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Preface

The application of risk and reliability in the analysis, design, and planning of engineer-
ing systems has received worldwide acceptance from the engineering profession. As a
result of extensive efforts by different engineering disciplines during the last three
decades, design guidelines and codes are being modified or have already been modified
to incorporate the concept of risk-based analysis and design. The Accreditation Board of
Engineering and Technology (ABET) now requires that all civil engineering undergrad-
uate students in the U.S. demonstrate knowledge of the application of probability and sta-
tistics to engineering problems, indicating its importance in civil engineering education.

There are many motivations behind this book, and they need some elaboration here.
In the 1970s, while deeply involved with safety issues for nuclear power plants, the first
author observed that ordinary engineers were not trained in risk or reliability-based
analysis and design procedures. This is true even today to some extent. Many engineers
are reluctant to use these procedures because reliability methodology appears to be dif-
ficult and mathematically demanding. The available literature is not easy to read, and
the basic concept is buried in complex mathematical notations, symbols, and diagrams.
Information is available on a piecemeal basis emphasizing a few areas of interest to the
writers, and the numerous articles fail to give a broad, comprehensive understanding of
the current state of the art. Some of the research issues and items of interest to acade-
micians are emphasized; however, some basic concepts that might facilitate practical
understanding and implementation are overlooked or deemphasized.

For engineers who understand risk-based analysis and design, applying the concept
to engineering problems still appears to be very difficult. This is because the basic the-
ories and algorithms have been under considerable research, development, and verifica-
tion efforts until recently. There has been much ferment in this field during the past two
decades, resulting in numerous publications with various methods and theoretical argu-
ments. However, much experience has been gained from this research during the past
decades, and now it is time to crystallize these concepts into a simple, ready-to-use for-
mat to enable risk-based design. This is an important motivation behind this book.

In this book we strive to deal comprehensively with issues relevant to students, pro-
fessionals, and society. There are several target audiences for this book. The book
addresses issues of interest to undergraduate and graduate students of civil engineer-
ing, and to other engineering disciplines to a lesser extent; it will also interest practic-
ing engineers with little or no background in probability and statistics, and the general
risk and reliability research community. The material is presented attractively and effi-
ciently and is based on a great deal of experience gained by dealing with students and
practicing engineers on safety-related issues.

xiii



xiv Preface

To satisfy the objectives of the book and the target audiences, we develop the mate-
rial gradually, first addressing very simple concepts and later moving to advanced con-
cepts required to implement risk-based design concepts in practical problems. The
statistical knowledge required to implement the concept is presented in an optimal way,
fitting it into the overall scheme of risk or reliability evaluation of engineering systems.
Many reliability analysis methods with various degrees of complexity and sophistica-
tion are presented. The area of simulation is becoming an integral part of risk and reli-
ability analysis, even with an elementary knowledge of probability and statistics. The
extensive use of personal computers is the motivation behind the chapter on simulation
techniques. Simulation also plays an important role in verifying the results obtained
using more mathematically demanding analytical methods.

The material is developed primarily for undergraduate engineering students; how-
ever, it can be used by graduate engineering students as well and by practicing engi-
neers with no formal instruction on the subject. The material is presented directly and
straightforwardly with many practical examples, in an attempt to increase appreciation
for the subject and demystify the complicated mathematical theory of risk and relia-
bility. An understanding of the contents of the book is expected to provide a sufficient
working knowledge of risk and reliability to all interested parties. It is expected that
these chapters can be taught in one semester and will satisfy the ABET requirements.

The book can be used to teach any required undergraduate course for engineers on
probability and statistics. These chapters are developed so as to he understandable by
members of any engineering discipline. Chapter 1 presents the basic concepts of risk and
reliability. Chapters 2 through 8 start with the fundamentals of probability and statistics
and present the concepts of reliability analysis, with applications to simple components
and systems. The mathematical aspects of evaluating risk and reliability (i.e., set theory)
are discussed in Chapter 2. Chapter 3 discusses methods to quantify randomness in terms
of data collection and analysis for one or multiple random variables and correlations
among random variables. Risk evaluation procedures using some of the common distri-
butions including extreme value distributions are presented in Chapter 4. Statistical con-
cepts regarding the selection of suitable distributions and the estimation of parameters to
uniquely describe a selected distribution are discussed in Chapter 5. Chapter 6 discusses
several methods for evaluating uncertainty in the response of engineering systems using
information on the random variables involved in the problem. Regression analysis pro-
cedures are also presented in this chapter. The concept of reliability analysis and cur-
rently available risk evaluation procedures are discussed in Chapter 7. Advanced
reliability analysis topics are presented in Chapter 8. The use of simulation in estimating
risk is introduced in Chapter 9. These chapters are self-contained and can be used in an
undergraduate course to satisfy the ABET requirements. Additional materials required to
make the book self-sufficient are provided in six appendixes.

This book discusses all the fundamentals of reliability and statistics required for
risk-based engineering analysis and design. It primarily emphasizes reliability analysis
procedures when the functional relationship among the load and resistance-related
variables (i.e., the performance function or the limit state equations) is available in
explicit form. The book briefly addresses reliability evaluation procedures when the
performance functions are implicit; we discuss this more completely in another book,
Reliability Assessment Using Stochastic Finite Element Analysis. published by John
Wiley & Sons in 2000.
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To improve the readability of the book, citations in the middle of a discussion are
avoided. Many people contributed to the development of risk and reliability-based
engineering analysis and designs, and an extensive list of references is given at the end
of the book to acknowledge their contributions. We have tried our best to make this list
as complete as possible. We also would like to thank the many anonymous reviewers
for their constructive comments and suggestions. Their help was essential in develop-
ing this book.

Mr. Jungwon Huh's help in developing figures, tables, and numerical solutions for
many problems given in the book is very much appreciated.

Numerous former and present students and colleagues of ours directly or indirectly
contributed to the development of the material presented in this book. We would like
to thank Prof. B.M. Ayyub at the University of Maryland, Professor T.A. Cruse at
Vanderbilt University, Dr. Hari B. Kanegaonkar, Dr. Yiguang Zhou, Dr. Liwei Gao, Dr.
Zhengwei Zhao, Dr. Duan Wang, Prof. Alfredo Reyes Salazar, Mr. Rajasekhar K.
Reddy, Mr. Nilesh Shome, Mr. Ali Mehrabian, Mr. Seung Yeol Lee, Dr. Sandeep
Mehta, Dr. Robert Tryon, Dr. Qiang Xiao, Dr. Animesh Dey, Dr. Xiaoping Liu, Mr. Pan
Shi, and Mr. Zhisong Guo.

We appreciate all the help provided by the editorial, production, and marketing staff
of John Wiley & Sons. We would especially like to thank A. Wayne Anderson for his
support and encouragement during the development phase of this book.

Some of the methods presented in this book were developed with financial support
received from several different sources over several decades, including the National
Science Foundation, the American Institute of Steel Construction, the U.S. Army Corps
of Engineers, the Illinois Institute of Technology, the Georgia Institute of Technology,
the University of Arizona, Vanderbilt University, and other industrial sources that pro-
vided matching funds for the Presidential Young Investigator Award, which the first
author received in 1984. The second author's research in reliability and probabilistic
finite element analysis methods has been supported for over a decade by several agen-
cies such as NASA, the U.S. Army Corps of Engineers, the U.S. Army Research
Office, the U.S. Air Force, the National Science Foundation, and Oak Ridge and Sandia
National Laboratories.

NOTES FOR INSTRUCTORS

The book is suitable for a sophomore or junior level course as well as for a senior or
first-year graduate level course. Based on extensive teaching experience, we would like
to suggest a tentative course outline for the two courses.

Sophomore or junior Level Course (Average Duration 15 Weeks)

This outline is applicable when the students have very limited exposure to set theory.
For this class, the material in Chapters 1 to 3 needs to be covered in detail and can be
covered in 10 lectures. Some of the commonly used continuous and discrete random
variables discussed in Chapter 4 can then be introduced. This topic can be covered in
9 lectures. Section 4.5 on extreme value distributions can be skipped if desired. The
discussion in Chapter 5 on determining the underlying distribution for a given set of
data or observations, and the point and interval estimations of its parameters, can be
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covered in 6 lectures. Estimating randomness in response variables including the
regression analysis can be covered in 6 lectures. The concept of reliability evaluation,
presented in Chapter 7, needs to be covered in detail and may take over 8 lectures. The
advanced topics of reliability analysis, discussed in Chapter 8, can be skipped for an
introductory undergraduate course. The chapter on simulation, Chapter 9, may take
about 4 lectures. These recommendations cover about 43 lectures. Two additional lec-
ture hours are left for examinations or other activities.

Senior or First-Year Graduate Level Course
(Average Duration 15 Weeks)

It is expected that these students are familiar with set theory and have some basic knowl-
edge on statistics, and these topics only need to be reviewed. We suggest covering the
first 3 chapters in 6 lectures. Chapter 4, with more discussion on Section 4.5, can he cov-
ered in 8 lectures. Chapter 5 needs about 6 lectures. About 6 lectures can be spent on
Chapter 6. Chapters 7 and 8 need to be covered in detail and may take over 12 lectures.
Chapter 9 can be covered in 5 lectures. Again, this lecture guide covers 43 lecture hours;
an additional 2 lecture hours are left for examinations and other activities.



Chapter 1

Basic Concept of Reliability

1.1 INTRODUCTORY COMMENTS

The concept of reliability, probability, or risk has been a thought-provoking subject for
a long time. Pierre Simon, Marquis de Laplace (1749-1827), published a volume of
work on pure and applied mathematics. He also wrote a commentary on general intelli-
gence, published as "A Philosophical Essay on Probabilities." In it, Laplace wrote, "I
present here without the aid of analysis the principles and general results of this theory,
applying them to the most important questions of life, which are .indeed for the most part
only problems of probability. Strictly speaking it may even be said that nearly all our
knowledge is problematical; and in the small number of things which we are able to
know with certainty, even in the mathematical sciences themselves, the principal means
of ascertaining truth induction, and analogy are based on probabilities; so that the
entire system of human knowledge is connected with the theory set forth in this essay."
He concluded, "It is seen in this essay that the theory of' probabilities is at bottom only
common sense reduced to calculus; it makes us appreciate with exactitude that which
exact minds feel by a sort of instinct without being able ofttimes to give a reason for it.
It leaves no arbitrariness in the choice of opinions and sides to be taken; and by its use
can always be determined the most advantageous choice. Thereby it supplements most
happily the ignorance and weakness of the human mind" (translation, 195 1).

These timeless remarks sum up the importance of probability or reliability concepts
in human endeavor. The aim of this book is to present practical methods that apply
these concepts to the design of engineering systems.

1.2 WHAT IS RELIABILITY?

Most observable phenomena in the world contain a certain amount of uncertainty: that
is, they cannot be predicted with certainty. In general, repeated measurements of phys-
ical phenomena generate multiple outcomes. Among these multiple outcomes, some

I



2 Chapter 1 Basic Concept of Reliability

outcomes are more frequent than others. The occurrence of multiple Outcomes without
any pattern is described by terms such as uncertainty% randomness, and stochasticitv'.
The word stochasticity comes from the Greek word stochos, meaning uncertain. For
example, if several "identical" specimens of a steel bar were loaded until failure in a
laboratory, each specimen would fail at different values of the load. The load capacity
of the bar is therefore a random quantity, formally known as a random variable. In gen-
eral, all the parameters of interest in engineering analysis and design have some degree
of uncertainty and thus may he considered to be random variables. Although other
methods exist for treating uncertainties, as discussed in Section 1.5.1.2, only proba-
bilistic methods are included in this book.

The planning and design of most engineering systems utilize the basic concept that
the capacity, resistance, or supply should at least satisfy the demand. Different termi-
nology is used to describe this concept depending upon the problem under considera-
tion. In structural, geotechnical, and mechanical engineering, the supply can be
expressed in terms of resistance, capacity, or strength of a member or a collection of
members, and demand can be expressed in terms of applied loads, load combinations,
or their effect. For a construction and management project, the completion time is an
important parameter in defining success. The estimated completion time during the
bidding process and the actual time spent to complete the project will give the essen-
tial components of supply and demand. In environmental engineering, the actual air or
water quality of a given city or site is always measured with respect to allowable or
recommended values suggested by a responsible regulatory agency, for example, the
Environmental Protection Agency (EPA), giving the essential Components Of supply
and demand. In transportation engineering, an airport or highway is designed consid-
ering future traffic needs; the capacity of the airport or highway must meet the traffic
demand. In hydraulics and hydrology engineering, the height and location of a dam to
be built on a river may represent the capacity. The annual rainfall, catchment areas and
vegetation in them, other rivers or streams that flow into the river being considered,
usage upstream and downstream of the river, and location of population centers may
represent demand. Errors can never be avoided in surveying projects. The measure-
ment error could be positive or negative, and the quality or sophistication of the equip-
ment being used and the experience of the surveyor may represent capacity. In this
case, the acceptable tolerance may indicate demand.

The point is that no matter how supply and demand are modeled or described, most
engineering problems must satisfy the concept. However, most of the parameter's
related to supply and demand are random quantities. In the subsequent chapters, this
uncertainty or randomness will be identified and quantified. The primary task of plan-
ning and design is to ensure satisfactory performance, that IS, to ensure that the capac-
ity or resistance is greater than demand during the system's useful life.

In view of the uncertainties in the problem, satisfactory performance cannot be
absolutely ensured. Instead, assurance can only be given in terms of the probability of
success in satisfying some performance criterion. In engineering terminology, this
probabilistic assurance of performance is referred to as reliahilitv.

An alternative way to look at the problem is to consider unsatisfactory performance
of the system. In that case, one might measure the probability of failure to satisfy some
performance criterion, and the corresponding term would be risk. Thus, risk and ,'elia-
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bility are complementary terms. (In some references, the term risk is not just the prob-
ability of failure but includes the consequence of failure. For example, if the cost of
failure is to be included in risk assessment, then risk is defined as the product of the
probability of failure and the cost of failure.)

Reliability or risk assessment of engineering systems uses the methods of probabil-
ity and statistics, between which a distinction needs to he drawn here. Statistics is the
mathematical quantification of uncertainty (mean, standard deviation, etc., of a vari-
able; these terms will be defined later), whereas probability theory uses the informa-
tion from statistics to compute the likelihood of specific events.

1.3 NEED FOR RELIABILITY EVALUATION

Engineers have always recognized the presence of uncertainty in the analysis and design
of engineering systems. However, traditional approaches simplify the problem by con-
sidering the uncertain parameters to be deterministic and accounting for the uncertain-
ties through the use of empirical safety factors. Safety factors are derived based on past
experience but do not absolutely guarantee safety or satisfactory performance. Also,
they do not provide any information on how the different parameters of the system influ-
ence safety. Therefore, it is difficult to design a system with a uniform distribution of
safety levels among the different components using empirical safety factors.

Engineering design is usually a trade-off between maximizing safety levels and
minimizing cost. A design methodology that accomplishes both of these goals is highly
desirable. Deterministic safety factors do not provide adequate information to achieve
optimal use of the available resources to maximize safety. On the other hand, proba-
bilistic analysis does provide the required information for optimum design.

For this reason, several design guidelines or codes have recently been revised to incor-
porate probabilistic analysis. Examples of such revisions include the American Institute
of Steel Construction Load and Resistance Factor Design (1994) specifications and the
European and Canadian structural design specifications. Several other design specifica-
tions are now in different stages of development to incorporate probabilistic design con-
cepts. The use of probabilistic analysis in these codes is expected to provide more
information about system behavior, the influence of different uncertain variables on sys-
tem performance, and the interaction between different system components. While prob-
abilistic analysis brings rationality to the consideration of uncertainty in design, it does
not discount the experience or expertise gathered from a particular system. In fact, the
probabilistic methodology includes a "professional factor," which incorporates the expert
opinions of experienced designers about different uncertain quantities in the system.

One hurdle in the use of probabilistic methodology is the so-called mathematical
sophistication of this approach. However, this perception is really due to a lack of
familiarity with probabilistic concepts. Many engineering schools now routinely
include these concepts in their undergraduate curriculum. As mentioned in the preface,
Accreditation Board of Engineering and Technology (ABET) now requires that all civil
engineering undergraduate students in the U.S. take a course in this subject, indicating
its importance in civil engineering education. The literature on probabilistic analysis
and design and the number of engineering applications have greatly increased in recent
years, expanding engineers' familiarity with and acceptance of this methodology.
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1.4 MEASURES OF RELIABILITY

Many different terms are used to describe the reliability of an engineering system.
Some of the terms are self-explanatory, whereas others are not. The commonly used
term probability of failure is always associated with a particular performance criterion.
An engineering system will usually have several performance criteria, and a probabil-
ity of failure is associated with each criterion. In addition, an overall system probabil-
ity of failure may be computed. The probability of failure may be expressed as a
fraction, such as I in 100, or as a decimal, such as 0.01. Reliability is the probability
of successful performance; thus it is the converse of the term probability of failure. It
is common in the aerospace industry to express reliability in terms of decimals, such
as 0.999 or 0.9999, and refer to these numbers as "three 9s reliability" or "four 9s reli-
ability." (The corresponding probability of failure values for these reliability estimates
are 0.001 and 0.0001, respectively.)

A measure of reliability, in the context of design specifications, is the safety factor,
whose value provides a qualitative measure of safety. The safety factor may be used in
the context of the load (or demand) on the system, or the resistance (or capacity) of the
system, or both. In the context of the load, the nominally observed value of the load
(referred to as the service load) is multiplied by a safety factor greater than 1.0 (referred
to as the load factor) to obtain the design load. In the context of the resistance, the nom-
inal value of the resistance of the system is multiplied by a safety factor usually less
than 1.0 (referred to as the resistance factor or capacity reduction factor) to obtain the
allowable resistance. Both load and resistance are uncertain quantities, with a mean,
standard deviation, and so forth. The word nominal means that a deterministic value is
specified by the designer or manufacturer for the load and/or the resistance for design
purposes. In the case of loads, the nominal value is usually above the mean value. In
the case of resistance, the nominal value is usually below the mean value. These ideas
will be elaborated upon in detail in Chapter 7.

When both load and resistance factors are used, the overall safety is measured by
the ratio of values of the load and the resistance. The central safety factor is the ratio
of the mean values of the resistance and the load. The nominal safety factor is the ratio
of the nominal values of the resistance and the load. Again, these concepts will be elab-
orated upon in Chapter 7.

For practical structures and performance criteria, it is difficult to compute the prob-
ability of failure precisely. Therefore, a first-order estimate frequently is used in prob-
abilistic design specifications. This first-order estimate employs a measure known as
the reliability index or safety index (denoted by the Greek symbol beta, f3). The con-
cepts of reliability index and first-order approximation of the probability of failure will
be described in detail in Chapter 7.

1.5 FACTORS AFFECTING RELIABILITY EVALUATION

Reliability analysis requires information about uncertainties in the system. Before col-
lecting such uncertainty information and proceeding with the reliability analysis, the
engineer needs to understand that there are different types of uncertainty in engineer-
ing systems, and that each type of uncertainty requires a different approach for data
collection and use in reliability evaluation.
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1.5.1 Sources of Uncertainty

In a broad sense, uncertainties in a system may come from cognitive (qualitative) and
noncognitive (quantitative) sources.

1.5.1.1 Noncognitive Sources

Noncognitive or quantitative sources of uncertainty or randomness can he classified
into three types for the purpose of discussion. The first source is the inherent random-
ness in all physical observation. That is, repeated measurements of the same physical
quantity do not yield the same value, due to numerous fluctuations in the environment,
test procedure, instruments, observer, and so on. This may be referred to as inherent
uncertainty. The engineer tries to address this type of uncertainty by collecting a large
number of observations; this provides good information about the variability of' the
measured quantity and leads to high confidence in the value used in the design.
However, the number of observations that can be collected is limited by the availabil-
ity of resources such as money and time.

This leads to the second source of uncertainty, known as statistical uncertainty. In
this case, one does not have precise information about the variability of the physical
quantity of interest due to limited data. The information on variability will vary
depending on the number of samples used, say 10 or 100. Therefore, quantitative meas-
ures of confidence based on the amount. of data are added to the reliability evaluation.

A third type of uncertainty is referred to as modeling uncertainty. System analysis
models are only approximate representations of system behavior. Computational mod-
els strive to capture the essential characteristics of system behavior through idealized
mathematical relationships or numerical procedures, for example, finite element meth-
ods for structural analysis. In the process, some of the minor determinants of system
behavior are ignored, leading to differences between a computational prediction and
actual behavior. Probabilistic methodology is able to include modeling uncertainty.
Past experience on the difference between computational model and actual behavior
can be used to develop a statistical description of modeling error, to he included as an
additional variable in the reliability analysis.

These three sources of uncertainty can he illustrated with a simple example.
Suppose the wind load or pressure acting on a building needs to be estimated (in units
of pounds per square foot). Recorded wind speed data, in miles per hour, can he col-
lected for the site. It is well known that wind speed cannot he predicted with certainty:
thus, it is inherently random. Its statistical uncertainty can he estimated by considering
past observations, and more data lead to a better estimate. However, the statistical
information on wind speed needs to be converted to wind pressure, for which purpose
Bernoulli's theorem is commonly used. This introduces another source of uncertainty,
known as modeling uncertainty.

1.5.1.2 Cognitive Sources

Cognitive or qualitative sources of uncertainty relate to the vagueness of the problem
arising from intellectual abstractions of reality. They may come from (a) the definitions
of certain parameters, for example, structural performance (failure or survival), quality,
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deterioration, skill and experience of construction workers and engineers, environmen-
tal impact of projects, and condition of existing structures; (b) other human factors; and
(c) definitions of the interrelationships among the parameters of the problems, espe-
cially for complex systems (Ayyub, 1994). These uncertainties are usually dealt with
using fuzzy set theory, which is beyond the scope of this book.

1.6 STEPS IN THE MODELING OF UNCERTAINTY

If the sources of uncertainty are noncognitive, and if the uncertainty needs to be quan-
tified using available information, the following essential steps can be taken. Suppose
the uncertainty in the annual rainfall or annual maximum wind speed for a particular
city needs to be quantified. Obviously, the information can be generated by collecting
all the available recorded data on rainfall or wind speed. There could be records of data
for the past 50, 75, or 100 years, giving 50, 75, or 100 samples. The necessary statisti-
cal information can be extracted from these samples following the steps shown in
Figure 1.1. The information collected constitutes the sample space. The randomness
characteristics can be described graphically in the form of a histogram or frequency
diagram, as will be elaborated upon in Chapter 3. For a more general representation of
randomness, the frequency diagram can be approximated by a known theoretical prob-
ability density function, such as the normal density function. However, to describe the
probability density function uniquely, certain parameters of the distribution need to he
estimated. The estimation of these parameters, called statistics, is itself a major corn-

Real world

Sample space
Relevant information

Mathematical representation
of uncertain quantities

Histogram

Density or
distribution function

Define performance criteria

Risk evaluation

Consequence

Design decision

Statistics or
parameters estimation

Figure 1.1 Steps in a Probabilistic Study
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ponent of the uncertainty analysis. The randomness in each of the load and resistance
parameters can be quantified using these statistics. Then, the risk involved in the design
can be estimated for a specific performance criterion. All these steps will he discussed
in subsequent chapters.

It is undesirable and uneconomical, if not impossible, to design a risk-free structure.
In most cases of practical importance, risk can he minimized but cannot be eliminated
completely. Nuclear power plants are relatively safer than ordinary buildings and
bridges, with a corresponding high cost, but they are not absolutely safe. Making It
structure safer costs more money in most cases. For a given structure, the correspon-
ding risks for different design alternatives can be estimated. The information on risk
and the corresponding consequences of failure. including the replacement cost of the
structure, can be combined using a decision analysis framework to obtain the best alter-
native. Thus, the probability concept provides a unified framework for quantitative
analysis of uncertainty and assessment of risk as well as the formulation of trade-off
studies for decision making, planning, and design considering the economic aspects of
the problem.

A large number of data are important to accurately implement the risk-based design
concept. It is always preferable to estimate uncertainty using an adequate number of
reliable observations. However, in many engineering problems, there are very few avail-
able data, sometimes only one or two observations. The probability concept can still be
used in this case by combining experience, judgment, and observational data. The
Bayesian approach can be used for this purpose. In the classical statistical approach. the
parameters are assumed to be constant but unknown. and sample statistics are used as
the estimators of these parameters. This requires a relatively large amount of data. In the
Bayesian approach, the parameters are considered to be random variables themselves,
enabling an engineer to systematically combine subjective judgment based on intuition.
experience, or indirect information with observed data to obtain a balanced estimate.
and to update the estimate as more information becomes available.

In almost all cases, regardless of the amount of available data, the risk-based design
concept can be used successfully.

1.7 CONCLUDING REMARKS

The reliability evaluation of engineering systems occurs at two levels: individual per-
formance criteria and overall system performance. These are referred to as conlponent-
level and system-level reliability measures, both of which are discussed in this hook.
Another consideration in reliability evaluation is the effect of time, that is. the system
could become less and less reliable with the passage of time clue to fatigue, creep,
material degradation, and environmental factors such as corrosion. This book does not
include methods for time-variant reliability analysis. This area is a fertile topic for
research and the methods are still under development, awaiting rigorous validation.

An important approach to uncertainty analysis is the field of random vibration,
which considers the random fluctuations of dynamic loads over their duration. The
field of random vibration is well established and is already covered by several excel-
lent texts. Therefore, the present text focuses on methods for estimating reliability
under time-invariant loads and resistance.
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The load effect of simple engineering components, for example, beams and
columns, can be easily analyzed by hand computation. The performance criteria for
these components involve simple closed-form expressions in terms of the uncertain
quantities in the load effect and resistance related parameters. Reliability analysis can
easily be performed in such cases. However, most practical engineering systems
involve multiple interacting components, and the analysis requires elaborate numerical
procedures. In such cases, the performance criteria cannot be related through closed-
form relations to the basic uncertain quantities. Additional procedures have to be
devised to perform reliability analysis for such systems, which this book briefly
addresses.

Chapters 2 through 8 start with the fundamentals of probability and statistics
and present the concepts of reliability analysis, with applications to simple compo-
nents and systems. The simulation concept is introduced in Chapter 9. Simulation
techniques can be used for reliability analysis with elementary knowledge of proba-
bility and statistics.



Chapter 2

Mathematics of Probability

2.1 INTRODUCTORY COMMENTS

In the previous chapter, randomness in a parameter was defined as the possibility of more
than one outcome; in other words, the actual outcome is to some degree subject to
chance. The possible outcomes are usually a range of measured or observed values;
moreover, within this range certain values may occur more frequently than others. Thus,
the fundamental mathematical formulation of probability theory identifies all possible
outcomes for a specific problem and defines events in the context of all these possibili-
ties. This formulation cannot be made using conventional algebra; it is necessary to
use set theor y, another branch of mathematics. The essential features of set
theory for risk or reliability analysis of engineering systems are discussed in this chapter.

2.2 INTRODUCTION TO SET THEORY

Consider the following example. Suppose it is necessary to be able to go from Point A to
Point B at any time on an emergency basis. Also assume that a car must be used, and that
this car may not always be in good working condition. To ensure that it is possible to
make the trip, common sense suggests that more than one car should be kept available;
the question is, how many cars are necessary`? Too many cars will cost a lot of money.
and they will not be used most of the time. Also, if the condition of each car has to be
assessed each time a trip becomes necessary, it may take so much time that the purpose
of keeping many cars will be defeated. How can this problem be approached?

2.2.1 Elements of Set Theory

To simplify the discussion, assume that a car can only be in good (G) operating condi-
tion or bad (B) operating condition. If there are two cars, the following situations are

9
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possible: both of them are in good condition, both of them are in bad condition, the first
one is good and the second one is had. or the first one is bad and the second one is
good. The total number of possible states for these cars is 4 or 22. If there are 17 cars,
the total number of. 'possible states will be 211. If there are three cars, the number of pos-
sible states is 23 = 8. They can be identified as follows:

Car 1 Car 2 Car 3

G G G All three cars are in good condition.

G G B

G B G Two cars are good and one is bad.
B G G

G B B

B G B One car is good and two cars are bad.
B B G

B B B All three cars are in bad condition.

This example can be used to describe many aspects of set theory. All eight outcomes
collectively constitute the sample space for the problem, and each of the eight individual.
outcomes constitutes a sample point. Each sample point precludes the occurrence of the
others: thus, they are niutualll' eXclusive. All events of interest must be defined in the con-
text of this sample space. Suppose X is a random variable representing the number of
good cars at a given time. A specific value of X is an event. The event X = 3 means that
all three cars are in good condition, and the event X = 0 means none of the cars is in good
condition. Similarly, if event X = 2 or 1, two of the three cars are in good condition, or
only one out of three cars is in good condition, respectively. The event that X is either 3
(GGG) or 0 (BBB) contains only one sample point in the sample space; however, the
event that X is either 2 (GGB, GBG. BGG) or 1 (GBB, BGB, BBG) contains three sam-
ple points. Thus, an event may contain one or more sample points in the sample space; it
is a subset of a sample space. If we assume that there is a 50% chance that a car is in good
or bad condition, each sample point is equally likely; that is, the chance of each sample
point is 1/8. Thus, in this special case, the chance of X being either 3 or 0 can be calcu-
lated by simply counting the number of sample points in the event (i.e., 1/8), and the
chance of X being 2 or 1 is 3/8 for each case, indicating the number of sample points for
those events. In reality, of course, if the cars are properly maintained the likelihood of
each car being in good condition would be much greater than 50%: the chance of all three
cars being in good condition is much greater than the chance of all three cars being in had
condition. If the sample points are not equally likely, the counting technique described
above will not work. This will be discussed further later.

This simple example introduces the concept of random variables and events. To sum-
marize the discussion so far, each problem must have a sample space. A sample space
consists of sample points that are mutually exclusive. An event needs to be defined in
ten-ns of sample points, and each event must contain at least one sample point.

An event that does not contain a sample point is called an impossible event. It is an
empty set or null set, generally denoted as 0. If an event contains all the sample points
in the sample space, it is called a certain event (i.e., the sample space itself) and is
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denoted as S. All the sample points in a sample space not belonging to an event E will
belong to a complementarry event, denoted as E. If' E is an event representing three
good cars, it will contain only one sample point (GGG). The complementary event E
will contain all other seven sample points in the sample space.

In the car example just discussed, the number of discrete sample points can be counted;
it is a discrete sample space. A discrete sample space could be finite or infinite. The car
problem is an example of a finite discrete sample space. Suppose that a coin is to he tossed
repeatedly until "heads" is thrown for the first time. Each toss will give a discrete sample
point. However, it is not known when heads will occur, and it is theoretically possible that
heads may never come up, making this an infinite discrete sample spuce.

In a discrete sample space, the sample points can be counted in integers: this is not
the case in a continuous sample space. Suppose that the design wind velocity for a par-
ticular site is of interest. There are upper and lower limits to the possible wind veloc-
ity, and the design velocity should be between these limits. However, the wind velocity
need not be an integer- and could assume an infinite number of values between the lim-
its. This is a case of a continuous sample space, which is always infinite since the sam-
ple points cannot be counted.

