equal during the collision
and therefore also equal immediately after the collision:

v̄P
1y = v̄P

2y . (3.39)

As an illustrative example of an eccentric and oblique impact we
consider the collision of two bodies 1 and 2 with smooth surfaces
(Fig. 3.32a). The masses m1 and m2 and the moments of inertia
ΘC1

and ΘC2
are given. The velocities of the centers of mass and

the angular velocities just before the collision are v1x, v1y, ω1 and
v2x, v2y, ω2 (positive sense of rotation counterclockwise). Since
the surfaces are smooth, the impulsive force has the direction of
the line of impact. Using the notations given in Fig. 3.32b, the
principles of impulse and momentum are for body 1

→ : m1 (v̄1x − v1x) = − F̂x, ↑ : m1 (v̄1y − v1y) = 0,

C1 : ΘC1
(ω̄1 − ω1) = a1 F̂x

(3.40a)

and for body 2

→ : m2 (v̄2x − v2x) = F̂x, ↑ : m2 (v̄2y − v2y) = 0,

C2 : ΘC2
(ω̄2 − ω2) = − a2 F̂x .

(3.40b)
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In order to be able to apply (3.38)

e = − v̄P
1x − v̄P

2x

vP
1x − vP

2x

we have to write down the components of the velocities at point
P in the direction of the line of impact just before and after the
collision (cf. (3.29a)):

vP
1x = v1x − a1 ω1, vP

2x = v2x − a2 ω2,

v̄P
1x = v̄1x − a1 ω̄1, v̄P

2x = v̄2x − a2 ω̄2 .

If the coefficient of restitution e is known, we now have 9 equations
for the 9 unknowns (the velocities with a bar and F̂x). We can solve
these equations to obtain, for example, the impulsive force F̂x:

F̂x = (1 + e)
v1x − a1 ω1 − (v2x − a2 ω2)

1
m1

+
1

m2
+

a2
1

ΘC1

+
a2
2

ΘC2

.

Then the Equations (3.40a,b) yield the velocities of the centers of
mass and the angular velocities immediately after the impact:

v̄1x = v1x − F̂x

m1
, v̄1y = v1y, ω̄1 = ω1 +

a1 F̂x

ΘC1

,

v̄2x = v2x +
F̂x

m2
, v̄2y = v2y, ω̄2 = ω2 − a2 F̂x

ΘC2

.

Let us now consider a body that is pin-supported at A and
therefore constrained to rotate about this point. It is struck by
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a linear impulse F̂ (Fig. 3.33a). This generates a linear impulse
reaction at A. All the impulses acting on the body are shown in
the free-body diagram, Fig. 3.33b (the weight of the body can be
neglected!). Assume that the body is at rest before the impact.
Then the principles of impulse and momentum are given by

↗ : m v̄x = F̂ − Âx, ↖ : m v̄y = − Ây,

: ΘAω̄ = b F̂ .

A Âx

Ây

F̂ F̂ F̂
cb

m, ΘA

a

C

c

d

b
y

x

c=
ΘA

mb
C

Π

center of percussion

Fig. 3.33

With the velocities v̄x = c ω̄ and v̄y = −d ω̄ of the center of mass
(rotation about the fixed point A) we obtain the impulsive pin
reactions

Âx = F̂

[
1− mcb

ΘA

]
, Ây = F̂

mdb

ΘA

.

These reactions are zero if we choose the position of the pin in
such a way that it satisfies the conditions

c =
ΘA

mb
=

r2
gA

b
, d = 0 . (3.41)

Here, rgA is the radius of gyration (see (3.18)). The point Π which
is determined by (3.41) is referred to as the center of percussion.
It lies on the straight line which is perpendicular to the direction
of F̂ and passes through C. Its distance from the center of mass
is given by c (Fig. 3.33c). If the body is supported at this point,
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the impulsive reactions are zero. One makes use of this fact, for
example, with a hammer or a tennis racket: the length of the
handle is chosen in such a way that there are only small impulsive
forces acting on the hand while striking a nail or a tennis ball,
respectively. Note that the center of percussion coincides with the
instantaneous center of rotation in the case that the body is not
supported and therefore free to move in the plane immediately
after the impact.
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We will now investigate a problem involving oblique impact
and rough surfaces. A homogeneous sphere strikes a rough wall as
shown in Fig. 3.34a. We assume that there is no slipping at the
point of contact P during the collision. The velocities vx, vy of the
center of mass and the angular velocity ω just before the impact
are given; the corresponding velocities v̄x, v̄y, and ω̄ just after the
impact are unknown. The principles of linear and angular impulse
and momentum are

→ : m (v̄x − vx) = − F̂x, ↑ : m (v̄y − vy) = − F̂y,

C : ΘC(ω̄ − ω) = − r F̂y

(cf. Fig. 3.34b). With vP
x = vx and v̄P

x = v̄x, Equation (3.38)
becomes

e = − v̄P
x

vP
x

= − v̄x

vx
.
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There is no slipping at P during the collision. Therefore, using
v̄P

y = v̄y + rω̄ we find

v̄P
y = 0 → v̄y + rω̄ = 0 .

Solving these equations and inserting ΘC = 2
5mr2 we obtain the

velocities immediately after the impact:

v̄x = − e vx, v̄y =
vy − rω

ΘC

r2 m

1 +
ΘC

r2 m

=
5
7

vy − 2
7

rω,

ω̄ = − v̄y

r
=

2
7

ω − 5
7

vy

r
.

Note that the velocity v̄y is negative for ω > 5 vy/(2 r) (Fig. 3.34c).
In the case of ω < 5 vy/(2 r), the sense of rotation is reversed
during the impact (ω̄ < 0).

E3.16Example 3.16 A homogeneous rod (mass m2 = 2m) is initially at
rest in the vertical position. It is struck by a particle (mass m1 =
m) with the velocity v (Fig. 3.35a). The coefficient of restitution
e is given.

Calculate the velocity of the particle and the angular velocity
of the rod immediately after the impact.

l

a b

A

m1

F̂

F̂v

2
3
l

m2 ω̄

Fig. 3.35

Solution The particle performs a direct collision with the rod; the
linear impulse acts along the line of impact (Fig. 3.35b). The prin-
ciple of linear impulse and momentum for the particle is given by
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→ : m1(v̄ − v) = − F̂

and the principle of angular impulse and momentum for the rod
(ω = 0) reads

: ΘA ω̄ =
2
3

l F̂ .

The velocity of the rod at the point of impact just after the colli-
sion is 2

3
lω̄. Thus, Equation (3.38) becomes

e = − v̄ − 2
3 lω̄

v
.

Now we have three equations for the three unknowns F̂ , v̄ and ω̄.
Introduction of the given values of the masses and of ΘA = m2 l2/3
yields the velocities

v̄ =
v

5
(2− 3 e), ω̄ =

3
5

v

l
(1 + e) .

In the case of an ideal plastic impact (e = 0) we obtain v̄ = 2
5v

and ω̄ = 3
5
v/l. An ideal elastic impact (e = 1) results in v̄ = −v/5

and ω̄ = 6
5v/l. There is no loss of kinetic energy in the case of an

ideal elastic impact: T̄ = 1
2mv̄2 + 1

2ΘA ω̄2 = 1
2mv2 = T .

E3.17 Example 3.17 Find the height h at which a homogeneous billi-
ard ball (mass m) must be struck by a horizontal linear impulse
(Fig. 3.36a) in order to have no sliding at the point of contact
with the smooth horizontal surface.

��������������

h h

ba

r

A

F̂

C

Fig. 3.36

Solution There is no sliding at the point of contact A if the force F̂

does not generate a horizontal linear impule at A. Thus, this point
has to be the center of percussion (= instantaneous center of ro-
tation). With c = r and b = h (Fig. 3.36b), Equation (3.41) yields
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r =
ΘA

mh
.

Since
ΘA = ΘC + mr2 =

2
5

mr2 + mr2 =
7
5

mr2

we obtain

h =
ΘA

mr
=

7
5

r .

E3.18Example 3.18 A homogeneous rod strikes a rough surface with
velocity v as shown in Fig. 3.37a. Assume that the rod does not
slide on the surface during the impact.

Determine the velocity of the center of mass of the rod and the
angular velocity just after the impact. Assume e = 1 (ideal elastic
impact).
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√
2

4
l

Fig. 3.37

Solution Since the rod does not slide at the point of contact, linear
impulses in the x- and in the y-direction are exerted on the rod
(Fig. 3.37b). With the velocities vx = vy = v/

√
2 of the center of

mass and ω = 0, the principles of impulse and momentum yield

↓ : m

(
v̄x − v√

2

)
= − F̂x, (a)

→ : m

(
v̄y − v√

2

)
= − F̂y, (b)

C : ΘC ω̄ =
√

2
4

l (F̂x − F̂y) . (c)
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The velocities of the point of contact P in the direction of the
x-axis (line of impact) just before and after the collision are given
by

vP
x = vx =

v√
2
, v̄P

x = v̄x −
√

2
4

lω̄ .

Then Equation (3.38) for an ideal elastic impact

e = − v̄P
x

vP
x

= −
v̄x −

√
2

4
lω̄

v√
2

= 1

leads to

v̄x −
√

2
4

lω̄ = − v√
2

. (d)

The condition that there is no sliding at P during the collision
yields

v̄P
y = 0 → v̄y +

√
2

4
lω̄ = 0 . (e)

With ΘC =
ml2

12
, the unknown velocities follow from Equations

(a) to (e):

v̄x = − 5
√

2
16

v, v̄y = − 3
√

2
16

v, ω̄ =
3 v

4 l
.

3.4 3.4 Kinetics of a Rigid Body in Three
Dimensional Motion

We will now discuss the equations which describe the three dimen-
sional kinetics of a rigid body. The approach is analogous to the
one we have used for the plane motion: by appropriate integration
of Newton’s second law for the motion of a particle we obtain the
principles of linear and angular momentum. Here again we assu-
me that the internal forces between the particles cancel out each
other and therefore need not be considered (cf. Section 3.3.1).
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3.4.1 Principles of Linear and Angular Momentum

Let us consider a rigid body with mass m which may be thought to
consist of infinitesimal mass elements dm (Fig. 3.38). The external
forces dF act on the elements while internal forces are assumed to
cancel out. The location rC of the center of mass C with respect
to a fixed coordinate system x, y, z is given by (cf. Volume 1)

m rC =
∫

r dm .

Differentiating this equation twice with respect to time, we obtain

m ṙC =
∫

ṙ dm, (3.42)

m r̈C =
∫

r̈ dm . (3.43)

The right-hand side of (3.42) represents the momentum p of the
rigid body (sum of infinitesimal momenta). Thus, the momentum
can be written as (cf. Section 2.2)

p = m vC . (3.44)

Because r̈ dm = dF and F =
∫

dF , the right-hand side of (3.43)
represents the resultant of the external forces. Thus, the principle
of linear momentum reads

y0

A

C

r

x

z

P

rCP

rAC

dF

dm

rA

rC

rAP

Fig. 3.38
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m r̈C = F or ṗ = F . (3.45)

Accordingly, the motion of the center of mass is the same as the
motion of a point mass m, acted upon by the resultant external
force.

We will derive the principle of angular momentum only with re-
spect to a body-fixed point A (Fig. 3.38). Taking the cross product
of the equation of motion v̇ dm = dF with rAP and integration
over the entire body yields∫

rAP × v̇ dm =
∫

rAP × dF . (3.46)

The right-hand side represents the resultant moment M (A) of the
external forces with respect to point A. The left-hand side may
be appropriately transformed by applying the identity

rAP × v̇ = (rAP × v)· − ṙAP × v .

Using the relations (cf. Section 3.1.3)

v = vA + vAP , vAP = ṙAP = ω × rAP

and

(ω × rAP )× (ω × rAP ) = 0, rAP = rAC + rCP

it can be written as

rAP × v̇ = (rAP × v)� − (ω × rAP )× [vA + (ω × rAP )]

= (rAP × v)� − (ω × rAP )× vA

= (rAP × v)� − [ω × (rAC + rCP )]× vA

= (rAP × v)� − (ω × rAC)× vA − (ω × rCP )× vA .

Introducing now the angular momentum (sum of infinitesimal mo-
ments of momenta) with respect to A

L(A) =
∫

rAP × v dm (3.47)
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and taking the relations
∫

rCP dm = 0 (center of mass) and∫
dm = m into account, the left-hand side of (3.46) leads to∫

rAP × v̇ dm =
d
dt

∫
(rAP × v) dm− (ω × rAC)× vA

∫
dm

− (ω ×
∫

rCP dm)× vA

=
dL(A)

dt
− (ω × rAC)× vA m .

Inserting this equation into (3.46) finally yields the principle of
angular momentum in general form:

L̇(A) − (ω × rAC)× vA m = M (A) . (3.48)

Equation (3.48) takes a simpler form if either the center of mass
C is chosen as the point of reference A (rAC = 0) or if the body-
fixed point A coincides with a fixed in space point (vA = 0). In
both cases the second term in (3.48) vanishes and the principle of
angular momentum alternatively reads

L̇
(C) = M

(C) or L̇
(A) = M

(A)
, A fixed in space . (3.49)

In words: the time rate of change of the moment of momentum
(or angular momentum) is equal to the moment of the external
forces.

3.4.2 Angular Momentum, Inertia Tensor, Euler’s Equations

Introducing the velocity v = vA +ω×rAP into (3.47), one obtains

L(A) =
∫

rAP dm× vA +
∫

rAP × (ω × rAP ) dm .

The first term on the right-hand side vanishes if we again choose
the center of mass or a fixed in space point as our reference point
A. The angular momentum then can be written as

L(A) =
∫

rAP × (ω × rAP ) dm . (3.50)
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P
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dm
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Fig. 3.39

When L(A) needs to be expressed explicitly, it is practical to use
a body-fixed coordinate system x, y, z (Fig. 3.39). If we introduce

rAP =

⎡⎢⎣x

y

z

⎤⎥⎦ , ω =

⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦ (3.51)

and evaluate the cross products, (3.50) yields

L(A) =

⎡⎢⎢⎢⎣
L

(A)
x

L
(A)
y

L
(A)
z

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Θx ωx + Θxy ωy + Θxz ωz

Θyx ωx + Θy ωy + Θyz ωz

Θzx ωx + Θzy ωy + Θz ωz

⎤⎥⎥⎥⎦ (3.52)

where

Θx =
∫
(y2 + z2) dm, Θxy = Θyx = − ∫

xy dm,

Θy =
∫
(z2 + x2) dm, Θyz = Θzy = − ∫

yz dm,

Θz =
∫
(x2 + y2) dm, Θzx = Θxz = − ∫

zxdm .

(3.53)

The quantities Θx, Θy, Θz are the moments of inertia with respect
to the x-, the y- and the z-axes. They coincide with the moments of
inertia which have been discussed in Section 3.2.2. The quantities
Θxy, Θyz and Θzx are called the products of inertia.

Moments of inertia and products of inertia are components of
the so-called inertia tensor Θ(A). They can be assembled in the
following matrix:
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Θ(A) =

⎡⎢⎢⎣
Θx Θxy Θxz

Θyx Θy Θyz

Θzx Θzy Θz

⎤⎥⎥⎦ . (3.54)

Because Θxy = Θyx etc. the inertia tensor is symmetric. The
inertial properties of the rigid body with respect to point A are
uniquely described by Θ(A) .

The moments of inertia and products of inertia (3.53) and con-
sequently also the inertia tensor (3.54) depend on the chosen point
of reference A as well as on the orientation of the axes x, y and z.
Without going into the details of the derivation it shall be noted
that for each reference point there exists a specific coordinate sys-
tem with three orthogonal axes 1, 2 and 3 for which all products of
inertia are zero. These axes are referred to as principal axes (of in-
ertia). The respective moments of inertia are extremal values and
called principal moments of inertia. In the principal axes system
the inertia tensor takes the simple form

Θ(A) =

⎡⎢⎢⎣
Θ1 0 0

0 Θ2 0

0 0 Θ3

⎤⎥⎥⎦ (3.55)

where Θ1, Θ2 and Θ3 are the principal moments of inertia.
In the case of a homogeneous symmetric body, the symme-

try axes are principal axes. Fig. 3.40a shows as an example the
principal axes of a cuboid with respect to its center of mass. For
axisymmetric bodies, the symmetry axis and any orthogonal axis
are principal axes (Fig. 3.40b).

In the special case of a homogeneous thin plate, the mass of an
element is given by dm = ρ t dA, see Fig. 3.40c. Since z is small
compared with x and y, it can be neglected in the integration
(z ≈ 0). It then follows from (3.53) that the moment of inertia
with respect to the x-axis can be written as

Θx = ρ t

∫
y2 dA = ρ t Ix .
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Here, Ix is the area moment of inertia with respect to the x-axis
(cf. Volume 2). Applying this procedure for all components of the
inertia tensor, we obtain

Θx = ρ t Ix, Θy = ρ t Iy, Θxy = ρ t Ixy,

Θz = ρ t (Ix + Iy) = ρ t Ip, Θxz = Θyz = 0 .
(3.56)

Thus, in this case a direct relation exists between the mass mo-
ments of inertia and the area moments of inertia. Since the x, y-
plane is a symmetry plane, one principal axis is orthogonal to the
plane. The remaining two principal axes are located in the x, y-
plane. Their orientation can be determined using the method valid
for area moments of inertia.

We now return to the angular momentum as it is given by
(3.52). With the inertia tensor (3.54) and the angular velocity
vector according to (3.51) it can be represented as the matrix
vector product:

L(A) = Θ(A) · ω . (3.57)

This equation is the generalization of (3.14) to the three dimen-
sional case. In mathematical terms it can be said: the angular mo-
mentum is a linear vector function of the angular velocity. Equa-
tion (3.57) can also be regarded as the mapping of the vector ω

onto the vector L(A).
Generally, the angular momentum L(A) and the angular velo-

city ω of the body do not have the same direction. This can easily
be seen from the representation (3.52). If, for example, we assu-
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me that ω has the direction of the x-axis, then the components
ωy and ωz are zero. In contrast, the y- and z-components of the
angular momentum are only zero if the products of inertia vanish.
As a consequence, L(A) and ω have the same direction only if the
body rotates about a principal axis.

We will now introduce the angular momentum (3.57) into (3.49).
When doing so we must take into account that the time derivative
in (3.49) has to be taken with respect to a fixed in space (immo-
vable) system while the angular momentum is given with respect
to a body-fixed (moving) system. In Chapter 6 it will be shown
that the relation between the time derivative d/dt of a vector L

with respect to a fixed in space system and the time derivative
d∗/dt with respect to a moving system is given by

dL

dt
=

d∗L
dt

+ ω × L (3.58)

where ω is the angular velocity of this system. Considering (3.58),
we obtain from (3.49) and (3.57)

Θ(A) · ω̇ + ω × (Θ(A) · ω) = M (A) . (3.59)

Here A may be either the center of mass or a fixed in space point.
If the body-fixed system is chosen as the principal axes system

where the inertia tensor takes the form (3.55), then (3.59) can be
written in components as

Θ1 ω̇1 − (Θ2 −Θ3)ω2 ω3 = M1,

Θ2 ω̇2 − (Θ3 −Θ1)ω3 ω1 = M2,

Θ3 ω̇3 − (Θ1 −Θ2)ω1 ω2 = M3.
(3.60)

Here, M1, M2 and M3 are the moments about the respective prin-
cipal axes. Equations (3.60) are referred to as Euler’s equations,
named after the mathematician Leonhard Euler (1707–1783). This
system of coupled nonlinear differential equations represents the
principle of angular momentum with respect to a body-fixed prin-
cipal axes system.
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To solve Euler’s equations may be difficult if the motion of the
body-fixed system is not known a priori (e.g. gyroscope).
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M

R

N
Fig. 3.41

As an illustrative example where this difficulty does not oc-
cur, we consider the rolling motion of a wheel in a grinding mill
whose vertical king shaft rotates with constant angular velocity
ω0 (Fig. 3.41a). We assume that the moments of inertia with re-
spect to the wheel-fixed rotating principal axes (see Fig. 3.41b)
are known. Furthermore, because the wheel is assumed to be axi-
symmetric, Θ2 = Θ3. From kinematics we obtain

ω1 = α̇ =
R

r
ω0, ω̇1 = 0,

ω2 = ω0 cosα, ω̇2 = −ω0 α̇ sinα = ω1 ω3,

ω3 = −ω0 sin α, ω̇3 = −ω0 α̇ cosα = −ω1 ω2 .

Thus, Euler’s equations (3.60) lead to

M1 = 0,
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M2 = (Θ2 −Θ3 + Θ1) ω1 ω3 = −Θ1 ω2
0

R

r
sinα,

M3 = (−Θ3 −Θ1 + Θ2) ω1 ω2 = −Θ1 ω2
0

R

r
cosα .

Accordingly, the moment (couple) that acts on the wheel has the
magnitude (see Fig. 3.41c)

M =
√

M2
2 + M2

3 = Θ1 ω2
0

R

r
.

Its direction is horizontal and perpendicular to the axis of the
wheel. The compression force N between the wheel and the crus-
hing bed is given by the sum of the weight W of the wheel and
the gyroscopic part M/R (Fig. 3.41d):

N = W +
M

R
= W +

Θ1 ω2
0

r
.

Therefore, the compression force can be considerably increased by
increasing ω0.

E3.19Example 3.19 Determine the moments and products of inertia with
respect to the axes x̄, ȳ, z̄ and x, y, z for the homogeneous cuboid
of mass m shown in Fig. 3.42.

Fig. 3.42

z̄

x̄

x

y
ȳz

a

b

C

A

c

Solution With dm = ρ dx̄dȳ dz̄ and m = ρ abc the quantities Θx̄

and Θx̄ȳ are obtained as

Θx̄ =
∫

(ȳ2 + z̄2) dm = ρ
c∫
0

b∫
0

a∫
0

(ȳ2 + z̄2) dx̄ dȳ dz̄ =
m

3
(b2 + c2),
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Θx̄ȳ = −
∫

x̄ȳ dm = − ρ
c∫
0

b∫
0

a∫
0

x̄ȳ dx̄dȳ dz̄ = − mab

4
.

Analogously we find

Θȳ =
m

3
(c2 + a2), Θz̄ =

m

3
(a2 + b2), Θȳz̄ = −mbc

4
, Θz̄x̄ = −mca

4
.

Because x, y, z are axes of symmetry, they are principal axes.
Therefore, the products of inertia Θxy, Θyz, Θzx are zero. The
principal moments of inertia are given by

Θ1 = Θx = 8 ρ
c/2∫
0

b/2∫
0

a/2∫
0

(y2 + z2) dxdy dz =
m

12
(b2 + c2),

Θ2 = Θy =
m

12
(c2 + a2), Θ3 = Θz =

m

12
(a2 + b2) .

For c < a < b we find Θ2 < Θ1 < Θ3 and for a = b = c (cube) all
principal moments are equal: Θ1 = Θ2 = Θ3 = ma2/6.

E3.20 Example 3.20 Determine the principal moments of inertia of a ho-
mogeneous circular shaft (radius r, length l, mass m) with respect
to axes with their origin at the center of mass.

z′

x, 1

C

z, 3

y′
y, 2

x

r

dm

l
2

l
2

dx

Fig. 3.43

Solution Since the body is axisymmetric, axes x, y and z shown in
Fig. 3.43 are the principal axes 1, 2 and 3. The moment of inertia
about the x-axis has already been determined in Section 3.2.2:

Θx = Θ1 =
mr2

2
.

The moments of inertia about y and z are equal (symmetry).
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To determine them we first calculate the moment of inertia of a
circular disk having the mass dm and thickness dx (Fig. 3.43).
Using the area moments of inertia Iy′ = Iz′ = πr4/4 of a circular
area (cf. Volume 2) we obtain

dΘy′ = dΘz′ = ρ dx Iy′ = ρ
πr4

4
dx .

Introducing dm = ρπr2 dx, m = ρπr2 l and applying the parallel
axis theorem (3.20) finally yields

Θy = Θz = Θ2 = Θ3 =
∫

[dΘy′ + x2 dm]

=

+l/2∫
−l/2

[
1
4

ρπr4 dx + x2ρπr2 dx

]
=

m

12
(3 r2 + l2) .

E3.21Example 3.21 A homogeneous circular cylinder (mass m, radi-
us r, length l) rotates with constant angular velocity ω about a
fixed axis having the angle α with respect to the cylinder axis
(Fig. 3.44a). The center of mass C is located on the axis of rota-
tion.

Determine the support reactions.

��
��
��
��
��

��
��
��
������

A
a b c

B

C

l
r

α

a a

ω
A

a a

3
α

B

3

2

ω
1

Fig. 3.44

Solution The center of mass C of the cylinder is at rest (r̈C = 0).
According to (3.45) the resultant of the support reactions must
vanish.

The moment of the support forces can be determined by using
Euler’s equations (3.60). For this purpose we introduce, according
to Fig. 3.44b, the principal axes 1 and 2 (in the projection plane)
and 3 (pointing outwards from the projection plane). The respecti-
ve principal moments of inertia were determined in Example 3.20:
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Θ1 =
mr2

2
, Θ2 = Θ3 =

m

12
(l2 + 3 r2) .

With the components of the angular velocity vector (with respect
to the principal axes)

ω1 = ω cosα, ω2 = −ω sin α, ω3 = 0

and ω̇1 = ω̇2 = ω̇3 = 0 we obtain from (3.60)

M1 = 0,

M2 = 0,

M3 = −(Θ1 −Θ2)ω1 ω2 =
[m

2
r2 − m

12
(l2 + 3 r2)

]
ω2 sin α cosα

= −m

24
(l2 − 3 r2)ω2 sin 2 α .

Accordingly, the support forces must provide the couple M3 about
the third principal axis. Thus, with the notation according to
Fig. 3.44c and B = A (no resultant force) we obtain the support
forces:

M3 = − a A − a B = − 2 a A → A = B =
m (l2 − 3 r3)ω2

48 a
sin 2 α .

3.4.3 Support Reactions in Plane Motion

In Section 3.3 we discussed plane motion of a rigid body. We
will now investigate, from a three dimensional point of view, the
conditions for such a motion to take place. If the x, y-plane is
chosen as the plane of motion, the angular velocity vector points
in the z-direction: ω = ω ez. Thus, we have

ωx = 0, ωy = 0, ωz = ω.

In this case, from (3.59) with (3.45) the principle of angular mo-
mentum in component form reads

Θxz ω̇ − Θyz ω2 = Mx ,

Θyz ω̇ + Θxz ω2 = My ,

Θz ω̇ = Mz .

(3.61)
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Here, the superscript A indicating the reference point (center of
mass or fixed point) has been omitted.

The third equation of (3.61) represents the principle of angu-
lar momentum which was already derived in Section 3.3.1. The
first and second equation of (3.61) indicate that moments Mx, My

perpendicular to the z-axis must act if the products of inertia
Θxz, Θyz are nonzero. Due to the principle actio = reactio, oppo-
site moments are exerted on the supports.

An important application is the rotation of a body about a fixed
axis. In this case, generally undesirable moments (couples) occur
in the supports of technical systems (rotor, wheel). The rotating
body is then referred to as unbalanced. The moments perpendi-
cular to the rotation axis are only zero if the products of inertia
vanish, i.e. if the rotation axis is a principal axis. During dynamic
balancing the products of inertia of the body are brought to zero
(or nearly zero) by affixing additional masses to the rotating body.
A body is called statically balanced if its center of mass is located
on the rotation axis.

E3.22Example 3.22 A thin homogeneous plate of mass m is free to rotate
in supports A and B as shown in Fig. 3.45. Its rotation is driven
by a constant moment M0.

Formulate the equations of motion and determine the support
reactions.
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�
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A

B

b

c

t

M0 ω, ω̇

m

Bx

By

M0

x

y

z

Ax

Ay

z

x=
c

b
z

z

x

x

a b c

A

c

3
C

b

c

dA=dx dz

Fig. 3.45
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Solution To describe the motion of the plate it would be sufficient
to apply the principle of angular momentum about the fixed axis.
However, to determine the support forces, the principles of angular
momentum about the axes perpendicular to the rotation axis and
the principle of linear momentum are needed.

We free the plate from the supports and choose a body-fixed
(rotating) coordinate system x, y, z whose origin A is at rest (fixed
in space). The center of mass rotates on a circle (Fig. 3.45b). With
centripetal acceleration acx = −c ω2/3 and tangential acceleration
acy = c ω̇/3 the components of the principle of linear momentum
in the x- and in y-direction read

m acx = Ax + Bx → − mc ω2

3
= Ax + Bx , (a)

m acy = Ay + By → mc ω̇

3
= Ay + By . (b)

To set up the components of the principle of angular momen-
tum, the moments and products of inertia are needed. With dm =
ρ t dA and m = 1

2 ρ t c b they are calculated as (cf. Fig. 3.45c)

Θz = ρ t
∫

x2 dA = ρ t
b∫
0

{ cz/b∫
0

x2 dx

}
dz =

mc2

6
,

Θxz = − ρ t
∫

xz dA = − ρ t
b∫
0

{ cz/b∫
0

xdx

}
z dz = − mcb

4
,

Θyz = 0 .