EXAMPLE 2.1

In Tucson, Arizona, the major part of the water supply may come from pumping from
an underground reservoir and/or from a system of canals drawing water from the
Colorado River, commonly known as the Central Arizona Project (CAP). The water is
stored for future use. On a given summer day, the pumping of water from the under-
ground reservoir can be 2 m, 3 m, or 4 m, in terms of height in the storage tank. The
availability of CAP water is equal to 4 m per day of the storage tank. The demand for
water in terms of storage tank height can be 8 m, 9 m, or 10 m. Suppose the water tank
has a reserve of 20 m water at the beginning of the day.

(a) What are the possible combinations of water supply and demand in a day?

(b) What are the possible water heights in the storage tank at the end of the day?

SOLUTION

Supply
(Pumping + CAP)

Demand Possible water height
(Supply - Demand + 20)

2+4=6 8 6-8+20=18
6 9 17

6 10 16

3+4=7 8 7-8+20=19
7 9 18

7 10 17

4+4=8 8 8-8+20=20
8 9 19

8 10 18
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(a) Possible combinations of supply and demand are (6, 8), (6, 9), (6, 10), (7, 8),
(7, 9), (7, 10), (8, 8), (8, 9), and (8, 10).

(b) The possible water heights in the tank are 16, 17, 18, 19, and 20 m.

This example represents a finite discrete sample space.

2.2.2 Venn Diagram

For engineers, drawings or sketches are the primary language in which ideas are
expressed. It is therefore desirable to draw a sample space and the sample points or
events in it. A Venn diagram can be used for this purpose. For the car example, the Venn
diagram can be represented by a rectangle consisting of eight other smaller but equal
rectangles as shown in Figure 2.1, representing equally likely sample points. If the
sample points are not equally likely, the relative size of the rectangles should be dif-
ferent. Figure 2.1. shows the events X = 0, 1, 2, or 3, indicating the number of sample
points in each event. A Venn diagram provides a simple but comprehensive pictorial
description of the problem.

EXAMPLE 2.2

Consider again the wind velocity example. Wind velocity has a magnitude and direc-
tion associated with it. The wind velocity records from an airport can be plotted as
shown in Figure 2.2, resulting in another form of Venn diagram. A Venn diagram need
not always be a rectangle. In general, the form of a Venn diagram should be selected
to present information as simply and clearly as possible while retaining all the impor-
tant aspects of the problem.

2.2.3 Combinations of Events

So far the discussion has focused on problems involving one event at a time. However,
in many practical problems, several events must be combined to obtain the necessary
information. In the car example, the real objective is to have at least one good car.
Therefore, the events that X = 1, 2, or 3 are all acceptable. To obtain the likelihood of
having at least one good car, these events need to be combined, giving a result of 7/8
(3/8 + 3/8 + 1/8). To solve such problems, it is necessary to know the combination rules
in the context of set theory.

G G G B B B G B

G G B G B G B B

G B G G G B B B

Sample
space

X= 3 2 1 0 Figure 2.1 Venn Diagram for Car Example
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Figure 2.2 Venn Diagram for
Wind Velocity

The general concept can be demonstrated with another example. Suppose there is con-
cern about delay in a construction project. Assume E1 is the event of material shortage,
and E2 is labor shortage. A Venn diagram for these events is shown in Figure 2.3. The
shortage of labor or material or both is represented by the shaded area. This is called the
union of two events, and is denoted by E1 U E?, also referred to as an OR combination.
Sample points belonging to E1, E7, or both will belong to this union of events. The dou-
ble-shaded, overlapped area in Figure 2.3 indicates shortage of both material and labor
(i.e., the joint occurrence of the two events) and is denoted by E1 n E7 or simply E1 E2,
also referred to as an AND combination. This is a case of intersection; the sample points
common to both E1 and E2 constitute the intersection of the two events. In general, the
intersection of events will contain fewer sample points than the union of the events.

The area outside the union of the two events in Figure 2.3 indicates that there may
be other causes of delay in a construction project, such as bad weather, accidents or
worker strikes. This area can be represented as the complement of E1 U E2 and can be
denoted as E, U E2. As mentioned earlier, complementary events are points in the sam-
ple space not belonging to a specific event.

For many problems, the overlapped area in Figure 2.3 may not exist; that is, there
is no common sample point in E, and E. and the joint occurrence of the events is
impossible. When the occurrence of one event precludes the occurrence of the other,
they are called mutually exclusive events. If E1 represents survival and E2 represents

S

Figure 2.3 Venn Diagram for Delay in a
Construction Project
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El

E1 E2

Figure 2.4 Mutually Exclusive
and Collectively Exhaustive

(a) Mutually exclusive (b) Collectively exhaustive Events

failure of a structure during an earthquake, then the structure will either survive or fail,
and the joint occurrence of survival and failure is impossible. The Venn diagram for
two mutually exclusive events is shown in Figure 2.4a.

If the union of events, whether mutually exclusive or not, constitutes the entire sam-
ple space, as shown in Figure 2.4b, the events are called collectively exhaustive events;
no other outcomes are possible. If the events are collectively exhaustive, and there is
no overlapping between them as shown in Figure 2.1, they are called mutually exclu-
sive and collectively exhaustive events. Note that an event and its complement are
mutually exclusive and collectively exhaustive.

EXAMPLE 2.3

Three steel specimens are subjected to tensile loads. Let Ei denote the event that the ith
specimen yields under these loads. Write expressions for the following events:

(a) Yielding occurs in all three specimens.
(b) Yielding occurs only in two specimens.

(c) Yielding occurs only in Specimen 3.

SOLUTION

(a) El E2 E3

(b) (E1 E2 E3) U (E1 E2 E3) U (E 1 E2 E3)

(c) E1 E2 E3

2.2.4 Operational Rules

The previous discussion described some of the basic operational rules of set theory:
union, intersection, and complement of events. These concepts are based on whether
the sample points are included in a particular combination of events. The algebraic
operations of addition, subtraction, multiplication, and division are not applicable to set
theory. Some additional operational rules of set theory are discussed briefly next.

Equality of Sets or Events

Two sets or events are equal if both contain exactly the same sample points. This def-
inition leads to the following observations:
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El u E, = E,

E, n E, = E,

E1u0=E,
E1n4)=4)
E1US=S
E,nS=E,

E1uE1=S

E,nE, =4)

E, =E1

Set theory has other operational rules, such as the commutative rule, associative rule
and distributive rule, which are similar to the rules for algebraic operations such as
addition and subtraction. The commutative rules states that in the union and intersec-
tion of two sets, the same results will be obtained regardless of which set is considered
first; that is, E1 u E-) = E2 u E1 or El E, = E, E1. The associative rule indicates that in
the union and intersection of more than two sets, the same results will he obtained
regard less of the order in which the sets are combined, that is (E 1 U E,) U E, = E 1 U
(E, u E3) or (E1 E,) E1 = E1 (E2 Ej). The union and intersection of sets are also dis-
tributive; that is, (E1 u E,) E3 = E1 E3 u E2 E3. With the help of Venn diagrams, it can
be shown that whether the left- or right-hand side of the equality is considered, the
sample points remain the same.

2.2.5 De Morgan's Rule

In many engineering applications, it is necessary to evaluate the union of many sets or
events. However, this can be difficult if the number of events is large. De Morgan's rule
can be used to simply the problem significantly.

Suppose it is necessary to estimate the risk or reliability of a statically determinate
truss consisting of five members as shown in Figure 2.5. Assume that E; is the event of
failure of the ith member; obviously, its complement E ; will be the survival of the ith
member. The truss will fail if any one of the five members fails, that is, E1 u E7 u E3
u E4 u E5. The complement of truss failure, that is, El u E, u E; u E4 u E or the
survival of the truss, means all five members must survive, or E 1 E 2 E3 E4 E 5. This
simple observation helps illustrate de Morgan's rule. With set theory, it can he gener-
alized for n events as

E, uE,I...,uE = ElE,,...,Ell (2.1)

Figure 2.5 Statically Determinate Truss
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and

E, E,,...5 E = El u E,,...,uE,,. (2.2)

In simple words, de Morgan's rule states that the complement of the union is equal
to the intersection of the respective complements, or the complement of the intersec-
tion is equal to the union of the respective complements. This will be discussed in more
detail with the help of an example in Section 2.4.

2.3 AXIOMS OF PROBABILITY

So far, the basic concepts of set theory have been discussed. The discussion will now
proceed to the mathematics of probability, that is, using set theory to calculate the prob-
ability of failure or survival of an engineering system. The mathematics of probability
rest on three basic assumptions or axioms.

Axiom 1

The probability of an event, denoted hereafter as P(E), will always be nonnegative, that
is, P(E) > 0.

Axiom 2

The probability of a certain event or the sample space S is 1.0; that is. P(S) = 1.0, or
0< P(E) < 1.0.

Axiom 3

For two mutually exclusive events Et and E2, the probability of their union is equal to
the summation of their individual probability. Mathematically, this can be expressed as

P(E1 u E,) = P(E1) + P(E2 ). (2.3)

As shown in Figure 2.4, this axiom is quite obvious.
Based on these three axioms, several important observations can be made. Since an

event E and its complement E are mutually exclusive, and E U E = S, then using
Axiom 2,

P(S) = P(E u E) = P(E) + P(E) = 1.0 (2.4)

or

P(E) = 1.0-P(E). (2.5)

Equation 2.5 indicates that if the probability of failure is known, the reliability or
probability of survival can be calculated by subtracting the probability of failure from
1.0; in other words, P(Failure) = 1.0 - P(Survival), or risk = 1.0 - reliability.

Axiom 3 can be generalized for ii mutually exclusive events as
P(E1 u E2 , ..., uE,i) = P(E1) + P(E2 ), ..., +P(E,, ). (2.6)
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S

Figure 2.6 Union of Events

Most events are not mutually exclusive; they have some common sample points or
overlapping, as Figure 2.6 shows for two events. The third axiom can also be used in
this case if all the sample points can be broken into two mutually exclusive sets. In
Figure 2.6, although E1 and E2 are not mutually exclusive, E1 and E 1 E2 are mutually
exclusive and contain the same sample points as E1 U E2. Thus,

P(E1 u E2) = P(E1 u El E2) =P(EA) + P(E1 E2 ). (2.7)

Using set theory and Figure 2.6, we can subdivide E2 into two mutually exclusive
events as

E2=E1E,uE1E2. (2.8)
11

Again, using the third axiom,

P(E2) = P(E, E2) + P(E1 E2 ). (2.9)

If Equation 2.9 is substituted into Equation 2.7, a general expression for calculating the
probability of the union of two events can be written as

P(EJ u E2) = P(E1)+P(E2)- P(E1E2). (2.10)

Obviously, if the two events are mutually exclusive, E1 E2 = 0, or a null set, P(E1 E2) = 0,
and Equation 2.10 will reduce to Equation 2.3.

The salient features of the set theory discussed in Section 2.2 and the axioms of prob-
ability discussed in Section 2.3 can be further clarified with the following examples.

EXAMPLE 2.4 Discrete Sample Space

To increase the efficiency of a design office, managers decide to keep records of the
hours required to produce a standard size drawing. It is assumed that the total number
of hours required may vary between 60 and 120 hours, in increments of 10 hours.
Suppose that a review of 100 drawings provides the following observations:

Total hours No. of drawings Frequency

60 4 4/100 = 0.04
70 8 =0.08
80 12 =0.12
90 20 = 0.20

100 30 = 0.30
110 17 =0.17
120 9 = 0.09

100 1.00
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Assume E1 is the event that a drawing takes between 80 and 100 hours and E2 the
event that a drawing takes more than 90 hours. From the information given in the table,
the probabilities of E1 and E2 can be calculated as

P(E1) = 0.12+0.20+0.30 = 0.62

P(E2) = 0.30 + 0.17 + 0.09 = 0.56.

Similarly,

and

P(E1E2) = P(a drawing takes 100 hours) = 0.30

P(E1 u E2) = P(a drawing takes at least 80 hours)

= 0.12+0.20+0.30+0.17+0.09 = 0.88.

Using Equation 2.10, we can also calculate the probability of the union of the two
events as

P(E1 u E2) = P(E1) + P(E2) - P(E1 E2 )

= 0.62 + 0.56 - 0.30 = 0.88.

EXAMPLE 2.5 Continuous Sample Space

The preceding example of a discrete sample space can be modified to make it a contin-
uous sample space. A drawing may still take between 60 and 120 hours to produce; how-
ever, no direct records are readily available. Suppose that any number of hours between
60 and 120 hours are equally possible. The Venn diagram for the problem is shown in
Figure 2.7a. According to Axiom 2, the area under the sample space must be 1.0, as will
be elaborated in detail in Section 3.3. Thus, the height of the rectangle is 1/60.

The probability of events E1 and E,, as defined earlier for the discrete random vari-
able case, can be shown to be

P(E) = 1 (100 - 80) = 1 (see Figure 2.7b)
1 60 3

g

P(E) = 1 (120 - 90) = 1 (see Figure 2.7c).
2 60 2

Similarly,

Thus,

P(E1E2) = P (a drawing takes between 90 and 100 hours)

1 (100-90)=1 (see Figure2.7d).
60 6

P(E1 u E2) = P (a drawing takes at least 80 hours)

= 1 (120 - 80) = 2 (see Figure 2.7e).
60 3
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Figure 2.7 Venn Diagram for
Hours Required to Produce a
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Using Equation 2.10, we can calculate the probability of the union of the two events as

P(E uE )=P(E)+P(E )-P(EE) = 1+1-1 =2
1 2 1 2 I2

3 2 6 3

Both examples demonstrate that the same results can be obtained either by consid-
ering all the appropriate sample points or by using the equations of the mathematics of
probability (i.e., Equations 2.3 to 2.10).

Extending Equation 2.10 to three events, we can show that

P(E1 uE2 uE3)=P(E,)+P(E2)+P(E3)-P(E1E2)

- P(E2E3) - P(E3El) + P(E1E2E3). (2.11)

Equation 2.11 indicates that as the number of events increases, calculating the proba-
bility of their unions becomes increasingly difficult, since the number of terms on the
right-hand side of Equation 2.11 can be very large. For practical purposes, de Morgan's
rule can be used to help calculate the required probability. Thus, a general expression
to calculate the probability of the union of n events can be written as
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P(E1 1-P(E1 uE2,...,uEll)

= 1-P(E1E2,...,E,7).

If all n events are mutually exclusive, Equation 2.12 becomes
n

P(E1 u P(E1 ).

(2.12)

(2.13)

Equation 2.13 is a more general representation of Equation 2.3 for mutually exclusive
events.

2.4 MULTIPLICATION RULE

As discussed in the previous sections, if events are mutually exclusive, the probability
of their joint occurrences or intersection of events will be zero. Otherwise, the proba-
bility of the intersection of events needs to be calculated using the multiplication rule
discussed below. For two events, the multiplication rule can be stated as

P(E1E2) = P(E1 I E2)P(E2) = P(E2 I E1)P(E1). (2.14)

P(E1 I E2) and P(E2 I E1) are conditional probabilities, or the probability of occurrence
of one event given that the other has occurred. In a conditional probability calculation,
the sample space is changed by conditioning it with respect to the occurrence of one
event. The sample space cannot be changed in the middle of the problem; thus, to
obtain the probability with respect to the original sample space, the conditional proba-
bility must be multiplied by the probability of the event conditioned on, resulting in
Equation 2.14.

Sometimes, the occurrence of one event may depend on the occurrence of another
event. If E1 represents runoff and E2 represents rainfall, then P(E1 I E2) means the prob-
ability of runoff given that there was some rainfall. However, in some cases, the occur-
rence of one event may not depend on the occurrence of the other. For example, the
occurrences of rainfall and earthquake at a site do not depend on each other, and put-
ting a condition on them has no significance. These events are called statistically inde-
pendent events. If El and E2 are statistically independent events, then P(E1 I E2) _
P(E1). Thus, Equation 2.14 becomes

P(E1 E2) = P(E1)P(E2 ). (2.15)

The multiplication rule can be summarized as follows. In general, to calculate the
probability of the intersection of two events, it is necessary to calculate a conditional
probability. However, if the events are statistically independent (the occurrence of one
does not depend on the other), the probability of intersection is the product of the indi-
vidual probabilities. If the events are mutually exclusive (the occurrence of one pre-
cludes the occurrence of the other), the probability of their intersection will be zero.

The mathematics of probability for conditioned individual events must also he
applicable to their complementary events, and their unions and intersections, as long as
the condition is not changed. Thus, it can be easily shown that

P(E1 I E2) =1- P(E1 I E2) (2.16)
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P(Ej u E2 I E3) = P(Ej I E3) + P(E2 I E1) - P(E1 E2 I E3) (2.17)

P(EIE2 I E.1) = P(Ej I E2 I E3)P(E2 I Ej) = P(Ej I E2E3)P(E2 1 E3)- (2.18)

Generalizing the multiplication rule for n events,

P(EIE2,...,En)

= P(E1 I E21 ...1 En)P(E2 I E3,...,E,1),...,P(En-1 I E11)P(En) (2.19)

If all the events are statistically independent, then

/1

P(EIE2,...,E,1) = P(El)P(E2),...,P(En) _ flP(E1). (2.20)
i=1

The concept of multiplication rule is illustrated by the following examples.

EXAMPLE 2.6

A building can suffer structural damage by fire or strong earthquakes. Let F and E
denote the events, with the corresponding probabilities 0.005 and 0.05, respectively. F
and E are statistically independent events. Calculate the probability of structural dam-
age to the building.

SOLUTION

The information in the problem can be summarized as follows: P(F) = 0.005, and
P(E) = 0.05. Using Equation 2.10, we can show that

P (structural damage) = P(F u E) = P(F) + P(E) - P(FE).

Since F and E are statistically independent events, we can use Equation 2.15 to rewrite
the above equation as

P(F u E) = P(F) + P(E) - P(F)P(E)
= 0.005 + 0.05 - 0.005 x 0.05 = 0.05475.

EXAMPLE 2.7

A bridge can be damaged by failure in the foundation (F) or in the superstructure (S).
The corresponding failure probabilities for a particular bridge are estimated to be 0.05
and 0.01, respectively. Also, if there is foundation failure, then the probability that the
superstructure will also suffer some damage is 0.50.

(a) What is the probability of damage to the bridge?
(b) If F and S are statistically independent, what is the probability of damage to

the bridge?



22 Chapter 2 Mathematics of Probability

SOLUTION

The information in the problem can be summarized as follows: P(F) = 0.05, P(S) = 0.01,
and P(S I F) = 0.5.

(a) P(damage to the bridge) = P(F u S) = P(F) + P(S) - P(FS) = P(F) + P(S) -
P(S I F) P(F) = 0.05 + 0.01 - 0.5 x 0.05 = 0.035.

(b) When F and S are statistically independent events, using Equation 2.15, the
probability of damage to the bridge can be calculated as

P(F u S) = P(F) + P(S) - P(F)P(S)

=0.05+0.01-0.05x0.01 = 0.0595.

Comparison of the results in Parts (a) and (b) shows that the probability of damage
to the bridge is higher when the two events are statistically independent than when they
are dependent.

EXAMPLE 2.8

A community is concerned about its power supply for the coming winter. There are
three major sources of power supply, namely electricity, gas, and oil. Let E, G, and 0
denote the events of shortages of each of these power sources, respectively. Their prob-
abilities are estimated to be 0.15, 0.1, and 0.2, respectively. Furthermore, assume that
if there is a shortage in the oil supply, the probability of an electrical power shortage
will be doubled, that is, twice the probability of P(E). The shortage of gas may be
assumed to be independent of shortages of oil and electricity.

(a) What is the probability that there will be a shortage of all three major sources
of power supply?

(b) What is the probability that a shortage will occur in at least one of the follow-
ing sources: gas, electricity?

(c) What is the probability that exactly two of the three sources of power supply
will be short?

(d) If there is a shortage of electricity, what is the probability that gas and oil also
will be scarce?

SOLUTION

The information in the problem can be summarized as follows:

P(E) = 0.15, P(G) = 0.1, and P(O) = 0.2.

Also,
P(EI0)=2P(E)=2x0.15=0.30.

(a) P(shortage of all three major sources of power supply)

= P(EGO) = P(EO)P(G) = P(E I O)P(O)P(G)

= 2P(E)P(O)P(G) = 2 x 0.15 x 0.2 x 0.1= 0.006.
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(b) P(shortage of at least one of gas and electricity)

= P(G u E) = P(G) + P(E) - P(GE)

= P(G)+ P(E) - P(G)P(E) = 0.1 + 0.15 - 0.1 x 0.15 = 0.235

(c) P(shortage of exactly two sources out of three)

P(EGO u EGO u EGO) = P(EGO) + P(EGO) + P(EGO)

P(EGO) = P(EO)P(G) = [1- P(O I E)]P(E)P(G)

= 1- P(E I O)P(O)lP(E)P(G)
P(E) J

0.3x021
ISxU.I = 0.009

L 0.15

P(EGO) = P(EO)P(G) = P(E I O)P(O)[l - P(G)]

=03x0.2x(1-0.1)=0.054

P(EGO) = P(EO)P(G) = P(E I O)P(O)P(G)

= [I - P(E I 0)]P(O)P(G)

=(1-0.3)x0.2x0.1=0.014

Thus,

P(EGO u EGO u EGO) = 0.009 + 0.054 + 0.014 = 0.077.

(d) P(shortage of gas and oil given that there is a shortage of electricity)

= P(GO I E) =
P(EGO) - 0.006 = 0.04

P(E) 0.15

This example also shows that if the information about an event is not available in
the problem statement it can be derived using the mathematics of probability.

EXAMPLE 2.9 De Morgan's Rule

De Morgan's rule was introduced in Section 2.2.5, and its application is illustrated by
the following example. Consider again the five-member truss shown in Figure 2.5. It
is assumed that all five members are designed in such a way that the probability of fail-
ure of each of them is 10-5, that is, P(E;) = 10-5, i = 1 to 5. It is further assumed that
the failures of the members are statistically independent of each other. Since the truss
is statically determinate, failure of any one member will constitute failure of the entire
truss. Therefore, the probability of failure of the entire truss can be calculated as
P(E1 u E2 u E3 u E4 u E5). As discussed earlier, it is not computationally realistic or
convenient to calculate the probability of the union of five events using an equation
similar to Equation 2.11 for the case of the union of three events. If the truss contains
a large number of members, it would be impractical to calculate the failure probability
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in this way. Alternatively, de Morgan's rule can be used for this purpose. For the truss
problem under consideration, it can be shown that

P(failure of the truss) = P(E1 u E2 u E3 u E4 u E5)

=1-P(E1 uE2 uE3 uE4 uE5)

=1- P(EJ E2 E3 E4 E5 )

=1- P(E1)P(E2)P(E3)P(E4)P(E5 )
5

=1- 1-10-5 5x10-5.

EXAMPLE 2.10

Consider the three events A, B, and C shown in the Venn diagram in Figure 2.8. The fol-
lowing information is available on their probability of occurrence: P(A) = 0.4, P(B) =
0.35, P(BC) = 0.15, and P(AB) = 0.1. Determine the probability of the following events:

(a)AUC
(b) B u C

(c) AfBfC
(d) A u B
(e) AuBuC

SOLUTION

The following information can also be extracted from the Venn diagram:

P(A n C) = P(AC) = 0, P(BC) = P(C) = 0.15.

(a) P(A uC) = P(A) + P(C) - P(AC) = 0.4+0.15-0 = 0.55.
(b) P(B uC) = P(B) + P(C) - P(BC) = P(B) = 0.35.
(c) P(ABC) = PM = 0.

(d) Using de Morgan's rule (Equation 2.2), P(A U B) = P(AB) = 1 - P(AB) =1-
0.1 = 0.9.

(e) P(AuBuC)=1-P(AuBuC)
=1- [P(A) + P(B) + P(C) - P(AB) - P(BC) - P(CA) + P(ABC)]

=1-(0.4+0.35+0.15-0.1-0.15-0+0) = 0.35.

S Figure 2.8 Venn Diagram for Example 2.10
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2.5 THEOREM OF TOTAL PROBABILITY

Suppose that structural damage (D) to a building can only be caused by three events:
fire (F), high wind (W), or earthquake (E). Obviously, D will depend on whether F, W,
or E has occurred, and the likelihood of occurrence of F, W, and E. Assume further that
F, W. and E are collectively exhaustive and mutually exclusive events. The probabil-
ity of damage to the building can be calculated as

P(D) = P(D I F)P(F) + P(D I W)P(W) + P(D I E)P(E). (2.21)

Each term of the right-hand side of Equation 2.21 calculates the probability of damage
given that fire, wind, or earthquake has occurred, multiplied by the corresponding
probability of occurrence of fire, wind, or earthquake. The concept represented by
Equation 2.21 is called the theorem of total probability.

The theorem of total probability can be formally presented by the Venn diagram in
Figure 2.9. The occurrence of event A depends on the occurrence of other events E 1, E 1, ...,

E, called partitions. They are mutually exclusive (no overlapping), collectively exhaustive
(their union constitutes the entire sample space), and P(E) > 0, i = 1, 2, ..., n. Then,

A=AS=A(E1 uE2,...,uEn)=AE1 uAE2,...,UAEn.

It must be noted that the events AEI are also mutually exclusive. Thus, using Axiom 3,

P(A) = P(AE1) + P(AE2) + ... + P(AEn)

or

P(A) = P(A I E1)P(E1) + P(A I E2)P(E2) +... + P(A I (2.22)

Equation 2.22 is known as the theorem of total probability.

2.6 BAYES' THEOREM

In the context of the theorem of total probability, the probability of occurrence of an
event A is calculated, which depends on other mutually exclusive and collectively
exhaustive events E. Sometimes it is also of interest to know the probability of an
event E, given that A has occurred, an inverse problem. Using the same example con-
sidered for the theorem of total probability, and knowing that the building has been
damaged, we can use Bayes' theorem to calculate the probability that the damage was

Figure 2.9 Theorem of Total Probability
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caused by fire, wind, or earthquake, that is, P(F I D), P(W I D), or P(E I D). This prob-
ability can be presented as

P(Ej I A) =
P(A I E1)P(E1 )

P(A)

or

(2.23)

P(E I A) =
P(A I E1)P(E1)

r n.

I P(A I E!)P(E;) (2.24)
i=1

EXAMPLE 2.11

Suppose that air pollution in a city is caused by the following four sources: automobile
exhaust (A), industrial exhaust (I), dust (D), and pollen from plants and trees (T). On a
particular day, the likelihood of air pollution caused by these sources is 4:3:2:1, respec-
tively. The probability of health hazard (H) caused by these sources is 0.01, 0.005,
0.0005, and 0.0001, respectively. Assume A, I, D, and Tare collectively exhaustive and
mutually exclusive.

(a) Calculate the probability of health hazard for the city on a given day.
(b) What is the probability that there will be no health hazard in 30 days? In one

year (365 days)? Assume health hazard on subsequent days is statistically
independent.

SOLUTION

The following information is available: P(H I A) = 0.01, P(H I I) = 0.005, P(H I D) _
0.0005, and P(H I T) = 0.0001. Also,

P(A)_
4

= 0.4.
4+3+2+1

Similarly, P(I) = 0.3, P(D) = 0.2, and P(T) = 0.1.

(a) If the theorem of total probability (Equation 2.22) is used,

P(H) = P(H I A)P(A) + P(H I I)P(I) + P(H I D)P(D) + P(H I T)P(T)

=0.01 x 0.4 + 0.005 x 0.3 + 0.0005 x 0.2 + 0.0001 x0.1 = 0.00561.

P(no health hazard in a day) = P(H) =1- 0.00561

= 0.99439.

(b) Denoting health hazard on the ith day as Hl,

P(no hazard in 30 days) = P(H1 H2, ..., H30) = P(H1)P(H2 ), ..., P(H3U) _ (1- 0.00561)0

= 0.84470

Similarly,

P(no hazard in 365 days) = (1- 0.00561)365 = 0.12830.
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EXAMPLE 2.12

A building can have structural damage (D) during its lifetime only from fire (F), high
winds (W), and strong earthquakes (E). Thus, F, W, and E are collectively exhaustive
events. Further assume that the building will not be structurally damaged simultane-
ously by F, W, and E, thus making them mutually exclusive events. The probabilities
of structural damage to the building if these events occur are estimated to be 0.005,
0.01, and 0.05, respectively. The probabilities of occurrence of F, W, and E during the
life of the building are 0.5, 0.3, and 0.2, respectively.

(a) What is the probability that the building will suffer structural damage during
its lifetime?

(b) If the building has suffered structural damage, what is the probability that it
was caused by F? By W? By E?

SOLUTION

The information in the problem can be summarized as P(D I F) = 0.005, P(D I W) _
0.01, and P(D I E) = 0.05. Also, P(F) = 0.5, P(W) = 0.3, and P(E) = 0.2.

(a) If the theorem of total probability (Equation 2.22) is used, P(D) = 0.005 x 0.5
+ 0.01 x 0.3 + 0.05 x 0.2 = 0.0155.

(b) If Equation 2.24 is used,

P(F I D) =
P(D I F)P(F)

P(D)

0.005 x 0.5
_ = 0.16.

0.0155

Similarly,

and

EXAMPLE 2.13

P(WID)= 0.01 x 0.3 =0.19
0.0155

P(EID)=0.05x0.2=0.65.

0.0155

A passenger can travel from home to another city by car (C), ship (S), plane (F), or train
(T). In a given year, the passenger made such a trip 80, 15, 100, and 50 times by C, S,
F, and T, respectively. The probability of an accident (A) during a trip using these modes
of transportation is estimated to be 10-5, 5 x 10-5, 10-6, and 5 x 10-5, respectively.

(a) What is the probability of an accident during a trip?
(b) What is the probability of an accident in the next 10 trips?

(c) If there was an accident, what is the probability that the passenger was travel-
ing by car?
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SOLUTION

The following information is given:

Similarly,

P(C) =
80 = 80 = 0.327.

80+15+100+50 245

P(S)
= 15 = 0.061, P(F) = 100 = 0.4087 P(T) = 50 = 0.204.

245 245 245

Also,

P(AIC)=10-5, P(AIS)=5x10-5,

P(AI F)=10-6, and P(A I T) = 5 x 10-5.

(a) Using the theorem of total probability (Equation 2.22), we can show that

P(A) = P(A I C)P(C) + P(A I S)P(S) + P(A I F)P(F) + P(A I T)P(T)

=10-5 x 0.327 + 5 x 10-5 x0.061+10-6 x 0.408 + 5 x 10-5 x0.204

=1.6928 x 10-5.

(b) P(no accident in a trip) = 1 - 1.6928 x 10-5.
P(no accident in next 10 trips) = (1 - 1.6928 x 10-5)10.

P(accident in next 10 trips) = 1- (1 - 1.6928 x 10-5) 'o = 1.6928 x 10-4.

(c) If Bayes' theorem (Equation 2.23) is used,

P(A I C)P(C) _ 10-5 x 0.327
=P(C I A) =

P(A) A 1.6928 x 10_5 - 0.193.

2.7 REVIEW

The discussions on set theory and mathematics of probability are the foundation for all the
subsequent chapters. The examples in this chapter clearly demonstrate that the successful
application of set theory and risk assessment requires that events be defined clearly and
completely. It is necessary to translate the information available for a particular problem
in terms of these events. This may be difficult at first but becomes easier with practice. The
risk or reliability can then be calculated using the mathematics of probability.

A short quiz is presented here as a review and to clarify any misunderstandings.
If each of the following statements is always true, circle T; otherwise, circle F. Make

sure you understand why each one is true or false.

(1) If events E1 and E2 are statistically independent,
then P(E1 u E2) = P(E1) + P(E2). T F

(2) If events E1 and E2 are mutually exclusive, then P(E1 I E2) = 0. T F

(3) If P(E1) = P(E2) = 0.01, then P(E1) u P(E2) = 0.02. T F

(4) If E1, E2, and E3 are mutually exclusive and collectively exhaustive,
then P(E1) = 1 - P(E2) - P(E3). T F
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(5) P(E I E) = P(E1)
.

1 2 T F
P(E2)

(6) P(E1 1 E2) = l - P(E1 1E2). T F

(7) If E1 and E2 are mutually exclusive, then P(E1 I E2) = P(E 1). T F

(8) P(E1IE2uE3)=l-P(E1IE2uE3). T F

(9) E u E= S. T F

(10) P(E1 I E,)P(E2) = P(E2 I E1)P(E1). T F

2.8 CONCLUDING REMARKS

The concept of set theory, the fundamental mathematical formulation required to cal-
culate the probability of failure or reliability, is introduced in this chapter. Every prob-
lem with uncertain quantities/events must have a sample space, which is either discrete
or continuous. Each possible outcome represents a sample point within the sample
space, and each event must contain at least one sample point. Graphical representations
of a sample space and the sample points or events are made using Venn diagrams.

In many practical problems, several events need to be combined to obtain the nec-
essary information, requiring combination rules in terms of union and intersection of
events. In this context, mutually exclusive, statistically independent, and collectively
exhaustive events have also been defined. An event only contains information on the
sample points in it; the mathematics of probability described in three axioms are nec-
essary to utilize this information. These axioms lead to the computation of the proba-
bility of unions and intersections of events, the multiplication rule, the theorem of total
probability, and Bayes' theorem. It is extremely important that the reader understand
these concepts, since they are the basis of all discussions in the following chapters.

2.9 PROBLEMS
2.1 There are two cars in the garage. The operating condition of each car can be described as

excellent (E), good (G), or bad (B). Identify all the possible combinations of operating con-
ditions of these two cars (i.e., identify all the sample points). Suppose there are five cars and
each car can have the three operating conditions just described. Calculate the total number
of sample points. It is not necessary to identify each sample point.

2.2 A 200 x 200 sq ft land lot is available for a subdivision. Each plot within the subdivision can
have a size of 100 x 100 sq ft (Type A) or 50 x 50 sq ft (Type B). How many different ways
can the lot be subdivided? Do not consider the ordering of lots A and B.

2.3 A site selected for a major construction project has the following wind speed data available.
When the wind blows between east (0°) and north (90°), the maximum recorded wind speed
is 120 mph; when it blows north (90°) and west (180°), the maximum recorded wind speed
is 70 mph; when it blows between west (180*) and south (270*), the maximum wind speed
is 110 mph; and when it blows between south (270°) and east (0 or 360*), the maximum
wind speed is 80 mph.

(a) Draw a Venn diagram for the sample space.

(b) If an event E is defined as wind speed greater than 100 mph blowing from the north and
northeast, show the event on the Venn diagram.
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2.4 Suppose the foundation, superstructure, and interior of a residential building have been eval-
uated by a building inspector. The foundation and the superstructure can be rated as being
in good (G) or bad (B) condition. The interior can be rated as excellent (E). good (G), or had
(B). The sample point GGG indicates that the foundation, superstructure, and interior are all
in good condition.

(a) Identify all the sample points in the sample space.

(b) For marketing the property, all three items must be in good condition or better. Identify
the sample points that make the property marketable.

2.5 A structure is supported on four foundations, namely A, B, C, and D. Suppose
Foundation A cannot settle. However, Foundations B, C, and D can have the following
amount of settlement:

Foundation B: 0 cm or 1 cm
Foundation C: 0 cm or 2 cm
Foundation D: 0 cm or 3 cm

Sample point (0, 0, 0, 0) indicates that all the four supports did not settle.

(a) Identify all the sample points in the sample space.

(b) Differential settlement between adjacent supports of 2 cm or more will cause excessive
cracks in the structure. Identify these sample points.

2.6 The construction of a residential building consists of foundation (F), superstructure (S),
plumbing (P), electrical work (E), and painting (N), as shown in Figure P2.6. The possible
durations in weeks for each of these activities are shown in the figure. The foundation and
the superstructure must be constructed in sequence; however, the plumbing, electrical work,
and painting proceed simultaneously.

(a) Identify all the possible completion times of this construction project. (Hint: Calculate
completion time for events like FSP, FSE, FSN, and so on).

0
Foundation Superstructure

F(3,4) S(10,12)

L Duration in months Figure P2.6 Construction
Activities

2.7 Two small rivers A and B meet and become a larger river C. For a new housing project, the
flood level, defined as the water level above the mean level of river C. is under considera-
tion. Past records indicate that a 1-ft change in the water level of river A causes a 0.5-ft
change in the water level of river C, and a 1-ft change in the water level of river B causes a
0.25-ft change in the water level of river C. The flood levels of rivers A and B can be esti-
mated precisely. However, they are equally likely to be 0, 1, 2, and 3 ft for both rivers.
Assuming statistical independence of flood levels between rivers A and B, what is the prob-
ability that the flood level of river C will exceed 2 ft?

2.8 To study the relationship between the relative density D, of a sand deposit and the corre-
sponding standard penetration test value or N value, 50 tests were conducted as shown in
Figure P2.8. For ease of calculation, the total numbers of test results in each grid are given
in the figure. Calculate the following:
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(a) P(0.4 <_ D,.)

(b)P(D,.>0.8IN>15)
(c) P(0.4<D).<0.8 15 <N<_25)

(d) P(D,.> 0.4 and N< 15)

(e) P(D,.<_0.8 and N> 25)

2.9 At a particular site, the probabilities of occurrence of high wind and moderate earthquake in
a single minute are assumed to be 10-5 and 10-8, respectively. The occurrence of high wind
and moderate earthquake can be assumed to be statistically independent.

(a) According to the building code, the combined effect of these two loads need not be
considered. Is this reasonable?

(b) If the events in succeeding minutes are statistically independent, what is the probabil-
ity that there will be no moderate earthquake in a day? In a year? During the 50-year
life of the structure? Hint: Use de Morgan's rule.

2.10 The power supply to a hospital operating room may come from electricity (E) or a diesel
generator (D). The diesel generator starts operating only if there is no electricity. The prob-
ability that there will be no electricity at any given time is 0.001. If the diesel generator has
to supply the power, the probability that it will fail is 0.01.

(a) What is the probability that there will be no power in the operating room`?

(b) If there is power in the operating room, what is the probability that both sources of
power are in good operating condition?

2.11 A car accident can occur during the winter season due to icy road conditions (I) or lack of
visibility (V). The corresponding probabilities of an accident are estimated to be 0.1 and
0.05, respectively. Also, if road conditions are icy, the probability that visibility will also
be poor is 0.3.

(a) What is the probability of an accident during the winter?

(b) If I and V are statistically independent, what is the probability of an accident during the
winter?

2.12 A reinforced concrete beam can fail due to either excessive bending movement or exces-
sive shear force. The first kind of failure is generally preceded by large deflection (ductile
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behavior), whereas the second kind generally occurs suddenly without warning (brittle
behavior). Past observations indicate that 5% of the beams that fail are due to shear,
whereas 95% are due to bending. Laboratory results indicate that 80% of the beams that
fail in shear produce small diagonal cracks just before failure, whereas only 10% of the
beams that fail in bending show similar cracks. Suppose that replacement of the beam is
justified when shear failure is more likely than bending failure. If some diagonal cracks are
observed during an inspection, should the beam be replaced?

2.13 A concentrated load on a cantilever beam may be placed in either location A or B, with
probabilities P(A) = 0.3 and P(B) = 0.7. If the load is placed at A, the probability of bend-
ing failure of the beam is 0.01, and the probability of shear failure is 0.001. If the load is
placed at B, the probability of bending failure of the beam is 0.02, and the probability of
shear failure remains the same. If the beam has shear failure, then the probability of bend-
ing failure is 0.9. What is the overall probability of failure of the beam"

2.14 A bolted joint may fail by shearing of the bolt (E1), bearing between the bolts and plates at
the holes (E2), or tearing at the edges of the plates (E3). For the joint, the three failure prob-
abilities are estimated to be 0.002, 0.001, and 0.001, respectively. It is unlikely that the
bolts will fail in shear if there is a failure due to bearing, tearing, or both. It is certain that
the joint will have bearing failure if there is tearing failure. Calculate the probability of
failure of the joint.

2.15 Two major cities are connected by a three-lane highway in each direction. Let E1, E2, and
E3 denote the right-hand, center, and left-hand lane, respectively. Upon inspection, the
maintenance engineer concludes that the probability that each of these three lanes will
require major repair work in the next year are 0.10, 0.05, and 0.01, respectively. From past
experience, the following information is available:

P(E2 I El) = 0.8, P(E3 I E2) = 0.9, P(E3 I E I) = 0.5, and P(E3 I E, E,) = 0.9

(a) What is the probability that the highway in each direction will need major repairs next
year'?

(b) If the need for repair in each direction is statistically independent, what is the probabil-
ity that the highway will need major repair next year?

2.16 Piles are needed to support columns in a high-rise building at a particular site. The proba-
bility of failure of a pile due to excessive axial load is estimated to be 10-4. Suppose that
four such piles are required under each column, and there are 20 identical columns in the
building. Assume that the failure of piles are statistically independent of each other.

(a) What is the probability that none of the piles under a column foundation will fail'?

(b) What is the probability that none of the columns in the building will suffer damage due
to pile failure`?

2.17 The annual probability of a damaging fire and a strong earthquake in a subdivision are esti-
mated to be 0.03 and 0.001, respectively. If there is a strong earthquake, the probability that
it will cause fire is 0.3. The occurrences of natural fires and earthquakes are statistically
independent.

(a) What is the probability that the sudivision will have a fire due to a strong earthquake
in a year?

(b) What is the probability that the subdivision will have a fire in a year?

(c) What is the probability that the subdivision will have no fire in the next 10 years'?

2.18 The survival of a building during an earthquake depends on the intensity of the earthquake.
For simplicity, earthquake intensity is described as low (L), medium (M), or high (H). The
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relative frequency of occurrence of earthquakes of these intensities is 0.5, 0.05, and 0.001 per
year. The earthquakes are statistically independent. The likelihoods of failure of the building
associated with earthquakes of intensities, L, M, and H. are 0.01, 0.2, and 0.70, respectively.

(a) What is the probability that an earthquake is of low intensity? Moderate intensity?
High intensity?

(b) What is the probability of failure of the building during an earthquake?

(c) What is the probability that the building will survive 2 earthquakes? What about 100
earthquakes?

2.19 Good performance (obtaining a grade of A+) in this probability class depends on your atten-
dance (A) and completion of assignments (C). The probabilities that you will receive it grade
of A+ are 100%, 70%, 50%, and 0%, if you regularly attend and complete the assignments,
if you regularly attend but do not complete the assignments, if you do not regularly attend
but complete the assignments regularly, and if you neither attend nor complete assignments,
respectively. Further assume that if you attend the class regularly, there is a 90% probabil-
ity that you will complete the assignments. The probability that you will attend the class reg-
ularly is 0.95, and the probability that you will complete the assignments is 0.90.

(a) What is the probability that you will receive an A+ in this class?

(b) If you received an A+, what is the probability that you regularly attended the class and
completed the assignments'?

2.20 Water supply to a city on a given day comes from one of three reservoirs, with a relative
likelihood of 1: 1:3 for Reservoirs A, B, and C, respectively. The supplied water may con-
tain excessive bacteria 5%, 10%, and 2% of the time, respectively, if it came from
Reservoir A, B, or C.

(a) What is the probability that the water supplied to the city will contain excessive bacte-
ria on a given day`.'

(h) If the water is found to contain no excessive bacteria on it given day, what is the prob-
ability that it came from Reservoir A?

2.21 From past records, it is observed that in a typical year (365 clays), air pollution in a city was
caused by excessive dust alone on 30 days, by car exhaust alone on 60 days, and on 10 clays
the pollution was caused by both excessive dust and car exhaust. Assume that they are the
only two sources of air pollution and are statistically independent. The probabilities of
excessive dust and car exhaust are estimated to be 0.01 and 0.05 per day, respectively.

(a) What is the probability that the city will have an air pollution problem on a given day?

(b) What is the probability that the city will have an air pollution problem on a given day
due to dust'? Due to car exhaust? Due to both dust and car exhaust'?

(c) Suppose that on a particular day the air is polluted. What is the probability that it is
caused by car exhaust?

2.22 The probability of a tornado occurring in a subdivision in Tornado Alley in the United
States has been estimated to be 0.2 for one occurrence, 0.03 for two occurrences, and 0.001
for three occurrences during the next 50 years. Assume that the chance Of four or more
occurrences is negligible during the next 50 years. If a tornado hits a structure, the proba-
bility that it will suffer damage is 70%. Assume that the damage from multiple tornadoes
is statistically independent. What is the probability that a structure will not suffer any dam-
age from tornadoes in the next 50 years?

2.23 A high-rise building is designed against wind load and earthquakes. The designer's calcula-
tion shows that during its service life (the next 50 years), the probability that the building
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will be damaged only by earthquakes is 0.1, only by windstorms is 0.05, and by both earth-
quakes and windstorms is 0.2. Past records show that in a given period of 50 years, the prob-
abilities of occurrence of earthquakes and windstorms are 0.2 and 0.5, respectively.
Earthquakes and windstorms are statistically independent.

(a) Find the probability that the building will be damaged during its service life (occur-
rences of earthquakes and windstorms are statistically independent).

(b) If at the end of 50 years damage is found in the building, what is the probability that
earthquakes have occurred'?

2.24 The probability of occurrence of tornadoes in a county is estimated to be 0.05 per year.
Considering the path and width of tornadoes, it is estimated that the chance of a building
being hit by a tornado when it strikes the county is 0.01.

(a) What is the probability that a building will he struck by tornadoes in the next 10 years?

(h) Suppose the intensity of tornadoes is classified as strong and weak depending on the
maximum wind speed. The likelihoods of strong and weak tornadoes are 1:4. Further
assume that if a building is hit by a weak tornado, the probability of damage to the
cladding is 0.4; however, the probability of damage to structural members is only 0.04.
These probabilities will be doubled if the building is struck by a strong tornado. Also,
if the structural members are damaged, the probability of damage to the cladding
increases to 0.8, regardless of whether the tornado is strong or weak. Determine the
probability of damage to the building when hit by a tornado.

2.25 A city is served by three overnight mail carriers. The market shares for the three carriers,
A, B, and C, are 50%, 30%, and 20%, respectively. The past record indicates that they fail
to deliver the mail on time 1%, 2%, and 3% of the time, respectively.

(a) What is the probability that an overnight letter will arrive late in that city?

(b) If the overnight letter arrived late, what is the probability that it was sent via A? Via B?
Via C?

2.26 Delay (D) in a construction project can be caused by material shortage (M). labor shortage
(L), and had weather (W); the corresponding probabilities are 40%, 40%, and 20%, respec-
tively. Assume M, L, and W are mutually exclusive and collectively exhaustive, and the
likelihood of their occurrence is 2:2: 1, respectively.

(a) What is the probability of delay of the construction project'?

(b) If the project was delayed, what is the probability that the delay was caused by had weather'?

2.27 The safety of a dam depends on the load conditions produced by water levels upstream and
downstream. These load conditions can he denoted as dewatering (D), overtopping (0), and
flat-top pool condition (F). In a typical year consisting of 365 days, these load conditions
can occur on 3. 62, and 300 days, respectively. The probability of failure of the dam in each
load condition is 0.001, 0.0001, and 0.000001, respectively. Calculate the probability of
failure of the dam in a year. What is the probability of failure in 10 years? In 50 years'?

2.28 For mathematical modeling, suppose the major causes of an accident (A) on a segment of
highway can be grouped into speeding (S), tiredness (T), carelessness (C), weather condi-
tions (W), and drunkenness (D). The likelihoods of these causes are estimated to be
4:3:1:1:1, respectively. The probabilities of an accident due to S, T. C, W. and D are 0.01,
0.05, 0.01, 0.005, and 0.8, respectively.

(a) Calculate the probability of an accident in the segment of the highway.

(b) If there was an accident, what is the probability that it was caused by drunkenness of
the driver?



Chapter 3

Modeling of Uncertainty

3.1 INTRODUCTORY COMMENTS

To develop the mathematics of probability and explain them with the help of exam-
ples, we assumed in Chapter 2 that the probability of an event was known. In reality,
these probabilities are rarely known and need to be estimated. In many cases, esti-
mating the probability of an event may be the most difficult part of the computa-
tion. Before the probability of an event can be estimated, the uncertainty in the
problem needs to be quantified, which is the subject of this chapter.

3.2 STEPS IN QUANTIFYING RANDOMNESS

As discussed in Chapters 1 and 2, randomness means that more than one outcome is
possible; in other words, the actual outcome is to some degree unpredictable. If a phys-
ical quantity is of concern, the possible outcomes are usually a range of measured or
observed values; moreover, within this range certain values may occur more frequently
than others. Mathematical modeling or representation of a random variable is thus a
primary task in any probabilistic formulation, which needs to be conducted systemati-
cally. Some of the essential steps in quantifying randomness are discussed in the fol-
lowing sections.

3.2.1 Data Collection

In probabilistic design of engineering systems, the future is predicted using informa-
tion from the past, including experience and judgment. Thus, it is essential to collect
the available relevant information from the past, as shown in Figure 1.1 in Chapter 1.
The collected information will constitute the sample space for the random variable
under consideration.

35
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The Golden Gate Bridge in San Francisco was built using several types of structural
steel members. Forty-one samples were taken, and their yield and ultimate strengths,
proportional limit, and Young's modulus were measured (Beard, 1937). Information on
Young's modulus is presented in Table 3.1. Similar information can also be obtained
for other random variables of interest.

In standard deterministic designs, Young's modulus for steel is usually assumed to
be 29,000 ksi. Table 3.1 indicates that this value rarely occurs. Obviously, E should be
treated as a random variable, and this randomness must be modeled appropriately.

To make this discussion meaningful, two additional terms, population and sample,
need to be introduced. A population represents all conceivable observations of a ran-
dom variable. Data collected on Young's modulus for a particular grade of steel from
all over the world would represent the population. Since it is impractical to collect the
information from all the available sources, a representative sample is collected. Data
on Young's modulus given in Table 3.1 represent such a sample. Representative sam-
ples are generally used to gather information on population. A relatively large sample
size is always preferable.

3.2.2 Descriptors of Randomness

In Table 3.1, the maximum value for E is 33,400 ksi and the minimum value is 25,900
ksi. The information on minimum and maximum values is very useful, but if one of
these values is used for design purposes, it may not be possible to accurately predict

Table 3.1 Young's Modulus E for the Golden Gate Bridge

Test no. Young's modulus, E (ksi) Test no. Young's modulus, E (ksi)

1 28,900 22 25,900

2 29,200 23 32,000
3 27,400 24 33,400
4 28,700 25 30,600

5 28,400 26 32,700
6 29,900 27 31,300
7 30,200 28 30,500
8 29,500 29 31,300

9 29,600 30 29,000

10 28,400 31 29,400
11 28,300 32 28,300
12 29,300 33 30,500
13 29,300 34 31,100
14 28,100 35 29,300
15 30,200 36 27,400
16 30,200 37 29,300
17 30,300 38 29,300
18 31,200 39 3 1 ,300

19 28,800 40 27,500
20 27,600 41 29,400
21 29,600
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the actual behavior of the structure, since the actual value of E will probably be some-
thing different. The stiffness of the structure will be either underestimated or overesti-
mated. Furthermore, these values may not be the absolute minimum or maximum
values. If more samples are collected, the minimum and maximum values may change.
Thus, working with minimum or maximum values may not be desirable and usually is
not accepted as good design practice.

To overcome the deficiency of the minimum-maximum approach, one common-
sense approach is to find out the average or mean or expected value of Young's mod-
ulus. For the 41 sample points in Table 3.1, the mean value is 29,575.61 ksi. However,
the mean value alone does not provide complete information. For example, the mean
value of 0 and 100 is 50. The same mean value will be obtained if the numbers are 40
and 60 or 45 and 55. Obviously, information on the dispersion of the values with
respect to the mean is needed. The measure of dispersion can be expressed in terms of
variance, standard deviation, or coefficient of variation. It is also helpful to know if the
dispersion is symmetrical or unsymmetrical. The degree of symmetry can be measured
using the concept of skewness.

All of these concepts can be expressed mathematically. Suppose X is a random vari-
able and n observations of X are available. The mean or expected value of X, a meas-
ure of central tendency in the data, also known as the first central moment and denoted
as E(X) or PX, can be calculated for the n observations as

1

Mean=E(X)=µx =I x;. (3.1)
n;=1

In Equation 3.1, no distinction is made between the population and sample mean; in
fact, it is implicitly assumed that the sample size is relatively large. The implication of
a small sample size is discussed in Chapter 5.

The variance of X, a measure of spread in the data about the mean, also known as
the second central moment and denoted hereafter as Var(X), can be estimated as

Variance = Var(X) = I (xi - µ X )2 (3.2)
n-1 i=1

If the random variable X is expressed in ksi, then obviously the unit of variance will
be in (ksi)2. This dimensional problem can be avoided by taking the square root of the
variance. This is the standard deviation, denoted as 6x hereafter, and can be calculated as

6X = jVar(X) (3.3)

Although the standard deviation value is expressed in the same units as the mean
value, its absolute value does not clearly indicate the degree of dispersion in the random
variable, without referring to the mean value. For example, the value of the standard devi-
ation could be 10 or 100 without indicating the degree of dispersion. Since the mean and
the standard deviation values are expressed in the same units, a nondimensional term can
be introduced by taking the ratio of the standard deviation and the mean. This is called
the coefficient of variation (COV) and will be denoted as COV(X) or 8X. Thus,

COV(X)=Sx-6x. (3.4)(4)

1 '?



38 Chapter 3 Modeling of Uncertainty

For a deterministic variable, COV(X) is zero. A smaller value of the COV indicates a
smaller amount of uncertainty or randomness in the variable, and a larger amount indi-
cates a larger amount of uncertainty. In many engineering problems, a COV of 0.1 to
0.3 is common for a random variable.

The skewness, also known as the third central moment, can be calculated as

1
f1

Skewness= -I(xi - µx)3 (3.5)
n 1=1

Since it is a third moment, it can be positive or negative. Again, to avoid dimensional
problems, a nondimensional measure of skewness known as the skewness coefficient
and denoted as Ox can be introduced as

6
skewness

x 3 (3.6)

X

If ex is zero, the randomness is symmetric; if Ox is positive, the dispersion is more
above the mean than below the mean, and if it is negative the dispersion is more below
the mean.

With the data given in Table 3.1 and the corresponding equations, the following
information can be calculated.

Mean = (1 / 41)(l, 212, 600) = 29, 575.6 ksi.

Variance = [1 / (41-1)] (90, 83.5, 609.8) = 2, 270, 890.2 (ksi)2.

Standard deviation = 2, 270, 890.2 = 1,507 ksi.

COV = 1, 507 / 29,575.6 = 0.05 1.

Skewness = +6.919941834 x 108.

Skewness coeffecient = +0.202.

Thus, for the given data, the uncertainty in Young's modulus is relatively small, the ran-
domness is unsymmetrical, and the dispersion is more above the mean than below the mean.

3.2.3 Histogram and Frequency Diagram

A preliminary description of the randomness in a variable can be obtained from the
numerical values of the parameters just discussed. A more complete description can be
obtained by plotting the information graphically in the form of a histogram. A his-
togram for the data in Table 3.1 is shown in Figure 3.1. The following steps are needed
to develop the histogram.

Step 1. Arrange the data in increasing order.

Step 2. Subdivide the data into several equal intervals and count the number of
observations in each interval.

Step 3. Plot the number of observations in each interval versus the random variable
as shown in Figure 3.1, producing a histogram indicating the randomness.

The number or width of the intervals plays an important role in extracting the infor-
mation on randomness. Suppose only one interval is used; the histogram will look like
a big rectangle and will not provide the necessary information on uncertainty. On the
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other hand, if a very large number of intervals are used, the width of each interval will
be very small and the histogram may look like a series of spikes, defeating the purpose
of the histogram. A considerable amount of judgment is necessary to plot a meaning-
ful histogram. An empirical relationship can be used for this purpose:

k=1+3.31og10n (3.7)

where k is the number of intervals and n is the number of samples. For the data shown
in Table 3.1, n = 41 and so k = 1 + 3.3 log10 41 = 6.3. This gives a rough idea of the
number of intervals to use. Suppose a histogram for I million data points needs to be
plotted. The approximate number of intervals may be calculated as k = 1 + 3.3 log 10
106 = 20.8 = 21. Thus, the number of data points does not necessarily complicate the
drawing of a histogram.

Considering the minimum and maximum values of Young's modulus, and rounding
them off to 25,000 ksi and 34,000 ksi since they are not the absolute minimum and
maximum values, we used six intervals with a width of 1,500 ksi each to develop the
histogram shown in Figure 3.1. See also Table 3.2.

The area under a histogram depends on the width of the intervals and the number of
data points. For the example under consideration, the area under the histogram will be
1,500 x 41 = 61,500. Since the probability of an event is between 0.0 and 1.0, it will
be mathematically advantageous to have the area under a histogram equal to unity. A
histogram with a unit area is known as a frequency diagram. The frequency diagram
can be easily obtained by dividing the ordinates of a histogram by its area. This will
not change the shape of the diagram as shown in Figure 3.1. The histogram or fre-
quency diagram will give the relative frequencies of various intervals.
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Table 3.2 Data for Histogram and Frequency Diagrams

Interval (x 103 ksi) No. of observations Fraction of observations

25.0-26.5 1 1/41 = 0.0244
26.5-28.0 4 0.0976
28.0-29.5 17 0.4146
29.5-31.0 11 0.2683
31.0-32.5 6 0.1463
32.5-34.0 2 0.0488

E 1.0000

The area under a frequency diagram can be used to estimate the probability of the
event of interest. Suppose that the probability of Young's modulus between 28,000 ksi
and 31,000 ksi needs to be calculated. The probability of the event can be estimated as

P(28, 000 < E <_ 31, 000) =
(17 + 11)1, 500 = 0.6829.

41 x 1, 500

One of the primary objectives of a frequency diagram is to fit a curve to the diagram
to model the pattern or behavior of the randomness. A curve can be easily fitted to the
frequency diagram, as shown in Figure 3.1. As more data are added, the fitted curve
will approach the frequency diagram more closely. Attempts can be made to verify
whether the fitted curve represents one of many commonly used distributions, such as
the normal or lognormal. This will be discussed in detail in Chapter 5.

3.3 ANALYTICAL MODELS TO QUANTIFY RANDOMNESS

The discussion in the previous section needs to be described mathematically. To make
this process simple yet comprehensive, discrete and continuous random variables need
to be treated separately. Since the Young's modulus example considered in Section 3.1
can be treated as a continuous random variable, it is discussed first.

3.3.1 Continuous Random Variables

From now on, a random variable will be represented in the text by an uppercase letter
(e.g, X), and a particular realization of a random variable will be represented by a low-
ercase letter (e.g., x). The curve shown in Figure 3.1 is called the probability density
.function (PDF) or density function and is represented by ff(x). It does not directly pro-
vide information on probability but only indicates the nature of the randomness. To cal-
culate the probability of X having a value between xl and x2, the area under the PDF
between these two limits needs to be calculated. This can be expressed as

Y2

P(xl < X<_ x2) = f f X (x)dx.
X,

(3.8)

To calculate P(X <_ x), which is specifically denoted as Fx(x) and is known as the cumu-
lative distribution function (CDF) or simply as distribution function, the area under the
PDF needs to be integrated for all possible values of X less than or equal to x; in other
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words, the integration needs to be carried out theoretically from -00 to x, and can be
expressed as

_t

P(X -< x) = FX (x) = f fX (x)dr.
-OC

(3.9)

The CDF directly gives the probability of a random variable having a value less than
or equal to a specific value.

Equation 3.8 can be alternatively expressed in terms of the CDF as

x2 X,

P(x1 < X<- x2) = f fX (x)dx - Jfx(x)dx = FX (x2) - FX (x1 ). (3.10)

It is obvious that the PDF is the first derivative of the CDF and can be expressed as

fx dFx (x) (3.11)(x) =
dx

The relationship between the PDF and the CDF is shown conceptually in Figure 3.2
for a continuous random variable. Since the CDF gives information on probability for
a random variable, it must satisfy all three axioms of probability discussed in Section
2.3 of Chapter 2. Several important observations can be made from Figure 3.2:

(1) The PDF must be a nonnegative function; it can be zero, and theoretically its
range will be from -'00 to +oo.

(2) The CDF must be zero at -00 and 1.0 at +oo; that is, Fx(-oo) = 0.0, and
FX(+oo) = 1.0.

(3) The CDF is always greater than or equal to zero, that is, Fx(x) >- 0.0, and is a
nondecreasing function of a random variable.

x

FX(t)

1.0

0.0 x Figure 3.2 PDF and CDF of a
(h) CDF of X Continuous Random Variable
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(4) The CDF is continuous with the random variable. In addition, for continuous
random variables, the CDF has a derivative.

Any mathematical function that satisfies these requirements can be considered a
bona fide CDF and can be used for reliability analysis.

EXAMPLE 3.1

Drawing on experience, an engineer suggests the shape of the PDF of the annual rain-
fall, R, in a city, as shown in Figure 3.3. The PDF is uniform between 0 and 15 inches
of rainfall and is a straight line with a negative slope between 15 and 25 inches. Before
anything can be done with this diagram, it must be a bona fide PDF. To satisfy the sec-
ond axiom of probability, the area under the PDF must be 1.0. Thus, the height h can
be estimated from

h x (15 - 0) + 0.5 x h x (25 - 15) = 1.0

or

h = 0.05.

Thus, the PDF of the annual rainfall can be expressed mathematically as

fR(r)=0.05, 0<r<-15
=0.125-0.005r, 15<r<-25
= 0.0, elsewhere.

Once the PDF is defined properly, it is easy to extract other necessary information
including the corresponding CDF, as shown in Figure 3.3. It can be shown that

FR(r)=0, r<0

FR(r) = 50.OSdr = 0.05r, 0<r<15
0

15 r

FR (r) = f 0.05dr + f (0. 125 - 0.005r)dr
0 15

=0.75+0.125r-0.0025r2 -0.125x15+0.025x152

= -0.5625 + 0.125r - 0.0025r2 , 15< r <_ 25

FR(r)=1.0, r>25.