Thus, from (3.61) we obtain

Mx = Θxz ω̇ → − b By = − ω̇mcb

4
, (c)

My = Θxz ω2 → b Bx = − ω2mcb

4
, (d)

Mz = Θz ω̇ → M0 =
ω̇mc2

6
. (e)

The last equation represents the equation of motion. Assuming
the initial condition ω(0) = 0 leads to



3.4 Kinetics of a Rigid Body in Three Dimensional Motion 197

ω̇ =
6 M0

mc2
→ ω =

6 M0

mc2
t .

Insertion into (a) - (d) finally yields

Ax = − ω2mc

12
, Ay =

M0

2 c
, Bx = − ω2mc

4
, By =

3 M0

2 c
.

E3.23Example 3.23 A parasitic mass m0 is attached to the wheel of a
car with rotation axis z as shown in Fig. 3.46.

Determine the masses m1 and m2 that must be attached at
locations 1 and 2 in order to balance the wheel.

x

m0

m2

m1

y
e2

e0

e1

r0

1

2

y

z

r2

r1

m0

Fig. 3.46

Solution The wheel is balanced if the center of mass is located on
the rotation axis and if all the products of inertia vanish. Thus,
with the notation according to Fig. 3.46 the following conditions
must be fulfilled:

m0 r0 + m2 r2 = m1 r1 ,

Θzy = −m0 r0 e0 + m1 r1 e1 + m2 r2 e2 = 0 .

Solving yields the masses

m1 = m0
r0

r1

e0 + e2

e1 + e2
, m2 = m0

r0

r2

e0 − e1

e1 + e2
.

3.4.4 The Torque-Free Gyroscope

A rigid body rotating arbitrarily about its center of mass C or a
fixed in space point A (e.g. a pivot) is referred to as gyroscope.
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We call a gyroscope torque-free if the moment of the external
forces about the reference point C or A vanishes. This condition
is fulfilled e.g. for the rotation of a satellite. Then, from (3.49) with
M (C) = 0 or M (A) = 0 the conservation of angular momentum
is obtained:

L(C) = const or L(A) = const . (3.62)

In this case, Euler’s equations (3.60) after inserting Mi = 0 read

Θ1 ω̇1 − (Θ2 −Θ3)ω2 ω3 = 0,

Θ2 ω̇2 − (Θ3 −Θ1)ω3 ω1 = 0,

Θ3 ω̇3 − (Θ1 −Θ2)ω1 ω2 = 0 .

(3.63)

A special solution of (3.63) is the rotation with constant angular
velocity ω0 about one of the principal axes, e.g. the 1-axis: ω1 =
ω0 = const, ω2 = ω3 = 0. In this case we have ω̇2 = ω̇3 = 0, i.e.
the 1-axis is fixed in space.

Of practical interest is the question of how the system reacts to
a small perturbation of the state of motion. To answer this ques-
tion let us consider a neighboring state deviating only “ slightly ”
from the initial state: ω1 ≈ ω0, ω2 � ω1, ω3 � ω1. If we ne-
glect the small product ω2ω3, then the first equation of (3.63) is
approximately satisfied. The last two equations take the form

Θ2 ω̇2 − (Θ3 −Θ1)ω0 ω3 = 0,

Θ3 ω̇3 − (Θ1 −Θ2)ω0 ω2 = 0 .

Eliminating e.g. ω3, we obtain an equation for ω2:

ω̈2 + λ2ω2 = 0 with λ2 = ω2
0

(Θ1 −Θ2)(Θ1 −Θ3)
Θ2Θ3

.

Its solution is given by (cf. also Section 5.2.1)

ω2(t) =

⎧⎨⎩A1 cosλ t + B1 sinλ t for λ2 > 0,

A2 eλ∗t + B2 e−λ∗t for λ2 = −λ∗2 < 0 .
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For λ2 > 0 the time dependent behavior of ω2 (and also ω3) is
periodic; nevertheless, the perturbation remains bounded. Such a
rotation is called stable. In contrast, for λ2 < 0 the perturbation ω2

increases exponentially with time. The motion then increasingly
deviates from the initial state; this state is called unstable. Thus,
a stable rotation about the principal axis 1 occurs for

(Θ1 −Θ2)(Θ1 −Θ3) > 0 ,

i.e. if the rotation axis coincides with the axis of the maximum
principal moment (Θ1 > Θ2, Θ3) or with the axis of the minimum
principal moment (Θ1 < Θ2, Θ3). A stable rotation about the
axis of the intermediate principal moment (Θ2 < Θ1 < Θ3) is not
possible.

As a special case we finally consider the spherical gyrostat
(Θ1 = Θ2 = Θ3). Here, from (3.63) we directly obtain the re-
sult ω̇1 = ω̇2 = ω̇3 = 0, i.e. the rotation is always stable.

3.53.5 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E3.24Example 3.24 Point A of the rod
in Fig. 3.47 moves with the con-
stant velocity vA to the left.

Determine the velocity and
the acceleration of point B of the
rod (point of contact with the
step) as a function of the angle
ϕ. Find the path y(x) of the in-
stantaneous center of rotation. �������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

x

eϕ

y

ϕ

A

B

vA

er

h

Fig. 3.47
Results: see (B) vB = vAcosϕer ,

aB =
v2

A

h
sin2 ϕ(− sinϕer + 2 cosϕeϕ) , y =

x2

h
+ h .
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E3.25 Example 3.25 The wheel of a
crank drive rotates with
constant angular velocity ω

(Fig. 3.48).
Determine the velocity and

the acceleration of the piston
P .

�����������������������������������
���
���

���
���
���

���
���
���
���

l

P
ψ

r
ω ϕ

Fig. 3.48

Results: see (A) vP = −rω
{

sinϕ +
r

l

sin ϕ cosϕ

cosψ

}
,

aP = −rω2
{
cosϕ− r

l

[sin2 ϕ

cosψ
− cos2 ϕ

cos3 ψ

]}
.

E3.26 Example 3.26 Link MA of the mechanism in Fig. 3.49 rotates with
the angular velocity ϕ̇(t).

Determine the velocities of points B and C, the angular velo-
city ω and the angular acceleration ω̇ of the angled member ABC

at the instant shown.

���
���
���
���

��
��
��
��

A C

M
B

z x

y

r

l

l

α

ϕ

Fig. 3.49

Results: see (B) vB = r ϕ̇
cosϕ

sinα
[− cosα, sin α, 0]T ,

vC = r ϕ̇
[
− sinϕ, sin ϕ + cosϕ− cosϕ

tanα
, 0

]T

,

ω =
r ϕ̇

l

(
sin ϕ− cosϕ

tan α

)
,

ω̇ =
1
l

[
r ϕ̈ sin ϕ + rϕ̇2 cosϕ− 1

tanα
(r ϕ̈ cosϕ− rϕ̇2 sin ϕ + l ω2)

]
.
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E3.27Example 3.27 Wheel 1 rolls in
a gear mechanism without slip
along circle 2 . The mechanism
is driven with a constant angu-
lar velocity Ω (Fig. 3.50).

Determine the magnitudes
of the velocity and the accele-
ration of point P on the wheel. ������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
���������������

���
���
���

1

R
Ω

ϕ

P

2

r

Fig. 3.50

Results: see (A)

vP = 2ΩR sin
ϕ

2
, aP = Ω2R

√
1 +

(R

r

)2

+ 2
R

r
cosϕ .

E3.28Example 3.28 A disk 1 (mass m, radius r1) rests in a frictionless
support (ω0 = 0). A second disk
2 (mass m, radius r2) rotates
with the angular velocity ω2. It
is placed on disk 1 as shown in
Fig. 3.51. Due to friction, both
disks eventually rotate with the
same angular velocity ω̄.

Determine ω̄. Calculate the
change ΔT of the kinetic energy.

���
���
���
���������������������

������
������
������
������

1

ω2

2

r2

r1

m
m

Fig. 3.51

Results: see (B) ω̄ =
r2
2

r2
1 + r2

2

ω2 , ΔT = −1
4

m ω2
2

r2
1 r2

2

r2
1 + r2

2

.

E3.29Example 3.29 The door (mass m, moment
of inertia ΘA) of a car is open (Fig. 3.52).
Its center of mass C has a distance b from
the frictionless hinges. The car starts to
move with the constant acceleration a0.

Determine the angular velocity of the
door when it bangs shut.

A
C

a0

b

m

Fig. 3.52

Result: see (B) ϕ̇(π
2 ) =

√
2 m a0 b

ΘA
.
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E3.30 Example 3.30 A child (mass m) runs along the rim of a circular
platform (mass M , radius r) starting from point A (Fig. 3.53).
The platform is initially at rest; its support is frictionless.

Determine the angle
of rotation of the plat-
form when the child ar-
rives again at point A.

m

r

M

A

Fig. 3.53

Result: see (B) ϕ = − 2π

M/(2m) + 1
.

E3.31 Example 3.31 A homogeneous
triangular plate of weight W =
mg is suspended from three
strings with negligible mass.

Determine the acceleration of
the plate and the forces in the
strings just after string 3 is cut.

����������������

�
�
�

�
�
�

l
3

21

2l

αα

W

Fig. 3.54
Results: see (A) a = g sin α,

S1 =
mg

6
(sin α+4 cosα) , S2 =

mg

6
(− sin α+2 cosα) .

E3.32 Example 3.32 A sphere (mass
m1, radius r) and a cylindrical
wheel (mass m2, radius r) are
connected by two bars (mass
of each bar m3/2, length l).
They roll down a rough incli-
ned plane (with angle α) wi-
thout slipping (Fig. 3.55).

Find the acceleration of the
bars.

α

r

r

l

m1

m3

m2

Fig. 3.55

Result: see (B) a =
(m1 + m2 + m3)sin α

7 m1/5 + 3 m2/2 + m3
g .
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E3.33Example 3.33 The cylindrical
shaft shown in Fig. 3.56 has a
varying mass density given by
ρ = ρ0(1 + αr).

Find the moments of iner-
tia Θx and Θy.

x
R

r
y

y z

l

Fig. 3.56

Results: see (A) Θx =
π

2
ρ0lR

4
(
1 +

4
5
αR

)
,

Θy = πρ0R
2l
[R2

4
+

l2

3
+ α

(R3

5
+

2
9
Rl2

)]
.

E3.34Example 3.34 Determine the
moment of inertia Θa of a ho-
mogeneous torus with a circular
cross section and mass m.

c

Ra

a

Fig. 3.57

Result: see (A) Θa = m
(
R2 +

3
4

c2
)

.

E3.35Example 3.35 A rope drum on a
rough surface is set into motion
by pulling the rope with a con-
stant force F0.

Determine the acceleration of
point C assuming that the drum
rolls (no slipping). What coeffi-
cient of static friction μ0 is ne-
cessary to ensure rolling? ���������

���������
���������
���������

μ0

m, Θc

F0

C
r1

r2

α

Fig. 3.58

Results: see (A)

ac =
F0

m

cosα− r2

r1

1 +
Θc

r2
1m

, μ0 ≥
Θc cosα

r2
1m

+
r2

r1(mg

F0
− sinα

)(
1 +

Θc

r2
1m

) .
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E3.36 Example 3.36 A homogeneous beam (mass M , length l) is initially
in vertical position 1 (Fig. 3.59). A small disturbance causes the
beam to rotate about the frictionless
support A (initial velocity equal to ze-
ro). In position 2 it strikes a small
sphere (mass m, radius r � l). Assu-
me the impact to be elastic (e = 1).

Determine the angular velocities of
the beam immediately before and af-
ter the impact and the velocity of the
sphere after the impact. ��������������

�
�
�
�

�
�
�
�

l

m

M1

2

A

Fig. 3.59

Results: see (B) ω =
√

6 g/l, ω̄ =
M − 3 m

M + 3 m
ω, v̄ =

2 l M

M + 3 m
ω .

E3.37 Example 3.37 A thin half-cylin-
drical shell of weight W = mg

rolls without sliding on a flat sur-
face (Fig. 3.60).

Determine the angular velocity
as a function of ϕ when the initial
condition ϕ̇(0) = 0 is given. ����������������

R

ϕ

W

Fig. 3.60

Result: see (A) ω(ϕ) =

√
2g sin ϕ

R(π − 2 sin ϕ)
.

E3.38 Example 3.38 An elevator con-
sists of a cabin (weight W = mg)
which is connected through a ro-
pe (of negligible mass) with a ro-
pe drum and a band brake (coef-
ficient of dynamic friction μ).

Determine the necessary bra-
king force F such that a cabin
travelling downwards with velo-
city v0 stops after a distance h.

0
r1

r2
μ

l

v0W

FΘ0

Fig. 3.61

Result: see (A) F =
r1v

2
0m

lh(1− e−μπ)

(
1 +

Θ0

mr2
1

+
2gh

v2
0

)
.
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E3.39Example 3.39 A homogeneous beam (mass m, length l) rotates
about frictionless support A (Fig. 3.62) until it hits support C.
The motion starts with zero
initial velocity in the vertical
position. The coefficient of re-
stitution e is given.

Calculate the impulsive
forces at A and C. Determi-
ne the distance a so that the
impulsive force at A vanishes.
Calculate the change of the
kinetic energy.

m

l

A

a

C

Fig. 3.62

Results: see (B) ÂH = 0, ÂV =
(1 + e)(3a− 2l)m

6a

√
3gl ,

Ĉ =
(1 + e)ml

3a

√
3gl , a = 2l/3, ΔT = −(1− e2)mgl/2 .

E3.40Example 3.40 A homogeneous cir-
cular disk of weight W = mg is sus-
pended from a pin-supported bar (of
negligible mass). Initially the disk
rotates with the angular velocity ω0.
a) Determine the amplitude of os-

cillation of the pendulum, if the
bar suddenly prevents the disk
from rotating.

b) Calculate the energy loss ΔE.

l
m

ω0

r

ϕ

Fig. 3.63

Results: see (A)

cosϕ1 = 1− r2ω2
0

4gl

r2

r2 + 2l2
, ΔE =

mr2ω2
0

2
l2

r2 + 2l2
.
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E3.41 Example 3.41 A homogeneous an-
gled bar of mass m is attached to a
shaft with negligible mass. The ro-
tation of the system is driven by the
moment M0.

Determine the angular accelera-
tion and the support reactions.

�
�
�
�
�
�
�
�

������

M0

m

2l

2l

2l

l

ξ
η

Fig. 3.64
Results: see (A) ω̇ =

9M0

20ml2
,

Aξ = −3
4

mlω2, Aη =
27
80

M0

l
, Bξ = − 7

12
mlω2, Bη =

21
80

M0

l
.

E3.42 Example 3.42 A shaft (principal moments of inertia Θ1, Θ2, Θ3)
rotates with constant angular velocity ω0 about its longitudinal
axis. This axis undergoes a rota-
tion α(t) about the z-axis of the
fixed in space system x, y, z.

Calculate the moment which
is exerted by the bearings on the
shaft for
a) uniform rotation α = Ωt,
b) harmonic motion α = α0 sin Ωt.

�
�
�
�

��

��
��
��
��

����

2

3, z
x

1

ω0

y

α(t)

Fig. 3.65

Results: see (A) a) M1 = M3 = 0 , M2 = (Θ1 −Θ3)ω0Ω ,

b) M1 = 0 , M2 = (Θ1 −Θ3)ω0Ω α0 cosΩt , M3 = −Θ3Ω2α0 sin Ωt .

E3.43 Example 3.43 A pin-supported rigid beam
(mass m, length l) is initially at rest. At
time t0 = 0 it starts to rotate due to an
applied constant moment M0.

Determine the stress resultants (inter-
nal forces and moments) as functions of x

for t > t0. Neglect gravitational effects.

ϕA

l

x

M0

Fig. 3.66

Results: see (A) M(x) = −M0

(
1− x

l

)2 (
1 +

1
2

x

l

)
,

V (x) =
3
2

M0

l

[
1−

(x

l

)2 ]
, N(x) =

9
2

M2
0 t2

m l3

[
1−

(x

l

)2 ]
.
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3.63.6 Summary
• The motion of a rigid body may be composed of translation

and rotation; e.g. the velocity of a body-fixed point P is given
by vP = vA + ω × rAP .
Plane motion at any instant may also be regarded as a pure ro-
tation with angular velocity ω about the instantaneous center
of rotation Π.

• During the rotation about a fixed axis, all body-fixed points
undergo a circular motion with one and the same angular ve-
locity ω = ϕ̇ and angular acceleration ϕ̈.

• Under the action of external forces a rigid body undergoes a
motion which is described by the principle of linear momentum
and the principle of angular momentum:

m r̈c = F , L̇
(A)

= M (A) (A = C or fixed).

In the plane case these reduce to three equations:

m ẍc = Fx , m ÿc = Fy , ΘA ϕ̈ = MA or ΘC ϕ̈ = MC .

• The kinetic energy of a rigid body is composed of translational
and rotational energy. In the plane case it is given by

T = 1
2m v2

c + 1
2ΘC ω2 .

• The impulse law and the work-energy theorem are analogous
to those of a point mass or a system of point masses.

• When solving rigid body motion problems the following steps
are usually necessary:
� Sketch of a free-body diagram containing all forces.
� Choice of coordinate system.
� Set-up of equations of motion. Reference point for principle

of angular momentum is center of mass or a fixed point!
� Impact problems: set-up of impulse laws for the bodies in-

volved and an impact hypothesis.
� Set-up of the necessary kinematical relations.
� Depending on the problem it might be advantageous to

apply the work-energy theorem.
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4.14.1 Formal Reduction of Kinetics to Statics
According to Section 1.2.1, the motion of a point mass can be
described by Newton’s law of motion

ma = F (4.1)

where F is the resultant of all forces acting on the point mass.
We now rewrite (4.1) in the form

F −ma = 0 (4.2)

and consider the negative product of mass m and acceleration a

formally as a force which after Jean Lerond d’Alembert (1717–
1783) is referred to as d’Alembert’s inertial force FI :

FI = −ma . (4.3)

This force is not a force in terms of Newton’s force definition
since no opposite force exists, i.e. the axiom of action and reaction
is violated. Therefore we call it a pseudo force (fictitious force);
its direction is opposite to the direction of the acceleration a.
Inserting (4.3) into (4.2), the law of motion can be written as

F + FI = 0 . (4.4)

Accordingly, the motion of a point mass takes place such that the
resultant F of the acting forces and d’Alembert’s inertial force
FI are “ in equilibrium”. Since the point mass is not at rest but
undergoes a motion, this is often referred to as a state of dynamic
equilibrium.

By introducing the inertial force (4.3) we have formally reduced
the law of motion (4.1) to the equilibrium condition (4.4). This
procedure may be advantageous when setting up the equations of
motion. If we want to apply this method to a problem, the inertial
force FI must be drawn into the free-body diagram in addition
to the real forces. The equations of motion then are given by the
condition “ sum of all forces is equal to zero ”.
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The plane motion of a rigid body, according to (3.31a,b), is
described by the equations

mẍc = Fx, mÿc = Fy, ΘC ϕ̈ = MC . (4.5)

If in analogy to (4.3) the pseudo forces

FIx = −mẍc, FIy = −mÿc (4.6)

and the pseudo moment

MIC = −ΘC ϕ̈ (4.7)

are introduced, the dynamic equilibrium conditions

Fx + FIx = 0, Fy + FIy = 0, MC + MIC = 0 (4.8)

are obtained. In the case of a pure rotation of a rigid body, the
fixed point A may also be chosen as the reference point in the
third equation of (4.8) instead of the center of mass C (cf. (3.33)).

If the motion of a system of rigid bodies is to be described with
this method, the system must be cut into its individual bodies.
Then, for each of the bodies the dynamic equilibrium conditions
(4.4) or (4.8) can be written down.

E4.1 Example 4.1 A ship (mass m) has velocity v0 after engine shut-
down (Fig. 4.1a). The resistance force during gliding through the
water is in good approximation given by Fr = k

√
v.

Assuming a straight path, determine the velocity as a function
of time.

x

mẍ Fr =k
√

v

v0

m

a b Fig. 4.1

Solution We introduce the coordinate x in the direction of the
path, cf. Fig. 4.1b. The resistance force Fr acts on the vessel op-
posite to its direction of travel (in the vertical direction, the weight
and the buoyancy are in equilibrium). According to the chosen x-
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coordinate, a positive acceleration ẍ points to the right. The iner-
tial force has the opposite direction (to the left) and the magnitude
mẍ.

Dynamic equilibrium in the x-direction with ẍ = v̇ yields the
equation of motion

← : mv̇ + k
√

v = 0 .

Separation of variables and integration lead in conjunction with
the initial condition v(0) = v0 to

v∫
v0

dv̄√
v̄

= − k

m

t∫
0

dt̄ → 2(
√

v −√v0) = − k

m
t .

Thus, the velocity as a function of time is given by

v =
(√

v0 − k

2 m
t

)2

.

E4.2Example 4.2 A point mass of weight W = mg on a half-sphere (ra-
dius r) slips without friction downwards (Fig. 4.2a). The motion
starts at the highest point with an initial velocity v0.

At what location does the point mass lift-off from the sphere?

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

mrϕ̇2

W

mrϕ̈

ϕN

W

r

0

m

ϕ

v0

at =rϕ̈

an =rϕ̇2

a cb

Fig. 4.2

Solution Until lift-off the point mass moves along a circular path;
its location can be described by the coordinate ϕ (Fig. 4.2b). The
point mass is subjected to its weight W (active force) and to the
normal force N (reaction force). With the tangential acceleration
at = rϕ̈ (in the positive ϕ-direction) and the normal acceleration
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an = rϕ̇2 (directed towards 0) the inertial forces of magnitude
mat (opposite to at) and man (opposite to an) can be drawn in
the free-body diagram (Fig. 4.2c).

Force equilibrium according to (4.4) in the normal and tangen-
tial directions yields the equations of motion

↗ : N −mg cosϕ + mrϕ̇2 = 0, (a)

↘ : mg sinϕ−mrϕ̈ = 0 . (b)

We multiply (b) with ϕ̇ and integrate to obtain

ϕ̇ ϕ̈ =
g

r
sin ϕ ϕ̇ → 1

2
ϕ̇2 = − g

r
cosϕ + C .

Using v = rϕ̇, the constant of integration C can be determined
from the initial condition v(ϕ = 0) = v0:

1
2

v2
0

r2
= − g

r
+ C → C =

1
2

v2
0

r2
+

g

r
.

Thus we have

ϕ̇2 = − 2 g

r
cosϕ +

v2
0

r2
+

2 g

r
=

2 g

r
(1 − cosϕ) +

v2
0

r2
.

Insertion into (a) yields the normal force N as a function of the
angle ϕ:

N = mg cosϕ−mrϕ̇2 = mg(3 cosϕ− 2)−m
v2
0

r
.

The location of lift-off is characterized by the condition of a va-
nishing normal force:

N = 0 → mg (3 cosϕ− 2)−m
v2
0

r
= 0 .

Thus, the lift-off angle ϕ∗ is given by

cosϕ∗ =
2
3

+
v2
0

3 gr
.

Since cosϕ � 1 it follows that v0 � √
gr. For v0 � √

gr the point
mass immediately loses contact with the sphere.
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E4.3Example 4.3 A block (mass m1) is held by a rope which is guided
over an ideal pulley (pulley and rope have negligible masses) and
wrapped around a rope drum (mass m2, moment of inertia ΘC);
see Fig. 4.3a.

Find the equation of motion of the drum under the assumption
that it rolls without slipping.

��������
��������
��������
��������

��������������

H

F

ϕ

N

AA

Π

m2ẍc

W1 =m1g

W2 =m2g

F

m1ÿ

x

ΘC ϕ̈

F
F

a

ra

riC

C

b y

ẋA

ẋc
C

ϕ̇

c

m2, ΘC

m1g

Fig. 4.3

Solution By appropriate section cuts we decompose the system
into the individual bodies (Fig. 4.3b). To describe the motion, the
coordinates x, ϕ (for the drum) and y (for the block) are introdu-
ced. The forces exerted upon the drum are its weight W2 = m2 g,
the normal force N , the static friction force H and the force F from
the rope. The inertial force m2ẍc points in negative x-direction
and the pseudo moment ΘC ϕ̈ acts in the negative ϕ-direction
(since the center of mass C moves in the x-direction, no inertial
force in y-direction occurs). The block is subjected to its weight
W1 = m1 g and the force F exerted by the rope. The inertial force
m1 ÿ points in the negative y-direction.

Dynamic equilibrium yields for the drum
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→ : F −H −m2 ẍc = 0 ,

↑ : N −m2 g = 0 ,

C : riF + raH −ΘC ϕ̈ = 0

and for the block

↓ : m1 g − F −m1 ÿ = 0 .

Since the drum is rolling (rotation about the instantaneous cen-
ter of rotation Π) the following kinematic relation holds according
to (3.10), cf. Fig. 4.3c:

ẋc = ra ϕ̇ → ẍc = ra ϕ̈ .

The rope is considered as being inextensible. Therefore the velo-
cities of the block and of point A are equal: ẏ = ẋA. Thus, with
ẋA = (ri + ra)ϕ̇ an additional kinematic relation is obtained:

ẏ = (ri + ra)ϕ̇ → ÿ = (ri + ra)ϕ̈ .

Combining the equations yields the acceleration of the center
of mass

ẍc =
m1 ra (ri + ra)

m1 (ri + ra)2 + m2 r2
a + ΘC

g .

4.2 4.2 D’Alembert’s Principle
When we investigate the motion of a body by applying Newton’s
law of motion or the dynamic equilibrium relation, we always ob-
tain equations that contain all the forces acting on the body in-
cluding the constraint forces. This procedure may be cumbersome
for systems of point masses or bodies. Therefore, in this section
we will become acquainted with a principle which leads to equa-
tions of motion that do not contain the constraint forces. This
method is particularly advantageous when the constraint forces
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need not be determined. In the following we will restrict ourselves
to motions where dry friction does not occur.

For simplicity, we will first consider the motion of a point mass
on a prescribed path. According to (1.45) Newton’s law reads

ma = F (a) + F (c) (4.9)

where F (a) are the applied forces and F (c) the constraint forces.
In order to obtain a formulation not containing the constraint or

reaction forces, we use the notion of virtual displacements. These
quantities are understood as fictitious, infinitesimal displacements
that are kinematically admissible, i.e. consistent with the cons-
traints of the system (cf. Volume 1, Section 8.2). Since the cons-
traint forces F (c) are perpendicular to the path and consequently
perpendicular to the virtual displacements δr, their virtual work
vanishes:

F (c) · δr = 0 . (4.10)

This statement is referred to as principle of d’Alembert. It may be
expressed in words as: the motion of a point mass takes place such
that the virtual work of the constraint forces vanishes at all times.

Inserting (4.9) into (4.10) yields

(F (a) −ma) · δr = 0 . (4.11)

Introducing the virtual work δU = F (a) · δr of the applied forces
F (a) and the virtual work δUI = FI · δr = −ma · δr for d’Alem-
bert’s inertial force FI , Equation (4.11) may be written as follows:

δU + δUI = 0 . (4.12)

This form of the principle of d’Alembert is also referred to as
principle of virtual work:
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The motion of a point mass takes place such that the
sum of the virtual works of the applied forces and
d’Alembert’s inertial force vanishes at all times.

Equation (4.12) does not contain the constraint forces any more.
The principle of virtual work (4.12) is also valid for a system

of point masses with rigid constraints. To reveal this, Newton’s
equations of motion for a system of n point masses are written in
analogy to (4.9) as (see also Chapter 2)

mir̈i = F
(a)
i + F

(c)
i , i = 1, . . . , n . (4.13)

During a virtual displacement of the system the total virtual work
of the constraint forces vanishes:∑

i

F
(c)
i · δri = 0 . (4.14)

If the equations of motion (4.13) are dotted with δri and summed
up over all point masses, we obtain with (4.14)∑

i

(F (a)
i −mir̈i) · δri = 0 . (4.15)

Inserting
∑
i

F
(a)
i · δri = δU and

∑
i

(−mir̈i) · δri = δUI yields

(4.12) again. The principle of virtual work (4.12) analogously is
valid for rigid bodies.

If a system has several degrees of freedom, the number of inde-
pendent virtual displacements is equal to the number of degrees
of freedom. The principle of virtual displacements then yields just
as many equations of motion as degrees of freedom exist.

E4.4 Example 4.4 Find the solution of Example 4.3 using the principle
of virtual work.

Solution Since the constraint forces (normal force and static fric-
tion force at the drum, force in the rope) need not be calcula-
ted, the example may be treated with the principle of virtual
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ϕ

x

W2 =m2g

δxA

ri

W1 =m1g

Π

A A

δxc

δϕ

m1ÿ

m2ẍc

ΘC ϕ̈

a

CC

b

y

ra

Fig. 4.4

work rather than with the method used in Example 4.3: freeing
of the system then is not necessary!

The motion again is described by the coordinates x and ϕ for
the drum and y for the block. The drum is subjected to the applied
force W2 = m2 g, the inertial force m2 ẍc and the pseudo moment
ΘCϕ̈. The weight W1 = m1g and the inertial force m1ÿ act at the
block (Fig. 4.4a).