Thus, P(R <- 20) can be calculated in two ways: (a) from the PDF, as

15 20

P(R < 20) = f 0.05dr + $(0. 125- 0.005r)dr
0 15

= 0.75 + 0.1875 = 0.9375,

or (b) from the CDF, as

FR (20) = -0.5625 + 0.125 x 20 - 0.0025 x 202 = 0.9375.
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Thus, the probability of an event can be calculated by integrating a probability density
function (PDF) or directly using the cumulative distribution function (CDF).

3.3.2 Discrete Random Variables

Considering the physical aspects of some variables used in engineering design, such as
the number of fires in a subdivision, the number of strong winds or earthquakes or
severe snowstorms, the number of cars crossing an intersection, or the duration in days
of a construction activity, it is not logical to model them as continuous random vari-
ables. The numbers of such events can only be measured as integers, and they must be
treated as discrete random variables. The mathematical treatment of continuous ran-
dom variables is also applicable to discrete random variables, with some modifications.
Since a discrete random variable occurs only at certain discrete points, its relative fre-
quency of occurrence can be evaluated only at these discrete points. This is known as
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the probability mass function (PMF) and is denoted as px(x). PMF is similar to PDF;
however, it is not a continuous function, and it consists of a series of spikes. The other
important difference is that summations of the PMFs are necessary to calculate the
CDF for a discrete random variable. The CDF still satisfies all the axioms of probabil-
ity, but it consists of step functions as shown in Figure 3.4. Mathematically, these
observations can be expressed as

FX (x) = P(X <_ x) = I pX (xi ). (3.12)
xiS.

EXAMPLE 3.2

To demonstrate the calculation of PMF and CDF for discrete random variables, we
again consider the three-car example from Chapter 2. Assume that a car will be in good
condition 90% of the time and in bad condition 10% of the time. Thus, P(G) = 0.90 and
P(B) = 0.10. If we denote X as the random variable representing the number of good
cars at a given time, for the problem under consideration, X = 0, 1, 2, or 3. The PMFs
for these values of X can be calculated as follows:

PX(0)=P(X=0)=0.1 x0.1 x0.1 =0.001

Px(l)=P(X= 1)=3x0.9x0.1 x0.1 =0.027

px(2)=P(X=2)=3x0.9x0.9x0.1 =0.243

px(3)=P(X=3)=0.9x0.9x0.9 =0.729

11.000

Px(x) fi

Fx(x)

1.0

0.0

0.729

0.243

0.001 0.027

0 1 2 3 X

0 1

(a) PMF of X

2

(b) CDF of X

1.00

3 X Figure 3.4 PMF and CDF of a
Discrete Random Variable
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The CDF of X = 2, that is, FX(2), can be calculated as

P(X 5 2) = FX(2) = pX(0) + px(I) + px(2) = 0.001 + 0.027 + 0.243 = 0.271.

The PMF and the CDF of this example are shown in Figure 3.4.

3.3.3 General Definitions for Uncertainty Descriptors

The procedures for analytically representing the PDF and PMF are now known. They
represent the uncertainty in the random variable. To uniquely define these functions,
some additional parameters are necessary. Depending upon the nature of the uncer-
tainty, the number of parameters needed could be one or more than one. In most cases,
these parameters can be estimated from the information on mean, variance, skewness,
etc. of the random variable, which in turn depend on its PDF and PMF. Thus, it is
important to develop general expressions for evaluating the mean, variance, skewness,
etc. of the random variable from the information on the PDF and PMF.

3.3.3.1 Continuous Random Variables

If X is denoted as a continuous random variable with PDF j (x), its mean, also known
as the expected value of X and denoted as E(X), can be calculated as

00

E(X) x = f (x)dx. (3.13)
- 00

The corresponding variance of X, denoted as Var(X), is

cc

Equation 3.14 can also be shown to be

Variance = Var(X) = f(X-µX)1./X(X)C1X-

00

-a)

Var(X) = f (x2 - 2xµ.x + µ.x )fx (x)dx

or

or

where
00

(3.14)

(3.15)

E(X 2) = Sx2fx(.v)dv. (3.16)
-00

In general, the expected value of any function of X can be calculated as
00

-00

00 00 00

X (x )dx= fx 2 fx (x)d x - 2µ.X f _Vfx X ff

= E(X2)-2µX +µX = E(X2)-µx,

E[g(x)] = $g(x)fx(x)dx. (3.17)
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The skewness of X can be calculated as

00skewness = J (x - µX )3 fX (x)dx.
-00 (3.18)

When these values are known, it is easy to calculate the other parameters, namely, the stan-
dard deviation, coefficient of variation, and skewness coefficient, as discussed earlier.

These definitions illustrate the physical meaning of mean, variance, and skewness.
Mean is the centroidal distance of the area under the PDF from the origin; it is also
known as the first moment of the area. Variance is the moment of inertia of the area under
the PDF about its mean; it is also known as the second moment of the area under the PDF
about its mean. Skewness is the third moment of the area under the PDF about its mean.

EXAMPLE 3.3

Considering the PDF of the rainfall example shown in Figure 3.3 and using Equations
3.13, we can calculate the mean rainfall as follows:

15 25

E(R) = f r(0.05)dr + Jr(0. 125 - 0.005t)dr- = 10.208 in.
0 15

Since mean is the centroidal distance of the PDF from the origin, it can also be calcu-
lated as

E(R) = 0.05 x 15 x 7.5 + 0.5 x 0.05 x 10 x (15 + 3.33)

= 5.625 + 4.583 = 10.208 in.

When the PDF consists of rectangles and/or triangles, calculating the centroidal dis-
tance is simple. However, when the PDF does not consist of simple geometric shapes,
calculating the centroidal distance could be complicated. In general, calculation of the
mean using Equation 3.13 is preferable.

Using Equation 3.14, the variance of rainfall is
15 25

Var(R) = $(r -10.208)2 (0.05)dr + f(r -10.208)2 (0.125 - 0.005r)dr
0 15

= 19.562 + 17.897 = 37.459 in.2

As mentioned earlier, the variance can also be estimated by calculating the moment of
inertia of the PDF about its mean. For this example, the variance can be calculated as

Var(R) = I x 0.05 x (10.2083 + 4.792 )
3

0.05 x 103 1

+ 36 + 2 x 0.05 x 10 x (4.792 + 3.333)2 37.459 in.2

The result is identical to that obtained using Equation 3.14. In any case,

6R = JVar(R) = 6.120 in.

and

COV(R) = 6.120 = 0.60.
10.208
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This indicates that the uncertainty in the annual rainfall given by the PDF in Figure 3.3
is large. Similarly,

15

skewness = f (j- -10.208)3(0.05)dr

25

+ f (r -10.208)3(o. 125 - 0.005r)df- = +40.676.

15

The corresponding skewness coefficient is 40.676/6.120 = 0.177, indicating that the
PDF is not symmetrical and there is more spread in the data above the mean than below
the mean. For a symmetrical PDF, the skewness coefficient is zero.

3.3.3.2 Discrete Random Variables

If X is a discrete random variable with PMF px(x;), the following expressions can be
used to calculate the mean, variance, and skewness.

E(X) = tx = Y, xipx(.r, )

all.vi

Variance = Var(X) _ (.
all .r.

(3.19)

i -Px) hx(tr) (3.20)

skewness = (x; - t x)'1Px (-Vi )
all x;

Note that Equations 3.1 and 3.19 are identical. In Equation
eating that all the sample points are equally likely.

EXAMPLE 3.4

3.1, i)x(xl)

(3.21)

is 1/n, indi-

Consider the three-car problem in Example 3.2. The PMFs for X = 0, 1. 2, and 3 are
0.001, 0.027, 0.243, and 0.729, respectively. Using Equations 3.19 to 3.21, the mean,
variance, and skewness of X can be estimated as

E(X)=0x0.001+1x0.027+2x0.243+3x0.729= 2.7

Var(X)=(0-2.7)2 x0.001+(1-2.7)2 x0.027+(2-2.7)2 x0.243

+(3-2.7)2 x 0.729 = 0.27

6x = 0.52

and
COV(X) = 0.52 = 0.19

2.7

skewness = (0 - 2.7) 3 x 0.001 + (1- 2.7) 3 x 0.027 +

(2-2.7)3 x0.243+(3-2.7)3 x 0.729 =-0.216

skewness coefficient = -0.216 10.52 3 = -1.54.

In this case, the PMF is unsymmetrical and there is more spread in the data below the
mean than above the mean.
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3.3.4 Mode and Median

The discussion on PDF, PMF, and CDF will not be complete without considering two
additional parameters, the mode and median of a random variable X. The mode or
modal value of X is the value with the largest PDF or PMF. For a discrete random vari-
able, the mode can be estimated from the PMF diagram by simply observing the value
of X with the highest PMF. For a continuous random variable, the mode corresponds
to the peak of the PDF, that is, at

dfx (x) = 0. (3.22)
dt

The modal value of X can be estimated by solving Equation 3.22.
The median of a random variable, xm, is the value at which the CDF is 0.50, that is,

the value of X for which it is equally probable that X will be above or below it. This
condition can be expressed as

Fx 0.5. (3.23)

If we consider the annual rainfall example (Example 3.1) for continuous random
variables, the modal value could be any value between 0 and 15 inches, and the median
value can be calculated as 0.05rr = 0.5, or r = 10 inches. In the three-car example
(Example 3.2) for discrete random variables, the modal and median values are both 3.

3.3.5 Percentile Value

Selecting the design value of a random variable considering its uncertainty is an impor-
tant engineering task. It can be done using the concept of percentile value; that is, the
probability that the actual value will be less than the design value is expressed as a cer-
tain percentage. In deterministic designs, the uncertainty in the random variable is con-
sidered indirectly by assuming the design value to be a percentile value. In general, for
resistance-related random variables, the design value is considered to be less than the
50th percentile; thus, the design value will be less than the median. For load-related
random variables, the design value is selected to be greater than the median, so that it
is over the 50th percentile value.

EXAMPLE 3.5

Consider the annual rainfall example again. Calculate its 90th percentile value, r().90.

SOLUTION

Mathematically, it can be calculated as

15 "o.90

P(R <_ ib.yo) = f 0.05dr- + 5(0.125- 0.0051-)di- = 0.90,
0 15

or ') ' °.90

0.75+ 0.1251- -0.005' =0.90,
2 15
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or

or

This is shown in Figure 3.3.

ro.90 = 18.68 in.

3.4 MULTIPLE RANDOM VARIABLES

So far, the modeling of uncertainty in a single random variable has been discussed.
From a practical point of view, it may be necessary to consider more than one random
variable to formulate a particular problem. If the load applied to a structure is consid-
ered to be a random variable, then the structural response will also be a random vari-
able. The load and the response can be modeled separately as random variables;
however, it is more prudent to model the uncertainties jointly, and more information
can be extracted from the joint distributions. Thus, it is necessary to extend the discus-
sion to multiple random variables. For the sake of simplicity, the modeling of the joint
uncertainty for two random variables will be emphasized in the following sections. The
extension of the discussion to more than two random variables will be obvious.
Continuous and discrete random variables will be discussed separately.

3.4.1 Joint Distributions

Suppose X and Y are two random variables. If they are continuous, their joint PDF will
be denoted as fx,y(x, y); if they are discrete, their joint PMF will be denoted as px y(x, y).
The joint CDF of X and Y for both the continuous and discrete cases can be shown to be

Fx.Y (x, y) = P(X < x, Y < y) = f f fX.Y (u, v)dv du (3.24)

and

Fx,Y (x, y) _ I JpX,y(xiyJ (3.25)
X;<XY!<_Y

For the joint distribution, the following observations (similar to Section 3.3) can be
made:

(1) The PDF and PMF must be nonnegative.

(2) FxY(-00,-o°)=0, FX,y(+°°,+°°)= 1.0

FX,y(-°°,y)0, FX,y(x,-00)=0

FX, y (x, +o°) = Fx (x), Fx, y (-+"°°, y) = Fy (y)

(3) The CDF Fx y(x, y) is always greater than or equal to zero and is a nonde-
creasing function of the random variables X and Y.

For a single random variable, its PDF or PMF can be plotted on two-dimensional
graph paper, as discussed earlier. For two random variables, their PDF or PMF can be
described by a three-dimensional plot as shown in Figures 3.5 and 3.6 for continuous
and discrete random variables, respectively.

0.00251 yo -0. 125x0 90 + 1.4625 = 0,
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xl

Figure 3.5 Joint PDF of Two Continuous Random Variables

70 80 90 100

3.4.2 Conditional PDF and PMF

X, time (hours)

Figure 3.6 Joint PMF of
Two Discrete Random
Variables

In many engineering problems, the values a random variable takes may be statistically
dependent on the values of another random variable. The quality of an engineering
drawing may depend on the time spent to develop it. In this situation, it is necessary to
calculate the conditional probability density function for continuous random variables
and the conditional probability mass function for discrete random variables. The con-
ditional PDF and PMF can be calculated as

fxiy(X I y) =
f x'Y (X , y)

.fY (Y)

or

.fylx (y Ix)
=fx,Y(x,y)

fx(X)

(3.26)

(3.27)
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and

( - PX.Y(x,y)( )
(3 28)xPxiy y .

or

PY(y)

PYix (y I x) =
Px,Y(x,Y) 3.29)

Px(x)

If X and Y are statistically independent, as discussed in Section 2.4, the condition has
no meaning; that is, fx I Y(x I y) = fx(x) or pX I y(x I y) = px(x) and it can be shown that

fx,Y (x, y) = fx (x)fY (y) (3.30)

or

Px.Y (x, y) = PX (x)pY (y) (3.31)

3.4.3 Marginal PDF and PMF

It may be necessary in some cases to calculate the marginal PDF or PMF of a random
variable, X, from the information on the joint PDF or PMF of X and Y, by completely
eliminating the effect of Y. Using the theorem of total probability, we can show the
marginal PDF and PMF to be

00

fx (x) = $fxy(x,y)dy (3.32)

00

and

fY (y) = ffx,y(,Y)' A (3.33)

px (x) _ Y'PX'Y(X5Yj) (3.34)
ally

pY(y) _ Ipx,Y(xi,y). (3.35)

3.4.4 Covariance and Correlation

The problem may become cumbersome if the probability needs to be calculated using
the joint distribution of many random variables. Furthermore, the available information
may be inadequate to develop the joint distribution of the multiple random variables.
For practical applications, it could be advantageous to use the information on the
dependence or independence between two random variables to extract as much infor-
mation as possible. This can be accomplished by covariance and correlation analyses.

Similar to the variance analysis of a single random variable, the covariance of two
random variables X and Y, denoted as Cov(X,Y), is the second moment about their
respective means px and py, and can be calculated as

Cov(X, Y) = E[(X - µx)(Y - tY )] = E[XY - t xY - Xµy + µxµY ]
(3.36)

= E(XY) - ltxµy = E(XY) - E(X)E(Y).
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E(XY) can be calculated as

E(XY) = J J9fx.y (x, y)dx dy. (3.37)

If X and Y are statistically independent, then

E(XY) = f xfx (x)dx f yfy (y)dy = E(X)E(Y). (3.38)

From Equation 3.36, it can be observed that for statistically independent X and Y,
Cov(X,Y) = 0. Otherwise, it can be positive or negative and has the unit that is the
square of the unit of the mean. Cov(X,Y) indicates the degree of linear relationship
between the two random variables. Nondimensionalizing the covariance will result in
the correlation coeff rcient, denoted as px y, which can be calculated as

=
Cov(X, Y)

(3.39)px,Y 6X S6
Y

Values of pX Y range between -1 and +1. Again, the correlation coefficient repre-
sents the degree of linear dependence between two random variables. The physical
characteristics of the correlation coefficient are elaborated in Figure 3.7. Figure 3.7a
indicates that there is no linear relationship between the two random variables; the cor-
relation coefficient is expected to be close to zero, and the two random variables can
be considered to be uncorrelated. Figure 3.7b indicates a positive relationship between
X and Y; that is, Y increases as X increases. However, the relationship is not perfectly
linear, indicating that px,Y is expected to be between 0 and 1.0. Figure 3.7e clearly indi-
cates that there could some nonlinear relationship between the two random variables,
but since the relationship is not linear, pX Y is expected to be zero.

If the correlation coefficient needs to be calculated from observed sample values, it is
rare to obtain values of precisely zero, +1, or -1. The two random variables can be consid-
ered to be statistically independent if the correlation coefficient is less than ±0.3; they can
be considered to be perfectly correlated if the correlation coefficient is greater than ±0.9.

EXAMPLE 3.6

The water level in a particular lake depends on two sources, direct rainfall X, and
inflow from a stream Y. The rainfall Z around the lake can be considered as a random
variable with a mean of pZ and a standard deviation of 6Z. X and Y are related to Z as

X =aZ

Y=b+cZ
where a, b, and c are constants. X and Y are functions of a random variable and are
therefore also random. Calculate the correlation coefficient px y.

SOLUTION

The mean and variance of X and Y can be shown to be (see Section 6.2.1)
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Figure 3.7 Correlation of Two Random Variables

0

(b)0<p<1.0

(d) p = -1.0

(f)p = 0

t x = aµz and 62x = a 2 6 2
z

ji = b +cµ7 and 6Y = c26

Also, E(XY) can be calculated as

E(XY) = E[aZ(h+cZ)] = E abZ+acZ2

= abE(Z) + acE(Z 2
).

Using Equation 3.15, for random variable Z, we can show that
2 2 26 Z = E(Z ) - t z .

Thus,

E(XY) = abp z + ac6Z + acµ.Z .

Using Equation 3.36, we can show the covariance of X and Y to be

Cov(X, Y) = ah µz + ac 6Z + ac - (a t7)(b + c tz) = ac 6Z

x

x

x
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Using Equation 3.39, we can calculate the correlation coefficient of X and Y as

Cov(X,Y) - ac6Z
Px,Y = - -1.0.

Q ' uccY

Since both X and Y are linearly related to Z, they are linearly related to each other;
therefore, the correlation coefficient of 1.0 between them is expected.

EXAMPLE 3.7

The time to produce a typical engineering drawing, represented by a random variable
X, and its quality, represented by a random variable Y, are under consideration. For the
sake of discussion, suppose X can be 70, 80, 90, or 100 hours. The quality of a draw-
ing can be considered to be moderate, good, and excellent, and Y can be considered to
be 1, 2, and 3, respectively. Suppose that 100 such drawings are evaluated and the
information given in Table 3.3 is obtained.

(a) Plot the joint PMF of X and Y.

(b) Plot the marginal PMF of X and Y.

(c) If only excellent quality drawings are acceptable (i.e., Y = 3), plot the condi-
tional PMF of X.

(d) Determine the Cov(X,Y) and the corresponding correlation coefficient between
X and Y.

Table 3.3 Time and Quality Information
on Engineering Drawings

70 80 90 100

Y

1 15 8 3 2

2 3 4 6 12

3 5 8 12 22

SOLUTION

(a) To plot the joint PMF of X and Y, the information can be rearranged as shown below.

X Y

No. of
observations

Relative
frequencies

70 1 15 0.15
80 1 8 0.08
90 1 3 0.03

100 1 2 0.02
70 2 3 0.03
80 2 4 0.04
90 2 6 0.06

100 2 12 0.12
70 3 5 0.05
80 3 8 0.08
90 3 12 0.12

100 3 22 0.22
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The joint PMF of X and Y is shown in Figure 3.6.

(b) Using Equation 3.34, we can calculate the marginal PMF of X as

px(70) = 0.15 + 0.03 + 0.05 = 0.23

px(80) = 0.08 + 0.04 + 0.08 = 0.20

px(90) = 0.03 + 0.06 + 0.12 = 0.21

px(100) = 0.02 + 0.12 + 0.22 = 0.36.

The marginal PMF of X is plotted in Figure 3.8a. Similarly,

py(l)=0.15 + 0.08 + 0.03 + 0.02 = 0.28
py(2) = 0.03 + 0.04 + 0.06 + 0.12 = 0.25

py(3) = 0.05 + 0.08 + 0.12 + 0.22 = 0.47.

The marginal PMF of Y is plotted in Figure 3.8b.

(c) Using Equation 3.28, we can show the conditional PMF of X, given Y = 3,
to be

PxY(xi,3)
pxiY (xi 13) =

(3)

Thus,
(70I3)=0.05=0.11

pxiY
0.47

pxir (8013) _
0.08

= 0.17
0.47

pxiy (9013) =
0.12

= 0.25
0.47

(100 13) =p
0.22 = 0 47xi
0.47

. .

The conditional PMF of X is shown in Figure 3.8c.

(d) Cov(X,Y) and the correlation coefficient px y can be estimated by
using Equations 3.36 and 3.39, respectively. The required information
can be calculated as follows:

E(X) = 70 x 0.23 + 80 x 0.20 + 90 x 0.21 + 100 x 0.36 = 87

Var(X) = (70 - 87)2 x0.23+(80-87)2 x0.20+(90-87)2 x0.21+(100-87)2 x0.36=139

ax =11.79.

Similarly,

E(Y)=1x0.28+2x0.25+3x0.47=2.19

Var(Y)=(1-2.19)2 x0.28+(2-2.19)2 x0.25+(3-2.19)2 x0.47=0.7139

a,, = 0.845
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0.36

0.23

LJ1i2'
70 80 90 100 X

(a) Marginal PMF of X

0.47

0.28 0.25

1 2 3 Y

(h) Marginal PMF of Y

0.17

80 90 100 X
10-

Figure 3.8 Marginal PMF of
(c) Conditional PMF of XIY=3 Time and Quality

E(XY)=70xIxO.15+80x1xO.08+90x1xO.03+100x
1x0.02+70x2x0.03+80x2x0.04+90x2x0.06+
100 x 2 x 0. 12 + 70 x 3 x 0.05 + 80 x 3 x 0.08 + 90 x

3 x 0. 12 + 100 x 3 x 0.22 = 195.1

Cov(X, Y) =195.1- 87 x 2.19 = 4.57

4.57 = +0,46.
PX'Y 11.79 x 0.845
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EXAMPLE 3.8

The joint density function of two random variables X and Y can be represented as

J x,Y (x, Y) = C(x2 - 4)(Y2 - 9), 0< x< 2 and 0< y<- 3
= 0, elsewhere.

(a) Determine the constant c.

(b) Determine the marginal density function for X.
(c) Determine the marginal density function for Y.

(d) Are X and Y statistically independent?

(e) Determine the probability of the following events:
(1) P(X > I I Y = 2)

(2) Fx, y(1, 3)

SOLUTION

(a)

(b)

or

or

or

32

ffc(x2 - 4)(y2 - 9)dxdy = 1.0

00

1z

fc(y2 9) X3 -4x dy = J-16 C(y2 - 9)dy = 1.0
0 3

0
0 3

36 C

rI 3 - 9y = 1.0
3 L Jo

C

96

3

= 1 (x2 -4)(Y2 -9)dY = - 3 (x2 -4)fx(x) f0 96 16

2

c C) = 1 (x2 -4)(2 -9)dx = - 1 (2 -9)() f Y Y
0 96 18

(d) (x)fy () 3 (x2 -4) - 1 (y 2 -9)x Y
16 18

1 (x2 -4)(Y2 -9) _ (x, ).
96

fx,Y Y

Thus, X and Y are statistically independent random variables.
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x I = fx.Y (x, y) - .fX (x)ff (y) = x = - 3
x2 - 4).(e 1) .fx Y ( y) fx () (

f,(y) ff(y)
16

3 2
3

x
Thus, P(X > 1 1Y = 2 ) = f - - ( . x - 4)dx = - - 4x = 0.3125.

1 16 16

1'
(e2) Fx.y (1, 3) = f (x2 - 4)dx f (y2 - 9)dy = 0.6875.

96 0

3.4.5 Multivariate Distributions

1

In general, the explicit consideration of multivariate distributions is mathematically cum-
bersome. However, standard procedures as outlined in Section 3.4.1 can still be used if
the joint PDF of a multivariate distribution is known. Suppose X and Y are jointly nor-
mally distributed. The normal distribution will be discussed in detail in Chapter 4. To
define the PDF of this bivariate normal distribution requires five parameters, namely, the
mean values of X and Y, pX and µy, their standard deviations 6X and 6y, and the correla-
tion coefficient px,y. The PDF of the bivariate normal distribution can be expressed as

J X, = 1XY 2na ;1- 2
exp

x 6Y PX.Y

-2Px,Y

1

2(1- Pz.r 1
L

2

6X6y 6y

-00 <x<00 , -00 < Y <00.

The PDF of a multivariate normal distribution is more complicated.

3.5 CONCLUDING REMARKS

(3.40)

Modeling and quantifying uncertainties in random variables are the initial and essen-
tial steps in any risk-based analysis and design. Collecting data and extracting infor-
mation from the data in terms of many descriptors are introduced in this chapter.
Continuous and discrete random variables are considered.

Modeling of multiple random variables and their correlation or dependence on each
other are presented. The information presented here is expected to provide sufficient
background in modeling and quantifying uncertainties in random variables.

3.6 PROBLEMS

3.1 In an examination for a class of 30 students, the following scores were obtained: 99, 45, 60, 80, 95,
100, 95, 91, 85, 87, 77, 75, 61, 71, 85, 88, 83, 85, 79, 81, 82, 55, 63, 75, 82, 88, 77, 78, 41, and 70.

(a) Draw the histogram for the data.
(b) Draw the frequency diagram for the data.
(c) Calculate the mean, variance, standard deviation, coefficient of variation, skewness, and

skewness coefficient for the test scores.
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(d) Assume that a student must score at least 85 to receive an A grade. What is the proba-
bility that any student in the class will receive an A, using the actual scores only? What
will be the corresponding probability if the frequency diagram is used instead?

3.2 The annual precipitation in inches per year during the past 30 years in Tucson, Arizona, is
as follows: 11.60, 7.19, 12.69, 11.86, 14.81, 8.07, 11.15, 8.00, 9.55, 11.02, 19.54, 8.63,
12.33, 8.53, 16.55, 19.74, 18.40, 11.37, 10.55, 8.68, 9.62, 6.93, 14.80, 10.64, 14.76, 15.19,
14.56, 9.68, 11.13, and 4.35.

(a) Draw the histogram for the data.

(b) Draw the frequency diagram for the data.
(c) Calculate the mean, variance, standard deviation, coefficient of variation, skewness, and

skewness coefficient for the precipitation.
(d) Using the frequency diagram, calculate the probability that the annual precipitation in

Tucson will exceed 12 in./yr using the actual data and using the frequency diagram.

3.3 The traveling time from the office to the nearest airport may be 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0
hours depending upon the time of travel. The corresponding PMFs are shown in Figure P3.3.
Calculate the following information on the travel time:

0.30

0.25

0.20

0.10 0.10

0.05

0 0.5 1.0 1.5 2.0 2.5 3.0 Figure P3.3 PMFs of Travel
T(hours) Time

(a) The mean.
(b) The variance, standard deviation, and coefficient of variation.
(c) The skewness and skewness coefficient.

3.4 In order to bid for a nonstandard construction job, an engineer needs to estimate the dura-
tion, D, of the project. Since no prior information on similar jobs is available, the engineer
estimates that it may take 10 to 20 days. Suppose the PDF of D can be defined by a uniform
distribution between 10 and 20 days.

(a) Define the PDF of D.
(b) Define the CDF of D.
(c) Calculate the mean of D.
(d) Calculate the variance, standard deviation, and coefficient of variation of D.
(e) Calculate the skewness and skewness coefficient of D.
(f) Calculate the modal and median values of D.

3.5 The error X in a measurement is modeled with a probability density function in the shape of
a cosine curve:

.fx(x)=Ccos
Rx

, -E0 <_x<Eo2EU

= 0, elsewhere.
(a) Determine the normalizing factor C.
(b) Plot the PDF.
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(c) Calculate the CDF and plot it.
(d) What is the probability that X is greater than E0/2?
(e) What is the probability that the error is greater than EO/2 in absolute magnitude?
(t) Calculate the PDF from the CDF obtained in Part c.

3.6 The probability density function of error in measurement associated with surveying for a
building project can be described by a second-order parabola as shown in Figure P3.6.

fE(e)

Figure P3.6 PDF of
E(ft) Error

(a) Determine c to make it a bona fide PDF.
(b) Write an expression for its CDF, that is, FE(e).
(c) What is the probability that the error will be more than 6 inches?

3.7 The PDF of the annual rainfall, R, of a city is shown in Figure P3.7.

fR(r)

20 30 R (Inch)Figure P3.7 PDF of Annual Rainfall

(a) Define the PDF of R properly. Then determine the following:
(b) The mean value of R.
(c) The median of R.
(d) The mode of R.
(e) The variance, standard deviation, and coefficient of variation of R.
() The skewness and skewness coefficient of R.

3.8 The CDF of the hourly traffic volume, X, at an intersection can be expressed as
2

FX(x)=
200,000

, 0<<x<400

X x
2

-4, 400<x_500
50 50,000

=0, x<0
=1.0, x>500.

(a) Determine the PDF of X and draw it.
(b) Determine the mean, mode, and median of X.
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(c) Determine the variance, standard deviation, and coefficient of variation of X.
(d) Determine the skewness and skewness coefficient of X.

3.9 The study duration and grade point average (GPA) of students graduating with a B.S. degree
from an engineering school were studied. With X defined as the number of years it takes to
graduate and Y as the GPA, it was observed that X could be 4, 5, or 6 years and Y could be 2,
3, or 4. The following table shows the number of students for each combination of X and Y.

4 5 6

Y

2

3

4

5 15 60

50 80 20

20 40 10

(a) Plot the joint PMF of X and Y.
(b) Plot the marginal PMF of X and Y.
(c) If only a GPA of 3 is under consideration (i.e., Y = 3) plot the conditional PMF of X.
(d) Determine Cov(X, Y) and the corresponding correlation coefficient between X and Y.

3.10 A person's commuting time from home to the workplace (X) and from the workplace to
home (Y) is studied for 100 days. Assume that the commuting time each way can be
approximated as 30, 40, or 50 minutes. The following table shows the number of days for
each combination of X and Y.

Y

30 40 50

30 10 20 25

40 5 30 4

50 3 2 1

(a) Plot the joint PMF of X and Y.
(b) Plot the marginal PMF of X and Y.
(c) Considering 30 minutes commuting time from home to workplace (i.e., X = 30), cal-

culate the conditional PMF of Y.
(d) What is the probability that the commuting time in each direction on a particular day

will be at least 40 minutes?
(e) Determine Cov(X, Y) and the corresponding correlation coefficient.

3.11 The joint probability density function of two random variables X and Y can be represented as

fx,Y(x,Y)=c(x2+xy'+Y2), 0<_x<_2 and 2Sy<_4

= 0, elsewhere.

(a) Determine the constant c.
(b) Determine the marginal density function for X.
(c) Determine the marginal density function for Y.
(d) Are X and Y statistically independent?
(e) Determine the probability of the following events:
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(i) P(Y > 3 1 X = 1)

(ii) Fx.Y(l, 3)
3.12 The joint probability density function of two random variables X and Y can be represented as

0cx<1 and 0<y<_2
= 0, elsewhere.

(a) Determine the constant c.
(b) Determine the marginal density function for X.
(c) Determine the marginal density function for Y.
(d) Are X and Y statistically independent?
(e) Determine the probability of P(X <_ 0.5 I Y = 1).

3.13 Consider a cantilever beam of span 1 m with a uniform load of w kg/m. The maximum shear
force (S) and the maximum bending moment (M) at the fixed end are wl and w12/2, respec-
tively. Consider 1 to be a constant and w to be a random variable with a mean of µ, and a
standard deviation of (T.-

(a) Are S and M correlated? Calculate the covariance of S and M, that is, Cov(S,M).
(b) Calculate the correlation coefficient ps,M
(c) Using the results obtained in Parts (a) and (b), are S and M perfectly correlated?



Chapter 4

Commonly Used
Probability Distributions

4.1 INTRODUCTORY COMMENTS

Modeling of uncertainties in both continuous and discrete random variables was dis-
cussed in Chapter 3. Any mathematical model satisfying the properties of PDF or PMF
and CDF can be used to quantify uncertainties in a random variable. The procedures
for selecting a particular distribution for a random variable and estimating its parame-
ters to uniquely define the randomness will be discussed in Chapter 5. Many distribu-
tions are commonly used in the profession to calculate probability or reliability of
events. Risk or reliability evaluation using these distributions is the subject of this
chapter. Many computer programs and spreadsheets, such as MATLAB, Mathematica,
EXCEL, QUATTRO PRO, etc., are used for probability calculations with many
assumed distributions. Sometimes, these programs are used as "black boxes" without
any understanding of the fundamentals of risk assessment. Conceptual and computa-
tional aspects of risk evaluation for an assumed distribution, without using any com-
puter programs, are emphasized in this chapter.

4.2 CONTINUOUS RANDOM VARIABLES

For clarity of discussion, commonly used continuous and discrete random variables are
discussed separately in the following sections.

63
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4.2.1 Normal or Gaussian Distribution

One of the most commonly used distributions in engineering problems is the normal
or Gaussian distribution. The PDF of the distribution can be expressed as

_ 1 1 xµx
G 2 exp

2X x

2

-oo <x<+oo (4.1)

where the mean pX and the standard deviation ax are the two parameters of the distri-
bution, usually estimated from the available data as discussed in Section 3.2 (and elab-
orated further in Chapter 5). The corresponding CDF can be expressed as

1 1 x µx
dx. (4.2)Fx (x) _ f

a X 2L
exp --

2 G x_00

The normal distribution is widely used and is denoted as N(p, (Y), indicating that it is a
normal random variable with a mean and standard deviation of p and a, respectively.
The PDF and CDF of a normal distribution with a mean of 100 and a standard devia-
tion of 10 are shown in Figure 4.1. This distribution has many desirable features. It is
applicable for any value of a random variable from -oo to +oo. The distribution is sym-
metric about the mean, and the mean, median, and modal values are identical and can
be estimated directly from the data. However, it is not simple to estimate the probabil-
ity by integrating Equation 4.1. The problem can be addressed by transforming the
original random variable X into a standard normal variable with zero mean and unit
standard deviation, as

S=X µx, (4.3)
Gx

Using Equation 4.1 and the variable transformation technique (to he discussed in more
detail in Chapter 6), we can express the PDF of S as

1 1

A (s) = exp s
2

00 < s < +0. (4.4)
27r 2

The corresponding CDF of S is

11F (s) = J7rexP[_s 2 ds.
_0 2n

The standard normal distribution is denoted as N(0, 1), and its CDF is denoted as
(D(s), that is, (D(s) = FS(s), given by Equation 4.5. The CDF of the standard normal dis-
tribution is widely available in tabulated form, as shown in Appendix 1, or can be cal-
culated using a standard subroutine available in many computer programs. Since the
normal distribution is perfectly symmetrical, referring to Figure 4.1, we can show that

(D(-s) = 1.0 - CD(s) = p.

or, when p < 0.5, we can show that

(4.6a)

-S = -1(p)) = -(D-1(1-p) (4.6b)
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Figure 4.1 PDF and CDF of Normal Random Variable

The table in Appendix 1 is only valid for positive values of the standard normal ran-
dom variable. However, as discussed earlier, negative values are possible for a normal
or standard random variable. The CDF of the standard normal variable can be evalu-
ated for a negative value using Equation 4.6a.

EXAMPLE 4.1

Suppose D(-0.1) needs to be evaluated using the table in Appendix 1. Using the table,
we find that

1(0.1) = 0.53983.

Using Equation 4.6a, we can show that

(D(-0.1)=1.0-(D(0.l)=1.0-0.53983=0.46017.
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From Appendix 1, we find that c(0.0) = 0.5. Thus, it can also be concluded that the
CDF of the standard normal distribution evaluated at a negative value of S will be less
than 0.5.

If a random variable X is N(px, 6x), then its probability of having a value between
two limits a and b is

"
P(a < X<- b) =

1

5exp
x 27t

Again, by variable transformation, Equation 4.7 can be rewritten in terms of the stan-
dard normal variable S as

r)-u
6X

1

P(a < X <- b) _ - f exp - - s`
1.21E a-µ X 2

or

P(a<X<-b)=(D

Vds

6a

a6µx1
x

(4.8)

Equation 4.8 indicates that the probability of a normal random variable between two
limits can be calculated easily using the table in Appendix 1.

EXAMPLE 4.2

To demonstrate the steps involved, consider the values of the Young's modulus given
in Table 3.1. Assume that the randomness in E can be described by a normal random
variable. Its mean and standard deviation were estimated in Section 3.2 as 29,576 ksi
and 1,507 ksi, respectively. Using Equation 4.8, we can calculate the probability of E
having a value between 28,000 ksi and 29,500 ksi as

P(28, 000 < E < 29, 500) = (29,5oo_29,576128,ooo__29,576(D( (D(
1,507 1,507

=(D(-0.05)-(D(-1.05)=[1-(D(0.05)]-[1-(D(l.0.5)]

= (1- 0.51994) - (1.0 - 0.853 14) = 0.33320.

As stated earlier, the commonly used Young's modulus for steel is 29,000 ksi. The
probability of the Young's modulus being less than the design value, that is, -00 < E<-
29,000, can be calculated as

29, ODU - 29, 576 - (D -co - 29, 576
P(E <_ 29, UUU) = (D

1 507 1,507

= (N-0.38)-(N-oo)
=(1-0.64803)-0.0=0.35197.

This means that the design value of E is approximately the 35th percentile value for the
data given in Table 3.1.
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Similarly, the probability that Young's modulus will be at least 29,000 ksi can be
calculated as

P (E >- 29, 000) = P(29, 000 < E -< +oo)

- (D (c_29,576 29, 000 - 29, 576

1,507 1,507

_ (D(+oo) - (D(-0.38) = 1-1 + (D(0.38) = 0.64803.

Common sense suggests that the Young's modulus cannot be negative; thus, mod-
eling it as a normal random variable may distort the physical aspects of the problem.
This type of argument is often used against probabilistic analysis. The probability of E
being less than or equal to zero can be calculated as

P(E- 0.0)=(D
0.0 - 299 576 (N-oo)=(D(-19.63)0.0.

1,507

Obviously, there is virtually no impact on the uncertainty analysis of the Young's mod-
ulus. If the underlying distribution is normal and negative values are not possible, the
available data should reflect the physical aspect of the random variable. This will be
discussed further later.

The Young's modulus is a resistance-related random variable, whose design value
is usually selected to be less than the mean value. Suppose its design value is selected
to be the 10th percentile value. Denoting it as e0.10, we can calculate the design value
of the Young's modulus as

P(E<eo.10)=0.10

or

(eoo
- 29,576

(D(
1,507

= 0.10

or

Thus,

(eol() - 29,576 = q)-1(0.10) = -(D-'(0.90) = -1.28.
1,507

eo 10 = 29,576 -1.28 x 1, 507 = 27,647 ksi.

If the 90th percentile value of the Young's modulus is desired, it can be calculated as

e090 = 29,576 + 1.28 x 1,507 = 31,505 ksi.

For the data under consideration, the design value of 29,000 ksi of the Young's mod-
ulus is approximately the 35th percentile value, as shown earlier. For a normal random
variable, the probability associated with an event or the design value can be easily cal-
culated using the simple procedure discussed above.

When a distribution like the normal distribution, which is valid from -°° to +00,
lacks a physical interpretation to consider the practical aspects of the problem, it is
common in the literature to consider the values of the random variable as belonging to



68 Chapter 4 Commonly Used Probability Distributions

a range hounded by the mean plus and minus some standard deviation values. For a
normal distribution, mean ± 36 bounds are very common. If the data are limited to
these lower and upper bounds, they will give a probability of 0.997 instead of 1.0, indi-
cating that the error associated with the probability calculation is marginal. For the
Young's modulus parameter under consideration, the lower and upper hounds will be
29,576 - 3 x 1,507 = 25,055 ksi and 29,576 + 3 x 1,507 = 34,097 ksi, respectively.
Thus, considering the physical aspects of the parameter, values of the Young's modu-
lus between 25,055 and 34,097 ksi will effectively give practical limits to the bounds
and will include about 99.7% of the data. Table 3.1 indicates that there are no obser-
vations outside this range, validating this statement.

For a normal distribution, it is interesting to note that if mean ± 16 bounds are used,
about 68.3% of the data are included. If the bounds are increased to mean ± 26, about
95.4% of the data are included.

EXAMPLE 4.3

Suppose a steel cable has to carry a weight of 10 kips. Information on the strength of
similar cables indicates that the strength of the cable, R, can be modeled by a normal
random variable with a mean of 25 kips and a standard deviation of 5 kips. Calculate
the probability that the cable will be unable to carry the weight, or the probability that
the cable will break.

SOLUTION

P(the cable will break) = P(failure) = P(R <- 10)

_ ( 10 25 - (D( -oo - 25

5 5

= 1-(D(3)=1-0.99865=0.00135.

4.2.2 Lognormal Random Variable

In many engineering problems, a random variable cannot have negative values due to
the physical aspects of the problem. In this situation, modeling the variable as lognor-
mal (i.e., considering the natural logarithm of the variable X) is more appropriate, auto-
matically eliminating the possibility of negative values. If a random variable has a
lognormal distribution, then its natural logarithm has a normal distribution. This is the
meaning of the term lognormal. The PDF of a lognormal variable is given by

fx (x)= 1 expf
2 xx

1 lnx-Xx
2 x 0<x<oo

where Xx and x are the two parameters of the lognormal distribution. The PDF of a
typical lognormal distribution with a mean of 1 00 and a standard deviation of 10 is
shown in Figure 4.2. The PDF values of both the normal and lognormal random vari-
ables with the same mean and standard deviation are plotted in Figure 4.3. The log-
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Figure 4.2 PDF and CDF of Lognormal Random Variable

normal variable has values between zero and +oo. Its PDF is unsymmetrical, and thus
its mean, median, and modal values are expected to be different. Comparing Equations
4.1 and 4.9, we can observe some similarities between the normal and lognormal dis-
tributions. In fact, the two parameters of the lognormal distribution can be calculated
from the information on the two parameters of the normal distribution, the mean (p)
and standard deviation ((Y) of the sample population. It can be shown that

Xx = E(ln x) = In µx

and

[J2=Var(InX)=1n l+1n(1+

1 Y2
2 bX

(4.11)
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If the COV (i.e., Sx = 6x/µx) is not very large, for example less than 0.30, then x = bx,
the COV of the random variable X.

To calculate the probability of an event where the underlying distribution of a ran-
dom variable is lognormal, the procedures used for the normal variable are still appli-
cable, except that for the lognormal case, the standard variable S will take the following
form instead of Equation 4.3:

x
(4.12)

The probability of a lognormal random variable having a value between two limits a
and b can be calculated as

x
P(a<X <_b) =

r

1 S= f

=(D

(4.13)

Thus, all required probabilities for the lognormal variable can be calculated from the
CDF table developed for the standard normal variable, given in Appendix 1.

EXAMPLE 4.4

To demonstrate the calculation of probability for a lognormal variable, the same
Young's modulus example with a mean of 29,576 ksi and a standard deviation of 1,507
ksi can be considered, except that now it is assumed that the Young's modulus is log-
normally distributed. In this case,

b=6/µ.=1,507/29,576=0.0.51 <-0.3.

In b-xx
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Thus,

;:5=0.05l

X= In 29, 576 - 0.5 x 0.05 1 2 = 10.293.

The probability of E having a value between 28,000 ksi and 29,500 ksi can he calcu-
lated as

P(28, 000 < E<- 29, 500)

-(D In29,500-10.293 In 28,000 - 10.293

0.051 0.051

_ (D(-0.017) - (D(-1.04) _ (1- 0.50678) - (1.0 - 0.85083) = 0.34405.

Again, the probability of E being less than the design value of 29,000 ksi can he cal-
culated as

P(E < 29, 000 = (D
In 29, 000 -10.293 - -oo) = (1(-0.35)

0.051

= 1.0 - 0.63683 = 0.36317.

If E is modeled as a lognormal variable, the design value is about the 36th percentile
value for the data given in Table 3.1.

If the design value for the Young's modulus is still the 10th percentile value, then it
can be estimated as

(1ne010 - l0.293)

0.051
=0.10=O(-1.28)

or
Ine0.10 = 10.293-1.28x 0.051

or
eo_1() = 27,659 ksi.

For the Young's modulus example under consideration, the results are similar for the
normal and lognormal cases. This will be discussed further later.

Some of the important features of a lognormal variable can be summarized as fol-
lows:

(1) If X is a lognormal variable with parameters ?c and fix, then In X is normal
with a mean of 2x and a standard deviation of fix.

(2) Xx =In µx -
2

x
1 2X.

(3) X = ln(1 + sX ). When s x < 0.3, x = 5x, the COV of X.
(4) Denoting Xm as the median of a lognormal variable X, we can show that Xx = In

(5) xm = x ; that is, the median value of a lognormal variable is always
y1+ox

less than the mean value.
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4.2.3 Beta Distribution

The beta distribution is a very flexible and useful distribution and can be used when a
random variable is known to be bounded by two limits, a and b. The normal distribu-
tion is valid between -00 and +00, and the lognormal distribution is valid between 0 and
+00. Many random variables of engineering significance may be bounded by two lim-
its, and the beta distribution could be quite appropriate. The PDF of a beta distribution
is represented as

1 (x - a)q-1(h - x)" - bfx (x) - +, -> , a <- x<
B(q, r) (b - a)' (4.14)

= 0, elsewhere.
where q and r are the parameters of the distribution and B(q, r) is the beta function. The
parameters q and r can be estimated from the mean and standard deviation of the avail-
able data using the following relationships:

E(X)=a+ q (b - a)
q +r

and

(4.15)

Var(X) = 2qj (h - a) 2 . (4.16)
(q+r) (q+r+l)

If the upper and lower limits and the mean and variance of a random variable are
known, the corresponding q and r parameters of the beta distribution can be estimated
using Equations 4.15 and 4.16.

The beta function in Equation 4.14 can be shown to be
I

B(q, r) = r xq-1(1 - x)'*-1 dx. (4.17)
0

The beta function can also be calculated as

B( r) = F(q)F(r)
q (4.18)

F(q+r)

where F() is the gamma function. Procedures to calculate gamma function are given
in Appendix 2.

If the lower limit a is 0 and the upper limit b is 1, Equation 4.14 takes the follow-
ing form:

(x) = 1
xy-1(1- x)1.-1

, 0 c x <- 1fx
B r (4.19)

= 0, elsewhere.

Equation 4.19 is known as the standard beta distribution. Its PDFs for several values
of q and r are shown in Figure 4.4. When q and r are both equal to one, the beta dis-
tribution becomes a uniform distribution.

Once the PDF of a beta distribution is defined, the probability of any event can be
estimated by numerically integrating the area under the PDF corresponding to the
upper and lower limits. The probability can also be found using tables for the standard
beta distribution similar to the standard normal table given in Appendix 1.
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EXAMPLE 4.5

0.8 0.9 1

The daily maximum temperature in June in Tucson, Arizona, varies between 80°F and
110°. Using 100 years of data, we can estimate that the average daily maximum tem-
perature in June is 95°F and the corresponding standard deviation is 10°F. Assuming that
the daily maximum temperature can be modeled by a beta distribution, what is the prob-
ability that on any given day in June, the daily maximum temperature will exceed 100°F?

It is clear that modeling the temperature by a normal or lognormal distribution may
not be appropriate. The beta distribution may be a reasonable alternative. The following
information can be extracted from the available data. For the beta distribution under
consideration, a = 80, b = 110. Also, using Equations 4.15 and 4.16, we can show that

80+ q (110 - 80) = 95
q + r

and qr

(q+r)2(q+r+l)
(110 - 80)2 = 102.

In this particular case, q = r = 5/8, and using Equation 4.18,

F 5 1" 5

B 55 =
8

88,8

1"
5+5
8 8

Gamma functions can be evaluated using Appendix 2, where F(5/8) is shown to be
1.434519178. Using the first equation in Section 2a of Appendix 2, we can calculate
1"(5/8 + 5/8) or F(5/4) as

F(5 /4)=1"(1+1/4)=1-0.5748646x(1/4)+0.9512363x(1/4)2

- 0.6998588 x (1 / 4)3 + 0.4245549 x (1 / 4)4
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Thus,

- 0.1010678x(1/4) 5

= 0.906360543.

B
5 51 _ (1.434519178)2 = 2.270.
8 8 ().906360453

Computer programs like EXCEL, QUATTRO PRO, and MATLAB can also be used to
calculate the gamma functions. To demonstrate how to use Appendix 2, we have eval-
iiated the gamma functions up to nine decimal place accuracy. However, considering
the practical aspect of the problem, the beta function in Equation 4.14 or 4.19 need not
he calculated with similar accuracy.

Once the beta function is evaluated, the corresponding PDF of the beta distribution of
the daily maximum temperature, T, is given by Equation 4.14 and can be shown to be

-1 5-I5

_ 1 (t-80)8 (110-t)8
f/ (t)

2.270 5 5 -1

1

(110-80), 8
3 3

_ (t-80) I(] 10-t) s, 80<t<--110.
5.313

Thus. if we numerically integrate the above PDF from 100°F to 110T. the probability
that on any given day in June, the daily maximum temperature in Tucson will exceed
100°F can be calculated as

110 3
3

P(T > 100)= 1 (t-80) 8010-0 8dt=0.3716.
100 5.313

This example demonstrates that depending upon the mathematical form of the PDF,
it may be necessary to numerically integrate the area under the PDF between the upper
and lower limits to estimate the corresponding probability.

Another example of the application of the beta distribution is given in Section 4.4.

4.3 DISCRETE RANDOM VARIABLES

4.3.1 Binomial Distribution

In many engineering applications, events consisting of repeated trials can be formu-
lated in terms of occurrence or nonoccurrence, success or failure, good or had, and
so forth. Only two outcomes are possible, representing the behavior of a discrete ran-
dom variable. In addition, if the events satisfy the additional requirements of a
Bernoulli sequence, that is, if they are statistically independent and the probability of
occurrence or nonoccurrence of events remains constant, they can be mathematically
represented by the binomial distribution. If the probability of occurrence of an event
in each trial is p and the probability of nonoccurrence is (1 - p), then the probability
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of x occurrences out of a total of n trials can be described by the PMF of a binomial
distribution as

P(X = x, n I p) _ (n)p.v (1 _ P) ti -., x = 0, 11 2, ..., n (4.20)

where, the probability of occurrence in each trial, is the parameter of the distribution,

and rJ = n!/[x! (n - x)! ] is the binomial coefficient, indicating the number of ways that
x occurrences out of a total of n trials are possible. Note that X, the number of occur-
rences, is a discrete random variable, since it can only take integer values.

EXAMPLE 4.6

Suppose the probability of failure of a structure due to earthquakes is estimated as 10-5
per year. Assuming that the design life of the structure is 50 years and the probability
of failure in each year remains constant and independent during its lifetime, then the
probability of no failure can be estimated using the binomial distribution as

P(no failure in 50 years) = P(X = 0, 501 10-5)

0
(50)(10-5)0(1 -0-) -

0! (50 - 0)!

= 1- 50 x 10-5 = 0.99950

P(failure in 50 years) = 1- P(no failure in 50 years)

=1- 0.99950 = 0.00050.

EXAMPLE 4.7

- 10-5

I
0

The probabilistic characteristics of the car problem considered in Example 3.2 can be
described by the binomial distribution. Since three cars are involved, n = 3. Also, the
probability of each car being good is 0.9, or p = 0.9. The binomial coefficients when X
= 0, 1, 2, and 3 can be shown to be 1, 3, 3, and 1, respectively, indicating the total num-
ber of sample points in each event. Thus, using Equation 4.20, we can calculate the
PMF of X when it is 0, 1, 2, and 3 by taking the product of the probability of occur-
rence of one sample point in any event and the corresponding binomial coefficients, as
shown in Example 3.2. The PMFs of X when it is 0, 1, 2, and 3 are shown in Figure
3.4. Once the PMFs are available, the corresponding CDFs of X can be easily calcu-
lated, as shown in Figure 3.4.

EXAMPLE 4.8

The drainage system of a city has been designed for a rainfall intensity that will be
exceeded on an average once in 50 years. What is the probability that the city will be
flooded at most 2 out of 10 years?
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SOLUTION

Since the possible outcomes in each year consist of flooding or nonflooding, the prob-
lem can be modeled as a binomial distribution. In this case, the parameter p (the prob-
ability of flooding in one year) is 1/50 = 0.02. Thus,

P(flooding in 2 out of 10 years) = P(X = 2,10 10.02)

10 (0.02)2 (1-0.02) 10-2
2

10! s

2! (10 - 2)!

The probability of flooding in at most 2 years out of 10 years can be calculated as

P(X =0,10I0.02)+P(X = 1,10I0.02)+P(X = 2,10 10.02)

= ('0)(0.02)0(0.98)'0 + 10(0.02)1(0.98)9 + 10(0.02)2(0.98)8
0 1 2

=0.817+0.167+0.015=0.999.

It is interesting to note that there is a probability of 0.817 that the city will not be
flooded in any of 10 years.

Similarly, the probability of no flood in 50 years can be shown to be 0.9850 = 0.364,
although on average the city is expected to be flooded once in 50 years. This will be
elaborated upon in Section 4.3.3.

4.3.2 Geometric Distribution

The first occurrence time of an event is of great interest in engineering. Information on
the first time the design wind speed will be exceeded in an area or the first time a struc-
ture will be damaged by earthquakes is important. If the events occur in a Bernoulli
sequence and p is the probability of occurrence in each trial, then the probability that
the event will occur for the first time at the ith trial which implies that there was no
occurrence in the previous (t - I) trials is given by the geometric distribution as

P(T = t) = p(l - p)'-' t =1,2,.... (4.21)

Considering Example 4.6, the probability of the failure of the structure in the 10th year
can be calculated as

P(T= 10) = 1()-5(1-10_5)10-1 =9.999x 10-6.

4.3.3 Return Period

The design wind speed, rainfall, or flood level at a particular location is usually
expressed in terms of return period. Suppose an event occurs in a Bernoulli sequence,
and it occurs for the first time after Tl years. It occurs again T, years after the first
occurrence, and again T3 years after the second occurrence, and so on. The recurrence
time, the time between two consecutive occurrences of the same event, must follow the
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probabilistic characteristics of the first occurrence, that is, the geometric distribution
whose PMF is given by Equation 4.21. Thus. Equation 3.19 can be used to calculate
the mean recurrence time, also known as the return period:

return period T = E(T) _ tpT(t) =>tp(1 -p)'-

=p l+2(1-p)+3(l-1))2 +4(1-p)3+...
(4.22)

The terms in square brackets in Equation 4.22 represent an infinite series and can be
shown to be 1/1)2. Thus, Equation 4.22 can be simplified to

return period T = p x (4.23)

Equation 4.23 states that if the design wind speed corresponds to a 50-year return
period, then the probability in each year that the design wind speed will be exceeded is
1/50 = 0.02; on average, the design wind speed will be exceeded once every 50 years.
It must be noted that the design wind speed can he exceeded several times or not at all
within the return period but on average will be exceeded once in 50 years.

In Example 4.8, the design flood level is considered to have a return period of 50
years, indicating that on average there will be a flood once every 50 years. However,
there is a probability of 0.364 that no flood will occur in the next. 50 years.

4.3.4 Poisson Distribution

Another important distribution used frequently in engineering to evaluate the risk of
damage is the Poisson distribution. Defects can occur at any location along the
length of welds. A tornado can strike a structure at any time during its lifetime. An
accident can occur at any location along a highway. These events can occur at any
point in time or space. If they need to be modeled in a Bernoulli sequence. that is,
occurrence or nonoccurrence at a given time or space, the total space or time needs
to be subdivided into very small intervals so that only one occurrence is possible in
an interval. Suppose that the mean occurrence rate of tornadoes at a location is t

times a year. Thus, over a period of t years, tornadoes will occur an average of (1}t)
times. If the time period t is divided into n intervals, then the probability of tornado
occurrence in each interval will be (i t)/11. Modeling v occurrences in time t in a
Bernoulli sequence as iT approaches infinity will lead to the Poisson distribution,
which can be expressed as

11- :1 1' 17-.t
1't- 1- it- = lim

11! 1'l
P(x occurences in time t) = HM 11 Vt

)'k* - 1 - -
11-40 17 11 11-->C-0 .1!(11 -X)! Il 11

11 (11-1)...(11-.v+1) (vi)i 1- 1_t 11 l itlim - --
11 11 17 17 _v! 11 11

= lim
12 --- -

1r

1 it(w)-'

V! 11
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Taking the limit of this equation, and knowing that

lim 1 -
Vt n

vt +
(w), (vt)3 e-Vt

17 -- - 12 2! 3!

we can show that

`
P(x occurences in time t) _

(vt)
e

Jl !

Equation 4.24 represents the PMF of the Poisson distribution.

EXAMPLE 4.9

(4.24)

From records of the past 50 years, it is observed that tornadoes occur in a particular
area an average of two times a year. In this case, v = 2/year. The probability of no tor-
nadoes in the next year (i.e., x = 0, and t = 1 year) can be calculated as

(2x1)° e-2x1
P(no tornado next year) _ = 0.135

0!

(2 x 1)2 e-2x1
P(exactly 2 tornadoes next year) = = 0.271

2!

P(no tornado in next 50 years) =
0!

= 3.72 x 10 .

The results indicate that, for a tornado-prone area where an average of two torna-
does per year are expected, the probability of no tornadoes in the 50-year design life is
very close to zero, essentially an impossible event. In other words, the probability of at
least one tornado in the next 50 years will be very close to 1 (1 - 3.72 x 10-44), indi-
cating that it is almost a certainty.

EXAMPLE 4.10

For a large construction project, the contractor estimates that the average rate of on-
the-job accidents is three times per year. From past experience, the contractor also esti-
mates that the cost incurred for each accident may be modeled as a lognormal random
variable with a median of $6,000 and COV of 20%. The cost of each accident can be
assumed to be statistically independent.

(a) What is the probability that there will be no accident in the first month of con-
struction?

(b) What is the probability that only 1 out of the first 3 months of construction is
free of accidents?

(c) What is the probability that an accident will incur a loss exceeding $4,000?
(d) What is the probability that none of the accidents in a month will cost more

than $4,000?

(2 x 50)° -2x5°
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SOLUTION

(a) For the Poisson distribution, iv = 3 times per year = 3/12 = 1/4 time per month, t = 1
month, rrt = 1/4. 1 = 1/4, and no accident means .v = 0. Thus, using Equation 4.24,

P(no accident in the first month) _

1

04 =e 14 =0.7788.
0!

(b) The binomial distribution needs to be used in this case. Thus, using Equation 4.20,

P(X = 1, 310.7788) =
3

(0.7788)1(1- 0.7788) 3-' = 0.1 143.

(c) The cost incurred for each accident is modeled as a lognormal distribution. In this
case, using Equation 4.13, S = 0.2, and X = In (median) = In 6,000 = 8.70. Thus,

P(cost of an accident > $4, 000) =
In oo - 8.7 In 4,000 - 8.7

0.20 0.20

= 1- (D(-2.027) = I - 0.0213 = 0.9787.

(d) This can be solved by considering that there could be n number of accidents in
a month; n could be any number, and no accident should exceed a cost of
$4,000. From Part (c),,

P(an accident will cost less than $4,000) = I - 0.9787 = 0.0213.

Thus,
on

_ I P(cost of an accident S $4, 000 I X = n) P(X = n )
11=0

00

_ 1(0.0213)"
,r=U

= e 4

1

44

4e l

n!

0.0213 -
4

Y
,i n.

1 I0.02
13 -

= e 4 e" 4 = e-'0.2447 = 0.78296.

Note that the infinite series in the third bracket in this equation is an exponential series;

that is, e-` = 1 +
.

+
X

+ " +.... If is not obvious, then the first few terms of the
1! 2! 3!

series (perhaps 3 or 4) can be considered to calculate the probability.

EXAMPLE 4.11

The safety of a building in an earthquake-prone area is under consideration. The past
100 years of data indicate that there were four strong earthquakes in the area. Also, a
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detailed evaluation indicates that during a strong earthquake, the probability that the
building will suffer damage is 0.10. Assume that damage events for different earth-
quakes are statistically independent.

(a) What is the probability that there will be no strong earthquake in the area in
50 years, the service life of the building?

(b) What is the probability that there will be only two strong earthquakes in 50 years?

(c) What is the probability that the building will suffer damage due to strong
earthquakes in 50 years`?

SOLUTION

(a) In this case, the average rate of strong earthquake occurrences, v, is 4/100 _
0.04 per year. Thus, vt = 0.04 x 50 = 2.

P(no strong earthquake in 50 years) = P(X = 0)
e_2 x (2)0

= 0.13534
0!

(b) P(two strong earthquakes in 50 years) = P(X = 2)

e-'`x(2)2
_ = 0.27067

2!

(c) Let D denote the event that the building will suffer earthquake damage in 50
years. Then,

P(D) =1.0 - P(D)
00

=1.0- >P(DlX=i)P(X=i)
i=0

-2
00

=1.0- 1(1.0-0.1)`ex
(2)

n=O
n!

=1.0-e-2 (0.9x2) =1.0-e-2e'8 =1.0-e-0'2 =0.18127.
n=0 n

Again, the infinite series in this equation is an exponential series, as discussed in the
previous example.

4.3.5 Exponential Distribution

If events occur according to a Poisson process, then the time T before the first occur-
rence of the event implying no occurrence (x = 0) in time t-can be represented by
the exponential distribution. It can be shown that

P(T >t)= = e " (4.25)
0!
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Thus, the CDF of T can be shown to be
FT(t)=P(T<t)= I -e-'7

and the corresponding PDF of the exponential distribution is

dFj- (t)
0..f". (t) = = t >

dt

(4.26)

(4.27)

The mean value of T can be shown to be 1 /v. Simply stated, the mean of the first occur-
rence time or the recurrence time, or simply the return period for the Poisson model, is
1/v. It is interesting to note that when events occur in a Bernoulli sequence, the return
period is 1/1) (Equation 4.23 in Section 4.3.3). It can be shown that for events with a
small occurrence rate v, the return periods according to the Bernoulli sequence and the
Poisson model are approximately the same.