The system has one degree of freedom. For a virtual displace-
ment the kinematic relations

δxc = ra δϕ, δy = δxA = (ri + ra) δϕ (a)

hold (Fig. 4.4b). Analogously we obtain (cf. Example 4.3)

ẋc = ra ϕ̇, ẏ = ẋA = (ri + ra) ϕ̇ . (b)

The virtual work of the applied forces and of the pseudo forces
and moments are given by (cf. Fig. 4.4a)

δU = W1 δy = m1 g δy,

δUI = −m1 ÿ δy −m2 ẍcδxc −ΘC ϕ̈ δϕ .
(c)

Using (a) and (b), the variables xc and y in (c) may be replaced
by ϕ:

δU = m1 g (ri + ra) δϕ,

δUI = −m1 (ri + ra)2ϕ̈ δϕ−m2 r2
aϕ̈ δϕ−ΘCϕ̈ δϕ .
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Thus, the principle of virtual work δU + δUI = 0 yields

{m1 g (ri + ra)− [ m1(ri + ra)2 + m2 r2
a + ΘC ] ϕ̈} δϕ = 0 .

Since δϕ �= 0, it follows

[ m1 (ri + ra)2 + m2 r2
a + ΘC ] ϕ̈ = m1 g (ri + ra)

→ ϕ̈ =
m1 (ri + ra)

m1 (ri + ra)2 + m2 r2
a + ΘC

g .

With ẍc = ra ϕ̈, the result of Example 4.3 is obtained again.

4.3 4.3 Lagrange Equations of the 2nd Kind
The equations of motion for a system of point masses may often
be formulated in a substantially easier manner when specific coor-
dinates are used. Then, by appropriately recasting the principle
of virtual work (4.15), the so-called Lagrange equations of the 2nd
kind are obtained. In the following we will derive these equations
where we restrict ourselves to systems with either rigid constraints
or internal forces which can be derived from a potential (e.g. the
force of a spring).

According to (2.2), the number of degrees of freedom f of a
system of n point masses in space, subjected to r kinematic cons-
traints, is given by

f = 3 n− r (4.16)

(in a plane we have f = 2 n− r). Thus, the position of the system
can be determined uniquely either by 3n (e.g. cartesian) coordina-
tes which are linked by r constraint equations, or by f independent
coordinates. These independent coordinates are called generalized
coordinates.

As an example let us consider the simple pendulum as shown
in Fig. 4.5. On the one hand we can specify the position of the
mass m by the cartesian coordinates x and z. However, these
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coordinates are not independent of each other; they are linked by
the constraint equation x2 +z2 = l2. On the other hand, since the
pendulum has one degree of freedom, its position can be specified
by the single coordinate ϕ (= generalized coordinate). The relation
between the cartesian coordinates and the generalized coordinate
in our example is given by

x = l sin ϕ, z = l cosϕ .

Fig. 4.5

l

x

z

z

ϕ

x
m

The positions of the individual masses of a system of n point
masses are described by the position vectors ri. The n position
vectors ri and the f generalized coordinates, denoted by qj , then
are related by

ri = ri(qj), i = 1, . . . , n; j = 1, . . . , f . (4.17)

To derive the Lagrange equations from (4.15), the virtual dis-
placements δri are needed. According to (4.17), the n position
vectors ri depend, as just mentioned, on the f generalized coor-
dinates qj . Thus, the virtual displacements δri can be calculated
analogously to the total differential of a function with several va-
riables as follows:

δri =
∂ri

∂q1
δq1 + . . . +

∂ri

∂qf
δqf =

∑
j

∂ri

∂qj
δqj . (4.18)

Inserting into (4.15) yields∑
i

[
(F (a)

i −mir̈i) ·
(∑

j

∂ri

∂qj
δqj

)]
= 0
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and after multiplication we obtain∑
i

F
(a)
i ·

(∑
j

∂ri

∂qj
δqj

)
−

∑
i

mir̈i ·
(∑

j

∂ri

∂qj
δqj

)
= 0. (4.19)

Interchanging the order of the summation this can be written as∑
j

∑
i

F
(a)
i · ∂ri

∂qj
δqj −

∑
j

∑
i

mir̈i · ∂ri

∂qj
δqj = 0 . (4.20)

We now recast the second term in (4.20). For this purpose we use
the identity

mir̈i · ∂ri

∂qj
=

d
dt

[
miṙi · ∂ri

∂qj

]
−miṙi · ∂ṙi

∂qj
. (4.21)

The correctness of this relation can be checked by differentiating
the term in the square brackets.

Differentiation of (4.17) with respect to time leads to

ṙi =
∂ri

∂q1
q̇1 + . . . +

∂ri

∂qj
q̇j + . . . +

∂ri

∂qf
q̇f =

∑
j

∂ri

∂qj
q̇j . (4.22)

If we now differentiate with respect to q̇j , only the single term

∂ṙi

∂q̇j
=

∂ri

∂qj
(4.23)

of the sum remains. Thus, (4.21) takes the form

mir̈i · ∂ri

∂qj
=

d
dt

[
miṙi · ∂ṙi

∂q̇j

]
−miṙi · ∂ṙi

∂qj

=
d
dt

[ ∂

∂q̇j

(1
2
miṙ

2
i

)]
− ∂

∂qj

(1
2
miṙ

2
i

)
. (4.24)

The kinetic energy of the system is given by

T =
∑

i

(1
2
miṙ

2
i

)
. (4.25)

Introducing the abbreviation

Qj =
∑

i

F
(a)
i · ∂ri

∂qj
(4.26)

and using (4.24)–(4.26) we obtain from (4.20)∑
j

[
Qj − d

dt

(
∂T

∂q̇j

)
+

∂T

∂qj

]
δqj = 0 . (4.27)
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As the generalized coordinates qj are independent of each other
so are the virtual displacements δqj , i.e. they can be chosen arbi-
trarily. Therefore, the sum (4.27) vanishes only if each summand
vanishes:

d
dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj, j = 1, . . . , f . (4.28)

Equations (4.28) are called Lagrange equations of the 2nd kind af-
ter Joseph Louis Lagrange (1736-1813). They constitute a system
of f equations for the f generalized coordinates qj . In contrast,
when using e.g. cartesian coordinates and Newton’s laws we ob-
tain 3 n equations of motion and r constraint equations, i.e. in
total 3 n + r equations.

The total virtual work of the applied forces F
(a)
i is given by

δU =
∑

i

F
(a)
i · δri . (4.29)

Replacing the virtual displacements δri according to (4.18) and
using the abbreviation (4.26), it can be written as

δU =
∑

i

F
(a)
i · δri =

∑
i

F
(a)
i ·

(∑
j

∂ri

∂qj
δqj

)
=

∑
j

∑
i

F
(a)
i · ∂ri

∂qj
δqj =

∑
j

Qjδqj . (4.30)

Hence, the virtual work of the applied forces can be expressed by
the quantities Qj and the virtual displacements δqj of the gene-
ralized coordinates. For this reason the quantities Qj are referred
to as generalized forces.

If the applied forces F
(a)
i can be derived from a potential V ,

the Lagrange equations (4.28) may be further simplified. Then we
have (cf. (1.81))

δU = − δV . (4.31)

The virtual change δV of the potential energy is calculated ana-
logously to the total differential of a function of several variables:
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δV (qj) =
∂V

∂q1
δq1 + . . . +

∂V

∂qf
δqf =

∑
j

∂V

∂qj
δqj . (4.32)

By comparison of (4.30) and (4.32) we see

Qj = − ∂V

∂qj
(4.33)

and insertion into (4.28) then yields

d
dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+

∂V

∂qj
= 0 . (4.34)

The potential energy V does not depend on q̇j . Therefore, if we
introduce the Lagrangian

L = T − V (4.35)

and take into account that ∂V/∂q̇j = 0, we obtain from (4.34)

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, j = 1, . . . , f . (4.36)

These are the Lagrange equations of the 2nd kind for conservative
systems. Here they have been derived only for systems of point
masses but they are analogously also valid for rigid bodies. They
have the advantage that only the kinetic and potential energies
must be set up. The equations of motion then follow simply by
differentiation.

E4.5 Example 4.5 A point mass under the action of gravity moves
without friction along a path having the shape of a parabola
(Fig. 4.6a)

Derive the equation of motion.

Solution The equation of the parabola is given in cartesian coor-
dinates by y = c x2 (Fig. 4.6b).

The applied force (weight) is conservative. The system has one
degree of freedom; we choose the cartesian coordinate x as the
generalized coordinate q.
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������ ������ y=cx2

0

y

xba

m

Fig. 4.6

The kinetic energy of the point mass is

T =
1
2

mv2 =
1
2

m (ẋ2 + ẏ2) .

With

y = c x2 → ẏ = 2 c x ẋ

it takes the form

T =
1
2

m (ẋ2 + 4 c2 x2ẋ2) .

If we choose the zero-level of the potential energy at the vertex of
the parabola, we obtain

V = mg y = mgc x2 .

Thus, the Lagrangian (4.35) is given by

L = T − V =
1
2

m (ẋ2 + 4 c2 x2ẋ2)−mgc x2 .

Calculation of the derivatives

∂L

∂ẋ
= mẋ + 4 m c2 x2ẋ,

d
dt

(∂L

∂ẋ

)
= mẍ + 8 m c2 x ẋ2 + 4 m c2 x2ẍ,

∂L

∂x
= 4 m c2 x ẋ2 − 2mgc x

and insertion into the Lagrange equation (4.36)

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0
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yields

ẍ (1 + 4 c2 x2) + 4 c2 x ẋ2 + 2 gc x = 0 .

E4.6 Example 4.6 A simple pendulum (length l, mass m2) pivots on a
block (mass m1) as shown in Fig. 4.7a. The block is conntected
to a wall by a spring (stiffness k) and can glide without friction
on the support.

Find the equations of motion.
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l

m1

m2

ba

ϕ

x

v2

ẋ

v1 = ẋ

lϕ̇

ϕ

k

Fig. 4.7

Solution The system is conservative. Its position is uniquely de-
termined by the displacement x of the block (measured from the
equilibrium position of the unstretched spring) and the angle ϕ

(Fig. 4.7b). Hence, the system has two degrees of freedom. We
choose

q1 = x, q2 = ϕ

as generalized coordinates. The kinetic energy is given by

T =
1
2

m1 v2
1 +

1
2

m2 v2
2 .

The velocity of mass m1 is v1 = ẋ whereas the velocity of mass m2

is determined by the translation of mass m1 and the superimposed
rotation of the pendulum. According to Fig. 4.7b we obtain v2

2 =
(ẋ+lϕ̇ cosϕ)2+(lϕ̇ sin ϕ)2. Thus the kinetic energy can be written
as

T =
1
2

m1 ẋ2 +
1
2

m2 [(ẋ + lϕ̇ cosϕ)2 + (lϕ̇ sin ϕ)2] . (a)

If the zero-level of the potential of the weight is chosen at the level
of the block, the total potential energy of the system is



4.3 Lagrange Equations of the 2nd Kind 227

V =
1
2

c x2 −m2 gl cosϕ . (b)

With (a) and (b) the Lagrangian is given as

L = T − V =
1
2
(m1 + m2) ẋ2 + m2 lẋϕ̇ cosϕ

+
1
2

m2 l2 ϕ̇2 − 1
2

k x2 + m2 gl cosϕ.

To set up the Lagrange equations (4.36)

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0,

d
dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0 (c)

the following derivatives must be calculated:

∂L

∂ẋ
= (m1 + m2)ẋ + m2 lϕ̇ cosϕ,

d
dt

(
∂L

∂ẋ

)
= (m1 + m2)ẍ + m2 lϕ̈ cosϕ−m2 lϕ̇2 sinϕ,

∂L

∂ϕ̇
= m2 lẋ cosϕ + m2 l2ϕ̇,

d
dt

(
∂L

∂ϕ̇

)
= m2 lẍ cosϕ−m2 lẋϕ̇ sin ϕ + m2 l2ϕ̈,

∂L

∂x
= − k x,

∂L

∂ϕ
= −m2 lẋϕ̇ sin ϕ−m2gl sin ϕ .

Insertion into (c) yields the equations of motion

(m1 + m2) ẍ + m2 lϕ̈ cosϕ−m2 lϕ̇2 sinϕ + k x = 0,

ẍ cosϕ + lϕ̈ + g sin ϕ = 0 .

In the limit case k →∞, the first equation leads to x = 0 whereas
the second one is reduced to the equation lϕ̈ + g sinϕ = 0 of the
simple pendulum (cf. Section 5.2.1).
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E4.7 Example 4.7 The oscillator shown in Fig. 4.8a consists of a spring
(stiffness k) and a point mass of weight W = mg. The length of
the unstretched spring is l0.

Determine the equations of motion. Assume that the oscillator
moves in a plane.
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m

k
xst

l0

x

b

c

a

ϕ

v

l̇

0

lϕ̇l

Fig. 4.8

Solution The position of the point mass is uniquely determined
by its distance l from pin 0 and by the angle ϕ (Fig. 4.8b). Hence,
the system has two degrees of freedom. It is often advantageous to
use dimensionless quantities as generalized coordinates; here we
choose

q1 = l/l0, q2 = ϕ . (a)

The kinetic energy of the point mass is given by (cf. Fig. 4.8b)

T =
1
2

mv2 =
1
2

m (l̇2 + l2 ϕ̇2) . (b)

Introducing (a) into (b), this is written as

T =
1
2

ml20(q̇
2
1 + q2

1 q̇2
2) .

If we choose the zero-level of the potential energy for the weight
W at pin 0, then the total potential energy of the system is given
by

V =
1
2

k (l − l0)2 −mg l cosϕ

=
1
2

k l20 (q1 − 1)2 −mg l0 q1 cos q2 .



4.3 Lagrange Equations of the 2nd Kind 229

Thus, the Lagrangian of the conservative system can be expressed
as

L=T−V =
1
2

ml20 (q̇2
1 + q2

1 q̇2
2)− 1

2
k l20 (q1 − 1)2+mg l0 q1 cos q2 .

To set up the Lagrange equations, the following derivatives are
needed:

∂L

∂q̇1
= ml20 q̇1,

d
dt

(
∂L

∂q̇1

)
= ml20 q̈1,

∂L

∂q̇2
= ml20 q2

1 q̇2,
d
dt

(
∂L

∂q̇2

)
= ml20 (2 q1 q̇1 q̇2 + q2

1 q̈2),

∂L

∂q1
= m l20 q1 q̇2

2 − k l20(q1 − 1) + mg l0 cos q2,

∂L

∂q2
= −mg l0 q1 sin q2 .

From (4.36) we then obtain the coupled equations of motion

ml0 q̈1 −ml0 q1 q̇2
2 + kl0(q1 − 1)−mg cos q2 = 0 ,

l0 q1 q̈2 + 2 l0 q̇1 q̇2 + g sin q2 = 0 .

(c)

In the special case when the rotation is prevented and the point
mass moves along the vertical axis (q2 ≡ 0), the second equation
is fulfilled and the first one reduces to

ml0 q̈1 + k l0 (q1 − 1)−mg = 0

→ ml̈ + k l − k l0 −mg = 0 . (d)

If a new coordinate x with its origin at the equilibrium position
is introduced (Fig. 4.8c), we have l = l0 + xst + x where xst is
the static change of length of the spring. Then we obtain from (d)
with xst = mg/k:

mẍ + k l0 + k xst + k x− k l0 −mg = 0 → mẍ + k x = 0 .
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This is the differential equation of a harmonic (spring-mass) os-
cillator (cf. Section 5.2.1).

In another special case, when k → ∞, the first equation of
motion in (c) leads to q1 = 1, i.e. l = l0. The second equation
reduces to the equation of motion of a simple pendulum:

l0 q̈2 + g sin q2 = 0 → ϕ̈ +
g

l
sinϕ = 0 .

4.4 4.4 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E4.8 Example 4.8 A homogeneous disk (mass m, radius r) rolls without
slipping on a rough surface (Fig. 4.9). Its center of mass C is
connected with the wall by a spring (spring constant k).

Derive the equation of motion
using

a) Newton’s 2nd Law,

b) dynamic equilibrium conditions.
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ϕ

k

m

r

C
A

Fig. 4.9Result: see (B) ϕ̈ + ω2ϕ = 0 , ω2 =
2k

3m
.

E4.9 Example 4.9 A cylinder (mass
m, radius r) rolls without slip-
ping on a circular path (radius
R); see Fig. 4.10.

Derive the equation of moti-
on using dynamic equilibrium
conditions.
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ϕ

r
R m

Fig. 4.10

Result: see (B) ϕ̈ +
2g

3(R− r)
sin ϕ = 0 .
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E4.10Example 4.10 Two blocks of weights
W1 = m1g and W2 = m2g are
suspended at a pin-supported rope
drum (moment of inertia ΘA) as
shown in Fig. 4.11.

Determine the angular accelerati-
on of the drum and the force in rope
1 using dynamic equilibrium condi-
tions. Neglect the mass of the ropes.

A r1

ϕ

m1

21

m2

ΘAr2

Fig. 4.11

Results: see (A)

ϕ̈ =
r2m2 − r1m1

r2
1m1 + r2

2m2 + ΘA
g , S1 = m1g

r2(r1 + r2)m2 + ΘA

r2
1m1 + r2

2m2 + ΘA
.

E4.11Example 4.11 An angled arm (mass
m) rotates with constant angular ve-
locity Ω about point 0 (Fig. 4.12).

Calculate the bending moment,
shear force and normal force as func-
tions of position using dynamic equi-
librium conditions.

0

Ω
a

b

x1

Fig. 4.12

Results: see (B) Selected values: N(x1) = μΩ2(bx1 − x2
1/2) ,

V (x1) = μΩ2ax1 , M(x1) = μΩ2ax2
1/2, μ = m/(a + b) .

E4.12Example 4.12 A wheel (weight W1 = m1g, moment of inertia ΘA)
on an inclined plane is connected with a block (weight W2 = m2g)
by a rope which is guided over an ideal pulley (Fig. 4.13). The
wheel rolls on the plane without slipping.

Determine the acceleration of the
block applying d’Alembert’s principle.
Neglect the masses of the rope and the
pulley.

α

m2

m1, ΘA

x2

r

A

Fig. 4.13

Result: see (A) ẍ2 = g
m2 −m1 sin α

m1 + m2 +
ΘA

r2

.
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E4.13 Example 4.13 Two drums are connected by an unwinding rope
and carry blocks of weights
m1g and m2g (Fig. 4.14).
Drum 1 is driven by the
moment M0.

Determine the accelera-
tion of block 2 using
d’Alembert’s principle. Ne-
glect the mass of the ropes.

M0

r2

r1
1

B

r2

A

2x2

ΘB

m1
m2

ΘA

Fig. 4.14

Result: see (A) ẍ2 = g

1− m1r1

m2r2
+

M0

r2m2g

1 +
m1

m2

(r1

r2

)2

+
ΘA

m2r2
2

+
ΘB

m2r2
2

.

E4.14 Example 4.14 The system shown in Fig. 4.15 consists of a block
(mass M), a homogeneous disk (mass m, radius r) and two springs
(spring constant k). The block moves on a frictionless surface; the
disk rolls without slipping on the block. A force F (t) acts on the
block.

Derive the equations of motion using Lagrange’s formalism.
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r
k

x

no friction

F (t)
ϕ

Fig. 4.15

Result: see (B)

(M + m)ẍ−mrϕ̈ + kx = F (t) , −mẍ +
3
2
mrϕ̈ + krϕ = 0 .
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E4.15Example 4.15 Fig. 4.16 shows two blocks of masses m1 and m2

which can glide on a friction-
less surface. They are coupled by
springs (stiffnesses k1, k2, k3).

Derive the equations of moti-
on using the Lagrange formalism.
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m1 m2

k1

x1 x2

k2k3

Fig. 4.16

Result: see (A)
m1ẍ1 +(k1 + k3)x1− k3x2 = 0 , m2ẍ2 +(k2 + k3)x2− k3x1 = 0 .

E4.16Example 4.16 Two simple pen-
dulums (each mass m, length
l) are connected by a spring
(spring constant k, unstretched
length b) as shown in Fig. 4.17.

Derive the equations of mo-
tion using the Lagrange forma-
lism.

ϕ2
ϕ1

l

m

m
k

l

Fig. 4.17

Result: see (B) lϕ̈1 + g sinϕ1 cosϕ2 = 0 ,

mlϕ̈2 + mg cosϕ1sinϕ2 + k(2l sin ϕ2 − b) cosϕ2 = 0 .

E4.17Example 4.17 A disk (weight m2g,
moment of inertia Θ2) glides along
a frictionless homogeneous bar of
weight m1g (Fig. 4.18).

Find the equations of motion
using the Lagrange formalism.

x

ϕ m1

l

m2, Θ2

Fig. 4.18

Result: see (A) ẍ− xϕ̇2 − g cosϕ = 0 ,(m1l
2

3
+ m2x

2 + Θ2

)
ϕ̈ + 2m2xẋϕ̇ +

(
m1

l

2
+ m2x

)
g sin ϕ = 0 .
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4.5 4.5 Summary
• By using d’Alembert’s inertial forces (pseudo force F I = −m a,

pseudo moment MIC = −ΘC ϕ̈), motion can be described by
(dynamic) equilibrium conditions. They are given, for example
for the plane motion of a rigid body, by

Fx + FIx = 0 , Fy + FIy = 0 , MC + MIC = 0 .

• D’Alembert’s principle: the motion of a point mass or a rigid
body takes place such that for a virtual displacement the sum
of the virtual works done by the applied forces and the inertial
forces vanishes:

δU + δUI = 0 .

Note: constraint forces (reaction forces) do no work!
• The equations of motion of a system with f degrees of freedom

can be derived by using the Lagrange equations of the 2nd
kind. For conservative systems they are given by

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 , j = 1, . . . , f ,

L = T − V Lagrangian,

qj generalized coordinates.
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Objectives: Vibrations play an important role in nature
and in engineering. In this chapter we will investigate the beha-
viour of systems with one or two degrees of freedom which exhibit
vibrations. We will restrict ourselves to systems where the equa-
tions of motion are linear differential equations. This will already
enable us to describe various important features of vibrations.
You will learn how to analyse free and forced vibrations with or
without damping.
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5.15.1 Basic Concepts
In nature and in engineering, certain quantities, e.g. the positi-
on x(t) of a particle, undergo more or less regular changes. Such
processes are called vibrations or oscillations. Examples are the
waves of the oceans, the movement of a piston in an engine, or
the vibrations in an electrical circuit. Similar processes appear in
many areas of our environment. In the following, an introduction
to the theory of vibrations of mechanical systems will be given.

T

t+Tt t

x

x(t) x(t+T )

Fig. 5.1

Frequently, a quantity x(t) repeats itself during a motion after
a definite time interval T (Fig. 5.1):

x (t + T ) = x (t) . (5.1)

In this case the motion is called a periodic vibration. The time T

is referred to as the period of the vibration. The quantity

f =
1
T

(5.2)

is the frequency of the vibration. It represents the number of cycles
per unit of time, where a cycle is the motion completed during
a period. The dimension of the frequency is 1/time. Its unit is
named after Heinrich Hertz (1857-1894); it is abbreviated as Hz:
1Hz = 1/s.

An important special case of periodic vibrations are harmonic
vibrations. Here, the behaviour of x in time is given by a cosine
or sine function:
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x

ω t

P ′
0

C

C

P0

P

α
ω

π 3π2π

P ′
x=C cos (ω t−α)

α

B

π 2π 3π ω tω t

x=B sin ω t
x

b

2ππ 3π

ω T =2π

x=A cos ω t
A

a

x

ω t

Fig. 5.2

x (t) = A cosωt or x (t) = B sin ωt (5.3)

where ω is the circular frequency and A or B, respectively, is the
amplitude of the vibration. Since ωT = 2 π (see Fig. 5.2a) and f =
1/T we have the following relation between the circular frequency
ω and the frequency f :

ω =
2 π

T
= 2 π f . (5.4)

A vibration that is represented by a pure cosine or sine func-
tion is subject to special initial conditions. In the case of x (t) =
A cos ωt we have the initial conditions: x(0) = A, ẋ(0) = 0. Simi-
larly, for x(t) = B sinωt the initial conditions are x(0) = 0, ẋ(0) =
Bω. Harmonic vibrations with arbitrary initial conditions can al-
ways be represented by

x (t) = C cos (ωt− α) (5.5)
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where C is the amplitude and α is referred to as the phase angle
(see Fig. 5.2b).

Harmonic vibrations (5.5) can also be obtained through a su-
perposition of two vibrations of the form of (5.3). Using the tri-
gonometric formula

x (t) = C cos (ωt− α) = C cosωt cosα + C sinωt sin α (5.6)

and the abbreviations

A = C cosα, B = C sin α (5.7)

we get

x (t) = A cosωt + B sin ωt . (5.8)

Thus, the representations (5.5) and (5.8) are equivalent; they are
interchangeable. If C and α are given, we obtain A and B from
(5.7). On the other hand, if A and B are given, (5.7) can be solved
for C and α:

C =
√

A2 + B2, α = arctan
B

A
. (5.9)

A harmonic oscillation can be generated by a point P (initial
position P0) which moves on a circular path (radius C) with con-
stant angular velocity ω (Fig. 5.2b). Then the projection P ′ on
a vertical straight line (or on any diameter) performs a harmonic
vibration. This is shown in Fig. 5.2b.

A vibration with a constant amplitude is called an undamped vi-
bration. If the amplitude decreases with increasing time (Fig. 5.3a),
the vibration is referred to as damped. In the case of an increasing
amplitude one speaks of an unstable vibration (Fig. 5.3b).

Vibrations may be classified according to various criteria. For
example, one may classify vibration by the number of degrees of
freedom (1, 2, ..., n) involved. For greatest transparency, we will
restrict our presentation to systems with one or two degrees of
freedom. This will already enable us to describe various important
features of the vibrations without unneeded complications.

One may also classify vibrations according to the type of the dif-
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ferential equation that describes the motion of the system. Thus,
in the case of a linear (nonlinear) differential equation one speaks
of linear (nonlinear) vibrations.

A third classification is based on the mechanism that generates
the vibrations. We will restrict ourselves to two cases: free vi-
brations and forced vibrations. Free vibrations occur in a system
that is acted upon only by forces within the system (e.g., weights,
forces in springs); there are no external forces. Forced vibrations
are generated under the influence of external forces.

x

t

x

t

a b Fig. 5.3

5.2 5.2 Free Vibrations
In the following sections, the behaviour of linear systems with one
degree of freedom will be investigated. The vibrations will be free
but may be damped or undamped.

5.2.1 Undamped Free Vibrations

At first we restrict ourselves to the investigation of undamped
vibrations. As an example let us consider a block (mass m) that
moves on a smooth surface (Fig. 5.4a). It is connected to a wall
with a linear spring (spring constant k). To derive the equation of
motion, we introduce the coordinate x as shown in Fig. 5.4b: x = 0
is the equilibrium position of the block (unstressed spring). The
only force in the horizontal direction is the force k x in the spring.
It is a restoring force, i.e., it acts in the direction opposite to the
displacement from the equilibrium position. Thus, Newton’s law
(1.38) yields

→ : mẍ = − k x → mẍ + k x = 0. (5.10)
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With the abbreviation

ω2 =
k

m
(5.11)

we obtain

ẍ + ω2 x = 0 . (5.12)

This is a linear homogeneous differential equation of second order;
it has constant coefficients. The general solution of (5.12) is given
by

x (t) = A cosωt + B sin ωt (5.13)

where A and B are constants of integration. They can be calcu-
lated from the given initial conditions x (0) = x0 and ẋ (0) = v0

which yields

A = x0 and B =
v0

ω
. (5.14)

Thus, (5.13) becomes

x (t) = x0 cosωt +
v0

ω
sin ωt . (5.15)

According to Section 5.1, the general solution (5.13) is equiva-
lent to

x (t) = C cos (ωt− α) (5.16)

where now C and α are the constants of integration. They can
also be calculated from the initial conditions, however, they follow
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immediately from (5.9) and (5.14):

C =
√

x2
0 + (v0/ω)2, α = arctan

v0

ωx0
. (5.17)

According to (5.16) the block performs a harmonic vibration
with circular frequency ω =

√
k/m. The circular frequency of a

free vibration is also called the natural frequency or the eigenfre-
quency .

Let us now consider a block (mass m) that is suspended by a
linear spring (spring constant k), see Fig. 5.5a. We assume that the
block performs vertical oscillations. When the block is attached
to the spring, the spring undergoes an elongation xst = mg/k

from its unstressed (natural) length due to the weight W = mg

of the block. We measure the location x of the block from this
equilibrium position (Fig. 5.5b). The forces that act in the vertical
direction on the displaced block are the weight W and the spring
force (restoring force) Fk = k (xst + x). Newton’s law (1.38) leads
to

↓ : mẍ = mg − k (xst + x) → mẍ + k x = 0 .

This is again the equation of motion (5.10). Note, the weight of the
block has no influence on the vibration of the system consisting
of a mass and a spring. We therefore do not have to consider the
weight of such systems if we measure the displacement x from the
position of static equilibrium.