EXAMPLE 4.12

In the previous example (Example 4.11), strong earthquakes in an area are assumed to
occur according to the Poisson distribution with the average rate of occurrences v _
0.04 per year. The recurrence time T, the time between two consecutive occurrences of
strong earthquakes, can be modeled by an exponential distribution as

(t)
=0.04eO.04r t>0.

The mean recurrence time or the return period of strong earthquakes can be shown to he

return period T = Jr x 0.04 x e-0.041 dt = 1 = 25 years.c'o

0 0.04

The probability of no strong earthquakes in 50 years can be calculated as
00

P(T > 50) = f 0.04 x e-0.04t dt = e-0.04X50 = 0.13534.
5()

The same result was obtained when the occurrences of strong earthquakes were
assumed to follow a Poisson distribution, as shown in the previous section.

EXAMPLE 4.13

In earthquake engineering, the PDF for earthquake intensities, for example in Modified
Mercalli (MM) scale, is sometimes modeled by an exponential distribution. The
parameter v is determined from local seismicity records.

In earthquake-resistant design of nuclear power plants, unserviceability and collapse
due to earthquakes are the two most important concerns for engineers. The correspon-
ding earthquake intensities are known in the profession as the operating basis earth-
quake (OBE) and the safe shutdown earthquake (SSE), respectively. One way to design
for these incidents is to choose a design intensity x such that the probability that this
intensity level is exceeded, that is, P(X > .vi) =1p, is small. Since the collapse of a nuclear
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power plant presents a great hazard to the public, the chance of its occurrence should be
extremely small. Suppose a design intensity xl corresponding to a risk level of 10-3 is
chosen for the OBE, and x2 corresponding to a risk level of 10-6 is chosen for the SSE.

(a) Determine X2 (SSE intensity) in terms of x1 (OBE intensity).
(b) If power plant service is interrupted during an earthquake, what is the proba-

bility that the plant will collapse?

SOLUTION

(a) Using Equation 4.25, we can summarize the information in the problem as

P(X > x 1)
=10-3

and P(X > x2) = 10-6.

Thus,

By simplifying,

e-tiX, =10-3

and e-VX2 =10-6.

X1 _ 6.908 and ,r 13.816
1 2

=
1' V

Or, x2 = 2.0 x1. In this particular example, the SSE intensity is twice the OBE
intensity.

(b) P(plant will collapse I service has been interrupted)

P[(X >:2)(X > X1)1_=P(X>x2IX>xl)=
PX>:ti( 1)

P(X > x2) 10-6 10-1

P(X > xl) 16--71-

EXAMPLE 4.14

The rate of oxygen consumption, D, caused by wastes discharged into a river,
expressed in terms of biological oxygen demand (BOD), depends on the remaining
BOD concentration. Suppose D can be described by an exponential distribution.

(a) If the mean value of D is found to be 6 mg/m3d, define its PDF.
(b) What is the probability that D will be less than or equal to 4 mg/m=id'?

SOLUTION

(a) One attractive property of an exponential distribution is that its parameter v in
Equation 4.27 is the reciprocal of the mean or standard deviation. It is given in
Table 5.6 in Chapter 5. Thus, for the problem under consideration, v = 1/6.
The PDF of D can be shown to be
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(b) 4 _-(i

1 e 6dd = -e 6P(D< 4) l06

d

f(d)=1e 6.D
6

4

_ -0.51342 + 1.0 = 0.48658.

JO

4.4 A COMBINATION OF CONTINUOUS AND DISCRETE
RANDOM VARIABLES: HYPERGEOMETRIC AND
HYPERBINOMIAL DISTRIBUTIONS

The concept of the binomial distribution, discussed in Section 4.3.1, appears to be very
simple; however, its applications could be limited in real engineering problems, since
a prior estimate of p must be available. This is rarely the case. Moreover, the informa-
tion on p must be extracted from limited samples, making it unreliable. The use of the
binomial distribution with the uncertainty-filled parameter p makes its results ques-
tionable. The problem can be stated in the following way.

Suppose the reliability of welds in a structure needs to be estimated. For mathemat-
ical representation, the total number of discrete welds can be represented as N. The
number of good or bad welds and the corresponding success or failure rate of the welds
are not known in advance. Generally, the success or failure rate is determined by con-
ducting nondestructive experiments. However, it is not practical or economical to
inspect all N welds. Suppose that a sample of n welds is selected at random for inspec-
tion. Considering the cost of inspections, n should be a small fraction of N. Assume that
m out of n inspected welds are found to be good, giving a success rate of p = m/n.
However, the value of p can be questioned since it is based on limited sample infor-
mation. The total number of good welds in the structure is expected to he N p, and
the remaining (N - N p) are bad. If a sample of n welds is taken at random from the
structure, the probability of x good welds in the sample is given by the hypergeornet-
ric distribution (Ang and Tang, 1975) as

(N.P)N_N.P)
X 12-X

P(X=X)= N (4.28)

n

in which
(N)
n is the binomial coefficient defined earlier.

If n is small relative to N (about 5-10% of N in real problems), we can show that
the hypergeometric distribution can be approximated by the binomial distribution, and
its PMF can be represented by Equation 4.20. Equation 4.20 is appropriate when the
value of p is known precisely. When p is not known but must be estimated, then such
a binomial distribution assumes more precision than actually exists, making the situa-
tion appear better than it really is. Haldar (1982) showed that the probabilistic charac-
teristics of p can be described by the beta distribution discussed in Section 4.2.3.
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Furthermore, since p can only have values between 0 and 1, it can be represented by
the standard beta distribution with parameters q and i- as in Equation 4.19. The param-
eters q and r can be estimated from the inspection outcomes (i.e., a total of 11 welds are
inspected and m of them are found to be good), as

q=m+1 (4.29a)

and

r=17-m+1. (4.29b)

The corresponding PDF of p can be represented by the standard beta distribution
(Equation 4.19) as

fp (p) = 1
pna (1 - p)17-m .

B(q,j )

Using Equation 4.18,

F(m+1)F(n-m+l) - m!(n-m)!
( ) (n + )

The PDF of p can be shown to be

fP (p)=
(n + 1)! P 0 <111- 1P)n 0_ p< 1.0

m! (n - m)! (4.30)
= 0, elsewhere.

Thus, while the expected value of 17 is m/n, other values of p between 0 and 1 are pos-
sible and they cannot be ignored in any subsequent inferences.

A joint or a structural element can contain h welds. To obtain the probability of k
good welds out of h, based on the sampling information that n welds have been tested
and m of them were found to be good, Equations 4.20 and 4.30 can be combined to
obtain the unconditional distribution as

P(k of h I mofn)= f P(k of h I p).ff(pI mof n)dp (4.31 a)
0

1 h! k (1 - (n + 1)! m (1 _ )n-r'1
(11). (4.31 b)f ip p p p

0 ki . (h _ k). m! (n _ m).

Using combinational notation, we can rearrange Equation 4.31 b to obtain the hyper-
binomial distribution as

m+k n+h-m-k
m h

P(kofhlmofn)-(--
-

)(
n + h + 1 (4.32)

h

for k =0,1,2.....h, and m <_ n.

The CDF of the hyperbinomial distribution can be obtained from the PMF given by
Equation 4.32. With this information, the number of good welds k out of a total h welds
installed in a particular joint or structural element can be estimated with some prede-
termined confidence level based on the sampling information. A 90% confidence level
may be reasonable. A computer program can be used for this purpose. Suppose that at
least k welds are desired to be good with a 90% confidence level; then,
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P(K >k) = 1.0 - P(K < k) = 0.90. (4.33)

Equation 4.33 indicates that the CDF instead of the PMF of the hyperbinomial distri-
bution is needed to solve the problem. The CDF of the hyperbinomial distribution can
be easily obtained by taking the sum of the PMFs given by Equation 4.32.

EXAMPLE 4.15

A real application of the hyperbinomial distribution was given by Haldar (1982). The
problem can be simplified as follows.

A total of 26,500 welds are installed in a building. The quality of the installed welds
is suspect and reinspection of them is necessary. However, for many reasons, only
2,350 are available for inspection and 1,902 of these are found to be good. Suppose a
joint in the building contains 10 welds. For repair purposes, it is important to find out
how many of them are good with a predetermined confidence level, such as 90%.

SOLUTION

For the problem under consideration, N = 26,500, n = 2,350, in = 1,902, p =
1,902/2,350 = 0.809, h = 10, and k needs to be estimated with a 90% confidence level.
The number of good welds and the corresponding CDFs of the binomial and hyper-
binomial distributions are given in Table 4. 1.

Several important observations can be made from this example. The average num-
ber of good welds out of a total of 10 can he shown to be h p = 0.809 x 10 = 8. As
the confidence level increases, a smaller number out of a total of 10 welds are expected
to be good. Using Equation 4.33, we can observe from Table 4.1 that for the example
under consideration, at least 6 out of 10 will be expected to be good with a 97% con-
fidence level, whereas at least 9 out of 10 will be expected to be good with a confi-
dence level of only 40%.

Table 4.1 Binomial and Hyperbinomial Distributions

Binomial Distribution Hyperbinomial Distribution

Number of good P(K < k, P(K < k I h = 10, P(K <- k I h = 10,
welds, k 10Ip=0.809) rt=2.350,in= 1,902) n= 235, m= 190)

(1) (2) (3) (4)

0 6.340 E -08 6.966 E -08 1.574 E -07
1 2.755 E -06 2.964 E -06 5.623 E -06
2 5.418 E -05 5.723 E -05 9.308 E -05
3 6.364E-04 6.618E-04 9.424E-04
4 4.962 E -03 5.094 E -03 6.487 E -03
5 2.700 E -02 2.743 E -02 3.193 E -02
6 1.050 E -01 1.058 E -01 1.150 E -01

7 2.941 E -01 2.951 E -01 3.060 E -01
8 5.953E-O1 5.9.56E-01 6.013E-01
9 8.794E-01 8.792E-01 8.792E-01

10 1.000E 00 1.000E 00 1.000E 00
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The success rate parameter p is basically a random variable. A precise value of p can
be had only when the entire sample space is tested, which is not practical in most cases.
Thus, the binomial distribution with a point estimate of p from limited sample infor-
mation is inappropriate. The CDFs for the binomial and hyperbinomial distributions
when p = 1,902/2,350 = 0.809 are shown in Columns 2 and 3 of Table 4.1, respectively.
The CDF values are not identical. Considerable differences are expected between the
two CDF values, although the differences are small for the example considered here.
Generally, the PMFs of the hyperbinomial distribution are more diffuse than the bino-
mial distribution; fewer PMFs are concentrated around the mean value.

The binomial distribution does not depend on the size of the sample as long as the
expected value of p remains the same. As the size of the sample increases, of course with
additional cost, the confidence in the value of p increases. This additional information
cannot be used in the binomial distribution. To amplify the point, consider another case
where n = 235 and m = 190, giving the same value of p considered previously; however,
the sample size is only one-tenth in this case. The CDF for the hyperbinomial distribu-
tion in this case is given in Column 4 of Table 4.1. There would be no change in the CDF
values for the binomial distribution, but Columns 3 and 4 according to the hyperbinomial
distribution are different. This clearly indicates that the size of the sample is an important
parameter in estimating the value of p, and the hyperbinomial distribution can effectively
use this information. In decision making, engineers should consider the cost of obtaining
additional samples and the benefit derived from that additional information.

The effect of sample size in estimating the value of p can be explained another way.
As noted earlier, p has a beta distribution, and the parameters of the distribution depend
on the sample size (Equations 4.29a and b). The PDF of p is plotted in Figure 4.5 when
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the sample size n is 2,350 (Curve A) and 235 (Curve B). In both cases, the mean value
of p is 0.809. It is clear from the curves that when the sample size is bigger, the PDF
is much more steep and more concentrated around the mean value. The bigger sample
size would certainly increase the confidence in the prediction. When all the samples are
tested, the beta distribution will become a spike at the mean value.

Considering the practical aspects of the problem presented here, some of the welds
in a large project are expected to be had. This is taken into account through the con-
servatism in the design specifications, so the structure is not expected to be unsafe.
However, locating these defective welds is very difficult. There is no deterministic
solution to the problem other than destroying the structure and rebuilding it. And even
then, the new structure would undoubtedly contain some had welds.

4.5 EXTREME VALUE DISTRIBUTIONS

4.5.1 Introduction

In many engineering applications, the extreme values of random variables are of spe-
cial importance. The largest or smallest values of random variables may dictate a par-
ticular design. Wind speeds are recorded continuously at airports and weather stations.
Obviously, the voluminous information collected cannot be used directly in engineer-
ing design. The maximum wind speeds per hour, day, month, year, or other period can
be used for this purpose. Usually, the information on yearly maximum wind speed is
used in the engineering profession. Thus, for every year of recorded data. the maxi-
mum wind speed is noted. If data are collected for several years. the design wind
speed can be established statistically to ensure that it will not be exceeded within the
design life of the structure with a specific probability level. If the design wind speed
has a 50-year return period, then the probability that the wind speed will exceed the
design value in a year is 1/50 = 0.02. Design earthquake loads, flood levels, and so
forth are also determined in this way. In all these cases, the peak or maximum value
of a random variable during certain intervals is of interest. In some cases, the mini-
mum value of a random variable is also of interest for design applications. For exam-
ple, when a large number of identical devices are manufactured, such as calculators
or cars, their minimum service lives are of great interest to consumers. Some of them
could be subjected to accelerated testing to determine their life, and the probability
distribution of life could be constructed. Then the minimum service life could be
established so that it does not fall below an acceptable number with a predetermined
probability level. Therefore, extreme value statistics have received a lot of attention
for engineering design applications.

In constructing an extreme value distribution, an underlying random variable with a
particular distribution is necessary. If different sets of samples are obtained (through
physical or numerical experimentation), one can select the extreme values from each
sample set-either the maximum or the minimum values and then construct a differ-
ent distribution for the extreme values. Therefore, the underlying distribution of a vari-
able governs the form of the corresponding extreme value distribution.

The detailed mathematical aspects of extreme value distributions can be found else-
where (Gumbel, 1958; Castillo, 1988). Only the essential concept, emphasizing engi-
neering applications, is presented very briefly here.



88 Chapter 4 Commonly Used Probability Distributions

4.5.2 Concept of Extreme Value Distributions

Let X be a random variable with some known distribution function. If there are n sam-
ples for the random variable X, then the extreme values of the sample, such as the mini-
mum value Y1. or the maximum value Y,,, may be of interest. Y1 and Y, can be defined as

Y = max(X 1, X-) , ..., (4.34)

Y1 = min(XI,X,,...,X,t) (4.35)

If different sets of samples of the same size n are obtained for X, each set will have dif-
ferent minimum and maximum values. Using all these sets, distribution functions for
the minimum and maximum values can be constructed. The cumulative distribution
function (CDF) of the largest value Y can derived as

FY,, (V) = P(Y <_ y) = P(XJ :5Y , X2 <- y, ... , X < y). (4.36)

For identically distributed and statistically independent X,'s, Equation 4.36 becomes

FYI1(yy)=[FX(y)]
,r.

Similarly, the CDF of the smallest value Y1 can be derived as

P(Y1 >y)=P(X1 >y,X,

(4.37)

(4.38)

Again, for identically distributed and statistically independent Xi's. Equation 4.38
becomes

FY, (V)=
1-[l-FIX(,.)l,1

(4.39)

The basic idea of these derivations is that if the largest value Y is less than some quan-
tity y, then all the sample values X1, X2, etc., should also be less than v. similarly, for
the smallest value Y1, if Y1 is greater than some quantity y, then all of the samples X 1,
X2 up to X should be greater than y.

EXAMPLE 4.16

Suppose 10 cracks are detected in a beam in a bridge deck segment. For the purpose of
illustration, assume the crack sizes are normally distributed with a mean value of 0.5
inch and a COV of 0. 1. What is the probability that the maximum crack size is less than
0.6 inch?

This is an extreme (maximum) value problem. The distribution of the largest value
and therefore the probability of the largest crack being less than 0.6 inch can be calcu-
lated as discussed below.

Let X be the random variable denoting the size of a crack. From the data, X is a nor-
mal random variable with uX = 0.5 inch and bx. = 0.1. Using Equation 4.34, we can
express the CDF of Y10 = largest value among 10 samples of X as

FyM(Y)=P(Y10 cy)=[P(X <
Al0

The probability that the size of any crack is less than 0.6 inch is

P(X <- 0.6) _ (1
0.6-0.5

= x(2.0) = 0.9772.
0.05
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Therefore, the probability that the maximum crack size is less than 0.6 inch is

P(I'iO <0.6)=[P(X <0.6)]10 = 0.794.

4.5.3 Asymptotic Distributions

In Equations 4.36 to 4.39, as the sample size n grows larger and approaches infinity,
the distribution of the largest or the smallest values may asymptotically approach a
mathematical distribution function in some cases if the samples are identically dis-
tributed and statistically independent. Some of these asymptotic distributions have a
wide range of applications in engineering problems. Gumbel (1958) classified three
types of asymptotic extreme value distributions for both minima and maxima, label-
ing them as Type I, Type II, and Type III extreme value distributions. The Type I
extreme value distribution of the largest value is also referred to as EVD (extreme
value distribution) in mechanical reliability engineering applications. The distribu-
tion of maxima in sample sets from a population with a normal distribution will
asymptotically converge to this distribution. This distribution is used to model envi-
ronmental phenomena such as wind loads and flood levels. The Type II extreme value
distribution of the largest value is also used to model extreme environmental phe-
nomena such as earthquake loads and may result from sample sets from a lognormal
distribution. The Type III extreme value distribution, which is referred to as the
Weibull distribution in the case of the smallest value, may be obtained by the con-
vergence of most of the commonly known distributions that have a lower bound. It is
commonly used to describe material strengths and time to failure of' electronic and
mechanical devices and components. These distributions are discussed in the follow-
ing sections.

Extreme value distributions are treated no differently than any other distributions
discussed earlier. An extreme value distribution can be uniquely defined in terms of its
PDF or CDF and the parameters of the distributions. In most cases. the parameters can
be estimated from the information on the mean, variance, or coefficient of variation of
the random variable. Once an extreme value distribution is uniquely defined, proba-
bilistic information can be extracted from it using the procedure discussed in the pre-
vious sections. In the following sections, some of the commonly used extreme value
distributions are discussed, emphasizing their basic definition.

4.5.4 The 'T'ype I Extreme Value Distribution

The CDF of the Type I asymptotic form of the distribution of the largest value, also
referred to as the Gumbel distribution or simply the EVD, can be expressed as

FY, (1',,) = exp -e Cf. (4.40)

where u is the characteristic largest value of the initial variable X, and a is an inverse
measure of dispersion of the largest value of X. The corresponding probability density
function PDF can be shown to be

fY .
0'11) = (x,, e 11

,; ,. e x p -e - oo < Y11 < +°° (4.41)
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The parameters u, and a, are related to the mean and standard deviation of the extreme
value variable Y,z as

1 7t
at,=

;r6 6Y
, and u,, = µ y, -

0.5772

a,.,
(4.42)

As mentioned earlier, the Type I extreme value distribution for the largest value is com-
monly used for modeling environmental loads such as winds and floods. Another use
of the Type I extreme value distribution for maxima is in aircraft design, where the
peak gust velocity experienced by an aircraft during every 1,000 hours of operation is
considered to be a Type I largest variable. Another common example is the maximum
water level in a year at a specified location in a river. This is an important variable in
the design of flood control, water supply, and irrigation systems.

For the smallest value of an initial variable X, the corresponding Type I asymptotic
form for the CDF is

,al O'I -11)FY, (y j) = 1- exp -c

The corresponding PDF is

fY, (y 1) = ale exp -e - 00 < V i < +00.

(4.43a)

(4.43b)

In these equations, the parameters are defined as ul, which is the characteristic smallest
value of the initial variable X, and al, which is an inverse measure of dispersion of the
smallest value of X. ul and al are related to the mean and standard deviation of Yj as

1 In) 0.5772
a i + (4.44), and ui = Y6 6 YI

i

a,

In general, the Type I asymptotic form is obtained by the convergence of distributions
with an exponential tail. For example, the PDF of the Gaussian distribution has an expo-
nential decaying term and therefore an exponential tail in the extreme directions. The
extreme values of a variable with a Gaussian distribution will have a Type I distribution.

EXAMPLE 4.17

The data on maximum annual wind velocity V at a site have been compiled for ii
years, and its mean and standard deviation are estimated to be 61.3 mph and 7.52 mph,
respectively. Assuming that V, has a Type I extreme value distribution, what is the
probability that the maximum wind velocity will exceed 100 mph in any given year?

SOLUTION

Equation 4.42 can be used to calculate the two parameters u,, and a of the Type I
extreme value distribution as

a = 1 n
= 0.17055, and u,, = t - 0.5772 = 57.9157.

a,16Yn J
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Therefore, from Equation 4.40, the probability that the maximum wind velocity is
greater than 100 mph is

P(Y > 100) = 1- FY (100) =1- exp -e.-0.17055(1 0c}-57.9 157) = 0.000763.

This type of analysis may also be used to calculate design values for various types
of engineering applications. Suppose the design wind speed with a return period of 100
years needs to be estimated for a particular site. With V(/ denoted as the design wind
speed to be estimated, the probability that it will be exceeded in a given year is 1/100
= 0.01. Thus,

or

or Vd = 84.89 mph.

P(Yn >VV)=

1- exp -
e-0.17055(ve, -57.9157)

= 0.01

4.5.5 The Type II Extreme Value Distribution

The CDF of the Type II asymptotic form for the largest value, also referred to as the
Frechet distribution, can be shown to be

FY,:(')=exp

The corresponding PDF is
k- 1

.fY ,
exp -

' ''n Vn

\k1
(4.45)

,l

k

in

} (4.46)A',, >_0, k>2

where V and k are the parameters of the distribution, rr, is the characteristic largest value
of the underlying variable X; and k, the shape parameter, is a measure of dispersion.

The Type II asymptotic form is obtained as n goes to infinity from an initial distri-
bution that has a polynomial tail in the direction of the extreme value. Note the differ-
ence between this and Type 1, which converges from an exponential tail. The Type 11
distribution requires a polynomial tail, and therefore a lognormal distribution con-
verges to a Type II asymptotic form for the largest value.

It is also interesting to note the relationship between the Type I and Type II forms. It
was observed in Sections 4.2.1 and 4.2.2 that the normal and lognormal distributions are
related to each other; that is, if a variable has lognormal distribution, the natural log of
that variable has a normal distribution. The Type I and Type II extreme value distribu-
tions may be obtained through the asymptotic convergence of these two initial distribu-
tions. Therefore, if Y has a Type II asymptotic distribution with parameters v and k,
then In Y will have a Type I asymptotic form with parameters u = In v, and a = k.

For the Type 11 distribution of maxima, the mean, standard deviation, and COV of
Y are related to the distribution parameters v,, and k as follows:

I I I l , k> lf"` Y,r
k

(4.47a)
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and

FY,(y1)=1-exp

2 rl1 k J
Yti

r2(1 Jk

k>2 (4.47b)

k > 2. (4.47c)

In these equations, F is the gamma function and can be estimated by Appendix 2. A
plot of (1 + 82) versus 1/k is given in Figure 4.6. This figure can be helpful in solving
problems, as will be shown later with examples.

The CDF and PDF of the Type II asymptotic form of the smallest value can be
shown to be

and
k+1

.fy, (Y') = k
vl

expv1
Yi

G
2 2 1- 1 _2)_ r,2(l _ I

Y"
11 ( k k

vi

,\ k

-l>,1 I

1']
V1

Y1

(4.48)

Y'1 < 0, 1vi > p (4.49)

where the parameter v1 is the characteristic smallest value of the initial variable X and
k is the shape parameter, an inverse measure of dispersion. The comment regarding the
relationship between Type I and Type II asymptotic forms of the largest value also

N

0
N ; -1.5 -1 -0.5
CIO

U
0.5 / 1 1.5

-5'

1/k

Figure 4.6 Relationship Between
COV of Y, (or Y1) and 1/k
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holds for the asymptotic forms of the smallest value. Therefore, if Yl has a Type II
asymptotic distribution with positive parameters vl and k, then In Y1 has a Type I
asymptotic distribution with parameters u = In v and a,, = k.

For the Type II distribution of minima, the mean, standard deviation, and COV of
Yj are related to the distribution parameters vl and k as follows:

Y vr l-t, 1

k

and
k>2

(4.50a)

(4.50b)

r'll - l

I k>2.

k

26
Y1

k > I

r I- 2)_1-2(1_ 1)

r 1- 2

By comparing Equations 4.47c and 4.50c, we can observe that the relationship between
the COV of Y,l and k is identical to the relationship between the COV of Y1 and k. Thus,
Figure 4.6 is also applicable for the Type 11 distribution of minima.

EXAMPLE 4.18

Suppose the example on the annual maximum wind velocity considered in Example 4.17
is to be modeled using a Type II extreme value distribution of maxima. What is the prob-
ability that the maximum wind velocity will exceed 100 mph in any given year?

SOLUTION

The parameters of the Type II distribution have to be determined first, using Equations
4.47a and 4.47b. From the previous example, the mean and the standard deviation of
maximum wind velocity are 61.3 mph and 7.52 mph, respectively. Therefore, bY11

7.52/61.3 = 0.123. From Equation 4.47c,

2
1- 2)

k1 + (0.123) =1.015 =

Referring to Figure 4.6, and considering k is greater than 2, we can estimate k to be 10.
From Equation 4.47a,

61.3=v11F 1- 1 =v 11F(0.9).

k

Using Appendix 2, we find ['(0.9) to be 1.0686. Thus,

= 61.3 = 57.36.
1.0686
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Therefore, using Equation 4.45, we find the probability that the maximum wind veloc-
ity will exceed 100 mph in any given year to be

36
to

P(Y,, > 100) = 1 - exp
57.-
100

=1- 0.99615 = 0.00385.

4.5.6 The Type III Extreme Value Distribution

Both the Type I and Type II asymptotic distributions are limiting forms of the distri-
bution of extreme values from initial distributions that are unbounded in the direction
of the extreme value. In contrast, the Type III asymptotic form represents a limiting dis-
tribution of the extreme values from initial distributions that have a finite upper or
lower bound value.

For the largest value, the Type III asymptotic CDF can be written as

The corresponding PDF is

1(0 -y,1

)

k

k-1

k yn ex p
(0

-W,1
0)-wn l

(0 -Yn

0)-W,1)

k

yn C(at)

(4.51)

(4.52)

where (o is the upper bound of the initial distribution, that is, Fx(0) = 1.0, and w,1 and
k are the parameters of the distribution. w is the characteristic largest value of X, and
is defined by

Fx (w)=1-i ,
n

(4.53)

and k is a shape parameter.
The mean and variance of Y,1 are related to the parameters w11 and k as follows:

=(O-((O-w )F I+- (4.54a)
Y" n k

and

62 = Var((o-Y )=(()-w ) 2 F 1+ 2
Y,1 ,7 n

k
r2(1+ (4.54b)

kl
Equations 4.54a and 4.54b can be used to show that

2 1-1+2
1 +

6
Yn = k) (4.54c)

Y,t
1-21+1

k

The relationship is shown graphically in Figure 4.7.
The CDF of the Type III asymptotic distribution of the smallest value from an ini-

tial distribution with a lower limit F_, that is, Fx(e) = 0, is
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(yl -E \k1

'I]

yl>_E

(4.55)

(4.56)

where the wl and k are the parameters of the distribution. w, is the characteristic small-
est value defined as

(4.57)

and k is the shape parameter.
The mean and variance of Y1 are related to the parameters wl and k as follows:

µY, = E+(wl -E)F

and

(4._58a)

62y (4.58b)l
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Equations 4.58a and 4.58b can be used to show that

l+

,\ ? r

krzli+ 1 J

(4.58c)

Comparing Equations 4.54c and 4.58c shows that Figure 4.7 is also appropriate to I'ep-
resent Equation 4.58c.

EXAMPLE 4.19

A number of L-shaped structural steel sections are rolled in a steel mill to be used as
members in bridge trusses. The distribution of their minimum axial load capacity is of
interest. Suppose the minimum load capacity can be modeled with a Type III distribu-
tion of the smallest value, with a mean value of 300 kips and a COV of 0.15. Also,
assume that the load capacity has a lower bound of 100 kips. Determine the probabil-
ity that the minimum load capacity will be less than 200 kips.

SOLUTION

r 6y

Lt -E

Using E = 100, we can calculate the left-hand side of Equation 4.58c as

l+
(Y y

= 1 +
0. 15 x 300 =1.0506.

C 300 -100

,\ '

j-'1Y -e)

Using Figure 4.7, 1/k = 0.20, or k = 5.0. Using Equation 4.58a,

300=100+(vv -100)1 1+ 1

5.0

or

200 = (u', -100)1(1.20)

or
100+ 200 = 100 + 200

= 317.82.
['(1.20) 0.9182

Note 1(1.20) = 0.9182 is calculated using Appendix 2. Therefore, Equation 4.55 can be
used to calculate the probability that the minimum load capacity is less than 200 kips:

P(Yj <200)=Fy](200)=1-exp
\\5.o200-100

L 017.82-100) j = 0.0202.

The Type III asymptotic distribution of the smallest value, developed by Weibull in
connection with the study of fatigue and fracture of materials, is known as the Weibull
distribution. The preceding equation is a three-parameter representation of the Weibull
distribution. A two-parameter form of this distribution is commonly used in mechani-
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cal and electronic component life estimation. It is obtained by setting E to be zero in
Equation 4.55, reflecting the physical nature of the problem.

The CDF of the two-parameter Weibull distribution is
k

FY, 071) = 1-exp - >> (4.59)
lt'

The corresponding PDF is
k-1

fY, (y1
k y1

) = exp
W1 W1

In these two equations, k and w1 have to be positive values.
For the two-parameter Weibull distribution, the mean value and the coefficient of

variation are related to the parameters k and w 1 as follows:

µ Y, =w1 F l+ l (4.6la)
kJ

and

where T( ) is the gamma function. If the mean and coefficient of variation are known,
the following approximation can be used to compute the parameters k and w1 for prac-
tical applications:

8y,

0. (4.60)

(4.61 b)

k=8Y11.08
(4.62a)

and

1471 =

r 1+-
k

(4.62b)

4.5.7 Special Cases of Two-Parameter Weibull Distribution

Two special cases of the two-parameter Weibull distribution used widely in engineer-
ing are the exponential distribution and the Rayleigh distribution. In Equation 4.59, if
the random variable Y1 is denoted by another random variable X, and k = 1, and 1/w1
_ V. it results in an exponential distribution. The CDF and the PDF of an exponential
distribution are given by Equations 4.26 and 4.27, respectively. Note that vl is the
parameter of the exponential distribution and is the reciprocal of the mean or the stan-
dard deviation of the random variable X, as shown in Table 5.6 in Chapter 5. The expo-
nential distribution is commonly used in the reliability analysis of electronic and
mechanical devices. In Equations 4.26 and 4.27, if time to failure T of a unit has an
exponential distribution, then v is the failure occurrence rate.
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Similarly, a two-parameter Weibull distribution with k = 2 and w1 = -\.:2o results in
a Rayleigh distribution. For example, wave heights are modeled with a Rayleigh dis-
tribution. The PDF of the Rayleigh distribution is given in Table 5.6 in Chapter 5. Its
parameter wt'1 can be estimated from the information on the mean and variance of X, as
shown in Table 5.6. An example of the use of this distribution is in the description of
the peaks in a narrow-band stationary Gaussian random process.

4.6 OTHER USEFUL DISTRIBUTIONS

In the previous sections, some of the commonly used continuous and discrete random
variables were identified and the calculation of probability for each was described.
Some other distributions that will be used in later chapters are Student's t-distribution
and chi-square distribution, which are briefly introduced in Chapter 5. Several other
standard distributions are available for engineering applications. The exact forms of
their PDFs can be determined by referring to the literature. Once their PDFs have been
defined uniquely, their probability estimation procedures are similar to the distributions
discussed here.

The selection of one distribution over the others and the selection of parameters to
describe a distribution uniquely will be discussed in Chapter 5. However, in many
engineering problems, there is not enough information available to justify the use of a
particular standard distribution. Based on limited experience, an engineer may have
some idea of the lower and upper limits of a random variable, but there may not be
enough data available between these two limits to justify a specific distribution. In this
situation, any distribution can be used, such as a uniform distribution or one of the
many different forms of triangular or trapezoidal distributions shown in Table 4.2. Of
course, all the criteria to qualify them as legitimate PDFs must be satisfied, as dis-
cussed in Section 3.3. 1. The parameters for these nonstandard distributions cannot be
calculated in terms of mean and standard deviation based on sample informmation,
because it is not available. However, they can he calculated from the assumed shape of
the distribution. As discussed in Section 3.3.3, the mean of a random variable repre-
sents the centroidal distance, and the variance is the first moment of inertia of the area
about the centroidal axis. For an assumed shape, these values can be easily calculated
and are shown in Table 4.2.

4.7 CONCLUDING REMARKS

Some commonly used distributions, both continuous and discrete, and procedures to
calculate the probability of events using them are discussed in this chapter. The use of
these distributions to solve some practical problems is presented to show their imple-
mentation potential.

In many engineering applications, the largest or smallest values of random variables
may dictate a particular design. To model them, some of the commonly used extreme
value distributions are discussed.

The information presented here is expected to provide sufficient background to cal-
culate probabilities of events using commonly used distributions. Available computer
programs can also be used for this purpose.
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Table 4.2 Mean and Coefficient of Variation of X Corresponding to Different Distributions
Assumed Over Its Range

Case
no. Distribution Mean of X

1

XI

1

-(2x(, + x,)
3

2

3

4

5

x

X`

4.8 PROBLEMS

.11

COV of X

V22 2x1+xl,

1 l xl4 - Xt..'-

3
(x, + 2x1,)

2 x,: + 2x1,
xl,

1

2

1
-(Xe + x,1)

2
x11

1 xu - xf

-/6 x,, + x f

2 x,l - x`

12x1+xf

I x +xt +x; -X(X11 -X1X,1 -X11X1
+X11 +X11) __ All

-\/2 (X(.* + x,, + X11)

4.1 The breaking strength, R, of a cable can be assumed to be a normal random variable with a
mean value of 80 kip and a standard deviation of 20 kip.

(a) If a load, P, of magnitude 60 kip is hung from the cable, calculate the probability of fail-
ure of the cable.

(b) The magnitude of P cannot be determined with certainty. Suppose it could be either 40
kip or 60 kip, and the corresponding PMFs are shown in Figure P4.1. Calculate the
probability of failure of the cable.

(c) If the cable breaks, what is the probability that the load was 40 kip?

Q

0.7

0.3

40 60 P (kips) Figure P4.1 PMF of P
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4.2 The magnitude of a load acting on a structure can be modeled by a normal distribution with
a mean of 100 kip and a standard deviation of 20 kip.

(a) If the design load is considered to be the 90th percentile value, determine the design load.

(b) If the design load is considered to be the mean + 2 standard deviation value, what is the
probability that it will be exceeded'?

(c) A load of magnitude less than zero is physically illogical; calculate its probability. Is a
normal distribution appropriate to model the load'?

4.3 The capacity of an isolated spread footing foundation under a column is modeled by a nor-
mal distribution with a mean of 300 kip and a COV of 20%. Suppose the column is sub-
jected to a dead load of 100 kip and a live load of 150 kip.

(a) Calculate the probability of failure of the foundation under dead load only.

(b) Calculate the probability of failure of the foundation under the combined action of dead
and live loads.

(c) If the probability of failure of the foundation needs to be limited to 0.001, and the dead
load of 100 kip cannot be changed, what is the maximum amount of live load that can
be applied to the foundation'?

4.4 The annual rainfall for a city is assumed to be normally distributed with a mean of 100 cm,
and its mean ±3 standard deviation values are estimated to be 160 and 40 cm. respectively.

(a) Calculate the standard deviation of the annual rainfall.

(h) What is the probability that the rainfall will be less than 0?

(c) What is the probability that the annual rainfall will be within the ±3 standard deviation values?

(d) Is normal distribution appropriate in this case?

4.5 Solve Parts (a) and (b) of Problem 4.1, assuming that the breaking strength of the cable is a
lognormal variable with the same mean and standard deviation.

4.6 Solve all three parts of Problem 4.2, assuming the load to be a lognormal random variable
with the same mean and standard deviation.

4.7 Solve all three parts of Problem 4.3, assuming the capacity of the foundation is modeled by
a lognormal random variable with the same mean and COV.

4.8 The compressive strength of concrete delivered by a supplier can be modeled by a lognor-
mal random variable. Its mean and the coefficient of variation are estimated to be 4.7 ksi and
0.21, respectively.

(a) If the 10th percentile value is the design value, calculate the value of the compressive
strength to be used in a design.

(b) Suppose the COV of the compressive strength is reduced to 0.10 without affecting its
mean value by introducing quality control procedures. Calculate the design value of the
compressive strength if it is assumed to be the 1011, percentile value.

(c) By comparing the results obtained in Parts (a) and (b), discuss whether quality control
measures are preferable.

4.9 The northbound train traffic in a subway station between 7 and 8 a.m. on a typical workday
is studied. Trains are supposed to arrive every 5 minutes. Collected data indicate that trains
generally arrive at the station with an average delay of 1 minute and a variance of 2.0 rnin2.
Assume that the delay of each train is statistically independent and lognormally distributed,
and if a train arrives within 30 seconds of the scheduled time it is not considered to be late.

(a) What is the probability that a train will arrive late at this station?

(b) What is the probability that the first train to arrive on time will be the third train'?
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(c) What is the probability that no train will arrive at the station on time during the 1 hour
of peak traffic'?

(d) If a train is late, what is the probability that it will arrive within 1 minute of the sched-
uled time?

4.10 A contractor purchases a large number of bolts in one batch for future use. Based on past
experience, the contractor estimates that the tensile strength of each bolt can be modeled
by a lognormal variable with a mean of 80 kip and a COV of 0.15. A bolt must carry at least
60 kip to be acceptable. It is impractical to test all the bolts for strength. For quality con-
trol purposes, the contractor proposes the following three inspection schemes: (a) all 5 bolts
selected at random from the batch must pass the test, (b) at least 6 of the first 7 bolts tested
must pass the test, and (c) at least 8 of the first 10 bolts tested must pass the test. Which
inspection scheme is the most severe from the supplier's point of view?

4.11 The relative density of a homogeneous soil deposit is measured and found to have a mean
value of 0.80 and a COV of 0.20. From a theoretical point of view, the relative density can
be between 0 and 1. Suppose the relative density has a beta distribution.

(a) Define the PDF of the relative density.

(b) What is the probability that the relative density of the soil deposit is greater than 0.90?

4.12 The travel time T between home and office is expected to be between 20 and 40 minutes
depending upon traffic. Based on experience, the average travel time is 30 minutes and the
corresponding variance is 20 min".

(a) Determine the PDF of 7'. Hint: Assume it is a beta distribution.

(b) What is the probability that T will exceed 30 minutes on a particular day'?

4.13 The probability that the maximum temperature in a typical SUmrller day will exceed 100° F
in a desert city is estimated to be 0.30.

(a) What is the probability that the maximum temperature will not exceed 100° F in the
next 7 days'?

(b) What is the probability that the maximum temperature will exceed 100° F in only 2 of
the next 7 days?

(c) What is the probability that the maximum temperature will exceed 100' F at least 3
days in the next 7 days?

(d) What is the probability that the maximum temperature will exceed 100° F in at most 2
days in the next 7 days?

4.14 The probability of damage to a structure due to fire. p. is estimated to be 0.05 per year.
Assume the design life of the structure is 50 years.

(a) What is the probability that the structure will not be damaged by fire during its design life'?

(b) What is the probability that the structure will be damaged due to fire in the 10th year'?

(c) If the insurance company requires that the maximum risk of damage to the structure be
limited to 0.10 during its lifetime, calculate the maximum permissible value of p.

4.15 The mean compressive strength of a batch of concrete is found to have a lognormal distri-
bution with a mean value of 5,000 psi and a standard deviation of 500 psi. The InirlinlUrll
required strength is 4,000 psi. Five cylinders from this batch are tested.

(a) What is the probability that at least one cylinder will fail?

(b) What is the probability that two cylinders will fail'?

(c) What is the probability that the fifth cylinder will fail and the others will pass?
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4.16 The annual precipitation in inches per year in Tucson, Arizona, for the past thirty years are
as follows: 11.60, 7.19, 12.69, 11.86, 14.81, 8.07, 11.15, 8.00, 9.55, 11.02, 19.54, 8.63,
12.33, 8.53, 16.55, 19.74, 18.40, 11.37, 10.55, 8.68, 9.62, 6.93, 14.80, 10.64, 14.76, 15.19,
14.56, 9.68, 11.13, and 4.35. Assume the annual precipitation follows a Poisson process.

(a) On average, how often will the annual precipitation exceed 12 in./yr?

(h) What is the probability that in the next 5 years, the annual precipitation will exceed
12 in./yr exactly twice?

(c) What is the probability that at least once in the next 5 years. the precipitation will
exceed 12 in./yr?

(d) How will the probability in Part (h) change if the annual precipitation increases to 15 in.?

4.17 The PMF of the number of fires in a subdivision in a year is shown in Figure P4.17. More
than two fires a year did not occur in the subdivision. During a fire, the mean property dam-
age is expected to be S50,000 with a COV of 0.2. Assume that property damage can be
modeled by a lognormal random variable, and the property damage for different fires is
statistically independent.

(a) What is the probability of property damage exceeding $100,000 in a fire'?

(b) What is the probability that none of the fires in a year will cause property damage
exceeding $100,000?

0

0.4 0.4

0.2

0 1 2

Figure P4.17 PMF of
Number of Fires

4.18 On average, one damaging earthquake occurs in a county every 10 years. Assume the
occurrence of earthquakes is a Poisson process in time.

(a) What is the probability of having at most two earthquakes in 1 year'?

(b) What is the probability of having at least one earthquake in 5 years'?

4.19 The available record indicates that there were two fires in the past 10 years in a subdivision.

(a) What is the probability that there will be no fire in the subdivision in the next 10 years?

(b) What is the probability that there will be at least one fire in the subdivision in the next
10 years?

(c) What is the probability that there will be at least two fires in the subdivision in the next
10 years?

4.20 The occurrence of floods in a county follows a Poisson process at an average rate of once
in 20 years. The damage in each flood is lognormally distributed with a mean of $2 million
and a COV of 25%. Assume that damage in any one flood is statistically independent of the
damage in any other flood.

(a) What is the probability of more than two floods occurring in the county during the next
10 years'?
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(b) What is the probability that damage in the next flood will exceed $3 million'?

(c) What is the probability that damage in each of the next two floods will exceed S3 million'?

(d) What is the probability that none of the floods will cause damage exceeding S3 million
in the next 10 years'?

4.21 The average car accident rate at a particular intersection is one per month. During an acci-
dent, the probability of personal injury is 0.30. Assume that accidents occur according to it
Poisson process.

(a) What is the probability that there will be no accident in the intersection next year'?

(b) What is the probability that there will be no personal injury in the next /i accidents'?

(c) What is the probability that there will be no personal injury in the intersection next year`?

4.22 A bank employee notices that there are no customers waiting for service, and she decides
to take a 5-minute break. On an average, one customer arrives every 2 minutes. in a Poisson
process. It takes l minute to serve each customer.

(a) When she returns from the break, what is the probability that five Customers are
waiting?

(b) Suppose she returns and finds five customers waiting. What is the probability that she
will be able to take another break in exactly 10 minutes?

4.23 A driver arrives at a Tjunction, as shown in Figure P4.23. and notices 10 cars ahead of
him at the stop sign. It takes 3 seconds For each car to clear the intersection. Cars in the
other direction arrive at an average of one car every 10 seconds in a Poisson process. Cars
in the two directions alternate, one at a time, in crossing the intersection. What is the prob-
ability that the driver will clear the intersection in 45 seconds or less'!

Single lane 1-way

A

1-way
single
lane

STOP sign

Figure P4.23 A T junction

4.24 Suppose that on an average two tornadoes occur in 10 years in a county in Oklahoma.
Further assume that the tornado-generated wind speed can be modeled by a lognormal ran-
dom variable with a mean of 120 mph and a standard deviation of 12 rnph.

(a) What is the probability that there will be at least one tornado next year?

(b) If a structure in the county is designed for wind speed of 150 mph, what is the proba-
bility that the structure will be damaged during such a tornado'?

(c) What is the probability that the structure will be damaged by tornado next year? (l lint:
Consider that any number of tornadoes can occur next year.)

4.25 Suppose the life of a light bulb can be modeled by an exponential distribution with an aver-
age life of 12 months. Suppose a maintenance worker checks the bulb every 6 months.

(a) What is the probability that the light bulb will need to be replaced at the first scheduled
inspection?
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(b) If the bulb is in good condition during the first scheduled inspection, what is the prob-
ability that it will be in good condition during the next scheduled inspection?

(c) If there are 10 1 ight bulbs in a room, what is the probability that at least one of them
needs replacement at the first scheduled inspection'?

4.26 Structures in a county need to be designed for earthquake loading. After a detailed seismic
risk analysis of the county, it is observed that the peak ground acceleration A can be mod-
eled by an exponential distribution with a mean of 0.2g. If A exceeds 0.4g, structures in the
county will suffer significant damage. Assume that earthquakes with A exceeding 0.4g
occure once every 15 years in the county, and the damage from different earthquakes is sta-
tistically independent.

(a) What is the probability that there will be exactly two earthquakes where A exceeds 0.4g
in the next 50 years'?

(b) What is the probability of significant structural damage in an earthquake'?

(c) What is the probability of no significant structural damage due to earthquakes in a
vear'?

(d) What is the probability of no significant structural damage due to earthquakes in the
next 50 years?

4.27 Studs are generally used to develop composite action between the steel beams and concrete
slab. In a particular building, 240 studs are tested, and 170 of them are found to be good.
Suppose a typical beam contains 10 studs. Calculate the number of good studs in a beam
with a 90% confidence level using the hyperbinomial distribution.

4.28 In Problem 4.27, suppose only 24 studs are tested, and 17 of them are found to be good.
How many good studs are expected in a beam containing a total of 10 studs, at a confidence
level of 90%?

4.29 The annual maximum stage height In a river channel is modeled using a Type I extreme value
distribution of the largest value, with a mean value of 30 ft and a COV of 1011/(. The sta0et Z71

height at which flooding will occur is 40 ft. What is the probability that the annual maximum
stage height will exceed this level"

4.30 A steel cable consists of eight high-strength steel strands. The strength of each strand can
be modeled by a lognormal random variable with a mean of 50 kip and a COV of 10%.
What is the probability that the weakest strand will have a strength less than 40 kip?

4.31 In a seismic hazard analysis, the magnitude of the earthquake (Richter's scale) is modeled
with a Type II extreme value distribution of the largest value. In a certain geographical
region, data have been collected for 50 years, and the annual maximum values of the earth-
quake magnitude have a mean value of 4.0 and a standard deviation of 2.0. It is estimated
that an earthquake with a magnitude of 9.0 or more will devastate the region. What is the
probability that the annual maximum magnitude will be greater than or equal to 9.0?

4.32 The safety of a statistically determinate truss structure is governed by the weakest member
in the truss. (This is referred to as a weakest link system, or a series s).-,stem. Refer to

Chapter 8 for details.) The safety margin, defined as the ratio of the resistance to the applied
load, of the weakest member in a particular truss is judged to have a mean value of 1.5 and
a COV of 10% and is assumed to follow a Type II extreme value distribution of the small-
est value. The member, and therefore the whole truss, will fail if the safety margin of the
weakest member drops below 1.0. What is the probability of failure of the truss`?

4.33 The rllinillll1111 life of an automobile brake pad is modeled with a Type III extreme value
distribution of the smallest value. From the available data, the parameters of distribution
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are estimated to be k = 2.5, wl = 24 months, and e = 0. What are the mean and standard
deviation of the brake pad's life? What is the probability that the brake pad will last longer
than 36 months?

4.34 The minimum fatigue life of rivets in a compressor airseal inlet of a gas turbine engine is
modeled with a two-parameter Weibull distribution. During accelerated testing for the pur-
pose of certification and approval, the mean value Of minimum life is found to he 90 mill-
utes, and the COV is 15%. The rivet design is unacceptable if the minimum life (luring
accelerated testing is less than 50 minutes. What is the probability of nonacceptance of the
rivet design'?

4.35 For a very unusual project, an engineer estimates that construction time may vary between
30 and 50 days. However, the engineer has no prior knowledge and believes that the com-
pletion time is equally likely between 30 and 5() days. Use Table 4.2 to calculate the fol-
lowing:

(a) The mean completion time.

(h) The standard deviation, variance, and coefficient of variation of the completion time.

(c) The probability that the completion time will be greater than 40 (lays.

4.36 In Problem 4.35, if the completion time has a triangular distribution with a modal value of
45 days, calculate the following:

(a) The mean completion time.

(b) The standard deviation, variance, and coefficient of variance of the completion time.

(c) The probability that the completion time will be greater than 40 days.

4.37 A cofferdam needs to be built to facilitate construction of a bridge pier. The maximum
monthly flood level X at the site is considered to have a triangular distribution, as shown
in Case 5 in Table 4.2, with x I, x, and x values of 2, 8. and 10 ft, respectively. The pier
will take 8 months to construct.

(a) What would be the height of the cofferdam with reliability 0.90, that is, the cofferdam
will not be flooded during the construction period with a probability of 0.9`?

(b) What is the height of the cofferdam corresponding to the flood return period of 8
months?



Chapter 5

Determination of Distributions and
Parameters from Observed Data

5.1 INTRODUCTORY COMMENTS

Procedures to calculate the probabilities of events using many continuous and discrete
random variables are discussed in Chapter 4. However, determining the underlying dis-
tribution of a random variable in the first place is a challenge to engineers. To define a
distribution uniquely, its parameters need to be estimated. Generally, the distribution
and its parameters are estimated using available data. Thus, it is important to study
available procedures to determine the distribution and its parameters for a given set of
data of a random variable. All subsequent evaluations of risk and reliability depend on
these evaluations, which are the subject of this chapter.

5.2 DETERMINATION OF PROBABILITY DISTRIBUTION

In practice, the choice of probability distribution may be dictated by mathematical con-
venience or by familiarity with a distribution. In some cases, in the absence of any other
information, the underlying distribution can be assumed to be uniform, triangular, trape-
zoidal, and so forth, as discussed in Section 4.6. When sufficient data are available, a his-
togram or frequency diagram can be used to determine the underlying distribution;
however, more than one distribution may fit the available data, as shown in Figure 3.1 in
Chapter 3. In some cases, the physical process may suggest a specific form of distribution.

As an example, Young's modulus is fequently modeled as a lognormal random vari-
able in the literature. The task is to establish its validity, based on sample information
such as that given in Table 3.1. The underlying distribution can be established in sev-
eral ways, including (a) drawing a frequency diagram, (b) plotting the data on proba-
bility paper, and (c) conducting some statistical tests known as goodness-of-fit tests for

106
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distribution. The concept behind the frequency diagram was discussed in detail in
Section 3.1 in Chapter 3 and will not be repeated here. The uses of probability papers
and statistical tests are discussed in the following sections.

5.2.1 Probability Papers

The underlying distribution can be established by plotting the available data for a ran-
dom variable, such as that given in Table 3.1 in Chapter 3, and the corresponding
cumulative probabilities on suitably constructed graph paper or probability paper. The
scale of the graph paper should be such that when the random variables and the corre-
sponding cumulative probabilities are plotted, a linear relationship between the two
will be produced. It is known that a uniformly distributed random variable and its CDF
have a linear relationship. Thus, if the random variable and its CDF are plotted using
simple arithmetic scale on ordinary graph paper and the relationship appears to be lin-
ear, it must have a uniform distribution. Obviously, different probability papers are
needed for different distributions.

Probability papers are commercially available for normal or lognormal distributions
and for the Weibull distribution. If the probability paper corresponding to a particular
distribution is not readily available, it can be constructed as discussed in Section 5.2.2.
Assuming that the normal and lognormal probability papers are available, we will first
discuss their use in determining the underlying distribution.

5.2.1.1 Plotting on Normal and Lognormal Probability Papers

Although there are several alternatives, the procedure proposed by Gumbel (1954) is
discussed here because of its mathematical simplicity and wide acceptance. Suppose
there are N observations, xl x2, ..., .n7 ..., -VN. of a random variable. In the first step, the
data need to be arranged in increasing order. In the second step, the north value of the
random variable is plotted at the CDF of nl/(N + 1) on the probability paper of interest.
The procedure is further explained in Table 5.1 using the data on Young's modulus
shown in Table 3.1.

The Young's modulus versus the corresponding CDF is plotted in Figure 5.1 on nor-
mal probability paper and in Figure 5.2 on lognormal probability paper. Although it is
not necessary, the mean and the standard deviation or the COV of the Young's modu-
lus can be estimated from the plots as shown in the figures. Comparison of Figures 5.1
and 5.2 shows that both the normal and lognormal plots appear to he straight lines:
visual inspection does not establish the superiority of one over the other.

In general, frequency diagrams and probability papers are graphic or visual meth-
ods to determine the distribution of a random variable. More rigorous numerical tests
are described in Section 5.2.3.

5.2.2 Construction of a Probability Paper

The probability paper can be constructed for a specific distribution using standard two-
dimensional graph paper and changing its scale appropriately so that when the random
variable and its CDF are plotted, the relationship appears to be a straight line. The
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't'able 5.1 Preparation of Data for Young's Modulus for Plotting on Probability Papers

171 E (ksi) m/(N + 1) m E (ksi) n?/(N + 1)

1 25,900 1/42 = 0.0238 21 29,400 21/42 = 0.5000
2 27,400 0.0476 22 29,400 0.5238
3 27,400 0.0714 23 29,500 0.5476
4 27,500 0.0952 24 29.600 0.5714
5 27,600 0.1190 25 29,600 0.5952
6 28,100 0.1429 26 29,900 0.6190
7 28,300 0.1667 27 30,200 0.6429
8 28,300 0.1905 28 30,200 0.6667
9 28,400 0.2143 29 30,200 0.6905

10 28,400 0.2381 30 30.300 0.7143
11 28,700 0.2619 31 30,500 0.7381
12 28,800 0.2857 32 30,500 0.7619
13 28,900 0.3095 33 30,600 0.7857
14 29,000 0.3333 34 31,100 0.8095
15 29,200 0.3571 35 31,200 0.8333
16 29,300 0.3810 36 31,300 0.8571
17 29,300 0.4048 37 31,300 0.8810
18 29,300 0.4286 38 31,300 0.9048
19 29,300 0.4524 39 32,000 0.9286
20 29,300 0.4762 40 32,700 0.9524

41 33,400 0.9762

34
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Figure 5.1 Normal Probability Paper
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appropriate scale can be obtained by transforming the random variable into a standard
variate, thereby making the CDF independent of the parameters of the distribution. For
example, consider a random variable with a Rayleigh distribution. The PDF of the
Rayleigh distribution can be shown to be

Y
1 _r

J4

)2

fX(-k) e 2 a x>_0U(5.1)
=0, x<0

where a is the parameter of the distribution. In fact, it can be shown that a is the modal
value or the most probable value of the Rayleigh distribution. The standard variate, S.
for the Rayleigh distribution is

S=X/a. (5.2)
With this variable transformation and using Equation 6.7, discussed in detail in Chapter
6, the PDF of S can be shown to be

1 ,

2 , s>_0

=0, s<0.
The corresponding CDF of S is

,
s-

Fs(s) =1-e

(5.3)

(5.4)

Thus, the CDF of S has been rendered independent of a, the parameter of the Rayleigh
distribution. Then, for a given value of FS(s), the corresponding value of s can be eas-
ily calculated as shown in Table 5.2.
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Table 5.2 Data for Developing Rayleigh
Probability Paper

S FS(s) S FS(s)

0.46 0.10 2.25 0.92
0.67 0.20 2.31 0.93
0.84 0.30 2.37 0.94
1.01 0.40 2.45 0.95

1.18 0.50 2.49 0.955
1.26 0.55 2.54 0.96
1.35 0.60 2.59 0.965
1.45 0.65 2.65 0.97

1.55 0.70 2.72 0.975
1.67 0.75 2.80 0.98

1.79 0.80 2.90 0.985
1.95 0.85 3.03 0.99
2.15 0.90 3.26 0.995

In Figure 5.3, the standard variate S is plotted along the X-axis in a convenient arith-
metic scale. Along the X-axis, but parallel to S, the FS(s) values are also plotted. No scale
change is necessary for the Y-axis. The graph paper thus generated is the Rayleigh prob-
ability paper. If the relationship appears to be linear when any random variable X is plot-
ted along the Y-axis in a suitable arithmetic scale, and the corresponding CDF values
estimated to be m/(N + 1) as in Table 5.1 are plotted along the X-axis following the FS(s)
scale, then the underlying distribution can be considered to be Rayleigh. The essence of
developing a probability paper for a given distribution is appropriately transforming the
random variable into a standard variate. Once this is properly done, the CDF of the stan-
dard variate can be calculated easily and the information will help to identify the suitable
scale along the X-axis. The scale along the Y-axis will remain arithmetic in most cases
(except cases like the lognormal distribution), so no additional work is necessary. The
graph thus generated is the probability paper representing the underlying distribution.

If the probability papers for the normal and lognormal distributions are not available
from commercial sources, they can be easily generated using this procedure. For the
normal distribution, the transformation to generate the standard variable is given by
Equation 4.3. For the lognormal random variable with parameters k and , the required
transformation is given by Equation 4.12.

EXAMPLE 5.1

The following example on Rayleigh distribution demonstrates the procedures just dis-
cussed. Fatigue is a very important design consideration for steel bridges. Estimation
of fatigue loading on highway bridges caused by the passage of passenger cars, pick-
ups, trailers, trucks, and other traffic is a major source of uncertainty. The load effect
on bridges is usually modeled using the stress range parameter. It has been reported in
the literature that the uncertainty in the stress range parameter of highway bridges can
be modeled by the Rayleigh distribution. The following data on the stress range param-
eter P in ksi units is available for a particular bridge: 1.1, 3.7, 0.5, 1.3, 1.4, 0.8, 2.5, 2.7,
3.3, 1.0, 4.0, 0.7, 2.1, 2.0, 1.2, 3.0, 1.6, 1.9, 1.8, 2.3, 1.5, 2.8, 2.6, and 2.2.
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Figure 5.3 Construction of Rayleigh Probability Paper

First, construct a Rayleigh probability paper. Then, plot the data for P on it, and state
whether the underlying distribution is Rayleigh.

SOLUTION

The data given in Table 5.2 can be used to construct a Rayleigh probability paper as
shown in Figure 5.3. Then the data for P are arranged in increasing order as shown in
Table 5.3. When the data are plotted, as shown in Figure 5.3, they appear to form a
straight line. Thus, the distribution of the fatigue stress range parameter can be mod-
eled as a Rayleigh distribution.
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Table 5.3 Fatigue Stress Range Data

in P (ksi) nn/(N + 1) 177 P (ksi) m/(1V + 1)

1 0.5 1/(24+ 1) = 0.04 13 2.0 13/(24+ 1) = 0.52
2 0.7 0.08 14 2.1 0.56
3 0.8 0.12 15 2.2 0.60
4 1.0 0.16 16 2.3 0.64
5 1.1 0.20 17 2.5 0.68
6 1.2 0.24 18 2.6 0.72
7 1.3 0.28 19 2.7 0.76
8 1.4 0.32 20 2.8 0.80
9 1.5 0.36 21 3.0 0.84

10 1.6 0.40 22 3.3 0.88
11 1.8 0.44 23 3.7 0.92
12 1.9 0.48 24 4.0 0.96

5.2.3 Statistical Tests

Determining the underlying distribution of a random variable using probability paper
appears to he cumbersome, particularly when the probability paper needs to he constructed.
Furthermore, even after the plotting, a judgment needs to be made as to whether the rela-
tionship between the random variable and its CDF is close to linear. A perfect linear rela-
tionship is very rarely obtained. More definitive and less cumbersome statistical tests of
goodness-of-fit can be conducted to establish the underlying distribution. Two commonly
used statistical tests for this purpose are the chi-square (x2) and the Ko1mogorov-Srnirn()V
(K-S) tests. The chi-square test is based on the error between the observed and assumed
PDF of the distribution, and the K-S test is based on the error between the observed and
assumed CDF of the distribution, as discussed in the following sections.

5.2.3.1 Chi-Square Test

In the X2 goodness-of-fit test, the range of the n observed data is divided into in inter-
vals, and the number of times (n1) the random variable is observed in the ith interval is
counted (i = I to n?). Observed frequencies n1, n2, ..., n,n of in intervals of the random
variable are then compared with the corresponding theoretical frequencies e1, e,, ..., c t
of an assumed distribution. It can be shown (Hoe], 1962) that the quantity

nr(ni - e) z

1 (5.5)
i=1 e1

approaches the x2 distribution with ,f = n? - 1 - k degrees of freedom as the total sample
points n tends to oo. The x2 distribution is more formally presented in Section 5.4.6. Here,
in is the number of intervals and k is the number of distribution parameters estimated
from the data. The number of degrees of freedom f is a parameter of the X2 distribution.
A significance level a is selected. Significance levels between 1 % and l09( are common.
A significance level of 5% implies that for 5 out of a total of 100 different samples, the
assumed theoretical distribution cannot be an acceptable model. If c a.f is denoted as
the value of the x2 distribution with f degrees of freedom at CDF of (1 - (x), and if the



5.2 Determination of Probability Distribution 113

value obtained from Equation 5.5 is less than this value, then the assumed distribution is
acceptable at the significance level (x. Thus, the assumed distribution will be acceptable
at the significance level a if

ntOil. -e,)

i=1 ei

The outcome of the x2 statistical test depends on the number of intervals i n used and
the significance level a selected. Both need to be chosen based on judgment. cl_X f val-
ues for the x2 distribution are given in Appendix 3. It is desirable that both in and the
e; should be greater than or equal to 5 to obtain satisfactory results. However, this may
not always be possible.