The natural frequency of the vertical vibration of a system with
one degree of freedom may be calculated from the static displa-
cement due to its weight. Then the mass of the system and the
spring constant need not be known. For example, the spring in
Fig. 5.5a undergoes an elongation xst = mg/k due to the weight
W = mg of the block. Comparison of k xst = mg with (5.11)
yields

ω2 = g/xst . (5.18)

The motions of many mechanical systems are described by dif-
ferential equations of the type (5.12). These systems perform har-
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monic vibrations. For example, the motion of a simple pendulum
(also called an ideal pendulum) as shown in Fig. 5.6a is governed
by the differential equation

ϕ̈ +
g

l
sinϕ = 0 ; (5.19)

see Section 1.2.6. If we assume that the displacements are small
(sin ϕ ≈ ϕ), we obtain the differential equation ϕ̈+(g/l)ϕ = 0 for
a harmonic vibration. The natural frequency of a simple pendulum
is thus given by

ω =
√

g/l . (5.20)

As a further example let us consider a rigid body which is sus-
pended at a fixed point (pin support A) and undergoes vibratory
motion (Fig. 5.6b). Such a system is called a compound pendulum.
The center of gravity C is located at a distance l from pin A. To
derive the equation of motion we apply the principle of angular
momentum (3.33). With the coordinate ϕ as shown in Fig. 5.6b
(positive counterclockwise), the moment MA = −mgl sinϕ of the
weight W and with the moment of inertia ΘA we obtain

: ΘA ϕ̈ = −mgl sin ϕ → ΘA ϕ̈ + mgl sin ϕ = 0 .
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If we assume small displacements (sin ϕ ≈ ϕ), this equation redu-
ces to

ϕ̈ + ω2ϕ = 0

where ω2 = mgl/ΘA. We now introduce the effective length leff =
ΘA/(ml) = r2

g/l of the pendulum. Then the natural frequency
of the compound pendulum may be written as ω =

√
g/leff in

analogy to (5.20). Thus, a compound pendulum has the same
natural frequency as an ideal pendulum with length leff .

All the systems considered so far are conservative systems. The-
refore, the principle of conservation of energy is valid:

T + V = T0 + V0 = E = const , (5.21)

where E is the total energy of the system. Using the general solu-
tion (5.16) of the equation of motion (5.10) and the trigonometric
formulae sin2 β = 1

2 (1 − cos 2 β), cos2 β = 1
2(1 + cos 2 β) we can

express the kinetic and potential energies as

E

T

V

π 2π ω t3π Fig. 5.7
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T = 1
2
mẋ2 = 1

2
mω2 C2 sin2(ωt− α)

= 1
4mω2 C2[1− cos (2 ωt− 2 α)] ,

V = 1
2
kx2 = 1

2
k C2 cos2 (ωt− α)

= 1
4
k C2[1 + cos (2 ωt− 2 α)] .

(5.22)

Both energies are represented by periodic functions with frequen-
cy 2 ω. Their amplitudes are equal since mω2 = k. The energies
are depicted in Fig. 5.7. Note that there is a periodic exchange
between the potential energy and the kinetic energy. When the
kinetic (potential) energy is zero, the potential (kinetic) energy
attains its maximum value. The sum of both energies is constant,
namely equal to the total energy E (conservation of energy).

E5.1Example 5.1 A rod (length l, with negligible mass) carries a mass
m at its upper end. It is supported by a linear spring (spring
constant k), see Fig. 5.8a.

Describe the motion of the rod if it is displaced from its ver-
tical position (small displacement) and then released (no initial
velocity).

Fig. 5.8
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ϕ
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kx

a b

k

Solution We introduce the coordinates ϕ (positive counterclock-
wise) and x as shown in Fig. 5.8b. Then the elongation of the
spring is given by x = l sin ϕ. The principle of angular momentum
(1.67) leads to the equation of motion (ΘA = ml2):
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: ml2ϕ̈ = l sin ϕmg − l cosϕk x

→ mlϕ̈−mg sin ϕ + k l sinϕ cos ϕ = 0 .

We assume that the displacements are small. Then with sinϕ ≈ ϕ,
cosϕ ≈ 1 we obtain

mlϕ̈−mgϕ + k lϕ = 0 → ϕ̈ +
k l−mg

ml
ϕ = 0 .

This is the differential equation of a harmonic oscillator if k l >

mg. Comparison with (5.12) yields the eigenfrequency:

ω2 =
k l −mg

ml
→ ω =

√
k l −mg

ml
.

The constants of integration in the general solution ϕ (t) =
A cos ωt + B sin ωt can be calculated from the initial conditions
ϕ (0) = ϕ0 and ϕ̇ (0) = 0. We obtain A = ϕ0 and B = 0. Thus,
the motion of the rod is described by

ϕ (t) = ϕ0 cosωt .

If k l < mg, the restoring moment due to the spring force is
smaller than the moment due to the weight: the rod falls. In the
special case k l = mg, the eigenfrequency is zero: the rod is in
(static) equilibrium in the displaced position.

5.2.2 Spring Constants of Elastic Systems

The relation between the spring force F and the elongation Δl

of a linear spring is given by F = k Δl. The spring constant k is
therefore characterized by

k =
F

Δl
. (5.23)

In many systems with elastic components there also exists a
linear relation between the force and the deformation. Let us first
consider a massless bar (length l, axial rigidity EA) which carries
a mass m at one end (Fig. 5.9a). If the mass is displaced downward
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and the bar undergoes an elongation Δl, then a restoring force F

acts on the mass. A force of equal magnitude is exerted on the
bar (action = reaction). The relation

Δl =
Fl

EA

is known from Volume 2. In analogy to (5.23) we obtain the
“spring constant” or stiffness of an elastic bar:

k =
F

Δl
=

EA

l
. (5.24)

Therefore, the original system (elastic bar with end mass) in Fig.
5.9a is equivalent to a system consisting of a spring and a mass
(Fig. 5.9b) and can be replaced by it if the spring constant is
chosen according to (5.24). Note that the stiffness of the bar is
equal to the force required to produce a unit elongation.

Let us now consider a massless cantilever beam (length l, flexu-
ral rigidity EI) with a mass m at its free end as shown in Fig. 5.9c.
If the mass is displaced downward a restoring force F acts on it.
A force of equal magnitude is exerted on the beam and causes the
deflection

w =
Fl3

3 EI
,

see Volume 2. Thus, we obtain the spring constant

k =
F

w
=

3 EI

l3
(5.25)

of the elastic beam. If the spring constant of the system in Fig. 5.9b
is chosen according to (5.25), then this simple system is equivalent
to the massless cantilever beam with a single mass at its free end.

We finally determine the spring constant of a massless shaft
(length l, torsional rigidity GIT ) under torsion (Fig. 5.9d). It fol-
lows from the linear relation between the angle of twist ϑ and the
torque MT (see Volume 2):

ϑ =
MT l

GIT
→ kT =

MT

ϑ
=

GIT

l
. (5.26)
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The constant kT has the dimensions moment/angle. If a disk (mo-
ment of inertia Θ) is fixed to the end of the shaft and undergoes
torsional vibrations, then the motion is described by Θϑ̈+kT ϑ = 0.

The motion of a mass may cause elongations of several springs
in a system. Let us first consider the case of two springs in parallel
(Fig. 5.10a). The two springs (spring constants k1 and k2) undergo
the same elongation when the mass is displaced. They can be
replaced by an equivalent single spring with the spring constant
k∗ . To determine k∗, we displace the mass by an amount x. This
displacement causes the forces F1 = k1 x and F2 = k2 x in the
springs, and the mass is acted upon by the force F = F1 + F2.
Since the single spring is assumed to be equivalent to the two
springs, the same displacement x of the equivalent system has to
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generate the same force F = k∗ x. Thus,

F = k1 x + k2 x = k∗ x → k∗ = k1 + k2 .

In the case of a system with arbitrarily many parallel springs
(spring constants kj), the spring constant of the equivalent spring
is given by the sum of the individual spring constants:

k∗ =
∑

kj . (5.27)

Let us now consider two springs in series (Fig. 5.10b). In this
case the total elongation x is the sum x1 + x2 of the elongations
of the springs and the same force F acts in each spring. With
F = k1 x1 = k2 x2 and x = x1 + x2 we obtain

x =
F

k1
+

F

k2
=

F

k∗ → 1
k∗ =

1
k1

+
1
k2

.

In the case of arbitrarily many springs in series, the spring con-
stant of the equivalent spring is found from

1
k∗ =

∑ 1
kj

. (5.28)

We now introduce the flexibility (compliance) f = 1/k of a
spring (not to be confused with the frequency). According to
(5.28) the flexibility of arbitrarily many springs in series is given
by the sum of the individual flexibilities:
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f∗ =
∑

fj . (5.29)

Note that the flexibility is the elongation of the spring due to a
unit force.

E5.2 Example 5.2 An elastic beam (flexural rigidity EI) with negligible
mass supports a box (mass m) as shown in Fig. 5.11a.

Find the natural frequency of the system.
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m

wst

m

F
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Fig. 5.11

Solution We reduce the system consisting of the massless beam
and the mass to the equivalent simple system of a spring and a
mass (Fig. 5.11b). To determine the equivalent spring constant kB

we subject the beam to a force F which acts at the location of the
box (Fig. 5.11c). This force produces the deflection (see Volume
2)

w =
Fl3

48 EI
. (a)

Thus, in analogy to (5.25) we obtain

kB =
F

w
=

48 EI

l3
,

and (5.11) yields the natural frequency

ω =

√
kB

m
=

√
48 EI

ml3
.
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According to (5.18) it is also possible to determine the natural
frequency with the aid of the static deflection caused by the weight
W = mg of the mass m. This deflection is given by (Fig. 5.11d)

wst =
Wl3

48 EI
=

mgl3

48 EI
.

Substitution into (5.18) again yields

ω =
√

g

wst
=

√
48 EI

ml3
.

E5.3Example 5.3 The systems in the Figs. 5.12a,b consist of massless
beams (flexural rigidity EI), a spring (spring constant k) and a
box (mass m).

Determine the natural frequencies of the systems.
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Fig. 5.12

Solution We replace both systems with the simple equivalent sys-
tem shown in Fig. 5.12c.
a) If the mass in Fig. 5.12a is displaced, the deflection at the
middle of the beam and the elongation of the spring are equal.
Therefore, the beam and the spring act as springs in parallel. The
spring constant of the beam can be taken from Example 5.2:

kB =
48 EI

l3
.

Thus, Equation (5.27) yields the spring constant k∗ of the equi-
valent spring,
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k∗ = k + kB = k +
48 EI

l3
,

and the natural frequency of the system is obtained as

ω =

√
k∗

m
=

√
k l3 + 48 EI

ml3
.

b) We now consider the system in Fig. 5.12b. The displacement of
the mass is the sum of the deflection at the middle of the beam and
the elongation of the spring. Therefore, the beam and the spring
act as springs in series. The spring constant k∗ of the equivalent
spring now follows from (5.28):

1
k∗ =

1
k

+
1

kB
→ k∗ =

k kB

k + kB
.

This yields the natural frequency

ω =

√
k∗

m
=

√
48 k EI

(k l3 + 48 EI)m
.

The natural frequency of system b) is smaller than the one of
system a): the equivalent spring of system b) is softer than the
one of system a).

E5.4 Example 5.4 The frame in Fig. 5.13a consists of two elastic co-
lumns (h = 3 m, E = 210 GPa, I = 3500 cm4) and a rigid hori-
zontal beam. It carries a box (m = 105 kg).

Calculate the natural frequency of the system. Neglect the mas-
ses of the members of the frame.

Solution Fig. 5.13b shows the deformed frame. Since the columns
are elastic and the beam is rigid, the box is displaced horizontally.
The vibrations of the system can be described by the equivalent
simple system in Fig. 5.13c. As the system is symmetrical, we will
now determine the spring constant kc of the equivalent spring for
a single column. Consider the column as shown in Fig. 5.13d. The
rigid beam at the upper end of the column forces a parallel motion
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(see Volume 1, Section 5.1.1). If the column is subjected to a force
F at point A, this point undergoes a deflection w. The spring
constant kc of the column follows from kc = F/w.

The system in Fig. 5.13d is statically indeterminate of first
degree. We choose the moment at the top to be X and remove
the support (Fig. 5.13e). Then the displacement w and the angle
ϕ at the top end are obtained as

w =
Fh3

3 EI
− Xh2

2 EI
, ϕ =

Fh2

2 EI
− Xh

EI
,

see Volume 2. The condition ϕ = 0 yields the support moment:
X = Fh/2. Thus,

w =
Fh3

3 EI
− Fh3

4 EI
=

Fh3

12 EI
,

and the spring constant of one column follows as

kc =
F

w
=

12 EI

h3
.
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The frame has two columns in parallel. Therefore, the spring con-
stant of the frame is given by k∗ = 2 kc. Hence, the natural fre-
quency of the system is found to be
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ω =

√
k∗

m
=

√
24 EI

mh3

which leads to

ω = 8.1 s−1 or f =
ω

2 π
= 1.3 Hz .

5.2.3 Damped Free Vibrations

Experience shows that a free vibration with a constant amplitude
never occurs in reality. The amplitudes of the vibrations of real
systems decay with time and, finally, the vibrations die out. This
is due to the friction forces and damping forces which are always
present in real systems (for example, friction at the supports, air
resistance). The systems lose mechanical energy during the motion
(energy dissipation). Therefore, conservation of energy is not valid
for damped vibrations.

As an example of damped vibrations let us consider the system
shown in Fig. 5.14a. It consists of a block (mass m) which moves
on a rough horizontal surface (coefficient of kinetic friction μ). We
assume dry friction (Coulomb friction, see Volume 1). The friction
force R = μN = μmg is always oriented opposite to the direction
of the velocity. If the block moves to the right (left) the friction
force is directed to the left (right), see Fig. 5.14b. We measure
the coordinate x from the position of the block when the spring
is unstressed. The restoring force is given by k x. Newton’s law
(1.38) yields the equation of motion:

→ : mẍ =

{
− k x−R for ẋ > 0,

− k x + R for ẋ < 0

→ mẍ + k x =

{
−R for ẋ > 0,

+ R for ẋ < 0 .

If we introduce the definitions

ω2 =
k

m
, r =

R

k
,
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we obtain

ẍ + ω2 x =

{
−ω2 r for ẋ > 0,

+ ω2 r for ẋ < 0 .
(a)

Thus, two different equations describe the motion of the block to
the right and to the left, respectively.

We use the variable t1 during the first part of the vibration and
choose the initial conditions x (t1 = 0) = x0 > 0, ẋ (t1 = 0) = 0,
see Fig. 5.14c. Then the block first moves to the left: ẋ < 0. Hence,
we use

ẍ + ω2 x = ω2 r . (b)

In contrast to the equation of motion (5.12), the right-hand side
of this equation is not zero. A differential equation of this type is
called an inhomogeneous differential equation. Its general soluti-
on is composed of the solution xh of the homogeneous differential
equation (ẍ + ω2 x = 0), usually called the homogeneous soluti-
on, and a particular solution xp of the inhomogeneous differential
equation, yielding the general solution
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x = xh + xp .

According to (5.13) the solution xh is given by

xh (t1) = A1 cosωt1 + B1 sinωt1.

The particular solution

xp = r

can be found by inspection of the inhomogeneous differential equa-
tion. Thus,

x (t1) = A1 cosωt1 + B1 sinωt1 + r .

The constants of integration A1 and B1 follow from the initial
conditions:

x (t1 = 0) = A1 + r = x0 → A1 = x0 − r,

ẋ (t1 = 0) = ωB1 = 0 → B1 = 0 .

Hence, the motion to the left during the first half cycle of the
vibration is described by

x (t1) = (x0 − r) cos ωt1 + r ,

ẋ (t1) = − (x0 − r)ω sin ωt1.
(c)

At time t1 = π/ω, the displacement is x(π/ω) = −x0 + 2 r and
the velocity vanishes: ẋ(π/ω) = 0. Then the motion changes its
direction: the block moves to the right and we have to use the
equation of motion (see (a))

ẍ + ω2 x = −ω2 r . (d)

We will use the variable t2 to describe the motion during the
second half cycle of the vibration (Fig. 5.14c). The general solution
of (d) is given by

x (t2) = A2 cosωt2 + B2 sinωt2 − r .
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The displacement and the velocity at the beginning of the second
half cycle have to coincide with the corresponding quantities at the
end of the first half cycle. Therefore, the constants of integration
A2 and B2 can be calculated from the matching conditions

x (t2 = 0) = x
(
t1 =

π

ω

)
→ A2 = − x0 + 3 r ,

ẋ (t2 = 0) = ẋ
(
t1 =

π

ω

)
→ B2 = 0 .

The motion during the second half cycle is therefore described by

x (t2) = − (x0 − 3 r) cosωt2 − r . (e)

The displacement-time graph of the vibration is shown in Fig.
5.14c. The first of the equations (c) represents half a cosine which
is shifted by +r in the x-direction and has the amplitude x0 − r.
The function (e) is shifted by −r and has the amplitude x0 − 3 r.

The following cycles of the vibration can be determined in an
analogous manner. The amplitudes are decreased by 2r after each
change of direction of the motion. If the displacement of the block
is smaller than r at a position where the velocity is zero, then the
restoring force in the spring is too small to overcome the static
friction force and the block comes to a rest.

Resisting forces caused by friction in fluids were already intro-
duced in Section 1.2.4. Such forces may, for example, be generated
in the shock absorber of a car. We will restrict ourselves to the
case of a linear relation between the velocity v and the resisting
force Fd:

Fd = d v .

Fig. 5.15
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The quantity d is called the coefficient of viscous damping or the
damping coefficient; it has the dimensions force/velocity. We will
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depict a damper (or dashpot) symbolically as shown in Fig. 5.15a.
The resisting force that is exerted upon a body in motion is di-
rected opposite to its velocity (Fig. 5.15b).

Let us consider the system consisting of a block, a spring and
a dashpot as shown in Fig. 5.16a. We measure the coordinate x

from the equilibrium position. In this case we need not consider
the weight of the block. With the restoring force k x of the spring
and the viscous damping force d ẋ in the dashpot (Fig. 5.16b) we
obtain the equation of motion

↓ : mẍ = − k x− d ẋ → mẍ + d ẋ + k x = 0 . (5.30)

We now introduce the abbreviations

2 ξ =
d

m
, ω2 =

k

m
. (5.31)

������������

d ẋ

x

k x

b

m

dk

a Fig. 5.16

The constant ξ is called the normalized damping coefficient and ω

is the natural frequency of the undamped vibrations (see (5.11)).
This yields the differential equation of the damped vibrations:

ẍ + 2 ξẋ + ω2 x = 0 . (5.32)

We want to find the general solution of this differential equati-
on. Since it has constant coefficients we assume a solution of the
form

x = A eλt (5.33)

where e is the base of the natural logarithm. The constants A

and λ are as yet unknown. In order to determine λ, we introduce
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(5.33) into (5.32) and obtain the characteristic equation

λ2 + 2ξλ + ω2 = 0 . (5.34)

This quadratic equation for λ has the two solutions

λ1,2 = − ξ ±
√

ξ2 − ω2 . (5.35)

If we introduce the damping ratio (Ernst Lehr, 1896-1944)

ζ =
ξ

ω
=

d

2
√

m k
(5.36)

we can write (5.35) in the form

λ1,2 = − ξ ± ω
√

ζ2 − 1 . (5.37)

Depending on the value of ζ, the solutions of (5.32) exhibit diffe-
rent behaviours. We distinguish between three cases.

1. Overdamped System: ζ > 1

In this case, both solutions λ1 and λ2 of (5.37) are real numbers:
λ1,2 = −ξ ± μ, where μ = ω

√
ζ2 − 1. Each λi is associated with

a solution of the differential equation (5.32). The general solution
of (5.32) is represented by a linear combination of both solutions:

x (t) = A1 eλ1t + A2 eλ2t = e−ξt(A1 eμt + A2 e−μt) . (5.38)

The constants A1 and A2 can be calculated from the initial con-
ditions x (0) = x0 and ẋ (0) = v0. Since ξ > μ, Equation (5.38)
represents a motion which decays exponentially. Since there is no
period, the motion is called aperiodic. The displacement has at
most one maximum and at most one zero value. This motion is
not a vibration: the block slides back to its equilibrium positi-
on without oscillating. Fig. 5.17 shows several graphs of equation
(5.38) for different initial conditions.

2. Critically Damped System: ζ = 1

If ζ = 1, the radical in (5.37) is equal to zero and the characteristic
equation (5.34) has repeated roots: λ1 = λ2 = −ξ, see (5.37).
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x

v0 >0

x0 v0 =0

t

v0 <0, |v0 |< ξx0

v0 <0, |v0 |> ξx0

Fig. 5.17

The general solution of (5.32) is then given by

x (t) = A1 eλ1t + A2 t eλ1t = (A1 + A2 t) e−ξt . (5.39)

This also represents a motion which decays exponentially. As in
the case of an overdamped system, the decay occurs without oscil-
lation. It can be shown that for ζ = 1 the displacement converges
to zero faster than in the case of an overdamped system (ζ > 1).
Since the value ζ = 1 separates the aperiodic motions from the
oscillatory motions, this case is referred to as critical damping.
Critical damping is made use of in the design of measuring devi-
ces.

For ζ = 1 we have ξ = ω according to (5.36). Then, using
(5.31), we obtain the critical damping coefficient

dc = 2
√

mk .

Note that the damping factor ζ according to (5.36) may also be
written as the ratio of the damping coefficient d to the critical
damping coefficient dc:

ζ =
d

dc
.

3. Underdamped System: ζ < 1

In the case of an underdamped system (ζ < 1) the radical in
(5.37) is negative. Therefore we write the two solutions of the
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characteristic equation in the form

λ1,2 = − ξ ± iω
√

1− ζ2 = −ξ ± iωd, (i =
√−1)

with

ωd = ω
√

1− ζ2 . (5.40)

This yields the general solution of the differential equation (5.32):

x (t) = A1 eλ1t + A2 eλ2t = e−ξt(A1 eiωdt + A2 e−iωdt) .

Using e±iωdt = cosωd t± i sin ωd t we obtain

x (t) = e−ξt[(A1 + A2) cosωd t + i(A1 −A2) sin ωd t]

= e−ξt(A cosωd t + B sin ωd t),

where we have introduced two new real constants A and B. Ac-
cording to Section 5.1 the displacement x (t) can also be written
in the form

x (t) = C e−ξt cos (ωd t− α) . (5.41)

Thus, the motion of an underdamped system is a vibration with
exponentially decaying amplitudes. The constants of integration
C and α can be calculated from the initial conditions. As t→∞,

Fig. 5.18

C cosα

x(t)
x(t+Td)

t

x

t t+Td

Td = 2π
ωd

−Ce−ξt

Ce−ξt
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the displacement converges to zero. Fig. 5.18 shows the graph of
equation (5.41) and the envelopes ±C e−ξt.

The circular frequency ωd of the damped vibration is smal-
ler than the circular frequency ω of the undamped vibration (see
(5.40)). Therefore, the period Td = 2 π/ωd is larger than the pe-
riod T of the corresponding undamped vibration.

The displacements at time t and time t + Td are given by

x (t) = C e−ξt cos (ωd t− α)

and

x (t + Td) = C e−ξ(t+Td) cos [ωd(t + Td)− α]

= C e−ξ(t+Td) cos (ωd t− α) ,

respectively. The ratio of the two displacements is therefore given
by

x (t)
x (t + Td)

= eξTd . (5.42)

The logarithm

δ = ln
x (t)

x (t + Td)
= ξTd =

2 πξ

ωd
= 2 π

ζ√
1− ζ2

(5.43)

of this ratio is referred to as the logarithmic decrement. If the
logarithmic decrement δ can be determined from experiments, the
damping ratio ζ can be calculated according to (5.43).

E5.5 Example 5.5 Fig. 5.19a shows a system which consists of a rigid
bar (with negligible mass), a spring, a dashpot and a point mass.

Find the condition which the damping coefficient d has to sa-
tisfy in order for the system to be underdamped. Determine the
solution of the equation of motion for the initial conditions ϕ (0) =
0, ϕ̇ (0) = ϕ̇0. Assume small displacements.

Solution We introduce the coordinate ϕ as shown in Fig. 5.19b.
The moment of inertia with respect to point A is given by ΘA =
(2 a)2m, the restoring force of the spring is Fk = k a ϕ and the
viscous damping force is Fd = d (3 a)ϕ̇. The principle of angular
momentum yields the equation of motion:
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Fk =k a ϕ

A

Fd =d (3a) ϕ̇

ϕ

a a a

d

m
k

Fig. 5.19

: ΘA ϕ̈ = − a Fk − 3 a Fd → 4 mϕ̈ + 9 d ϕ̇ + k ϕ = 0 .

We introduce the abbreviations 2 ξ = 9 d/(4m) and ω2 = k/(4m)
and obtain

ϕ̈ + 2 ξ ϕ̇ + ω2ϕ = 0 ,

cf. (5.32). The system is underdamped if ζ < 1:

ζ =
ξ

ω
=

9 d

8 m
2
√

m

k
=

9 d

4
√

mk
< 1 .

Therefore, the damping coefficient has to satisfy the condition

d <
4
9

√
mk .

The general solution of the equation of motion is given by (see
(5.41))

ϕ (t) = C e−ξt cos (ωd t− α) ,

where

ωd = ω
√

1− ζ2 =
1
2

√
k

m

√
1− 81 d2

16 mk
.

The constants of integration can be calculated from the initi-
al conditions ϕ (0) = 0, ϕ̇ (0) = ϕ̇0. We obtain α = π/2 and
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C = ϕ̇0/ωd. Thus, the solution of the equation of motion is

ϕ (t) =
ϕ̇0

ωd
e−ξt cos

(
ωd t− π

2

)
=

ϕ̇0

ωd
e−ξt sin ωd t .

E5.6 Example 5.6 Consider again the system shown in Fig. 5.16a. The
initial conditions x (0) = x0, ẋ (0) = 0 and the damping ratio
ζ = 0.01 are given.

Determine the energy which is dissipated during the first full
cycle.

Solution The initial velocity is zero. Therefore, the total energy
E0 of the system at the beginning of the first cycle is equal to the
potential energy V0 stored in the spring:

E0 = V0 =
1
2

k x2
0 .

Similarly, the total energy E1 after the first cycle is given by

E1 = V1 =
1
2

k x2
1,

where x1 is the displacement at time Td = 2 π/ωd.
According to (5.42), (5.36) and (5.40) we have

x0

x1
= eξTd → x1 = x0 e−ξTd = x0 e

− 2πζ√
1−ζ2 .

This yields the dissipated energy

ΔE = E0 − E1 =
1
2

k x2
0 −

1
2

k x2
1 =

(
1− e

− 4πζ√
1−ζ2

)
1
2

k x2
0 .

With ζ = 0.01 we obtain ΔE = 0.13 · 1
2

k x2
0. Thus, 13% of the

energy is dissipated during the first full cycle.

5.3 5.3 Forced Vibrations

5.3.1 Undamped Forced Vibrations

We will now investigate the behaviour of a system with one degree
of freedom when it is subject to an external force. Let us, as an
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illustrative example, consider the system in Fig. 5.20a. The block
is subjected to a harmonic force F = F0 cosΩt, where Ω is the
forcing frequency, i.e., the frequency of the excitation.

We measure the coordinate x from the equilibrium position of
the block in the absence of the force (F = 0). Then we obtain the
equation of motion (see Fig. 5.20b)

↓ : mẍ = − k x + F0 cosΩt → mẍ + k x = F0 cosΩt . (5.44)

In contrast to (5.10), the right-hand side of this equation is not
zero: the differential equation is inhomogeneous. We introduce the
abbreviations

ω2 =
k

m
, x0 =

F0

k
(5.45)

where ω is the natural frequency of the system and x0 is the static
elongation of the spring which is caused by a constant force F0.

��
��
��
��

1

|V |

η1

t

x

a bF =F0 cos Ω t

k

m

c d

x

k x

F

Fig. 5.20

Then (5.44) becomes

ẍ + ω2 x = ω2 x0 cosΩt . (5.46)
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The general solution of this inhomogeneous differential equation
is composed of the solution xh of the homogeneous differential
equation (ẍ + ω2 x = 0) and a particular solution xp of the inho-
mogeneous differential equation:

x = xh + xp .

The solution xh of the homogeneous equation is given by

xh = C cos (ω t− α) , (5.47a)

see Section 5.2.1. We assume the particular solution xp to be of
the form of the right-hand side:

xp = x0 V cosΩt . (5.47b)

Here, V is a dimensionless quantity which can be determined by
inserting xp into (5.46):

− x0 V Ω2 cosΩt + ω2 x0 V cosΩt = ω2 x0 cosΩt

→ V =
ω2

ω2 − Ω2
.

We now introduce the non-dimensional frequency ratio

η =
Ω
ω

. (5.48)

Then, the quantity V can be written as

V =
1

1− η2
. (5.49)

Thus, the general solution of the differential equation (5.46) is
given by

x (t) = xh + xp = C cos (ω t− α) + x0 V cos Ωt . (5.50)

The constants of integration C and α can be calculated from the
initial conditions. Note that the solution xh of the homogeneous
equation for a real system decays with time due to the ever-present
damping (see Section 5.2.3). For this reason the free vibrations
(those from the homogeneous solution) are referred to as transi-
ent vibrations. After a sufficiently long time only the solution xp
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remains. Then the displacement x(t) is represented by

x (t) = xp = x0V cos Ωt .

These vibrations are called the steady state vibrations. The quan-
tity V is the ratio of the amplitude of the vibration to the static
elongation x0. Therefore, V is called the magnification factor.

Fig. 5.20c shows the absolute value of the magnification factor
V as a function of the frequency ratio η. If the forcing frequency
Ω approaches the natural frequency ω of the system (η → 1),
the amplitudes of the vibration approach infinity (V →∞). This
behaviour is called resonance. In the case of η → 0 we get V → 1
(static displacement in the case of a very small forcing frequency),
for η → ∞ we have |V | → 0 (vanishing displacement for a very
large forcing frequency).

The particular solution (5.47b) is not valid in the case of re-
sonance (Ω = ω), since our assumed form does not satisfy the
governing equation. In this case,

xp = x0V̄ t sin Ωt = x0V̄ t sin ωt

satisfies the differential equation. We insert the derivatives

ẋp = x0V̄ sin ωt + x0V̄ ωt cos ωt,

ẍp = 2 x0V̄ ω cos ωt− x0V̄ ω2 t sin ωt

into (5.46) to obtain

2 x0V̄ ω cos ωt−x0V̄ ω2 t sin ωt + ω2 x0V̄ t sin ωt = ω2 x0 cos ωt

→ V̄ =
ω

2
.

Thus, the particular solution

xp =
1
2

x0 ωt sinωt

represents a “vibration” with a linearly increasing amplitude (Fig.
5.20d).
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E5.7 Example 5.7 A block (mass m) is connected to a wall by a spring
(spring constant k1). A second spring (spring constant k2) connects
the block with a circular disk. The disk (radius r, eccentricity e)
rotates and causes the block to vibrate. The end point B of the
second spring remains in contact with the smooth surface of the
disk at all times (Fig. 5.21a).

Determine the circular frequency Ω of the disk so that the am-
plitude of the steady state vibration of the block is equal to 3 e.

Solution We measure the coordinate x from the static equilibrium
position of the block when the disk is in the position depicted in
Fig. 5.21a. The position of point B is described by the additional
coordinate xB (Fig. 5.21b). The elongation of the second spring
is given by x− xB .

������������������

�������������������
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�
�

�
�
�
�

k1 k2

b c

a

r

eB

m

Ω

k2 (x−xB)
M ′

B

k1 x

e

MΩt

x

e sin Ω t

xB

Fig. 5.21

Thus, we obtain the equation of motion

← : mẍ = −k1x− k2 (x− xB) → mẍ + (k1 + k2)x = k2 xB .(a)

When the disk rotates, its center moves from the initial position
M to the new position M ′ during the time t (Fig. 5.21c). The
displacement of point B coincides with the horizontal component
of the displacement of M , i.e., xB = e sin Ωt. Substituting into (a)
yields

ẍ + ω2 x =
k2

m
e sinΩt (b)
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with

ω2 =
k1 + k2

m
. (c)

The general solution of this inhomogeneous differential equation
is composed of the solution xh of the homogeneous equation and a
particular solution xp of the inhomogeneous equation. We consider
only the steady state vibration and therefore only the solution xp.
We assume xp to be of the form of the right-hand side of Equation
(b):

xp = X sin Ωt ,

where the amplitude X is as yet unknown. Introduction into (b)
yields

−Ω2 X + ω2 X =
k2

m
e → X =

k2 e

m (ω2 − Ω2)
.

The graph X versus η was qualitatively given in Fig. 5.20c. The
condition |X | = 3 e and Equation (c) lead to two frequencies which
satisfy the given condition (one frequency for η < 1 and one fre-
quency for η > 1):

k2 e

m (ω2 − Ω2)
= ±3 e →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω2

1 = ω2 − k2

3 m
=

3 k1 + 2 k2

3 m
,

Ω2
2 = ω2 +

k2

3 m
=

3 k1 + 4 k2

3 m
.

5.3.2 Damped Forced Vibrations

In this section we will investigate damped forced vibrations, re-
stricting ourselves to viscous damping. Thereby we will consider
the following three cases.

Case 1: Excitation through a force or via a spring

Let us first consider a system which consists of a block, a spring
and a damper as shown in Fig. 5.22a. The block is subjected to a
harmonic force F = F0 cosΩt where Ω is a given constant forcing
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frequency. The equation of motion is obtained as

↑ : mẍ = − kx− dẋ + F0 cosΩt → mẍ + dẋ + kx = F0 cosΩt .

(5.51)
If we introduce the abbreviations

2 ξ =
d

m
, ω2 =

k

m
, x0 =

F0

k
(5.52)

(cf. (5.31) and (5.45)) we obtain the differential equation

ẍ + 2 ξ ẋ + ω2 x = ω2 x0 cosΩt . (5.53)

We will now consider the system in Fig. 5.22b where the free
end of the spring is forced to move according to xS = x0 cosΩt.
Note that no external force acts on the block. Then the elongation
of the spring is given by xS − x which leads to the equation of
motion for the block:

↑ : mẍ = k (xS − x) − d ẋ → mẍ + d ẋ + k x = k x0 cosΩt .

With the abbreviations (5.52) we again obtain (5.53):

ẍ + 2 ξ ẋ + ω2 x = ω2 x0 cosΩt .

Thus, the motions of the blocks of both systems are described by
the same equation.

Case 2: Excitation via a damper

Fig. 5.22c shows a system where the free end of the damper under-
goes the prescribed motion xζ = x0 sin Ωt. The damping force in
the dashpot is proportional to the relative velocity ẋζ− ẋ between
the piston and the encasement. Thus, the equation of motion is
given by

↑ : mẍ = − k x+d (ẋζ− ẋ) → mẍ+d ẋ+k x = d Ωx0 cosΩt .

With the abbreviations

2 ξ =
d

m
, ω2 =

k

m
, ζ =

ξ

ω
, η =

Ω
ω

(5.54)
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Fig. 5.22

(cf. (5.31), (5.36) and (5.48)) we obtain

ẍ + 2 ξ ẋ + ω2 x = 2 ξΩ x0 cosΩt

→ ẍ + 2 ξ ẋ + ω2 x = 2ζηω2x0 cosΩt . (5.55)

Case 3: Unbalanced Rotation

The block (mass m0) in Fig. 5.22d is forced to vibrate by a rota-
ting eccentric mass me. The constant frequency Ω of the rotation
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is given. The positions of the block and of the eccentric mass,
respectively, are described by the coordinates x and xe, counted
upwards from the same position. Then the relation

xe = x + r cosΩt → ẍe = ẍ− r Ω2 cosΩt

can be found from the figure. We denote the force in the bar
connecting the block and the eccentric mass by S. The equations
of motion in the vertical direction for the masses me and m0 are
then found to be (see the free-body diagrams)

↑ : meẍe = −S cosΩt,

↑ : m0ẍ = − k x− d ẋ + S cosΩt .

We eliminate S and insert ẍe from above to obtain

(m0 + me)ẍ + d ẋ + k x = mer Ω2 cosΩt .

Now we introduce the abbreviations

m = m0 + me, x0 =
me

m
r (5.56)

and use (5.54). This leads to the equation of motion for m0:

ẍ + 2 ξ ẋ + ω2 x = ω2 η2x0 cosΩt . (5.57)

The three equations of motion (5.53, 5.55 and 5.57) differ only
in the factor in front of the cosine function on the right-hand sides.
Therefore, with ζ = ξ/ω they can be written as a single equation:

ẍ + 2 ζω ẋ + ω2 x = x0Eω2 cosΩt . (5.58a)

Here, the value of E has to be chosen according to the type of
forcing:

Case 1: E = 1,

Case 2: E = 2 ζ η,

Case 3: E = η2 .

(5.58b)



5.3 Forced Vibrations 273

The general solution of (5.58a) is composed of the solution xh of
the homogeneous differential equation and a particular solution xp

of the inhomogeneous differential equation (cf. the undamped for-
ced vibrations). According to Section 5.3.1 the solution xh decays
exponentially with time. Therefore this solution which represents
the transient vibrations may be neglected compared with the par-
ticular solution xp after a sufficiently long time.

We assume the steady state vibrations xp to be of the form of
the right-hand side of the differential equation (cf. the undamped
vibrations). However, we have to also allow for a phase angle ϕ

between the applied force and the response:

xp = x0 V cos(Ωt− ϕ) . (5.59)

If we insert

xp = x0 V (cosΩt cosϕ + sin Ωt sinϕ),

ẋp = x0 V Ω (− sinΩt cosϕ + cosΩt sinϕ),

ẍp = x0 V Ω2 (− cosΩt cosϕ− sin Ωt sin ϕ)

into the differential equation (5.58a) we obtain

x0V Ω2 (− cosΩt cosϕ− sin Ωt sin ϕ)

+ 2 ζ x0V Ωω (− sin Ωt cosϕ + cosΩt sin ϕ)

+ x0 V ω2 (cos Ωt cosϕ + sin Ωt sin ϕ) = x0Eω2 cosΩt .

With the frequency ratio η = Ω/ω this leads to

(−V η2 cosϕ + 2 ζV η sin ϕ + V cosϕ− E) cosΩt

+ (−V η2 sinϕ− 2 ζV η cosϕ + V sin ϕ) sin Ωt = 0 .

This equation has to be satisfied at all times t. Therefore the terms
in both parentheses have to vanish:

V (− η2 cosϕ + 2 ζ η sinϕ + cosϕ) = E, (5.60a)

− η2 sin ϕ− 2 ζ η cosϕ + sin ϕ = 0 . (5.60b)
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We can calculate the phase angle ϕ from (5.60b):

tan ϕ =
2 ζ η

1− η2
. (5.61)

Using the standard trigonometric relations

sin ϕ =
tan ϕ√

1 + tan2 ϕ
, cosϕ =

1√
1 + tan2 ϕ

we obtain the magnification ratio V , also called frequency response
from (5.60a):

V =
E√

(1− η2)2 + 4 ζ2η2
. (5.62)

Corresponding to the three values of E in (5.58b) we obtain
three different magnification factors Vi. They are displayed in the
Figs. 5.23a–c for several values of the damping factor ζ. If the
excitation of the system is due to a force acting on the block or if
the system is forced into vibration via the spring (case 1: E = 1),
the magnification factor is given by V1 (Fig. 5.23a) where

V1 (0) = 1, V1 (1) =
1

2 ζ
, V1 (η →∞)→ 0 .

If ζ2 � 0.5 the curves take on their maximum values V1m =
1/(2 ζ

√
1− ζ2) at ηm =

√
1− 2 ζ2. Note that the maximum va-

lues are not located at the positions of the natural frequencies of
the damped vibrations. In the case of small damping (ζ � 1) we
get ηm ≈ 1 and V1m ≈ 1/2ζ (resonance); in the limit ζ → 0 the
magnification factor V1 converges towards the magnification fac-
tor (5.49). If ζ2 > 0.5 the curves decrease monotonously towards
zero.

In the case of the forcing via the damper (case 2: E = 2 ζη) we
obtain V2 (Fig. 5.23b). Here,

V2 (0) = 0, V2 (1) = 1, V2 (η →∞)→ 0 .
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The maximum value V2m = 1 is independent of ζ and is always
located at ηm = 1.

An unbalanced rotation (case 3: E = η2) is represented by V3

(Fig. 5.23c) where

V3 (0) = 0, V3 (1) =
1

2 ζ
, V3 (η →∞) → 1 .

If ζ2 � 0.5 the curves attain their maximum values V3m = 1/(2 ζ√
1− ζ2) at ηm = 1/

√
1− ζ2. For ζ2 > 0.5 they increase mono-

tonically towards 1. Small damping leads to ηm ≈ 1, V3m ≈ 1/2ζ

(cf. case 1).
The phase angle ϕ is independent of E, see (5.61). Therefore

it is the same for the three cases. It represents the delay of the
response relative to the excitation. Fig. 5.23d shows ϕ as a function
of the frequency ratio η. Here we have

ϕ (0) = 0, ϕ (1) = π/2, ϕ (η →∞)→ π .
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In the case of a small forcing frequency (η � 1) excitation and
response are “in phase” (ϕ ≈ 0); in the case of a large forcing
frequency (η � 1) they are 180◦ out of phase (ϕ ≈ π). In the
limit ζ → 0 we have a discontinuity at η = 1, namely a jump of
the phase angle ϕ from 0 to π.

C

R

V(t) L

Fig. 5.24

Table 5.1

Mechanical system Elektrical circuit

x displacement Q electric charge

v = ẋ velocity I = Q̇ electric current

m mass L inductance

d damping coefficient R resistance

k spring constant 1/C 1/capacitance

F force V voltage

Finally we want to show that there exists a relationship between
an electrical circuit and a vibrating mechanical system. As an
example let us consider the electrical circuit shown in Fig. 5.24. It
consists of a capacitor (capacitance C), an inductor (inductance
L) and a resistor (resistance R). If a voltage V(t) = V0 cosΩt

is applied, the change of the electric charge Q (electric current
I = Q̇) is described by
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LQ̈ + RQ̇ +
1
C

Q = V0 cosΩt .

If we replace L by m, R by d, 1/C by k,V0 by F0 and Q by x,
we obtain the equation of motion (5.51) of a vibrating mechanical
system.

Thus, there exists an analogy between an electrical circuit and
a mechanical system. The corresponding quantities are shown in
Table 5.1.

E5.8Example 5.8 A device to measure vibrations is schematically shown
in Fig. 5.25a. The encasement is forced into harmonic vibration
according to xG = x0 cosΩt. The amplitudes of the forcing, x0,
and of the response are supposed to coincide for a large range of
the forcing frequency Ω and for arbitrary values of the damping
coefficient.

Determine the required parameters k and m.

�������������
�������������
�������������
�������������

x

b

m

k d

a

xG =x0 cos Ω t

k (x−xG) d (ẋ−ẋG)

Fig. 5.25

Solution We introduce the coordinate x, measured from a fixed
point as shown in Fig. 5.25b. Then the displacement and the velo-
city, respectively, of the mass relative to the encasement are given
by x− xG and ẋ− ẋG. This yields the equation of motion

↑ : mẍ = − k (x − xG)− d (ẋ− ẋG) . (a)

The device measures the displacement xr = x − xG relative
to the encasement. Using ẋr = ẋ − ẋG, ẍr = ẍ − ẍG and ẍG =
−x0Ω2 cosΩt, we obtain from (a)
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mẍr + d ẋr + k xr = mΩ2 x0 cosΩt .

Dividing by m and using the abbreviations (5.54) leads to a dif-
ferential equation which is analogous to (5.57), case 3:

ẍr + 2ξ ẋr + ω2xr = ω2 η2 x0 cosΩt .

The steady state solution is given by (5.59):

xr = xp = x0 V3 cos (Ωt− ϕ) .

The measured amplitude and the amplitude of the forcing coincide
if the magnification factor is equal to 1, i.e. V3 = 1. Fig. 5.23c
shows that this requirement is approximately satisfied for η � 1,
independent of the damping ratio ζ. Thus,

ω2 � Ω2 → k

m
� Ω2 .

Hence, the natural frequency of the undamped vibrations has to
be much smaller than the forcing frequency (soft spring!).

5.4 5.4 Systems with two Degrees of Freedom

5.4.1 Free Vibrations

In the following we will investigate free vibrations of systems with
two degrees of freedom. As an example let us consider the system
shown in Fig. 5.26a which consists of two blocks and two springs.
We introduce the two coordinates x1 and x2 which describe the
positions of the blocks. The coordinates are measured from the
equilibrium positions of the blocks (Fig. 5.26b).

To obtain the equations of motion we make use of Lagrange’s
equations of the second kind. The kinetic and the potential energy,
respectively, are given by

T = 1
2m1 ẋ2

1 + 1
2m2 ẋ2

2,

V = 1
2k1 x2

1 + 1
2k2 (x2 − x1)2 .

(5.63)
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1, 78 A1

0, 28 A2

Fig. 5.26

With the Lagrangian L = T−V we obtain the equations of motion
from (4.36):

m1 ẍ1 + k1 x1 − k2(x2 − x1) = 0,

m2 ẍ2 + k2 (x2 − x1) = 0

or

m1 ẍ1 + (k1 + k2)x1 − k2 x2 = 0,

m2 ẍ2 − k2 x1 + k2 x2 = 0 .
(5.64)

We assume the solution of this system of two coupled homoge-
neous differential equations of second order with constant coeffi-
cients to be of the form

x1 = A cosωt, x2 = C cosωt , (5.65)

where A, C and ω are as yet unknown. We insert (5.65) into (5.64)
and obtain the homogeneous algebraic system of equations

(k1 + k2 −m1 ω2)A− k2 C = 0,

−k2 A + (k2 −m2 ω2)C = 0
(5.66)
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for the constants A and C. The trivial solution A = C = 0 leads
to x1 = x2 = 0 (see (5.65)). In order to find a nontrivial solution,
the determinant of the matrix of the coefficients has to vanish:

Δ(ω) =

∣∣∣∣∣∣
k1 + k2 −m1 ω2 − k2

− k2 k2 −m2 ω2

∣∣∣∣∣∣ = 0 . (5.67)

This yields the characteristic equation

(k1 + k2 −m1 ω2)(k2 −m2 ω2)− k2
2 = 0 (5.68)

or

m1 m2 ω4 − (m1 k2 + m2 k1 + m2 k2)ω2 + k1 k2 = 0 . (5.69)

The characteristic equation is a quadratic equation for ω2. Its
solutions ω2

1 and ω2
2 are positive according to Decartes’ rule of

signs:

ω2
1 ω2

2 =
k1 k2

m1 m2
> 0, ω2

1 + ω2
2 =

m1 k2 + m2 k1 + m2 k2

m1 m2
> 0 .

(5.70)

The two values ω1 and ω2 are the two natural frequencies (eigen-
frequencies) of the system. We will number them so that ω2 > ω1.

The constants A and C are not independent. To find the re-
lationship between these constants we insert one of the natural
frequencies, for example ω1, into the first equation of (5.66). Then
we find the ratio between the corresponding amplitudes A1 and
C1:

(k1 + k2 −m1 ω2
1)A1 − k2 C1 = 0

→ μ1 =
C1

A1
=

k1 + k2 −m1 ω2
1

k2
. (5.71)

Note that the same result is obtained if we insert ω1 into the
second equation of (5.66). With (5.71). Equation (5.65) becomes

x1 = A1 cosω1t, x2 = μ1A1 cosω1t . (5.72)
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If we insert the second natural frequency ω2 into one of the
equations (5.66) we obtain

μ2 =
C2

A2
=

k1 + k2 −m1 ω2
2

k2
(5.73)

and

x1 = A2 cosω2t, x2 = μ2A2 cosω2t . (5.74)

We find two additional independent solutions of (5.64) if we
replace the cosine function in (5.72) and (5.74), respectively, by
the sine function. The general solution of (5.64) is a linear combi-
nation of these four independent solutions. Thus, it is given by

x1 = A1 cosω1t + B1 sinω1t + A2 cosω2t + B2 sinω2t,

x2 = μ1 A1 cosω1t + μ1 B1 sin ω1t + μ2 A2 cosω2t + μ2 B2 sin ω2t .
(5.75)

The four constants of integration can be calculated from the initial
conditions. Note that ω1, ω2, μ1 and μ2 are independent of the
initial conditions.

If the initial conditions are chosen appropriately all the integra-
tion constants except one in the general solution (5.75) are zero.
Then both blocks move in the form of a cosine (or sine) function
only with the first natural frequency or only with the second one
(cf. (5.72) or (5.74)). The blocks attain their maximum displace-
ments simultaneously and pass their equilibrium positions simul-
taneously. Such motions are called principal modes of vibration or
eigenmodes.

We will now continue the example using the parameters m1 =
m, m2 = 2 m, and k1 = k2 = k. Then (5.69) yields the characte-
ristic equation

2 m2ω4 − 5c mω2 + k2 = 0 (5.76)

with the solutions

ω2
1 =

1
4

(5−
√

17)
k

m
= 0.219

k

m
,

ω2
2 =

1
4

(5 +
√

17)
k

m
= 2.28

k

m
.

(5.77)
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Hence, the natural frequencies are

ω1 = 0.468

√
k

m
, ω2 = 1.51

√
k

m
(5.78)

and the ratios between the amplitudes follow from (5.71) and
(5.73):

μ1 =
2 k −mω2

1

k
= 2− m

k
ω2

1 = 1.78,

μ2 =
2 k −mω2

2

k
= 2− m

k
ω2

2 = − 0.28 .

(5.79)

Let us first assume that both blocks vibrate with the first na-
tural frequency ω1 (first principal mode of vibration). Then both
displacements x1 and x2 always have the same algebraic sign sin-
ce μ1 > 0: both blocks always move in the same direction; they
vibrate “in phase”. On the other hand, if the vibration takes place
with the second natural frequency ω2 (second principal mode of
vibration) the algebraic signs of x1 and x2 are always different
because μ2 < 0: both blocks always move in opposite directions;
they vibrate 180◦ out of phase. Fig. 5.26c illustrates the displa-
cements at a fixed time, i.e. the mode shapes, for both cases. A
vibration with arbitrary initial conditions is obtained through a
superposition of the two principal modes.

The equations of motion (5.64) are coupled in the coordinates
x1 and x2. If we introduce the matrices

m =

[
m1 0

0 m2

]
, k =

[
k1 + k2 − k2

− k2 k2

]
(5.80)

and the column vectors

x =

[
x1

x2

]
, ẍ =

[
ẍ1

ẍ2

]
(5.81)

we can write them in the form of a matrix equation:

mẍ + k x = 0 . (5.82)
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Frequently the equations of motion are also coupled in the ac-
celerations ẍ1 and ẍ2 (cf. Example 5.9). Then the matrix m in
(5.82) is no longer a diagonal matrix. Thus in the general case the
matrices m and k are given by

m =

[
m1 1 m1 2

m2 1 m2 2

]
, k =

[
k1 1 k1 2

k2 1 k2 2

]
. (5.83)

Note that the type of the coupling depends on the choice of the
coordinates, not on the mechanical system. Coordinates can also
be chosen where k is diagonal.

To solve the differential equation (5.82) a solution in the form
of x = A eiωt may be assumed. This is equivalent to (5.65); via
the characteristic equation it also leads to the natural frequencies
and the principal modes.

E5.9Example 5.9 A cantilever beam (with negligible mass, flexural
rigidity EI) carries two mass points (m1 = 2 m, m2 = m) as
shown in Fig. 5.27a.

Determine the natural frequencies and the principal modes of
vibration.

Solution The position of the system is uniquely determined by
the deflections w1 and w2 of the two mass points (Fig. 5.27b).
Therefore the system has two degrees of freedom.

If the mass points are displaced they are subjected to the resto-
ring forces F1 and F2 (Fig. 5.27c). Thus, the equations of motion
are

m1 ẅ1 = −F1, m2 ẅ2 = −F2 . (a)

The relationship between the forces F1, F2 and the deflections
w1, w2 can be obtained with the aid of the influence coefficients
αik (see Volume 2, Section 6.4):

w1 = α1 1 F1 + α1 2 F2,

w2 = α2 1 F1 + α2 2 F2 .
(b)

Here, αik is the deflection at position i due to a unit force at
position k. If we insert the forces according to (a) into (b) we get
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a c
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F1

F2

w1

l
2

l
2

A1

m1
EI

m2

w2

A2

2nd eigenmode

Fig. 5.27

α1 1 m1ẅ1 + α1 2 m2 ẅ2 + w1 = 0,

α2 1 m1ẅ1 + α2 2 m2 ẅ2 + w2 = 0 .

With the influence coefficients

α1 1 =
l3

24 EI
, α2 2 =

l3

3 EI
, α1 2 = α2 1 =

5 l3

48 EI
,

the abbreviation α =
l3

48 EI
and the parameters m1 = 2 m, m2 =

m we obtain

4 αm ẅ1 + 5 αm ẅ2 + w1 = 0,

10 αm ẅ1 + 16 αm ẅ2 + w2 = 0 .

Now we assume a solution of the form

w1 = A cosωt, w2 = C cosωt

which leads to the system of linear equations

(1− 4 αm ω2)A− 5 αm ω2 C = 0,

− 10 αm ω2A + (1 − 16 αm ω2)C = 0 .
(c)



5.4 Systems with two Degrees of Freedom 285

The characteristic equation

14 α2 m2 ω4 − 20 αm ω2 + 1 = 0

yields the natural frequencies:

ω2
1 =

10−√86
14 αm

= 0.0519/(αm) → ω1 = 0.23/
√

αm,

ω2
2 =

10 +
√

86
14 αm

= 1.377/(αm) → ω2 = 1.17/
√

αm .

We obtain the ratios between the amplitudes by inserting the na-
tural frequencies into (c):

μ1 =
C1

A1
=

1− 4 αm ω2
1

5 αm ω2
1

= 3.06 ,

μ2 =
C2

A2
=

1− 4 αm ω2
2

5 αm ω2
2

= −0.65 .

The principal modes of the vibration (Fig. 5.27d) are given by
these ratios. The mass points vibrate in phase in the first principal
mode and 180◦ out of phase in the second one.

E5.10Example 5.10 A frame consists of two rigid horizontal beams (mas-
ses m1 and m2) which are rigidly attached to two elastic columns
(with negligible masses) as shown in Fig. 5.28a. Given: m1 = 1000
kg, m2 = 3

2
m1, E = 210 GPa, I = 5100 cm4, h = 4.5m.

Determine the natural frequencies and the principal modes of
vibration.

Solution Since the columns are elastic the beams undergo hori-
zontal displacements (cf. Example 5.4). We denote these displa-
cements by w1 and w2 (Fig. 5.28b). The frame is replaced by the
equivalent model in Fig. 5.28c where the spring constants

k1 = k2 = k =
24 EI

h3
(a)

are known from Example 5.4 (two columns in parallel). Thus,
the kinetic energy T and the potential energy V are given by
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(cf. (5.63))

T =
1
2

m1 ẇ2
1 +

1
2

m2 ẇ2
2 =

1
2

m(ẇ2
1 +

3
2

ẇ2
2),

V =
1
2

k (w1 − w2)2 +
1
2

kw2
2,

where m = m1. With L = T − V , Lagrange’s equations (4.36)
yield

m ẅ1 + k w1 − k w2 = 0,

3 m ẅ2 − 2 k w1 + 4 k w2 = 0 .

Assuming a solution in the form

w1 = A eiωt, w2 = C eiωt

we obtain the system of linear equations
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(k −m ω2)A− k C = 0,

− 2 k A + (4 k − 3 m ω2)C = 0 .
(b)

The characteristic equation

3 m2 ω4 − 7 k m ω2 + 2 k2 = 0

has the solutions

ω2
1 =

k

3 m
, ω2

2 =
2 k

m
.

Using (a) we finally get

ω1 = 2

√
2 EI

m h3
= 30.7 s−1, ω2 = 4

√
3 EI

m h3
= 75.1 s−1 .

These circular frequencies are equivalent to the frequencies f1 =
4.9 Hz and f2 = 12.0 Hz.

The ratios between the amplitudes follow after substituting the
natural frequencies into (b):

μ1 =
C1

A1
= 1− m1

k
ω2

1 =
2
3

,

μ2 =
C2

A2
= 1− m1

k
ω2

2 = − 1 .

The mode shapes are shown in Fig. 5.28d.

5.4.2 Forced Vibrations

We will investigate forced vibrations of a two degrees of freedom
system with the aid of an example only. Let us consider the system
in Fig. 5.29a. A block (mass m1) is supported by two springs
(spring constant of each spring k1/2). It can move in the vertical
direction and is subjected to a harmonic force F = F0 cosΩt. A
second block (mass m2) is suspended from the first one by another
spring (spring constant k2). We measure the coordinates x1 and
x2 from the equilibrium positions (F = 0) of m1 and m2. Then
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we obtain the equations of motion (see Fig. 5.29b)

m1 ẍ1 = −2 · 1
2 k1 x1 + k2 (x2 − x1) + F0 cosΩt,

m2 ẍ2 = −k2 (x2 − x1)

or

m1 ẍ1 + (k1 + k2)x1 − k2 x2 = F0 cosΩt,

m2 ẍ2 − k2 x1 + k2 x2 = 0 .
(5.84)

This is a system of inhomogeneous differential equations of se-
cond order. The general solution xj (j = 1, 2) is composed of the
solution xjh of the homogeneous differential equations and a par-
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ticular solution xjp of the inhomogeneous differential equations:
xj = xjh + xjp. Since the solution xjh decays due to the damping
which is always present in real systems (cf. Section 5.3.2) we will
consider only the particular solution xjp. We assume this solution
of (5.84) to be of the form of the right-hand side:

x1p = X1 cosΩt, x2p = X2 cosΩt .

Introduction into (5.84) leads to

[(k1 + k2 −m1 Ω2)X1 − k2 X2] cosΩt = F0 cosΩt,

[− k2 X1 + (k2 −m2 Ω2)X2] cosΩt = 0

and thus to the inhomogeneous system of linear equations(
k1 + k2

m1
− Ω2

)
X1 − k2

m1
X2 =

F0

m1
,

− k2

m2
X1 +

(
k2

m2
− Ω2

)
X2 = 0

(5.85)

for the amplitudes X1 and X2. Equations (5.85) have the solution

X1 =

F0

m1

(
k2

m2
− Ω2

)
Δ(Ω)

, X2 =

F0

m1

k2

m2

Δ(Ω)
, (5.86)

where

Δ(Ω) =
(

k1 + k2

m1
− Ω2

)(
k2

m2
− Ω2

)
− k2

2

m1 m2
(5.87)

is the determinant of the matrix of the coefficients of (5.85).
Equation (5.87) can be simplified. According to Section 5.4.1

the natural frequencies ω1 and ω2 of the free vibrations follow
from the characteristic equation

Δ(ω) =
(

k1 + k2

m1
− ω2

)(
k2

m2
− ω2

)
− k2

2

m1 m2
= 0 . (5.88)

It has the solutions ω2
1 and ω2

2 and can therefore be written in the
form

Δ(ω) = (ω2 − ω2
1)(ω

2 − ω2
2) = 0 . (5.89)
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The comparison of (5.87) and (5.88) yields with (5.89) the relation

Δ(Ω) = (Ω2 − ω2
1)(Ω2 − ω2

2) .

Thus, (5.86) becomes

X1 =

F0

m1

(
k2

m2
− Ω2

)
(Ω2 − ω2

1)(Ω2 − ω2
2)

, X2 =

F0

m1

k2

m2

(Ω2 − ω2
1)(Ω2 − ω2

2)
. (5.90)

The graphs of the amplitudes X1 and X2 versus the forcing fre-
quency Ω are qualitatively shown in Fig. 5.29c. The amplitudes
approach infinity (denominator equal to zero, undamped vibrati-
ons) for Ω = ω1 and Ω = ω2: there are two resonant frequencies.

If the forcing frequency is equal to ΩT =
√

k2/m2, then the
amplitude X1 vanishes: X1 = 0. In this case the mass m1 does not
move; only the mass m2 vibrates. The frequency of this vibration
is given by the eigenfrequency

√
k2/m2 of the single-degree-of-

freedom system consisting of the spring k2 and the mass m2. This
phenomenon can be exploited if the displacement of the mass m1

and thus the forces which are transferred to the ground from the
springs are to be kept small. The spring-mass system k2 −m2 is
called a dynamic vibration absorber or a tuned mass damper.

5.5 5.5 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E5.11 Example 5.11 The system in Fig 5.30 consists of three bars and a
beam (with negligible masses) and a block (mass m).

Determine the circular frequency
of the free vertical vibrations.
Result: see (A)

ω =
1
l

√
1

ml

(
6 EI +

EA l2

1 +
√

2

)
.

l l

l

EA

EA

m

EA

EI

Fig. 5.30
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E5.12Example 5.12 The system in Fig. 5.31 consists
of a homogeneous drum (mass M , radius r), a
block (mass m), a spring (spring constant k)
and a string (with negligible mass). The sup-
port of the drum is frictionless. Assume that
there is no slip between the string and the
drum.

Determine the natural frequency of the sys-
tem.

Result: see (B) ω =
√

2k

M + 2m
.

c

M
r

m

Fig. 5.31

E5.13Example 5.13 Two drums rotate in opposite directions as shown
in Fig. 5.32. They support a homogeneous board of weight W .
The coefficient of kinetic friction
between the drums and the
board is μ.

Show that the board under-
goes a harmonic vibration and
determine the natural frequency.

x

a

Ω Ω

W

μ

Fig. 5.32

Results: see (A) ẍ + 2μ
g

a
x = 0 , ω =

√
2μ

g

a
.

E5.14Example 5.14 A homogeneous bar (weight W = mg, length l) is
submerged in a viscous fluid and undergoes vibrations about point
A (Fig. 5.33). The drag force Fd acting
on every point of the bar is proportio-
nal to the local velocity (proportiona-
lity factor β).

Derive the equation of motion. Ass-
ume small amplitudes and neglect the
buoyancy. Calculate the value β = β∗

for critical damping.

ϕ

A

l

Fig. 5.33

Results: see (A) ϕ̈ +
(

βl

m

)
ϕ̇ +

(
3g

2l

)
ϕ = 0 , β∗ =

m

l

√
6 g

l
.
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E5.15 Example 5.15 The pendulum of a clock consists of a homogeneous
rod (mass m, length l) and a homogeneous disk (mass M , radius
r) whose center is located at a distance a from point A (Fig. 5.34).

Assume small amplitudes and deter-
mine the natural frequency of the cor-
responding oscillations. Choose m = M

and r � a and calculate the ratio
a/l which yields the maximum eigen-
frequency.

����A

M

m

2r

l
a

Fig. 5.34Results: see (B) ω =
√

(ml + 2Ma)g
2ΘA

with ΘA = m l2/3 + M (r2 + 2a2)/2 ,
a

l
=

1
2

(√
7
3
− 1

)
.

E5.16 Example 5.16 The system in Fig 5.35
consists of a homogeneous pulley
(mass M , radius r), a block (mass m)
and a spring (spring constant k).

Determine the equation of motion
for the block and its solution for the
initial conditions x(0) = 0, v(0) = v0.
Neglect the mass of the string.

���
���
���
���

����

x

M

A

m

r

k

Fig. 5.35Results: see (A)

ẍ+
k

4m + 3
2
M

x = 0 → x(t) =
v0

ω
sin ωt , ω =

√
k

4m + 3
2
M

.

E5.17 Example 5.17 A wheel (mass m, radius r) rolls without slipping
on a vertical circular path (Fig. 5.36). The mass of the rod (length
l) can be neglected; the joints are frictionless.

Derive the equation of mo-
tion and determine the natu-
ral frequency of small oscilla-
tions.

�������
�������
�������
�������

ϕ
m

r

l

A

Fig. 5.36

Results: see (B)

ϕ̈ +
2g

3l
sin ϕ = 0 , ω =

√
2g

3l
.
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E5.18Example 5.18 The simple pendulum in Fig. 5.37 is attached to a
spring (spring constant k) and a dashpot (damping coefficient d).
a) Determine the maximum value of

the damping coefficient d so that
the system undergoes vibrations.
Assume small amplitudes.

b) Find the damping ratio ζ so that
the amplitude is reduced to 1/10
of its initial value after 10 full cy-
cles. Calculate the corresponding
period Td.

�
�
�

�
�
�

�
�
�
�

a

a
d

m

k

Fig. 5.37

Results: see (A)

d < 8

√
km +

gm2

2a
, ζ = 0.037 , Td = 2π

√
2am

2ak + gm
.

E5.19Example 5.19 The structure in Fig. 5.38 consists of an elastic beam
(flexural rigidity EI, axial rigidity EA→∞, with negligible mass)
and three rigid bars (with negligible masses). The block (mass m)
is suspended from a spring (spring constant k).

Determine the eigenfrequency of the vertical oscillations of
the block.

Fig. 5.38

�
�
�
�
�

�
�
�
�
�

k

a

a a a

m

Result: see (B) ω =
√

k EI

(k a3 + EI)m
.
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E5.20 Example 5.20 A rod (length l, with negligible mass) is elastically
supported at point A (Fig. 5.39). The rotational spring (spring
constant kT ) is unstretched for ϕ = 0. The rod carries a point
mass m at its free end.

Derive the equation of motion.
Determine the spring constant so
that ϕ = π/6 is an equilibrium posi-
tion. Calculate the natural frequen-
cy of small oscillations about this
equilibrium position.

g

m

kT

l

ϕ

A

Fig. 5.39

Results: see (B)

ϕ̈ =
g

l
cosϕ− kT

ml2
ϕ , kT =

3
√

3
π

mgl , ω =

√√√√(
1
2

+
3
√

3
π

)
g

l
.

E5.21 Example 5.21 A single storey frame consists of two rigid columns
(with masses negligible), a rigid beam of mass m and a spring-
dashpot system as shown in Fig. 5.40.
The ground is forced to vibration by
an earthquake; the acceleration üE =
b0cosΩt is known from measurements.

Determine the maximum amplitude
of the steady state vibrations. Assume
that the system is underdamped and
that the vibrations have small ampli-
tudes. ����

����
����
����

�����
�����
�����
�����

d

üE

m

k

45◦

Fig. 5.40
Result: see (A) A = 2

√
2

b0

d

√
m3

k
.

E5.22 Example 5.22 The undamped system in Fig. 5.41 consists of a
block (mass m = 4 kg) and a spring (spring constant k = 1
N/m). The block is subjected to a force F (t). The initial conditions
x(0) = x0 = 1 m, ẋ(0) = 0 and the response

x(t) = x0

[
cos

t

2t0
+ 20

(
1− cos

t− T

2t0

)
〈t− T 〉0

]
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to the excitation are given. Here,
t0 = 1 s, T = 5 s and 〈t− T 〉0 = 0
for t < T and 〈t − T 〉0 = 1 for
t > T .

Calculate the force F (t). ���������
���������
���������
���������

���������
���������
���������
���������F (t)

x(t)

m
k

Fig. 5.41

Result: see (B) F (t) = 0 for t < T , F (t) = 20 N for t > T .

E5.23Example 5.23 A simplified model of a car (mass m) is given by
a spring-mass system (Fig. 5.42). The car drives with constant
velocity v0 over an uneven surface in the form of a sine function
(amplitude U0, wave length L).
a) Derive the equation of moti-

on and determine the forcing
frequency Ω.

b) Find the amplitude of the ver-
tical vibrations as a function
of the velocity v0.

x

L

k
U0

v0

m

Fig. 5.42

c) Calculate the critical velocity vc (resonance!).
Results: see (A) mẍ + kx = k U0cosΩt ,

Ω =
2πv0

L
, x0 =

U0

1− Ω2 m
k

, vc =
L

2π

√
k

m
.

E5.24Example 5.24 A homogeneous wheel (mass m) is attached to a
spring (spring constant k). The
wheel rolls without slipping on
a rough surface which moves
according to the function u =
u0cosΩt (Fig. 5.43).
a) Determine the amplitude of

the steady state vibrations.
��
��
��
��

��
��
��
��

x

k C

m

r

u
μ0

Fig. 5.43

b) Calculate the coefficient μ0 of static friction which is necessary
to prevent slipping.

Results: see (A) |x0| = u0

3
∣∣∣∣23 k

mΩ2
− 1

∣∣∣∣ , μ0 ≥ u0Ω2

3g

∣∣∣∣∣∣∣
k

mΩ2
− 1

2
3

k

mΩ2
− 1

∣∣∣∣∣∣∣ .
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5.6 5.6 Summary
• Differential equation for harmonic vibrations:

ẍ + ω2 x = 0 → x = C cos(ωt− α) ,

ω = 2π/T = 2π f circular frequency.

• Springs in parallel, springs in series:

k∗ =
∑

kj ,
1
k∗ =

∑ 1
kj

.

• Underdamped free vibrations:

ẍ + 2ξ ẋ + ω2 x = 0 → x = C e−ξt cos(ωd t− α) ,

ξ normalized damping coefficient, ωd = ω
√

1− ζ2

circular frequency, ζ = ξ/ω damping factor.

• Undamped forced vibrations:

ẍ + ω2 x = ω2x0 cosΩt → xp = x0 V cosΩt ,

Ω forcing frequency, V =
1

1− η2
magnification factor,

η = Ω/ω frequency ratio, resonance: Ω = ω , V →∞ .

• The magnification factor V depends on the type of the forcing
(e.g., excitation through a force, rotating eccentric mass) in
the case of damped forced vibrations.
The phase angle ϕ is independent of the type of forcing.

• A system with two degrees of freedom has two natural frequen-
cies: ω1 and ω2.

• First principal mode of vibration: both masses vibrate in phase
with the frequency ω1. Second principal mode of vibration:
both masses vibrate 180◦ out of phase with the frequency ω2.
Exception: degenerate systems.

• Dynamic vibration absorber (tuned mass damper): for a given
mass m2 and a given spring constant k2 a vibration absorption
takes place for a forcing frequency of ΩT =

√
k2/m2.
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Objectives: According to Section 1.2.1 Newton’s law in
the form m a = F is valid in a reference frame that is fixed in
space. Such a reference frame is an inertial frame. The notion of
an inertial frame will be discussed in more detail in Section 6.2.

Sometimes, however, it is advantageous to describe the motion
of a body relative to a moving frame of reference. For this reason
we need to know the relationships between the kinematic quanti-
ties in fixed and in moving frames and we have to apply Newton’s
law in a form that is valid in a moving reference frame.
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6.16.1 Kinematics of Relative Motion

6.1.1 Translating Reference Frames

In this chapter we will investigate the spatial motion of a particle
P using two different coordinate systems (Fig. 6.1). The x, y, z-
system is fixed in space. The ξ, η, ζ-system with the unit vectors
eξ, eη and eζ undergoes a translation relative to the fixed system
(rotating systems will be considered in Section 6.1.2).

Fig. 6.1

r

r0P

0

ζ

z ηeη
r0

ξy

eξ

eζ

P

x

The position vector r to point P can be written as

r = r0 + r0P (6.1)

where r0P = ξ eξ + η eη + ζ eζ . We call the velocity of point P

measured in the fixed system the absolute velocity. It is obtained
by taking the time derivative of the position vector (cf. Section
1.1.1):

va = ṙ = ṙ0 + ṙ0P (6.2)

where ṙ0P = ξ̇ eξ + η̇ eη + ζ̇ eζ (the unit vectors have a constant
direction and are therefore independent of the time). We added
the subscript a at va in order to distinguish the absolute velocity
from other velocities which will be introduced in the following.

Analogously, the acceleration of point P measured in the fixed
coordinate system is called the absolute acceleration. It is defined
as the time derivative of the absolute velocity:

aa = v̇a = r̈0 + r̈0P (6.3)

with r̈0P = ξ̈ eξ + η̈ eη + ζ̈ eζ .
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The terms ṙ0 and r̈0, respectively, in (6.2) and (6.3) are the
absolute velocity and the absolute acceleration of the origin 0 of
the translating ξ, η, ζ-system. We refer to ṙ0 = vf and r̈0 = af

as the velocity of reference frame and the acceleration of reference
frame. The terms ṙ0P and r̈0P , respectively, are the velocity and
the acceleration of point P relative to the translating frame. The-
refore, ṙ0P = vr is called the relative velocity and r̈0P = ar is
referred to as the relative acceleration of point P . They are the
velocity and the acceleration which are measured by an observer
who is fixed in the moving frame. Thus, Equations (6.2) and (6.3)
can be written as

va = vf + vr, aa = af + ar (6.4)

in the case of a translating frame: the absolute velocity (accelera-
tion) is the vector sum of the velocity (acceleration) of reference
frame and the relative velocity (acceleration).

6.1.2 Translating and Rotating Reference Frames

We will now investigate the velocity and the acceleration, if the
moving frame undergoes a translation and a rotation relative to
the fixed frame.

r

z ηr0

y
x

0

ξ

ζ P

eξ

eη

r0P

ωeζ

Fig. 6.2

The position vector r to point P is again given by (Fig. 6.2)

r = r0 + r0P (6.5)

where r0P = ξ eξ + η eη + ζ eζ . The absolute velocity of point P is
obtained by taking the time derivative of the position vector:
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va = ṙ = ṙ0 + ṙ0P . (6.6)

Since the directions of the unit vectors eξ, eη and eζ are not con-
stant in a rotating system we have

ṙ0P = (ξ̇ eξ + η̇ eη + ζ̇ eζ) + (ξ ėξ + η ėη + ζ ėζ) . (6.7)

The moving frame rotates with the angular velocity ω. Therefore,
in analogy to (3.5), the time derivatives of the unit vectors are
given by

ėξ = ω × eξ, ėη = ω × eη, ėζ = ω × eζ . (6.8)

Thus,

ξ ėξ + η ėη + ζ ėζ = ξ ω × eξ + η ω × eη + ζ ω × eζ

= ω × (ξ eξ + η eη + ζ eζ) = ω × r0P ,

and (6.7) becomes

ṙ0P =
dr0P

dt
= (ξ̇ eξ + η̇ eη + ζ̇ eζ) + ω × r0P . (6.9)

The terms in the parentheses represent the time derivative of r0P

relative to the moving frame. We distinguish the time derivatives
relative to the moving frame by an asterisk:

d∗r0P

dt
= ξ̇ eξ + η̇ eη + ζ̇ eζ .

Then (6.9) can be written as

ṙ0P =
d∗r0P

dt
+ ω × r0P . (6.10)

This relationship between the time derivative of vector r0P rela-
tive to the fixed system and to the moving system, respectively,
holds analogously for arbitrary vectors.

Inserting (6.10) and the velocity v0 of the origin of the moving
system into (6.6) yields
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va = v0 + ω × r0P +
d∗r0P

dt
. (6.11)

This equation may be written compactly as

va = vf + vr (6.12a)

where

vf = v0 + ω × r0P ,

vr =
d∗r0P

dt
. (6.12b)

The velocity vf is the velocity which point P would have if it was
fixed in the moving frame. The relative velocity vr is the velocity
of point P relative to the moving system. It is the velocity which
is measured by an observer fixed in the moving frame.

The absolute acceleration of P is obtained by taking the time
derivative of the absolute velocity:

aa = v̇a = v̇f + v̇r = v̇0 + (ω × r0P )� + v̇r . (6.13)

Using (6.10) and (6.12b), the second term on the right-hand side
of (6.13) can be written as

(ω × r0P )� = ω̇ × r0P + ω × ṙ0P

= ω̇ × r0P + ω ×
(

d∗r0P

dt
+ ω × r0P

)
= ω̇ × r0P + ω × vr + ω × (ω × r0P ) .

(6.14)

In analogy to (6.10) the last term in (6.13) is given by

v̇r =
d∗vr

dt
+ ω × vr (6.15)

where

d∗vr

dt
= ξ̈ eξ + η̈ eη + ζ̈ eζ .
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If we insert (6.14) and (6.15) into (6.13) we obtain

aa = v̇0 + ω̇ × r0P + ω × (ω × r0P ) +
d∗vr

dt
+ 2 ω × vr . (6.16)

Here, v̇0 = a0 is the acceleration of point 0. We can write (6.16)
in the form

aa = af + ar + ac (6.17a)

where

af = a0 + ω̇ × r0P + ω × (ω × r0P ) ,

ar =
d∗vr

dt
=

d2∗r0P

dt2
,

ac = 2 ω × vr .

(6.17b)

The acceleration af is the acceleration which point P would have
if it was fixed in the moving frame (compare (3.8)). The relati-
ve acceleration ar is the acceleration of point P relative to the
moving system. It is the acceleration which is measured by an
observer fixed in the moving frame. The term ac in (6.17a,b) is
called the Coriolis acceleration after Gaspard Gustave de Coriolis
(1792–1843). It is orthogonal to ω and to vr and it vanishes if a)
ω = 0, b) vr = 0 or c) vr is parallel to ω.

The relations for vf and af in (6.12b) and (6.17b) can be sim-
plified with the aid of polar coordinates in the special case of a
planar motion. We choose the coordinate system in such a way
that the axes x, y and ξ, η lie in the plane of the motion (Fig. 6.3).
Then the angular velocity vector ω points in the direction of the
ζ-axis. With r0P = rer and ω = ωeζ we obtain

ω × r0P = rωeϕ, ω̇ × r0P = rω̇eϕ,

ω × (ω × r0P ) = − rω2er .

Thus, the relations for the fixed frame velocity and the fixed frame
acceleration reduce to
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0

η

r0

P

y

x

ω

r0P

r

eξ
ξeϕ

er
eη

Fig. 6.3

vf = v0 + rωeϕ, af = a0 + rω̇eϕ − rω2er (6.18)

(compare Section 3.1.3).

E6.1 Example 6.1 Two circular disks (radii R1 = 2 R, R2 = R) are
supported as shown in Fig. 6.4a. They rotate without relative
slipping. The constant angular velocity ω1 of disk 1 is given. An
observer is located at point 0; he rotates with disk 1 .

Determine the velocity and the acceleration of point P on disk
2 as measured by the observer.

ω1

0 0

P
ξη

0 P

ω1

21

vf

vr

P
P

va

ω2

R1

R2

a b

ac

aa

ar af

c d
Fig. 6.4

Solution Since there is no slip between the disks, the points of
contact on both disks have the same velocity. Thus,

R1 ω1 = R2 ω2 → 2 Rω1 = Rω2 → ω2 = 2 ω1 .



6.2 Kinetics of Relative Motion 305

The rotating coordinate system ξ, η (Fig. 6.4b) is fixed to disk 1 .
The rotating observer measures the relative velocity

vr = va − vf (a)

of point P (see (6.12a,b)). The absolute velocity of point P is
given by va = R2 ω2 = 2 R ω1 (directed downwards, see Fig. 6.4c)
since disk 2 rotates with the angular velocity ω2 = 2 ω1. In order
to determine the velocity of the frame of reference vf we imagine
point P to be fixed in the rotating ξ, η-system, i.e. fixed in the
rotating disk 1 . In this case it would move on a circle with the
radius 4 R and angular velocity ω1. Thus, we get vf = 4 Rω1

(directed upwards), and (a) yields

vr = va − vf = 2 Rω1 − (− 4 Rω1) = 6 Rω1 . (b)

The relative velocity vr is directed downwards (Fig. 6.4c).
The rotating observer measures the relative acceleration of point

P . According to (6.17a,b) it is given by

ar = aa − af − ac . (c)

The absolute acceleration is aa = R2 ω2
2 = 4 Rω2

1 (centripetal
acceleration); it points to the left (Fig. 6.4d). To determine the
acceleration of the frame of reference we again imagine point P to
be fixed in disk 1 . Then we get af = 4 Rω2

1 (directed to the left).
The Coriolis acceleration is found from ac = 2 ω1×vr (vector ω1 is
orthogonal to the plane of the disks). We obtain ac = 2 ω1 6 Rω1 =
12 Rω2

1 (to the right). Thus, Equation (c) yields

ar = aa − af − ac = 12 Rω2
1 .

The relative acceleration points to the left (Fig. 6.4d).

6.26.2 Kinetics of Relative Motion
According to Section 1.2.1 Newton’s 2nd Law in a reference frame
fixed in space can be stated as mass × absolute acceleration=
force. If we insert the absolute acceleration given in (6.17a) we
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obtain

maa = F → m (af + ar + ac) = F .

Solving for the relative acceleration yields the equation of motion
relative to a moving reference frame:

mar = F −maf −mac .

In addition to the applied (real) forces F we have the terms −maf

and −mac on the right-hand side. We now introduce d’Alembert’s
inertial force Ff and the Coriolis force Fc:

Ff = −maf , Fc = −mac . (6.19)

Then the equation of motion can be written in the form

mar = F + Ff + Fc . (6.20)

Thus, d’Alembert’s inertial force Ff and the Coriolis force Fc have
to be added to the real forces F in the case of a moving reference
frame. The forces Ff and Fc are fictitious (pseudo) forces, com-
pare Section 4.1. If the reference frame is translating (ω = 0),
then the Coriolis force in (6.20) vanishes.

Let us now consider the special case of a reference frame that is
translating with a constant velocity (uniform motion). Then the ac-
celeration a0 and the angular velocity ω are equal to zero. Hence,
the fixed frame acceleration and the Coriolis acceleration vanish
according to (6.17b) and the corresponding fictitious forces vanish
according to (6.19). In this case the relative acceleration coincides
with the absolute acceleration (ar = aa). Then the equation of
motion (6.20) reduces to

mar = F ,

which is identical with the equation of motion in a fixed reference
frame.
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All reference frames in which the equation of motion takes the
form mar = F are called inertial frames. Accordingly, fixed as
well as uniformly moving frames are inertial frames. There are no
fictitious forces if one describes the motion in such a frame.

E6.2Example 6.2 Point 0 of a simple pendulum (mass m, length l)
moves upwards with a constant acceleration a0 (Fig. 6.5a).

Derive the equation of motion. Determine the natural frequency
of the vibration (assume small amplitudes) and the force in the
string.

��
��
��
��

��
��
��

��
��
��

l
ϕ

η

eη

S

W =mg

eξ ξ

a0

0

a b

m

Fig. 6.5

Solution We introduce the ξ, η-coordinate system as depicted in
Fig. 6.5b. It is a translating coordinate system with point 0 as the
origin. According to (6.20) the equation of motion in the moving
system is

mar = F + Ff + Fc . (a)

The (real) force F acting at the mass is given by (see Fig. 6.5b)

F = −S sinϕeξ + (S cosϕ−mg)eη (b)

and the fictitious forces are

Ff = −maf = −ma0eη, Fc = −mac = 0 , (c)

since ω = 0. The components of the relative acceleration ar fol-
low from the coordinates of the point mass in the moving system
through differentiation:
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ξ = l sin ϕ, η = − l cosϕ,

ξ̇ = lϕ̇ cosϕ, η̇ = lϕ̇ sin ϕ,

ξ̈ = lϕ̈ cosϕ− lϕ̇2 sin ϕ, η̈ = lϕ̈ sin ϕ + lϕ̇2 cosϕ .

This yields the relative acceleration

ar = ξ̈ eξ + η̈ eη = (lϕ̈ cosϕ− lϕ̇2 sin ϕ)eξ

+ (lϕ̈ sin ϕ + lϕ̇2 cosϕ)eη . (d)

If we insert (b) - (d) into (a) we obtain the components of the
equation of motion in the directions of the axes ξ and η:

m (lϕ̈ cosϕ− lϕ̇2 sin ϕ) = −S sin ϕ, (e)

m (lϕ̈ sinϕ + lϕ̇2 cosϕ) = S cosϕ−mg −ma0 . (f)

These are two equations for the unknowns ϕ and S. We can eli-
minate S if we multiply (e) with cosϕ and (f) with sinϕ and
subsequently add the two equations. This leads to the equation of
motion

mlϕ̈ = −mg sinϕ−ma0 sin ϕ → ϕ̈ +
g + a0

l
sin ϕ = 0 . (g)

In the case of small amplitudes (sinϕ ≈ ϕ) of vibration, Equation
(g) reduces to the differential equation for harmonic oscillations

ϕ̈ + ω2ϕ = 0

with the natural frequency

ω =

√
g + a0

l
.

If point 0 is accelerated upwards, the natural frequency is larger
than the natural frequency for a fixed point 0. On the other hand,
if point 0 is accelerated downwards (a0 < 0) the pendulum os-
cillates more slowly. In the special case of point 0 in a free fall
(a0 = −g) we get ω = 0.

If we multiply (e) with sinϕ and (f) with cosϕ and subtract
the equations we obtain the force in the string:
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S = m [lϕ̇2 + (g + a0) cosϕ] .

E6.3Example 6.3 A point mass m moves in a frictionless slot in a
disk (Fig. 6.6a). It is supported by two identical springs (spring
constant of each spring k/2). The disk rotates with the constant
angular velocity ω about point A.

Describe the motion of the mass relative to the rotating disk.
Determine the force that is exerted from the slot on the mass.
Neglect the weight of the mass.

0
A

η

ω

A

0

m

h
ω

ξ

h
N

k

2

k

2

a b

η

2
k

2
η

Fig. 6.6

Solution The mass can only move in the slot: it undergoes a
rectilinear motion relative to the disk. We introduce the rotating
coordinate system ξ, η shown in Fig. 6.6b. Then the motion takes
place in the direction of the η-axis. Hence, ξ = 0, ξ̇ = 0, ξ̈ = 0.

The equation of motion (6.20) in the rotating system is given
by

mar = F + Ff + Fc . (a)
The forces acting on the mass are the contact force N and the
force 2k

2η exerted by the springs (see Fig. 6.6b). Therefore the
external force follows as

F = Neξ − k η eη . (b)

In order to determine the fictitious forces Ff and Fc we first have
to find the acceleration of the frame of reference and the Coriolis
acceleration. The origin 0 of the rotating system is located at
a distance h from the center A of the disk. Its acceleration is
therefore given by a0 = −hω2eξ (circular motion with ω̇ = 0).
With r = η and er = eη we obtain from (6.18)
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af = − hω2eξ − ηω2eη → Ff = m(hω2eξ + ηω2eη). (c)

The vector of the angular velocity ω is orthogonal to the ξ, η-
plane. Therefore, the Coriolis acceleration and the Coriolis force
follow from (6.17b) with vr = η̇eη as

ac = − 2 η̇ω eξ → Fc = 2 mη̇ω eξ . (d)

Inserting the relative acceleration

ar = η̈ eη

and the forces (b) - (d) into (a) leads to

0 = N + mhω2 + 2 mη̇ω,

mη̈ = − k η + mηω2 .
(e)

The second equation yields

η̈ +
(

k

m
− ω2

)
η = 0 .

Thus, the point mass undergoes a harmonic vibration
η = A cosω∗t+B sin ω∗t relative to the rotating disk if ω2 < k/m.
The circular frequency ω∗ =

√
k/m− ω2 is smaller than the cir-

cular frequency
√

k/m in the case of a non-rotating disk (ω = 0).
The first equation in (e) yields the contact force

N = −m (hω2 + 2 η̇ω) .

E6.4 Example 6.4 A point mass (m = 1000 kg) moves on a great circle
on the rotating earth (R = 6370 km) towards the north pole
(Fig. 6.7a). It has a relative velocity vr = 100 km/h.

Determine the maximum d’Alembert’s inertial force and the
maximum Coriolis force. Neglect the motion of the earth around
the sun.

Solution The earth performs one revolution about its north-south
axis in 24 hours. Thus, the angular velocity of its rotation is given
by

ω =
2 π

24 · 3600
= 7.27 · 10−5 s−1 .
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We introduce the rotating ξ, η, ζ-coordinate system which is fixed
to the earth (Fig. 6.7b). Then the angular velocity vector is ω =
ωeζ .

The fixed frame acceleration is equal to the acceleration of the
point of the earth at the instantaneous location of the point mass.
It is obtained from (6.17b) with a0 = 0 and ω̇ = 0:

af = ω × (ω × r0P ) = −R cosϕω2eη .

It is orthogonal to the rotation axis of the earth. The Coriolis
acceleration follows from (6.17a,b):

ac = 2 ω × vr = 2 ωvr sin ϕeξ

(compare Fig. 6.7c). It is tangential to the small circle and points
westwards. D’Alembert’s inertial force and the Coriolis force are
thus

Ff = mRω2 cosϕeη, Fc = − 2 mωvr sin ϕeξ .

D’Alembert’s inertial force reaches its maximum value at the equa-
tor (ϕ = 0):

Ff max = mRω2 ≈ 34 N .

It is small as compared with the weight of the point mass (W =
mg ≈ 104 N). The Coriolis force has its maximum value at the
North Pole (ϕ = π/2):
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Fc max = 2 mωvr ≈ 4 N .

It has to be exerted on the mass otherwise the mass would deviate
from the great circle.

6.3 6.3 Supplementary Examples
Detailed solutions to the following examples are given in (A)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
3, Springer, Berlin 2010, or (B) W. Hauger et al. Aufgaben zur
Technischen Mechanik 1-3, Springer, Berlin 2008.

E6.5 Example 6.5 Point A of the simple
pendulum (mass m, length l) in
Fig. 6.8 moves with a constant ac-
celeration a0 to the right.

Derive the equation of motion.

��������������

g

a0A

m

l
ϕ

Fig. 6.8

Result: see (A and B) lϕ̈ + g sin ϕ + a0 cosϕ = 0 .

E6.6 Example 6.6 The two disks in Fig. 6.9 rotate with constant angular
velocities Ω and ω about their
respective axes.

Determine the absolute ac-
celeration of point P at the in-
stant shown.

�
�
�
�
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

ϕ

Ω

P
r

ω

a

z

x
y

Fig. 6.9

Result: see (B)

aP =

⎡⎢⎣ 2r ω Ω sinϕ

−(a + r cosϕ)Ω2 − r ω2 cosϕ

−r ω2 sinϕ

⎤⎥⎦ .
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E6.7Example 6.7 A horizontal circular platform (radius r) rotates with
constant angular velocity Ω (Fig. 6.10). A block (mass m) is locked
in a frictionless slot at a distance a from the center of the platform.
At time t = 0 the block is released.

Determine the velocity vr of
the block relative to the platform
when it reaches the rim of the plat-
form.

r a

m

ΩFig. 6.10Result: see (B) vr = Ω
√

r2 − a2 .

E6.8Example 6.8 A simple pendulum is attached to point 0 of a circular
disk (Fig. 6.11). The disk rotates with a constant angular velocity
Ω; the pendulum oscillates in the
horizontal plane.

Determine the circular frequen-
cy of the oscillations. Assume
small amplitudes and neglect the
weight of the mass.

�����
�����
�����

�����
�����
�����

l m
r

0

Ω

Fig. 6.11Result: see (A) ω =
√

r

l
Ω .

E6.9Example 6.9 A drum rotates with angular velocity ω about point
B (Fig. 6.12). Pin C is fixed to the
drum; it moves in the slot of link
AD.

Determine the angular velocity
ωAD of link AD and the velocity
vr of the pin relative to the link at
the instant shown.

������������������ ω

A

C

B

D

4 l

3 l

Fig. 6.12

Results: see (B)

ωAD =
9 ω

25
, vr =

12ω l

5
.
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E6.10 Example 6.10 A point P moves along a circular path (radius r)
on a platform with a constant relative velocity vr (Fig. 6.13). The
platform rotates with a con-
stant angular velocity ω about
point A. The eccentricity e is gi-
ven.

Determine the relative, fixed
frame-, Coriolis, and absolute
accelerations of P .

ϕ

η

0 ξ

vr

A e

ω r
P

Fig. 6.13

Results: see (A) ar =−v2
r

r
(eξ cosϕ + eη sinϕ),

af =−(e + r cosϕ)ω2eξ − rω2sinϕeη ,

ac =−2ωvr(eξ cosϕ + eη sin ϕ),

a = af + ar + ac = −[eω2 + r
(
ω +

vr

r

)2

cosϕ]eξ

−r
(
ω +

vr

r

)2

sin ϕeη .

E6.11 Example 6.11 A circular ring (radius r) rotates with constant an-
gular velocity Ω about the x-
axis (Fig. 6.14). A point mass
m moves without friction insi-
de the ring.

Derive the equations of moti-
on and determine the equilibri-
um positions of the point mass
relative to the ring.

������

�
�
�
�
�
�
�
�

Ω

g

m

x

y
z

r

ϕ

Fig. 6.14

Results: see (B) −m(r ϕ̇2 cosϕ + r ϕ̈ sin ϕ) = −m g + Nx,

−m(r ϕ̇2 sinϕ− r ϕ̈ cosϕ + r Ω2 sinϕ) = Nx tan ϕ,

2 m r Ω ϕ̇ cosϕ = Nz, ϕ1 = 0, ϕ2 = π, ϕ3,4 = π±arccos
( g

rΩ2

)
.
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6.46.4 Summary
• Absolute velocity: va = vf + vr ,

vf = v0 + ω × r0P fixed frame velocity,

vr =
d∗r0P

dt
relative velocity.

• Absolute acceleration: aa = af + ar + ac ,

af = a0 + ω̇ × r0P + ω × (ω × r0P ) fixed frame acceleration,

ar =
d∗vr

dt
relative acceleration,

ac = 2 ω × vr Coriolis acceleration.

• Newton’s 2nd Law in a moving frame:

m ar = F + F f + F c ,

F force exerted on the point mass,
F f = −m af D’Alembert’s inertial force (fictitious force),

F c = −m ac Coriolis force (fictitious force).

• If the reference frame is translating with a constant velocity
(af = 0, ac = 0), then the equation of motion in the moving
frame is identical with the equation of motion in a fixed frame.

• Fixed frames and uniformly moving frames are inertial frames.
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Objectives: So far we have discussed problems where the
equations of motion could be solved analytically. In many applica-
tions it is difficult or even impossible to find an analytical solution.
In these cases it is necessary to calculate an approximate solution
with the help of an appropriate numerical integration scheme. We
will discuss several numerical methods which enable us to com-
pute numerical solutions of differential equations. You will learn
how to apply numerical methods to treat initial-value problems.
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7.17.1 Introduction
In the preceding chapters we have discussed the motion of point
masses and rigid bodies in cases where we were able to solve the
equations of motions analytically. In a variety of problems this is
an elaborate undertaking or even impossible. An example is the
equation of motion (5.19) of a simple pendulum, also called an
ideal pendulum: ϕ̈ + (g/l) sinϕ = 0. The analytical solution ϕ(t)
of this nonlinear differential equation for finite amplitudes invol-
ves the use of an elliptic integral, i.e., (5.19) cannot be solved with
elementary functions. Only the usage of a small-angle approxima-
tion (ϕ � 1) leads to the much simpler form of a harmonic motion
(cf. Section 5.2.1). Nevertheless, we are able to compute accura-
te approximate solutions for such complicated problems with the
help of numerical methods.

In the following we analyse linear and non-linear differential
equations of first and second order with assigned initial values.
Thus we have what is called initial-value problems of first or se-
cond order. In this chapter we will introduce some basic numerical
methods for solving ordinary differential equations for initial-value
problems. A more detailed discussion of this topic is given in stan-
dard textbooks.

Most numerical solution methods are based on the computa-
tion of approximations for differential equations of first order.
Therefore, we will start with numerical solution techniques for
first-order systems. Higher-order differential equations can always
be transformed into a system of first-order differential equations.
This system can then be solved with the numerical techniques for
first-order systems.

7.27.2 First-Order Initial-ValueProblems
In many applications the equation of motion can be expressed by
a differential equation of first order. As an example let us consider
the acceleration a of a point mass as a function of the velocity v.
Here, we have the general form a = f(v) and we are interested in
an approximate solution of the velocity v(t) (cf. Section 1.1.3). In
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this case the equation of motion is formulated as v̇ = f [v(t)] with
the assigned initial value v(ts) = vs. Here ts denotes the starting
value of the time interval of interest and vs is the associated initial
velocity.

In the following we consider an ordinary differential equation
of first order

ẋ(t) = f [t, x(t)] (7.1)

over a time interval [ts, te] subjected to an initial condition xs =
x(ts). The basic idea of the numerical treatment of initial-value
problems is the approximation of the time-dependent course of
the functions x(t) and ẋ(t) at discrete points (mesh points). For
this purpose we perform a time discretization and divide the con-
sidered time interval [ts, te] in n equally spaced time increments
�t (Fig. 7.1). The step size is

�t =
te − ts

n
, (7.2)

whereby a discrete point on the time axis is determined by

ti = ta + i �t with i = 0, ..., n . (7.3)

In order to simplify the notation we denote the approximate values
at time ti with

xi = x(ti) and ẋi = ẋ(ti) . (7.4)

te

tn−2t0 t1 t2

t

ΔtΔt Δt Δt

ts

tntn−1 Fig. 7.1

The integration of (7.1) from the lower limit ti to the upper
limit ti+1 yields with∫ ti+1

ti

ẋ(t) dt = x(ti+1)− x(ti)
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the expression

x(ti+1) = x(ti) +
∫ ti+1

ti

f [t, x(t)] dt . (7.5)

Equation (7.5) is the basis for a variety of algorithms for the com-
putation of approximate solutions xi+1. These algorithms differ
from each other by the choice for the approximation of the inte-
gral term.

The simplest method is Euler’s method (“foward Euler”):

ti+1∫
ti

f [t, x(t)] dt ≈ f [ti, xi] �t

→ xi+1 = xi + f [ti, xi] �t . (7.6)

If xi is known, we are able to compute f [ti, xi] by a simple evalua-
tion of the given function and thus obtain xi+1. This procedure is
called explicit since Equation (7.6) yields immediately (explicitly)
the unknown quantity xi+1. An illustration of the procedure is
depicted in Fig. 7.2a.

a b

ts ti ti+1

Δt

f [t, x(t)]

te
Δt

tets ti

f [t, x(t)]

ti+1

f [ti + Δt
2

, xi+ 1
2
]

f [ti, xi]

Fig. 7.2

The advantage of Euler’s method is its simplicity of implemen-
tation. However, in order to achieve accurate approximations for
practical problems often a small step size has to be used.

The recurrence formula (7.6) has to be evaluated for i = 0, ..., n.
In order to illustrate the procedure we summarize the algorithm
in Table 7.1 and set ts = 0.
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Table 7.1

i ti xi f [ti, xi]

0 t0 = 0 x0 = xs f [t0, x0]

1 t1 = �t x1 = x0 + f [t0, x0]�t f [t1, x1]

2 t2 = 2�t x2 = x1 + f [t1, x1]�t f [t2, x2]
3 t3 = 3�t x3 = x2 + f [t2, x2]�t f [t3, x3]
...

...
...

...

n tn = n�t xn = xn−1 + f [tn−1, xn−1]�t f [tn, xn]

As can be seen, the process requires function evaluations row by
row, which can easily be implemented.

A modification of Euler’s method is based on the approximation
of the integral (7.5) by means of the value of the function in the
middle of the time interval [ti, ti+1]. In this case the approximate
solution is given by∫ ti+1

ti

f [t, x(t)] dt ≈ f [ti +
�t

2
, xi+ 1

2
] �t

→ xi+1 = xi + f [ti +
�t

2
, xi+ 1

2
] �t . (7.7)

The value xi+ 1
2

is determined by the explicit computation

xi+ 1
2

= xi + f [ti, xi]
�t

2
. (7.8)

With the abbreviations

k1 = f [ti, xi] and k2 = f [ti +
�t

2
, xi + k1

�t

2
] (7.9)

we obtain the approximate value at ti+1 using the formula

xi+1 = xi + k2 �t . (7.10)

This procedure is known as the second-order Runge-Kutta me-
thod (Carle David Tolmé Runge 1856-1927, Martin Wilhelm Kutta
1867-1944), since the error is of the order of Δt2. The procedure is
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also known as the midpoint method; for a visualization see Fig. 7.2b.
Another algorithm is the fourth-order Runge-Kutta method.

Herein four function evaluations are used for the computation of
an approximate solution. As in the aforementioned midpoint me-
thod we consider results of several explicit computations perfor-
med with Euler’s method. The individual steps within the fourth-
order Runge-Kutta procedure may be summarized as follows:

xi+1 = xi +k �t with k =
1
6
(k1 +2k2 +2k3 +k4) (7.11)

where we have used the abbreviations

k1 = f [ti, xi] ,

k2 = f [ti +
�t

2
, xi +

�t

2
k1] ,

k3 = f [ti +
�t

2
, xi +

�t

2
k2] ,

k4 = f [ti +�t, xi +�t k3] .

Table 7.2

i ti xi k1 k2 k3 k4 k

0 t0 x0 f [t0, x0] f [t̃0, x0 + �t
2

k1] f [t̃0, x0 + �t
2

k2] f [t0 +�t, x0 +�t k3] k

1 t1 x1 f [t1, x1] f [t̃1, x1 + �t
2 k1] f [t̃1, x1 + �t

2 k2] f [t1 +�t, x1 +�t k3] k

...
...

...
...

...
...

...
...

n tn xn f [tn, xn] f [t̃n, xn + �t
2 k1] f [t̃n, xn + �t

2 k2] f [tn +�t, xn +�t k3] k

The sequence of the individual computational steps is summa-
rized in Table 7.2. First we set the starting values for time t and
the variable x, i.e., we initialize t0 = ts and set the initial value
x0 = xs. Subsequently we compute the values k1, k2, k3, k4 and k

(Table 7.2, first row). Now we can compute the approximation x1

as depicted in the second row of the table by evaluating (7.11).
This procedure has to be repeated until the end of the time inter-
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val te is reached. In Table 7.2 we have introduced the abbreviation
t̃i = ti +�t/2.

Euler’s method as well as Runge-Kutta’s method can easily be
applied to systems of differential equations (Appendix A).

As a first example for the application of Euler’s method we
consider the translational motion of a car (mass m = 1400 kg),
see Fig. 7.3. The constant driving force is F = 2800 N and the
aerodynamic drag is assumed to be Fd = cdv

2 (drag coefficient
cd = 0.7). We are interested in an approximate solution for the
velocity in the time interval [ts, te] = [0, 120 s]; the initial velocity
is set to vs = 10 m/s.

F Fd =cdv
2

v

Fig. 7.3

The equation of motion is

mv̇ = F − cdv
2 → v̇ = f [t, v] with f [t, v] =

F

m
− cd

m
v2 .

Using κ2 = F/cd the analytical solution is given by

ẋ = κ tanh
F (t− C)

mκ
with C = − mκ

F
artanh

vs

κ
,

see Section 1.2.4. At time t = 40 s the exact analytical value for
the velocity is ẋ(40) = 56.32 ≈ 56.3 m/s, at time te we get the
exact value ẋ(120) = 63.199 ≈ 63.2 m/s.

In the following numerical simulations we will consistently use
the units N, m and s. As is common in computerbased calculations,
we will skip the units for intermediate solutions. We always have
to write down all quantities in the units given above before we
can run a simulation.

With the given parameters we obtain

v̇ = f [t, v] with f [t, v] = 2− 0.0005 v2 .
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In order to explain the recurrence procedure in detail, we perform
the calculation with 6 equidistant time steps:

ti = i �t with i = 0, ..., 6 → �t =
120− 0

6
= 20 .

For t = 0, i.e., for i = 0 we obtain the values

v0 = va = 10 ,

f [t0, v0] = 2− 0.0005 · 102 = 1.950 .

At time t1 = 20 (i = 1) we get

v1 = v0 + f [t0, v0] �t = 10 + 1.95 · 20 = 49 ,

f [t1, v1] = 2− 0.0005 · 492 = 0.7995 .

The evaluation at time t2 = 40 (i = 2) leads to

v2 = v1 + f [t1, v1] �t = 49 + 0.7995 · 20 = 64.99 ,

f [t2, v2] = 2− 0.0005 · 64.992 = −0.1119 .

In this manner we compute the values for i = 4, ..., 6. The results
are summarized in Table 7.3.
Table 7.3

i ti vi f [ti, vi]

0 0 10.000 1.9500

1 20 49.000 0.7995
2 40 64.990 -0.1119

3 60 62.753 0.0310

4 80 63.374 -0.0081

5 100 63.211 0.0022

6 120 63.255 -0.0006

A comparison of the approximate solution with the analytical
solution at time t = 40 s shows a deviation of about 15%, whereas
at time t = 120 s the error is smaller than 1%, see Fig. 7.4.

The implementation is shown in Algorithm 7.1.
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Algorithm 7.1: Euler’s Method

% parameter

cd = 0.7; m = 1400.0; F = 2800.0;

% number of time steps, time interval, time increment

n = 6; ts = 0.0; te = 120.0;

delta_t = (te - ts)/n;

% initial condition

v(1) = 10.0; t(1) = ts;

for i = 1 : n+1

func = F/m - cd/m*(v(i))^2;

v(i+1) = v(i) + func*delta_t;

t(i+1) = t(i) + delta_t;

end

Fig. 7.4 depicts the numerical solutions for n = 6, 10, 20 time
increments. It can be seen that for a larger number of time incre-
ments the solution converges to the exact solution. For n = 20 the
solution is more or less identical with the exact solution.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

n=6
n=10
n=20

t [s]

v [m/s]

Fig. 7.4

E7.1 Example 7.1 Compute an approximate solution for the velocity
v(t) of the preceding example with the fourth-order Runge-Kutta
method.

Solution We divide the time interval into 6 equidistant increments:
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ti = i �t with i = 0, ..., 6 → �t =
120− 0

6
= 20 .

At time t = 0 (i = 0) we set the initial condition v0 = vs = 10.
Subsequently we compute the values k1, k2, k3, k4:

k1 = f [t0, v0] = 2− 0.0005 · 102 = 1.950 ,

k2 = f [t0 +
�t

2
, v0 +

�t

2
k1]

= 2− 0.0005 · (10 + 20/2 · 1.950)2 = 1.5649 ,

k3 = f [t0 +
�t

2
, x0 +

�t

2
k2]

= 2− 0.0005 · (10 + 20/2 · 1.5649)2 = 1.6711 ,

k4 = f [ti +�t, xi +�t k3]

= 2− 0.0005 · (10 + 20 · 1.6711)2 = 1.0573 .

Thus the k-value is

k =
1
6
(k1 + 2k2 + 2k3 + k4) = 1.5799 ,

and we obtain at t = 20 (i = 1) the velocity

v1 = v0 + k �t → v1 = 10 + 1.5799 · 20 = 41.597 .

This procedure has to be repeated until the end of the time
interval is reached. We summarize the computed values for a dis-
cretization of the time interval [ts, te] with n = 6 equidistant time
increments in Table 7.4.

A comparison of the approximate solution with the exact one
at the discrete times t = 40 s and t = 120 s reveals that the error
is less than 1% in each case.

The implementation is depicted in Algorithm 7.2.
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Table 7.4

i ti vi k1 k2 k3 k4 k

0 0 10.000 1.9500 1.5649 1.6711 1.0573 1.5799
1 20 41.597 1.1348 0.5989 0.8680 0.2620 0.7216

2 40 56.029 0.4304 0.1800 0.3279 0.0414 0.2479

3 60 60.988 0.1403 0.0537 0.1073 0.0070 0.0782

4 80 62.552 0.0436 0.0162 0.0334 0.0016 0.0241

5 100 63.034 0.0134 0.0049 0.0103 0.0004 0.0074
6 120 63.181 0.0041 0.0015 0.0031 0.0001 0.0022

Algorithm 7.2: Fourth-order Runge-Kutta method

% initialization of

% parameters and functions in subroutine func.m

%

% number of equidistant time increments

n = 6;

% time interval

ts = 0.0; te = 120.0;

% step size, i.e., time increment

delta_t = (te - ts)/n;

% initial condition

v(1) = 10.0, t(1) = ts,

% recurrence formula

for i = 1 : n+1

k1 = func(v(i));

k2 = func(v(i) + delta_t/2*k1);

k3 = func(v(i) + delta_t/2*k2);

k4 = func(v(i) + delta_t *k3);

k = 1/6*(k1 + 2*k2 + 2*k3 + k4);

v(i+1) = v(i) + k*delta_t;

t(i+1) = t(i) + delta_t;

end

% initialization of parameters and functions in func.m

function value = func(v)

cd = 0.7; m = 1400.0; F = 2800.0;

value = F/m - cd/m*v^2;
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The approximate solutions which have been computed with the
fourth-order Runge-Kutta method for n = 6, 10 and 20 are shown
in Fig. 7.5. In contrast to Euler’s method we already obtain accu-
rate solutions for n = 6 increments.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

n=6
n=10
n=20

t [s]

v [m/s]

Fig. 7.5

7.37.3 Second-Order Initial-Value Problems
In kinetics the principle of linear momentum m ẍ = F and the
principle of angular momentum Θ ϕ̈ = M lead to equations of
motion of the form a ẍ = b. In general the equation of motion and
the associated initial conditions of position and velocity are

ẍ = f [t, x(t), ẋ(t)] with xs = x(ts) and ẋs = ẋ(ts) . (7.12)

In order to apply the discretization procedures for first-order
initial-value problems (see Section 7.2) to (7.12) we have to trans-
form the equation of motion (7.12) to a system of two differential
equations of first order (cf. Appendix A). Therefore, we introduce
the functions z1(t) and z2(t). Applying the transformations

z1(t) = x(t) and z2(t) = ẋ(t)

yields the system of differential equations
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ż1(t) = f1[t, z1(t), z2(t)] ,

ż2(t) = f2[t, z1(t), z2(t)] ,

(7.13)

where f1[t, z1(t), z2(t)] = z2(t). These two differential equations
can now be solved by means of the discretization procedures pre-
sented in Section 7.2. For reasons of clarity and comprehensibility
we introduce the following abbreviations for the approximate va-
lues z1(t) and z2(t) at the discrete times ti:

z1i := z1(ti) and z2i := z2(ti) for i = 0, ..., n . (7.14)

The initial conditions are

z10 = z1(ts) = xs and z20 = z2(ts) = ẋs . (7.15)

The recurrence formula for Euler’s method (cf. (7.6)) is

z1i+1 = z1i + f1[ti, z1i , z2i ] �t ,

z2i+1 = z2i + f2[ti, z1i , z2i ] �t .

(7.16)

Applying the fourth-order Runge-Kutta method to the integra-
tion of first-order initial-value problems requires the evaluation of
the four values k1, k2, k3, k4. In a second-order problem we ob-
tain two differential equations of first order, therefore we also have
to compute four further values for the second equation. They are
denoted by l1, l2, l3, l4. Using the abbreviation t̃i = ti +�t/2 we
have the following expressions for the function evaluations kj , lj
for j = 1, ..., 4:

k1 = f1[ti, z1i , z2i ],

l1 = f2[ti, z1i , z2i ] ,

k2 = f1[t̃i, z1i +
�t

2
k1, z2i +

�t

2
l1],

l2 = f2[t̃i, z1i +
�t

2
k1, z2i +

�t

2
l1] ,
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k3 = f1[t̃i, z1i +
�t

2
k2, z2i +

�t

2
l2],

l3 = f2[t̃i, z1i +
�t

2
k2, z2i +

�t

2
l2] ,

k4 = f1[ti+1, z1i +�t k3, z2i +�t l3],

l4 = f2[ti+1, z1i +�t k3, z2i +�t l3] .

Finally we have to compute the parameters

k =
1
6
(k1 + 2k2 + 2k3 + k4) and l =

1
6
(l1 + 2l2 + 2l3 + l4)

(7.17)

for the calculation of the approximate solutions at time ti+1. The
individual calculation steps are summarized in Table 7.5.

Table 7.5

z1i+1 = z1i + k �t z2i+1 = z2i + l �t

k = 1
6
(k1 + 2k2 + 2k3 + k4) l = 1

6
(l1 + 2l2 + 2l3 + l4)

k1 = f1(ti, z1i , z2i) l1 = f2(ti, z1i , z2i)

k2 = f1(t̃i, z1i + �t
2 k1, z2i + �t

2 l1) l2 = f2(t̃i, z1i + �t
2 k1, z2i + �t

2 l1)

k3 = f1(t̃i, z1i + �t
2 k2, z2i + �t

2 l2) l3 = f2(t̃i, z1i + �t
2 k2, z2i + �t

2 l2)

k4 = f1(ti+1, z1i +�t k3, z2i +�t l3) l4 = f2(ti+1, z1i +�t k3, z2i +�t l3)

A comparison of both columns in Table 7.5 shows that the
columns can be interchanged when we substitute ki ↔ li as well
as f1 ↔ f2. Therefore we rename

{k1, k2, k3, k4} → {k11, k12, k13, k14}

{ l1, l2, l3, l4} → {k21, k22, k23, k24} .

Now the algorithm is given with j = 1, 2 as shown in Table 7.6.
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Table 7.6

zji+1 = zji + kj �t

kj = 1
6
(kj1 + 2kj2 + 2kj3 + kj4)

kj1 = fj(ti, z1i , z2i)

kj2 = fj(t̃i, z1i + �t
2

k11, z2i + �t
2

k21)

kj3 = fj(t̃i, z1i + �t
2 k12, z2i + �t

2 k22)

kj4 = fj(ti+1, z1i +�t k13, z2i +�t k23)

The implementation of this procedure is presented in Algorithm 7.3.

Algorithm 7.3: Fourth-order Runge-Kutta method

% fourth-order Runge-Kutta method

% for initial-value problems of second order

%

% initialization of

% parameters and functions in func1.m and func2.m:

% initialization of func1.m

function value1 = f1(t,z1,z2)

value1 = z2;

% initialization of func2.m

function value2 = f2(t,z1,z2)

value2 = ***;

% number of equidistant time increments

n = ***;

% time interval

ts = ***;

te = ***;
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% step size, i.e., time increment

delta_t = (te - ts)/n;

% initial conditions

t(1) = ts;

z1(1) = ***;

z2(1) = ***;

% recurrence formula

for i = 1 : n+1

k(1,1) = func1(t(i),z1(i),z2(i));

k(2,1) = func2(t(i),z1(i),z2(i));

k(1,2) = func1(t(i)+delta_t/2,

z1(i)+delta_t/2*k(1,1),z2(i)+delta_t/2*k(2,1));

k(2,2) = func2(t(i)+delta_t/2,

z1(i)+delta_t/2*k(1,1),z2(i)+delta_t/2*k(2,1));

k(1,3) = func1(t(i)+delta_t/2,

z1(i)+delta_t/2*k(1,2),z2(i)+delta_t/2*k(2,2));

k(2,3) = func2(t(i)+delta_t/2,

z1(i)+delta_t/2*k(1,2),z2(i)+delta_t/2*k(2,2));

k(1,4) = func1(t(i)+delta_t,

z1(i)+delta_t*k(1,3),z2(i)+delta_t*k(2,3));

k(2,4) = func2(t(i)+delta_t,

z1(i)+delta_t*k(1,3),z2(i)+delta_t*k(2,3));

z1(i+1) = z1(i)+1/6*(k(1,1)+2*k(1,2)

+ 2*k(1,3)+k(1,4))*delta_t;

z2(i+1) = z2(i)+1/6*(k(2,1)+2*k(2,2)

+ 2*k(2,3)+k(2,4))*delta_t;

t(i+1) = t(i)+delta_t;

end

For the numerical solution of different initial-value problems only
the marked quantities *** have to be modified.

In a sequence of four illustrative examples we will solve the
equation of motion

mẍ + dẋ + kx = F0 cosΩt

of an oscillator with one degree of freedom, see Fig. 7.6, for diffe-
rent parameters (m, d, c, F0, Ω) as well as for different initial con-
ditions xs = x(ts) and ẋs = ẋ(ts). To compute the approximate
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solutions for the position x(t) and the velocity v(t) in the time
interval [ts, te] we use the fourth-order Runge-Kutta method.

��
��
��
��

��
��
��
��

F =F0cosΩtmk
F

k x

d ẋd

x x

Fig. 7.6

First we write the equation of motion in the form

ẍ =
F0

m
cosΩt− d

m
ẋ− k

m
x .

Introducing the functions

z1(t) = x(t) and z2(t) = ẋ(t)

we obtain two differential equations of first order

ż1(t) = z2(t) , ż2(t) =
F0

m
cosΩt− d

m
z2(t)− k

m
z1(t) .

The functions f1[t, z1(t), z2(t)] and f2[t, z1(t), z2(t)], as introduced
in (7.13), are

f1[t, z1(t), z2(t)] = z2(t) ,

f2[t, z1(t), z2(t)] =
F0

m
cosΩt− d

m
z2(t)− k

m
z1(t) .

The initial conditions at time ts are denoted as

z1(ts) = xs and z2(ts) = ẋs .

In the first example we analyse an undamped free vibration
(d = 0, F0 = 0) with the initial conditions

xs = 0.1 m and ẋs = 0 .

The parameters are set to

m = 5 kg and k = 500 N/m .
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The analysis is performed using n = 20 and n = 40 time incre-
ments. The modifications in Algorithm 7.3 are:

% number of equidistant time increments

n = 20;

% time interval, time increment

ts = 0.0; te = 3.0; delta_t = (te - ts)/n;

% initial conditions

z1(1) = 0.1; z2(1) = 0.0; t(1) = ts;

% initialization of func1.m

function value1 = f1(t,z1,z2)

value1 = z2;

% initialization of func2.m

function value2 = f2(t,z1,z2)

m = 5.0; kf = 500.0;

value2 = -kf/m*z1;
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−0.05

0

0.05

0.1
n=20
n=40
exact

0 0.5 1 1.5 2 2.5 3
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−0.5

0

0.5

1
n=20
n=40
exact

t [s]

t [s]

x(t) [m]

v(t) [m/s]

Fig. 7.7

The numerical results for the position-time diagram and the
velocity-time diagram are shown in Fig. 7.7. For n = 40 we obtain
a good agreement with the analytical solution x = 0.1 cosωt where
ω =

√
k/m =

√
500/5 = 10 s−1 and T = 2π/ω = 0.63 s.
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In the second example we consider a damped free vibration
with the parameters

m = 5 kg, k = 500 N/m, d = 10 kg/s

and the initial conditions xs = 0.1 m, ẋs = 0. The necessary
modifications in Algorithm 7.3 are:

% number of equidistant time increments

n = 20;

% time interval, time increment

ts = 0.0; te = 3.0; delta_t = (te - ts)/n;

% initial conditions

z1(1) = 0.1; z2(1) = 0.0; t(1) = ts;

% initialization of func1.m

function value1 = f1(t,z1,z2)

value1 = z2;

% initialization of func2.m

function value2 = f2(t,z1,z2)

m = 5.0; d = 10.0; kf = 500.0;

value2 = -d/m*z2-kf/m*z1;

The numerical solutions for n = 20 and n = 40 are depicted in
Fig. 7.8 and compared with the analytical solution. We obtain a
good agreement between the numerical simulation calculated with
n = 40 time increments and the analytical one.

In the third example we consider an aperiodic motion of a criti-
cally damped system. In contrast to the situation above we intro-
duce a larger damping coefficient d and set te = 1 s. The critical
damping coefficient is obtained from ζ = ξ/ω = 1 → ξ = ω =
10 s−1 and has the value d = 2ξ m = 100 kg/s. All other settings
remain the same as in the previous example.

Fig. 7.9 shows the results of the numerical simulation. Obvious-
ly, we obtain accurate approximate solutions for n = 20 as well as
for n = 40.
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Fig. 7.9

In the fourth example we analyse the vibration of a damped
system subjected to a harmonic force and the initial conditions
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xs = 0 and ẋs = 0 .

The parameters are chosen as

d = 10 kg/s, k = 500 N/m, F0 = 10 N, Ω = 10 s−1

and the simulation is carried out for n = 30 and n = 50 incre-
ments. Algorithm 7.3 is therefore modified as follows:

% number of equidistant time increments

n = 50;

% time interval, time increment

ts = 0.0; te = 6.0; delta_t = (te - ts)/n;

% initial conditions

z1(1) = 0.0; z2(1) = 0.0; t(1) = ta;

% initialization of func1.m

function value1 = f1(t,z1,z2)

value1 = z2;

% initialization of func2.m

function value2 = f2(t,z1,z2)

m = 5.0; d = 10.0; kf = 500.0; F_o = 10.0; Omega = 10.0;

value2 = -d/m*z2-kf/m*z1;

The numerical solutions for n = 30 and n = 50 are shown in
Fig. 7.10 and compared with the analytical solution. As expected
in the steady-state, the (response) vibration of the system has the
frequency of the excitation Ω, i.e., it has the period of vibration
T = 2π/Ω ≈ 0.63 s.

In the simulation the steady-state is reached after approxima-
tely 4 s. Then we can determine the amplitude using the ma-
gnification factor (5.62) and setting the parameter E = 1. For
an excitation in resonance, i.e., η = Ω/ω = 1, the magnification
factor takes the value V1(1) = 1/2ζ → V1(1) = 1/0.2 = 5. The
maximum deflection is obtained from xmax = ±V1x0 and takes
with x0 = F0/k = 10/500 = 0.02 the value xmax = ±0.1 m.
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E7.2Example 7.2 A pendulum supported at point A consists of a rod
(length 2l, with negligible mass) and two point masses m1 and m2,
see Fig. 7.11. The pendulum undergoes a free vibration. Determine
the angle-time diagrams ϕ(t) in the time interval [0, 43 s] for the
initial conditions ϕ(0) = 3◦, ϕ(0) = 179◦, ϕ(0) = 179.99◦ all with
ϕ̇(0) = 0. Also plot the oscillations over one period of vibration
T .

AA

ϕ

m1

l

l

m2

m1

m2

m1g

m2g

2 lsinϕ

lsinϕ

Fig. 7.11
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Solution The equation of motion was derived in Example 2.3 using
the principle of angular momentum:

ϕ̈ + ω2 sinϕ = 0 with ω2 =
g

l

m1 + 2m2

m1 + 4m2
.

The initial conditions are

ϕs = ϕ(0) and ϕ̇s = ϕ̇(0) = 0 .

In the numerical simulation we set ω = 1. The required modi-
fications in the Matlab-code of Algorihm 7.3 are:

% number of equidistant time increments

n = 3000;

% time interval and time increment

ts = 0.0; te = 42.935; delta_t = (te - ts)/n;

% initial conditions

z1(1) = (179.99/180)*pi; z2(1) = 0.0; t(1) = ts;

% initialization of func1.m

function value = func1(t,z1,z2)

value = z2;

% initialization of func2.m

function value = func2(t,z1,z2)

omega = 1;

value = -omega*omega*sin(z1);
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Fig. 7.12

The oscillation for the initial condition ϕ(0) = 3◦ is depicted
in Fig. 7.12a (I); we read off the diagram the period of vibration
T ≈ 6.5 s. Fig. 7.12b shows the diagrams for the initial angles



7.3 Second-Order Initial-Value Problems 341

ϕ(0) = 179◦ with T ≈ 24.5 s (II) and ϕ(0) = 179.99◦ with T ≈
43 s (III).

The oscillation corresponding to the inital condition ϕ(0) =
179◦ exhibits the formation of a plateau in the domain of the
maximal amplitude. This effect is more pronounced in the case
of the initial condition ϕ(0) = 179.99◦, see Fig. 7.12b. For large
initial angles the function ϕ(t) is the so-called sinus amplitudinis
(Jacobi elliptic function, a generalization of the sine function),
which differs strongly from the classical sine function.
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−0.5

0

0.5

1ϕ(t)
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(III)
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Fig. 7.13

These deviations can be observed much better, when we plot
normalized ϕ(t)-diagrams. Therefore, we plot as the ordinate the
quantity ϕ(t)/ϕ0 and the abscissae is assigned to the actual ti-
me divided by the period of vibration (t/T ). Fig. 7.13 shows the
normalized angle-time diagrams.

The periods of vibration can also be determined analytically.
In order to do this we multiply the equation of motion by ϕ̇ and
integrate with respect to time:∫

t

ϕ̈ϕ̇ dt +
∫

t

ω2 sin ϕϕ̇ dt = C

→ 1
2
ϕ̇2 +

∫ ϕ

0

ω2 sin ϕ dϕ = C .

The integration over ϕ yields
1
2
ϕ̇2 + ω2(1− cosϕ) = C . (a)

At ϕa we have ϕ̇(ϕa) = 0; thus we obtain

C = ω2(1 − cosϕa) .
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Substituting this result into (a) yields the angular velocity

ϕ̇ = ω
√

2(cosϕ− cosϕs) .

Referring to (1.18) the period of vibration T is given by

T =
4
ω

∫ ϕ0

0

dϕ

ϕ̇
=

4
ω

∫ ϕ0

0

dϕ√
2(cosϕ− cosϕ0)

.

The numerical values for the periods of vibration, corresponding
to the individual initial conditions, are

ϕ(0) = 3◦ : T = 6.284 s,

ϕ(0) = 179◦ : T = 24.511 s,

ϕ(0) = 179.99◦ : T = 42.935 s.

7.4 7.4 Supplementary Examples
Detailed solutions to the following examples are given in (C)
D. Gross et al. Formeln und Aufgaben zur Technischen Mechanik
4, Springer, Berlin 2008.

E7.3 Example 7.3 A point mass m is
thrown from a height h = 5 m
with an initial velocity v0 =
10 m/s at an angle α = 45◦

with respect to the horizontal.
The only force acting on the
mass is its weight W = mg (g ≈
10 m/s2).

Determine the trajectory
x1(t), x2(t) within the time in-
terval [ts; te] = [0; 2s] using Eu-

m

x1

x2

h

v0

α

mg

Fig. 7.14

ler’s method (number of time increments n = 5, 10 and 50). Pro-
gram a short algorithm for the velocity and position updates and
compare the results with the analytical solution.
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Results: see (C) Equation of motion:

F = m a with F =

(
0

−mg

)
, a =

(
a1

a2

)
=

(
0

−g

)
.

Initial velocities and initial positions:

v0 =

(
v1(0)

v2(0)

)
=

(
v0 cosα

v0 sin α

)
, x0 =

(
x1(0)

x2(0)

)
=

(
0

h

)
.

Analytical solution: x(t) =
(
v0 t cosα, − 1

2
gt2 + v0 t sin α + h

)T
.

Outline of the algorithmic treatment:
% parameters

ts = 0.0; te = 2.0; n = 5; alpha = pi/4; h = 5; v0 = 10;

% components of the acceleration vector

a1 = 0; a2 = -10.0;

% time increment

delta_t = (te - ts)/n;

% initial conditions for position and velocity

x1(1) = 0; x2(1) = h;

v1(1) = v0*cos(alpha); v2(1) = v0*sin(alpha);

% integration scheme

for k = 1:n

x1(k + 1) = x1(k) + v1(k)*delta_t;

x2(k + 1) = x2(k) + v2(k)*delta_t;

v1(k + 1) = v1(k) + a1*delta_t;

v2(k + 1) = v2(k) + a2*delta_t;

end

Approximate solutions:

0 2 4 6 8 10 12
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2

4
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8

n = 5
n = 10
n = 50
exact

x2

x1

Fig. 7.15
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E7.4 Example 7.4 A rod of length l (with negligible mass) carries a
point mass at its end.

Case i): Determine the ϕ(t)-
diagram for |ϕ|<<1. Initial conditi-
ons: ϕ(t0) = 0.1 and ϕ̇(t0) = 0.

Case ii): Compute the phase
diagram (ϕ̇, ϕ-diagram) for lar-
ge deflections. Initial conditions:
ϕ(t0) = π/2 and ϕ̇(t0) = 0.

Use Euler’s method for the nume-
rical simulations.

������������

m

l

ϕ

Fig. 7.16

Results: see (C)
Case i): Equation of motion (second-order differential equation):

ϕ̈ +
g

l
ϕ = 0 .

Transformation with z1(t) = ϕ(t) and z2(t) = ϕ̇(t) to two diffe-
rential equations of first-order:

ż1(t) = z2(t) and ż2(t) = −g

l
z1(t) = −g

l
ϕ.

Algorithmic details:
% Equation of motion: phi’’ + g/l phi = 0

% gravity g, length of the pendulum l

g = 10; l = 1;

% number of time increments, time increment delta_t

n = 100; delta_t = (4.0-0.0)/n;

% initial conditions: angle, angle-velocity

z1(1) = 0.1; z2(1) = 0.0;

% recurrence formula

for k = 1:n

z1(k + 1) = z1(k) + z2(k)*delta_t;

z2(k + 1) = z2(k) - g/l*z1(k)*delta_t;

end

Fig. 7.17 depicts the (ϕ, t)-diagram in the time interval [ts; te] =
[0; 4s].
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The simulation was performed using n = 100, 800, 5000 time incre-
ments. For n = 100 we have a divergent behaviour in contrast to
the simulations performed with n = 800 and n = 5000 increments.
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   0

 0,1

 0,2

n = 100
n = 800
n = 5000

ϕ

t

Fig. 7.17

Case ii): Non-linear differential equation:

ϕ̈ +
g

l
sinϕ = 0.

Transformation to a system of first-order differential equations:

ż1(t) = z2(t) and ż2(t) = −g

l
sinz1(t) = −g

l
sinϕ.

The phase-diagram is depicted in Fig 7.18. For n = 70 time in-
crements (crosses) we observe a (incorrect) dissipative behaviour:
the time steps are
too large and pro-
duce an inaccurate
approximation. For
n = 3000 incre-
ments (solid line)
we observe a clo-
sed trajectory in
the phase-diagram,
which is correct sin-
ce we have no dissi-
pation.
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Fig. 7.18
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E7.5 Example 7.5 The damped system in Fig. 7.19 is characterized by
the parameters m = 0.5 kg; d =
10 kg/s; k = 500 N/m .

Compute the free vibrations
of the system with Euler’s me-
thod using the initial conditi-
ons x(0) = 0.01 m and ẋ(0) =
0. Compare the result with the
analytical solution. �
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x

Fig. 7.19

Results: see (C) Differential equation:

m ẍ + d ẋ + k x = 0 → ẍ +
d

m
ẋ +

k

m
x = 0 .

Analytical solution (coefficients ξ = d/(2m) = 10 s−1, ω =
√

k/m

≈ 31.62 s−1, ζ = ξ/ω ≈ 0.032 < 1, ωd = ω
√

1− ζ2 ≈ 31.61 s−1 ):

x(t) = e−ξt(A cos(ωd t) + B sin(ωd t))

with A = 0.01 m and B = 3.2 · 10−4 m . Transformation with
z1(t) = x(t) and z2(t) = ẋ(t) to the system

ż1(t) = z2(t) and ż2(t) = − d

m
z2(t)− k

m
z1(t) .

Fig. 7.20 depicts the numerical solutions in the time interval
[ta; te] = [0; 0.6s] for n = 50 and n = 100 increments as well as the
analytical solution.
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Fig. 7.20
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E7.6Example 7.6 A point mass (m = 1 kg)
is subjected to free fall conditions un-
der gravity (g ≈ 10 m/s2). The air resi-
stance is assumed to be A = c ẋ2 with
c = 0.01 N/m .

Compute the velocity-time diagram
with Euler’s method and compare the
result with the analytical solution.

�
�
�
�
�

�
�
�
�
�

x

A

W = m g

Fig. 7.21

Results: see (C)
Differential equation: ẍ = g − c

m
ẋ2 .

Analytical solutions:

x(t) =
m

c
ln

[
cosh(

g t√
mg/c

)

]
, ẋ(t) =

√
mg

c
tanh

(
g t√
mg/c

)
.

Transformation with z1(t) = x(t) and z2(t) = ẋ(t) yields

ż1(t) = z2(t) und ż2(t) = g − c

m
z2
1(t) .

Algorithmic treatment:
% Free fall with air resistance

% coefficient of air resistance, mass, gravity

c = 0.01; m = 1; g = 10;

% initial conditions

z1(1) = 0; z2(1) = 0;

% number of time increments, time increment delta_t

n = 18; delta_t = (20 - 0)/n;

% numerical integration

for k = 1:n

z1(k + 1) = z1(k) + z2(k)*delta_t;

z2(k + 1) = z2(k) + (g - c/m*z2(k)^2)*delta_t;

end

In Fig. 7.22 we com-
pare the numerical re-
sults for n = 8 and
n = 18 time increments
with the analytical so-
lution in the time inter-
val t = [0; 20s].
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E7.7 Example 7.7 The system in Fig. 7.23 consists of a point mass
(m = 100 kg; ) and an elastic spring (k = 500 N/m).

Compute a numerical solution of the equation of motion
with the fourth-order Runge-Kutta method for different time in-
crements within the time
interval [ta; te] = [0; 30s].
Program a short algorithm
for the velocity and posi-
tion updates and compare
the results with the analy-
tical solution.

������

�
�
�

�
�
�

x

m
k

Fig. 7.23

Results: see (C) For the initial conditions x(t = 0) = 0.01 m and
ẋ(t = 0) = 0 m/s the diagrams below show the x(t)-diagrams for
n = 50 and n = 500 time increments. In the first case we observe
a strong numerical (unphysical) damping, whereas for n = 500 we
obtain an accurate approximation.
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Algorithmic implementation:
% Fourth-order Runge-Kutta method

% parameters: mass, elastic spring stiffness

m = 100; k = 500;

% time increment

ts = 0; te = 30; n1 = 50; delta_t = (te - ts)/n1;

% Functions of the set of 1st-order differential equations

f1 = ’z2’; f2 = ’-c/m*z1’;

% initial conditions

z(1,1) = 0.01; z(2,1) = 0; t(1) = ts;

% numerical integration

for i = 1:n1

% 1. evaluation

z1 = z(1,i);

z2 = z(2,i);

kk(1,1) = eval(f1);

kk(2,1) = eval(f2);

% 2. evaluation

z1 = z(1,i)+delta_t/2*kk(1,1);

z2 = z(2,i)+delta_t/2*kk(2,1);

kk(1,2) = eval(f1);

kk(2,2) = eval(f2);

% 3. evaluation

z1 = z(1,i)+delta_t/2*kk(1,2);

z2 = z(2,i)+delta_t/2*kk(2,2);

kk(1,3) = eval(f1);

kk(2,3) = eval(f2);

% 4. evaluation

z1 = z(1,i)+delta_t*kk(1,3);

z2 = z(2,i)+delta_t*kk(2,3);

kk(1,4) = eval(f1);

kk(2,4) = eval(f2);

% approximate solutions at time t_i+1

z(1,i+1) = z(1,i)+1/6*(kk(1,1)

+2*kk(1,2)+2*kk(1,3)+kk(1,4))*delta_t;

z(2,i+1) = z(2,i)+1/6*(kk(2,1)

+2*kk(2,2)+2*kk(2,3)+kk(2,4))*delta_t;

t(i+1) = t(i)+delta_t;

end
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7.5 7.5 Summary
• Equations of motion with initial conditions lead to initial-value

problems of first or second order. A differential equation of
second order can be transformed to a system of differential
equations of first order.

• Most numerical integration algorithms are based on the com-
putation of approximate solutions for differential equations of
first order:

ẋ = f [t, x(t)] .

• The basic idea of the numerical treatment is the approximation
of the time-continuous variation of the function of interest x(t)
at discrete points (mesh points):

ti = t0 + i�t , i = 0, 1, . . . , n .

• Starting from the solution xi at time ti (beginning of the time
increment �t) we compute the (approximate) solution xi+1

at time ti+1 (end of the time increment) following a specific
integration procedure.

• The simplest procedure is Euler’s method:

xi+1 = xi + f [ti, xi] �t .

In order to achieve an accurate approximation this method
may require a large number of time steps.

• More accurate approximations can be obtained by applying
the second-order or fourth-order Runge-Kutta method. These
procedures require function evaluations at mesh points inside
the time increment.
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A Numerical Integration

A differential equation of order n

y(n)(t) = f [t, y(t), y′(t), ..., y(n−1)(t)] (A.1)

can be transformed with the help of the functions

z1(t) = y(t) ,

z2(t) = y′(t) ,

... = ... ,

zn(t) = y(n−1)(t)

to a system of n differential equations of first order:⎛⎜⎜⎜⎜⎝
z′1
z′2
...

z′n

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
z2

z3

...

f [t, z1, z2, ..., zn]

⎞⎟⎟⎟⎟⎠ → z′ = f [t, z1, z2, ..., zn]. (A.2)

To solve this system in the time interval [ts, te] we need the initial
conditions

{y(ts), y′(ts), ..., y(n−1)(ts)} → {z10, z20 , ..., z(n−1)0} ,

which are summarized in the column vector z0.

given: z0, ts, te, n, f [t, z]

time increment: �t = (te − ts)/n

loop over all time increments

For i From 0 To n Do

ti = ts + i �t

zi+1 = zi + f [ti, zi]�t

End Do

Fig. A.1 Euler’s method
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The numerical solution of (A.2) can be obtained with Euler’s
method. Its algorithmic procedure is summarized in Fig. A.1.

For the numerical solution of (A.2) with the fourth-order Runge-
Kutta method, we have to perform four function evaluations for
each of the n first-order differential equations. We assemble the-
se additional function evaluations kjl for l = 1, 2, 3, 4 within the
column vectors

k1 =

⎛⎜⎜⎜⎜⎝
k11

k21

...

kn1

⎞⎟⎟⎟⎟⎠ , k2 =

⎛⎜⎜⎜⎜⎝
k12

k22

...

kn2

⎞⎟⎟⎟⎟⎠ , k3 =

⎛⎜⎜⎜⎜⎝
k13

k23

...

kn3

⎞⎟⎟⎟⎟⎠ , k4 =

⎛⎜⎜⎜⎜⎝
k14

k24

...

kn4

⎞⎟⎟⎟⎟⎠ .

A compact program flow of this method is given in Fig. A.2.

given: z0, ts, te, n, f [t, z]

time increment: �t = (te − ts)/n

loop over all time increments

For i From 0 To n Do

ti = ts + i �t

k1 = f [ti, zi]

k2 = f [ti +
�t

2
, zi + k1

�t

2
]

k3 = f [ti +
�t

2
, zi + k2

�t

2
]

k4 = f [ti +�t, zi + k3 �t]

zi+1 = zi +
�t

6
(k1 + 2 k2 + 2 k3 + k4)

End Do

Fig. A.2 Fouth-order Runge-Kutta method
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Index
absolute

-acceleration 299, 302

-velocity 299 ff.

acceleration 6

, absolute 299, 302

, angular 24 ff.

, centripetal 26

, Coriolis 303

, earth’s gravitational 10, 38

, normal 33

, radial 24

, relative 300, 303

, tangential 33

-diagram 135

-of reference frame 300

amplitude 238

angular

-acceleration 24 ff.

-velocity 24 ff., 131

-velocity vector 131

angular momentum 58, 148,

184 ff.

-conservation 148

-principle 185

-theorem 58 ff., 98

aperiodic motion 259

arc-length 6

axial moment of inertia 149, 186

balancing

, dynamic 195

, static 195

blow efficiency 110

body, rigid 91, 129

center

-of mass 94

-of percussion 177

central motion 26

centripetal acceleration 26

centrode 144

circular motion 25, 33

coefficient

-of restitution 55, 107 ff., 176

-of viscous damping 257

compliance 249

compound pendulum 243

compression phase 53, 106

conservation

-of angular momentum 59, 98

-of energy law 68, 103

-of linear momentum 52, 96

conservative force 66, 103

conservative system 103

constraint

, kinematic 89

, rigid 89, 102

-force 43

coordinates

, cartesian 7

, cylindrical 30

, generalized 220

, polar 23

Coriolis

-acceleration 303

-force 306

Coulomb friction 45

coupling, physical 91

critical damping 260

-coefficient 260

cylindrical coordinates 30

d’Alembert’s

-inertial force 211, 306

-principle 217

damped

-forced vibrations 269
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-free vibrations 254 ff.

-vibrations 239, 290

damping

, critical 260

-coefficient 257

-ratio 259

decrement, logarithmic 262

degree of freedom 38, 42, 89 ff.,

220

drag

-coefficient 47

-force 45 ff.

dynamic

-balancing 195

-equilibrium 211

-vibration absorber 290

dynamics 1

earth’s gravitational acceleration

10, 38

effective length of pendulum

244

efficiency 65

, blow 110

eigenfrequency 242

eigenmodes 281

elastic

-impact 54

-potential 69

energy

, kinetic 63, 101, 153

, potential 67

, rotational kinetic 170

, translational kinetic 170

-conservation 154, 170

-conservation law 68, 103

Euler’s equations 189

Euler’s method 321 ff.

excitation

-through a force 269

-via a damper 270

-via a spring 269

explicit method 321

fall

, free 10

-with drag 47

fictitious (pseudo) force 306

flexibility 249

force

, conservative 66, 103

, constraint 43

, Coriolis 306

, drag 45 ff.

, external 91

, fictitious (pseudo) 211,

306

, friction 45

, generalized 223

, inertial 211, 306

, internal 92

, pseudo 211, 306

, reaction 43

, resistance 45 ff.

-field, irrotational 68

forced vibrations 240, 264 ff.,

287 ff.

forcing frequency 265

frame, inertial 2, 298, 307

free vibrations 240 ff., 278 ff.

frequency 237

, circular 238

, eigen 242

, forcing 265

, natural 242

-ratio 266

-response 274

friction force 45

Galilei 1, 10, 36
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generalized

-coordinates 220

-forces 223

geometric constraint equations

89

gravitational

-acceleration 10, 38

-constant 72

-potential 69, 73

Gravitational Law 72

gyroscope 197

, moment-free 198

gyroscopic motion 130

gyrostat, spherical 199

harmonic

-oscillations 16

-vibration 237

Hertz 237

ideal pendulum 62, 243

impact 52 ff., 105 ff., 174 ff.

, central 105

, direct 105, 174

, eccentric 105, 174 ff.

, elastic 54, 107

, line of 105, 174

, oblique 105, 110 ff., 174

, partially elastic 55, 107

, plastic 55, 107

-coefficient of restitution 55,

107 ff., 176

Impulse Law 52 ff., 96, 169

impulse, linear 52, 96, 106

inertia

-law 1, 37

-tensor 186

inertial

-force 211, 306

-frame 2, 298, 307

-reference system 37

initial

-condition 9, 238, 320, 329,

352

-value problem 319 ff.

instantaneous center

-of rotation 141

-of zero velocity 141

irrotational force field 68

Joule 64

Kepler’s Law 27, 60, 72 ff.

kinematics 1, 5 ff., 129 ff., 299 ff.

kinetic

-energy 63, 101, 153, 170

-variable 36

kinetics 1, 36 ff., 147 ff., 158 ff.,

182 ff., 305 ff.

Lagrange equations of 2nd kind

220 ff.

Lagrangian 224

law

-of inertia 1, 37

-of motion for the center of mass

95

Law of Equal Areas 27, 60

line of impact 105, 174

logarithmic decrement 262

magnification factor 267, 274

mass

, variable 115 ff.

-center 94

-moment of inertia 61, 100,

147 ff.

-point 36

midpoint method 323

moment

-of area, polar 149
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-of inertia 61, 100, 186

-of momentum 58

momentum 36, 52, 96, 183

, angular 58, 148, 184 ff.

motion

, aperiodic 259

, central 26

, circular 25, 33

, constrained 42

, free 38

, plane 23 ff., 133 ff.,

158 ff., 194 ff.

, planetary 26, 60, 72 ff.

, rectilinear 7 ff.

, relative 299 ff.

, satellite 72 ff.

, spatial 137

, three-dimensional 30 ff.,

182 ff.

, uniform 9

, uniform acceleration 10

Newton 1, 38

Newton’s Laws 1, 36 ff.

normal acceleration 33

normalized damping coefficient

258

oscillations 16, 237

, harmonic 16

parabolic trajectory 40

parallel-axis theorem 149

partially elastic impact 55

pendulum

, compound 243

, ideal 62, 243

, simple 243

-effective length 244

period 237

periodic vibrations 237

phase

-angle 239, 273

-trajectory 17

plane motion 23 ff., 133 ff.,

158 ff., 194 ff.

planetary motion 26, 60, 72 ff.

plastic impact 55

point mass 36

polar coordinates 23

potential 67, 103

, elastic 69

, gravitation 72

, gravitational 69

, spring 69

-energy 67

power 65, 153

principal

-axes 187

-modes of vibration 281

-moment of inertia 187

principle

-of angular impulse and mo-

mentum 169

-of angular momentum 147,

160, 185

-of conservation of linear mo-

mentum 96

-of d’Alembert 217

-of impulse and linear momen-

tum 52

-of linear impulse and momen-

tum 169

-of linear momentum 160, 183

-of virtual work 217

principles of mechanics 2, 210 ff.

product of inertia 186

projectile motion 39

pseudo force 211

radius of gyration 149
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reference frame

, rotating 300

, translating 299 ff.

-acceleration 300

-velocity 300

reference system, inertial 37

relative

-acceleration 300, 303

-velocity 300, 302

resistance force 45 ff.

resonance 267

restitution phase 53, 106

rigid body 91, 129

rigid constraint 89, 102

rotation 130 ff., 147, 160

, unbalanced 271

rotational kinetic energy 170

Runge-Kutta method 322 ff.

Serret-Frenet frame 30

simple pendulum 243

sinus amplitudinis 341

speed 6, 32

spherical gyrostat 199

spring

, equivalent- 249

-constants 246 ff.

-flexibility 249

-potential 69

springs

-in parallel 248

-in series 249

statics 1

steady state vibrations 267

stiffness 247

Stokes Drag Law 47

system of point masses 89 ff.

tangential acceleration 33

thrust 117

transient vibrations 266

translation 129, 160

translational kinetic energy 170

tuned mass damper 290

unbalanced rotation 271

undamped

-forced vibrations 264 ff.

-vibrations 239

vector of rotation 131

velocity 5

, absolute 299 ff.

, angular 24 ff., 131

, radial 24

, relative 300, 302

-diagram 135

-of reference frame 300

vibrations 16, 237 ff.

, damped 239, 290

, damped forced 269

, damped free 254 ff.

, forced 240, 264 ff., 287 ff.

, free 240 ff., 278 ff.

, harmonic 237

, periodic 237

, steady state 267

, transient 266

, undamped 239

, undamped forced 264 ff.

, unstable 239

-principal modes 281

virtual

-displacements 217

-work, principle of 217

Watt 65

weight 38

work 63, 101, 153

work-energy theorem 64, 101,

154, 170
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