EXAMPLE 5.2

To determine whether the observations on Young's modulus given in Table 3.1 allow it
to be accepted as a normal or lognormal random variable at the 5% significance level,
the steps summarized in Table 5.4 can be followed.

All 41 observations on Young's modulus are divided into five intervals, and the num-
ber of observations in each interval is counted and tabulated under n,. The theoretical fre-
quency for each interval for normal and lognormal distributions is calculated. The first
entry for theoretical frequency for normal distribution is 6.021. It can be calculated as

el = P(E <_ 28, 000) x 41

(28000_29576x4l1,507 =q)(-1.05)x 41=0.14686x41=6.021.

The theoretical frequency of the Young's modulus for the interval 28,000 to 29,000 ksi
can be calculated as

e2 = P(28, 000 < E <- 29, 000) x 41

(D
29, 000 - 29,576 0.14686

1,507
x 41 = 8.410.

The theoretical frequencies for other intervals can similarly be calculated. The theoret-
ical frequencies for all intervals must add up to the total number of observations (i.e., 41

Table 5.4 x2 Test on Young's Modulus for Golden Gate Bridge

Young's
modulus Observed frequency Theoretical frequency (n -e1)2/e

(ksi) j7, f'!

Normal Lognormal Normal Lognormal

< 28,000 5 6.021 6.116 0.173 0.204
28,000-29,000 8 8.410 8.774 0.020 0.068

29,000-30,000 13 10.590 10.600 0.548 0.543

30,000-31,000 7 8.966 8.600 0.431 0.298
> 31,000 8 7.013 6.910 0.139 0.172

Total 41 41 41 1.311 1.285
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Figure 5.4 y2 Test on
28 29 30 31 Young's Modulus for

Young's Modulus, E(X103) Normal Distribution

in this example, as shown in Table 5.4). The observed frequency in each interval can
simply be counted from the observed data as noted in Table 5.4. As mentioned earlier,
the intervals are selected in such a way that the theoretical frequencies are at least 5.

The observed and theoretical frequencies for normal distribution are plotted in Figure
5.4. Using Equation 5.5, we find that the total error for normal distribution is 1.311.

For both the normal and lognormal distributions, their two parameters are estimated
from the sample mean and variance. Thus, for both distributions, the degrees of free-
dom are f = 5 - 1 - 2 = 2. For the significance level a = 5%, the corresponding e 95,2
from Appendix 3 is found to be 5.99 1, which is greater than 1.311. Thus, the normal
distribution is acceptable with a 5% significance level.

The theoretical and observed frequencies for lognormal distribution can similarly be
calculated as shown in Table 5.4. Using Equation 5.5, we can calculate the total error
for the lognormal distribution to be 1.285. The error is less than 5.991; thus, the log-
normal distribution is also acceptable with a 5% significance level. However, the log-
normal distribution is slightly better than the normal distribution.

5.2.3.2 Kolmogorov-Smirnov (K-S) Test

The K-S test compares the observed cumulative frequency and the CDF of an assumed
theoretical distribution. The first step is to arrange the data in increasing order. Then
the maximum difference between the two cumulative distribution functions of the
ordered data can be estimated as

D =maxI FX (xi) - S,, (xi) 1 (5.7)
where Fx(xj) is the theoretical CDF of the assumed distribution at the ith observation
of the ordered samples xi, and is the corresponding stepwise CDF of the observed
ordered samples. S,(x,) can be estimated as
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U , X<X1

m
,S,1 (Xi) X,n < X< Xnt+

n

1 , X>>-X

(5.8)

The concept is shown in Figure 5.5. Mathematically, D is a random variable and its
distribution depends on the sample size n. The CDF of Dr, can be related to the signif-
icance level a as

P(D <- D°G) = 1- a (5.9)

and the Da values at various significance levels a can be obtained from a standard
mathematical table as shown in Appendix 4. Then, according to the K-S test, if the
maximum difference D. is less than or equal to the tabulated value the assumed
distribution is acceptable at the significance level a.

The advantage of the K-S test over the x2 test is that it is not necessary to divide the
data into intervals; thus the error or judgment associated with the number or size of the
interval is avoided.

EXAMPLE 5.3

The same Young's modulus data given in Table 3.1 are considered. For a normal dis-
tribution, the two parameters are µE = 29,576 ksi and 6E = 1,507 ksi. For a lognormal
distribution, the two parameters are kE = 10.293 and E = 0.051.

FE(e,,)

0.7

0.6 Sn(e,,)
Max D. = 0.1018

0.5

0.4

0.3

0.2

0.1

0.0

E = 29600

i I I I I Fi ure S S K-S T .tong .

26 27 28 29 30 31 32 33 34 Young's Modulus for
Young's Modulus, E(x103) Normal Distribution
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Table 5.5 K-S Test on Young's Modulus for the Golden Gate Bridge

M E(ksi) Sn(em) = m/n FE(em) D = IFF(em) - S,,(e,1)I

Normal Lognormal Normal Lognormal

1 25,900 0.0244 0.0073 0.0051 0.0171 0.0193
2 27,400 0.0488 0.0749 0.0721 0.0261 0.0233
3 27,400 0.0732 0.0749 0.0721 0.0017 0.0011
4 27,500 0.0976 0.0838 0.0823 0.0138 0.0153
5 27,600 0.1220 0.0951 0.0934 0.0269 0.0286
6 28,100 0.1463 0.1635 0.1660 0.0172 0.0197
7 28,300 0.1707 0.1977 0.2033 0.0270 0.0326
8 28,300 0.1951 0.1977 0.2033 0.0026 0.0082
9 28,400 0.2195 0.2177 0.2236 0.0018 0.0041

10 28,400 0.2439 0.2177 0.2236 0.0262 0.0203
11 28,700 0.2683 0.2810 0.2877 0.0127 0.0194
12 28,800 0.2927 0.3050 0.3121 0.0123 0.0194
13 28,900 0.3171 0.3264 0.3372 0.0093 0.0201
14 29,000 0.3415 0.3520 0.3632 0.0105 0.0217
15 29,200 0.3659 0.4013 0.4129 0.0354 0.0470
16 29,300 0.3902 0.4286 0.4404 0.0384 0.0502
17 29,300 0.4146 0.4286 0.4404 0.0140 0.0258
18 29,300 0.4390 0.4286 0.4404 0.0104 0.0014
19 29,300 0.4634 0.4286 0.4404 0.0348 0.0230
20 29,300 0.4878 0.4286 0.4404 0.0592 0.0474
21 29,400 0.5122 0.4522 0.4681 0.0600 0.0441
22 29,400 0.5366 0.4522 0.4681 0.0844 0.0685
23 29,500 0.5610 0.4801 0.4920 0.0809 0.0690
24 29,600 0.5854 0.5080 0.5199 0.0774 0.0655
25 29,600 0.6098 0.5080 0.5199 0.1018 0.0899
26 29,900 0.6341 0.5871 0.5987 0.0470 0.0354
27 30,200 0.6585 0.6591 0.6700 0.0006 0.0115
28 30,200 0.6829 0.6591 0.6700 0.0238 0.0129
29 30,200 0.7073 0.6591 0.6700 0.0482 0.0373
30 30,300 0.7317 0.6844 0.6950 0.0473 0.0367
31 30,500 0.7561 0.7291 0.7389 0.0270 0.0172
32 30,500 0.7805 0.7291 0.7389 0.0514 0.0416
33 30,600 0.8049 0.7517 0.7580 0.0532 0.0469
34 31,100 0.8293 0.8438 0.8461 0.0145 0.0168
35 31,200 0.8537 0.8599 0.8599 0.0062 0.0062
36 31,300 0.8780 0.8729 0.8729 0.0051 0.0051
37 31,300 0.9024 0.8729 0.8729 0.0295 0.0295
38 31,300 0.9268 0.8729 0.8729 0.0539 0.0539
39 32,000 0.9512 0.9463 0.9429 0.0049 0.0083
40 32,700 0.9756 0.9808 0.9773 0.0052 0.0017
41 33,400 1.0000 0.9945 0.9922 0.0055 0.0078
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The maximum differences D,, for the normal and lognormal distributions are calcu-
lated as shown in Table 5.5 and are found to be 0.1018 and 0.0899, respectively. The
results for the normal distribution are also plotted in Figure 5.5. For a 5% significance
level and 41. sample points, D410.05 is found to be 0.21 from Appendix 4. Thus, both
normal and lognormal distributions are acceptable with a 5% significance level for the
K-S test. However, as observed in the x2 test, the lognormal distribution is better than
the normal distribution.

5.3 ESTIMATION OF PARAMETERS OF A DISTRIBUTION

Once the type of distribution of a random variable is selected, it is necessary to define
it uniquely by evaluating its parameters. Some distributions, such as the binomial and
Poisson, have only one parameter. Others, such as the normal and lognormal, have two
parameters, and others could have more than two parameters. The accuracy in estimat-
ing these parameters based on the test or observational data determines the success in
modeling the uncertainty in a random variable.

Once the randomness is uniquely defined in terms of the parameters of a distribution,
it is used in subsequent probabilistic analyses, assuming the basic characteristics of the
random variable remain unchanged. In other words, adding more samples to the original
database is not expected to change the distribution characteristics. In the literature, this
is generally known as the point estimation of parameters. Point estimation plays a very
important role in probabilistic evaluation, and certain properties are desirable in a point
estimator: unbiasedness, consistency, efficiency, and suficienc.y. Unblasedness means
the expected value or mean of the estimator is the parameter itself. Consistency means
that as the sample size approaches infinity, the estimator approaches the value of the
parameter. Efficiency refers to the variance of the estimator; less variance is always
preferable. Sufficiency refers to the ability of an estimator to extract all the pertinent
information from a sample to determine the parameter. Equation 3.2 represents the unbi-
ased estimation of the variance by using a denominator of (N - 1), instead of simply N.

For a given sample, the two most commonly used methods of point estimation of
parameters are the method of moments and the method of max mLum likelihood.

5.3.1 Method of Moments

As discussed earlier, the mean or expected value of a sample represents its first
moment, the variance represents the second moment, the skewness represents the third
moment, and so on. The basic concept behind the method of moments is that all the
parameters of a distribution can be estimated using the information on its moments.
Thus, if a distribution has a single parameter, then only one piece of information needs
to be extracted from the sample; most likely, this will be the first moment, or the mean
value of the random variable. If a distribution has two parameters, then two pieces of
information need to be extracted from the sample. and most likely, they will be the first
two moments, that is, the mean and the variance of the random variable. As the name
of the method implies, the parameters of a distribution have a definite relationship with
the moments of the random variable. The relationships are tabulated for several com-
monly used distributions in Table 5.6.
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Table 5.6 Estimation of Parameters Using Method of Moments

Probability density function
Distribution (PDF) or mass function (PMF) Parameters Relation to mean and variance

Continuous random
variables

Normal

Lognormal

Beta

1 1 X_ x
.f x (x) =

6x
-,2 Tu exp 2

ax
-01)<x<00

1 1 Inx-%
.fx (x) _ exp - - Y

2

.Y>>0

I (x-a)'-1 (b- l)r-I
B(q, r) (/ - a)q+r- I

aSXSI

E(X) = ux

Var(X) = (TX

E(X) = exp X + 2 5-

a, h, q, j.

Rayleigh .fx(x) ,2 exp - 2 a.
c c

.V>>-0

Exponential .fx (x) = ve

X >- 0

Discrete random
variables

P

P

v

1

'2Var(X) = E`(X)[e' -11

E(X)=a+ q (b - a)
q + r

Var(X) _ (h - a)(q+r),

((1 +r+1)

E(X)= 12a

Var(X) = 2-2 )(X2

E(X)=np
Var(X) = np(I - p)

E(X)=1/ p

Var(X) = (I -P)/P`

E(X) = vt

Var(X) = vt

The normal distribution has two parameters, and they are essentially the first two
moments of the random variable. The lognormal distribution also has two parameters;
however, they can be estimated from the first two moments through two formulas, as
discussed in Section 4.2.2. In some cases, the moments are the parameters, and in other
cases, the parameters can be estimated from the moments.

5.3.2 Method of Maximum Likelihood

The principle behind the maximum likelihood method is that for a random variable X,
if x1 x2, ..., x are the n observations or sample values, then the estimated value of the
parameter is the value most likely to produce these observed values. Consider the den-
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city function of X to befx(x, p), where p is the parameter that needs to be estimated. In
random sampling, the xi's are assumed to be independent; if the likelihood of observ-
ing xi's is proportional to their corresponding density functions, the likelihood function
can be defined as

fx(Xi'P).fx(.12, p)...,fx(xn,p). (5.10)
Maximizing the likelihood function with respect to the parameter, that is, equating
aL/ap to zero, will give the equation required to estimate the value of p according to
the maximum likelihood method. If m parameters are required to describe a distribu-
tion, they can be estimated by solving m simultaneous equations obtained by taking the
derivatives of the likelihood function with respect to each of them.

For mathematical simplicity and observing that the likelihood function is multi-
plicative in nature, using the logarithm of the likelihood function is much simpler, as
shown in the following examples.

EXAMPLE 5.4

Geometric Distribution
Assume that the random variable X has a geometric distribution and n observations

are available. As shown in Table 5.6, the geometric distribution has only one parame-
ter p. The PMF of the geometric distribution is

px (x) = p(1- p).".-

Equation 5.10 shows that the likelihood function of the observed data is
,1

L(xl,x7,...,x,,; p) _ p(1 - p).,;-1

i=1

Taking the logarithm of both sides,
n

1nL =nlnp+ (xi -1)ln(1-p)
i=1

,l

or

=nlnp-nln(1-p)+ln(l- p)j:xi
i=1

alnL 1 1 1 11=n-+n - ' =0.
ap p 1-p 1-P i=1

After simplifying this equation, it can be shown that the estimated value of p, denoted
as p, is l

nPn
E(X)

1=1

Normal Distribution
The likelihood function of n observations of a normal random variable X is

1 (-V' -Py I
,7

.tL=T1
e-

2

i=1 27L6x
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Hence,

1 11 X--µxlnL=-nIn-\21r - nInax - '
2 r=1 6.X

A derivative of the logarithm of the likelihood function with respect to the mean ux and
the standard deviation 6X will give the estimated value of the corresponding parameters,
denoted as .i and sX, respectively, as shown below.

alnL = 1 11 2

2
apt X 2 j=1 sX

or
11

1(-vj - -V) = 0

or

Similarly,

or'

aInL 11 1 11 _ 2 2+- I(.v- t-) = 0
a6X sX 2 sx

11

Y, (Xj - XT
s2 = i=t
X

11

In both examples, the method of moments and the maximum likelihood method essen-
tially give the same estimate of the parameters.

5.4 INTERVAL ESTIMATION OF MEAN AND VARIANCE

Point estimation of parameters using the method of moments as discussed in the previ-
ous section requires information on mean and variance. Samples are always used to esti-
mate the mean and variance, leading to the estimation of the parameters of' a
distribution. But how good is the estimation of mean and variance? To answer this
important question, two additional terms, population and sample, need to be introduced.
A population represents all conceivable observations of a random variable. A population
could be the Young's modulus for a particular grade of steel, or the wind velocity
recorded following standard procedures all over the world, or the opinion on an issue of
everyone in the U.S. However, it may be impractical to collect information on an entire
population. To circumvent this problem, representative samples are taken from the pop-
ulation to define the population characteristics. In opinion polls, it is very common to
contact 1,000 to 1,500 scientifically selected persons in the U.S. to represent the total
population of over 250 million. The quality of information collected from a sample will
depend on the size of the sample, the underlying uncertainty in the random variable
under consideration, and the confidence level required in making a conclusion.

Since it is impractical to collect information from all the available sources, the infor-
mation on the sample mean and variance is used to estimate the population mean and
variance. This introduces some error in the prediction of the population mean and vari-
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ance, which are unknown but have constant values. A range of values in which they
may be located is referred to as a In essence, the interval estima-
tion method calculates the confidence intervals of the mean and variance.

In some cases, for example, opinion polls, the spread above and below the predicted
value (known in casual presentation as the plus-minus values about the prediction) is
of interest. This is known as the two-sided confidence inter-al. However, in some
cases, the one-sided confidence limit might be of interest. The one-sided confidence
limit can be the lower confidence fin fit or upper confidence limit.

Consider the compressive strength of concrete, which is a resistance-related parame-
ter. For a project, the concrete will be acceptable if its strength is at least 4,000 psi. A few
sample cylinders may be tested to estimate the mean and variance of compressive
strength. If information from small samples is used, it may be of interest to know if the
population mean is at least 4,000 psi for a required level of confidence. This value is
known as the lower confidence limit. In general, for resistance-related random variables,
a lower confidence limit of mean is often of interest. On the other hand, for the load-
related random variables (e.g., wind speed) obtained using sampling information, it may
be of interest to know if the population mean is less than a specific value for a required
level of confidence. This value is known as the upper confidence limit. In a much broader
sense, for example, for air or water pollution problems, emissions of radioactivity from
a nuclear power plant, opinion polls, or vehicle speed on roadways, the lower or upper
confidence limit of mean and variance may be of interest depending upon the problem.

In some cases, concerned parties (e.g., the supplier of concrete or the operator of a
measuring device) may have an experience-based idea of the amount Of uncertainty
that can be expected in terms of variance, standard deviation, or COV. Thus, in some
problems the information on the variance or standard deviation of a population may be
known in advance, and in other cases it may need to be estimated from the collected
samples. The two-sided confidence interval, or lower or upper confidence limit of the
mean and variance of a population, needs to be estimated considering the sample size,
the confidence level required for the prediction, and the amount of uncertainty (known
or unknown) present in the random variable under consideration. They are discussed in
the following sections.

5.4.1 Interval Estimation for the Mean with Known Variance

Suppose X is a random variable whose variance 6' is known. A random sample of size
n (i.e., x1 ..., X,1) is collected, and the sample mean is calculated using Equation
3. 1. The question is, how good is the sample mean obtained from a sample of size i in
predicting the population mean p, which is unknown but a constant. If another sample
of size 7 is collected, the sample mean is expected to be somewhat different. In fact,
each one of the observations .v1, x,, ..., . can be considered to have come from a set of
independent random variables X1, X,, ..., X. All the X,'s have the same distribution as
X. In this context, the sample mean is itself a random variable; since it is a random vari-
able, it can he denoted as X (by an uppercase letter, as discussed in Chapter 3), and
can be estimated as

11 "X= Xi. (5.11)
t r-1
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The mean or expected value of the sample mean can be calculated as

1 "E(X)=E -1Xt
n i=1

1 1

n i=1 n
(5.12)

The expected value of the sample mean is equal to the population mean, indicating it
is an unbiased estimator of the population mean p.

The variance of the sample mean can be calculated as

1 !1 1 )1

1Var(X) =Var - I Xl = , Var X; = 2 1762 = (5.13)
n i=1 11- 1=1 12

The derivation of Equation 5.13 will be discussed in more detail in Chapter 6. Thus,
the sample mean X has a mean of p and a standard deviation of (6 / tirn ). If the under-
lying distribution of X is normal, then the sum of independent normal random variables
is also a normal random variable, this will be discussed in detail in Chapter 6. Section
6.3.1.2. If the X1's are independent normal variables, then Equation 5.11 indicates that
the sample mean X will also have a normal distribution. When the sample size is rel-
atively large, for instance greater than 30, then, by virtue of the central limit theorem
(to be discussed in Section 6.3.1.5), the sample mean can be considered to have a nor-
mal distribution regardless of the distribution of X.

In summary, if the underlying distribution of the population is normal or if the sample size
is relatively large, then the sample mean is a normal random variable, that is, N(µ, u /
With a simple transformation, as shown in Section 4.2.1 and using Equation 4.3, we
can show that (X - u) / ((Y / 1rn) is a standard normal variate with zero mean and unit
standard deviation. The probability that this standard normal variate falls between a
specified lower and upper limit, usually selected symmetrically (i.e., -kcx12 and k(,/2 as
shown in Figure 5.6), can be written as

< X < _ -P
6 rjz -

1 a (5.14)

where (1 - (x) is generally known as the confidence level, and ± ka/2 are the values of
the standard normal variate evaluated at the probability levels of (1 - (x/2) and a/2,

PDF

- k u!2 0 ka'2 (X - P
l_ - I ( 7

100(1-(Y)% Confidence Interval for,u
Figure 5.6 Two-Sided Confidence Interval
for p
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respectively. In this equation, since a sample of size n is collected with a sample mean
of .t, it gives a specific realization of the random variable X, and thus, in Equation 5.14
X needs to be replaced by i. Equation 5.14 can be simplified as

P .v-kai2 =1-a (5.15)
-\1n

Equation 5.15 gives the two-sided (I - (x) confidence interval of the population
mean p. It can be interpreted as meaning that on the basis of a single sample of size
n, there is confidence of (1 - a) that the estimated interval contains the population
mean p. Mathematically, the (1 - a) confidence interval for the mean can be simply
stated as

< It >1-a = X - ka/,
6 t + kai, 6

1/' n n

EXAMPLE 5.5

(5.16)

Consider the 41 observations of the Young's modulus given in Table 5.1. As discussed
earlier, the mean and standard deviation of the samples are 29,576 ksi and 1,507 ksi,
respectively. Assume further that the Young's modulus is known to have a standard
deviation of 1,507 ksi. Determine (a) the 95% confidence interval for the mean and (b)
the 99% confidence interval for the mean.

SOLUTION

(a) For systematic evaluation of the confidence interval, the following steps
should be followed.

Step 1

1-a=0.95, or a = 1-0.95=0.05
a/2=0.05/2=0.025, and 1-a/2= 1-0.025=0.975.

Step 2
Using the standard normal table given in Appendix 1, it can be shown that

kcr.l2 = ko.o25 = 0-1(0.975) = 1.96.

Step 3 6
ka/2

17507 1..96 = 461.
- n J4141

According to Equation 5.16, the 95% confidence interval for the mean of the
Young's modulus is

< µ >p 9; = (29,576 - 461; 29,576 + 461) = (29,115; 30,037) ksi.

Thus, based on the available information of 41 samples, there is a confidence
level of 95% that the population mean for the Young's modulus is contained in
the interval (29,115; 30,037) ksi, or the 95% confidence interval for the
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Young's modulus is (29,115; 30,037) ksi.

(b) For the 99% confidence interval, the three steps just discussed can be fol-
lowed again. In this case,

oc=1-0.99=0.01, oc/2=0.005, and I-oc/2=0.995

k0.005 = c-1(0.995) = 2.58
and 6 k - 007

2.58 = 607 ksi.j a12 f4l
Thus, using Equation 5.16, we find the 99% confidence interval for the mean
to be

< µ >0.99 = (29,576 - 607; 29, 576 + 607) = (28.969; 30,183) ksi.

EXAMPLE 5.6

Suppose another sample of size 10 is collected on the Young's modulus, and it has the
same mean (i.e., 29,576 ksi) as the previous example and a known standard deviation
of 1,507 ksi. (a) Determine the 95% confidence interval for the mean. (b) If the sam-
ple size is increased to 300 giving the same mean of 29,576 ksi, what would he the 95%
confidence interval for the mean?

SOLUTION

(a) Using the information from the previous example, we can show that
ku./2 = 1.96, and

11507
kO.025 -

_V[_10_

. 1.96 = 934 ksi.

Thus, according to Equation 5.16, the 95% confidence interval for the mean is

< t >0.95 = (29, 576 - 934; 29,576 + 934) = (28,642; 30,5 10) ksi.

(b) For the sample size of 300, it can be shown that
6

k =
11507

1.96 =171 ksi.2
1300

Thus,

< t >95=(29,576l71, 29,576 + 171) = (29,405; 29,747) ksi.

Several important observations can be made from the previous two examples. As the
level of confidence increases, the confidence interval becomes wider. This is expected
since a wider interval is more likely to contain the population mean p, increasing the
confidence in the prediction. Also, as the sample size increases, the confidence inter-
val gets narrower for the same confidence level, indicating that a prediction using a
larger sample size is always better. In fact, as the sample size approaches infinity, the
sample mean will approach the population mean.
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5.4.2 Lower and Upper Confidence Limit
for the Mean with Known Variance

The previous section's discussion on the two-sided confidence interval is applicable for
the lower or upper confidence limit for the mean; however, the limits of integration
need to be changed as shown in Figure 5.7. Consider the lower confidence limit, u>1-a-
first. In this case, referring to Figure 5.7a,

X <
P _ka l a (5.17)1

where (1 - (x) is the required confidence level and k(, = (D-1(1 - a). For a specific sam-
ple mean of x , Equation 5.17 can be rewritten as

P
6 1-a. (5.18)
i1Z

Thus, the (1 - a) lower confidence limit for the population mean p is

E >1-a= (5.19)

Similarly, referring to Figure 5.7b, the (l - a) upper confidence limit for the mean,
<u-a, can be shown to be

6 (5.20)< + k(-,

The same three steps used to calculate the two-sided confidence interval can be used
to calculate the lower and upper confidence limits, as discussed next.

EXAMPLE 5.7

Consider again the Young's modulus problem with 41 sample points. Determine (a) the
95% lower confidence limit for the mean, and (b) the 95% upper confidence limit for
the mean.

PDF

100(1-a)% Lower Confidence Limit

(a) Lower Confidence Limit

PDF

0 ka( -p}}

100(1-a)% Upper Confidence Limit

(b) Upper Confidence Limit

Figure 5.7 Lower and Upper Confidence Limits for p
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SOLUTION

(a) 1 -a=0.95, oroc=0.05
k0.05 = (D-1(0.95) = 1.65

Thus,

k
6

= 1.651,507 = 388 ksi,a !n 41

Using Equation 5.19, we find the 95% lower confidence limit for the mean to be

>1_a = x - ka
6

= 29,576 - 388 = 29,188 ksi.

Simply stated, there is 95% confidence that the mean of the Young's modulus
is at least 29,188 ksi.

(b) In this case, the first two steps in Part (a) of this example will remain the
same. Using Equation 5.20, we can calculate the 95% upper confidence limit
for the mean as

6<µtj_a- X+ka
J J

= 29,576 + 388 = 29,964 ksi.

In other words, there is 95% confidence that the mean value of the Young's modulus is
less than 29,964 ksi.

5.4.3 Interval Estimation for the Mean with Unknown Variance

The discussions in Sections 5.4.1 and 5.4.2 assume that the population variance is
known: in other words, there is prior information on the population variance 62. In
general, the population variance is not known in advance but needs to be estimated
from the collected samples of size n. When the sample size n is relatively large, for
instance, greater than 30, it can be assumed that the sample variance s2 is a good esti-
mator of the population variance 62. Thus, all the previous equations for estimating
the confidence interval, and the lower and upper confidence limits (Equations 5.16,
5.19, and 5.20) are still applicable, except that 6 should be replaced by s. However,
if the sample size n is relatively small, for instance, less than 10, the assumption that
the sample variance is equal to the population variance is not appropriate. In fact,
common sense dictates that the confidence interval will be wider for smaller sample
sizes, indicating more uncertainty in the prediction.

If the population variance cannot be assumed to be known, then the approach dis-
cussed earlier must be modified. If there is no prior information on the population
variance, an exact confidence interval for the mean can be estimated if the underly-
ing population is normal. For a nonnormal population distribution, if the sample size
is relatively large, the error due to the normality assumption is expected to be rela-
tively minor. If we assume that the population of X has a normal distribution and we
denote X and S2 as the sample mean and the variance, respectively, the probability
distribution of (X - µ.) / 0 / -; is not normal. It can be shown that this standardized
random variable has the t-distribution (or Student's t-distribution) with (n - 1)
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degrees of freedonl. William S. Gossett proposed the distribution under the pseudo-
nym of "Student."' The probability density function (PDF) of Student's t-distribution
is given by

2]
.f-,-(t)= 1+ -00<t<00 (5.21)

ti'icfr(f.12) f.

where f = (n - 1) is known as the degrees of f reedom. The PDFs of a family of Student "s
t-distribution are shown in Figure 5.8 along with the standard normal variate. It can be
observed that the PDFs of Student's t-distribution have symmetric bell-shaped curves
similar to the normal curve. As f increases, the PDF of Student's t-distribution
approaches the standard normal curve. When f is smaller, the PDF of Student's t-dis-
tribution is flatter than the PDF of the standard normal curve.

As with Section 5.4.1 and Equation 5.14, to calculate the (1 - (x) confidence inter-
val for the mean with unknown variance, observing that the random variable
(X - µ) / (6 / -J) has Student's t-distribution, we can make the following probability

statement:

Xu < = 1- (5.22)P o/2.»-1 to/2m-1 a
.S

.

/ 11ti

Thus, for a sample of size 11, with a sample mean of X- and a standard deviation of
s, the (1 - (x) confidence interval is

S s
X +

-, 17

where
±ta/2.
11-1 are the values of Student's t-distribution with (n - 1) degrees of free-

dom evaluated at probabilities of (1 - (x/2) and a/2, respectively. Equations 5.16 and
5.23 are very similar except that in Equation 5.16, the values of the standard normal
variate are calculated at (1 - (x/2) and a/2, and in Equation 5.23 the corresponding val-
ues are calculated for Student's t-distribution. For ease of estimation, the CDFs and the
corresponding values of Student's t-distribution are tabulated in Appendix 5 for differ-
ent degrees of freedom.

Figure 5.8 Student's t-distribution
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EXAMPLE 5.8

Consider again Example 5.5a on Young's modulus. The sample mean and the standard
deviation are calculated to be 29,576 and 1,507 ksi, respectively. Determine the 95%
confidence interval for the mean assuming that the population standard deviation is not
known in advance.

SOLUTION

Following the same three steps discussed earlier, it can be shown that

1-a=0.95 or a=1-0.95=0.05 a/2=0.05/2=0.025
and 1-a/2 = 1 -0.025 = 0.975
J'= n - I = 41 - I = 40.

Thus, from Appendix 5 for Student's t-distribution, it can he observed that

to/2.n -I = 10.025.40 = 10.975.4( = 2.021.

Thus, using Equation 5.23, we can calculate the 95% confidence interval for the mean
of the Young's modulus as

< > = [29, 576 - 2.021
11507..

; 29, 576+2.021
1,507

().95
V-4-1

_ [29,100; 30,052] ksi.

In this case, the confidence interval for the mean is slightly larger than when the
variance is assumed to be known as in Example 5.5a. This is expected; since the vari-
ance is assumed to be unknown, more uncertainty is expected in the interval estimation
for the mean than when the variance is assumed to be known. However, when the sam-
ple size is small, the confidence interval for the case when the variance is unknown is
expected to be much larger than when the variance is known, as shown next.

EXAMPLE 5.9

Consider the Young's modulus problem in Example 5.6a. In this case, assume that only
10 samples are taken and the corresponding mean and standard deviation are 29,576
and 1,507 ksi, respectively. However, in this case, assume that the standard deviation
is not known in advance.

SOLUTION

Since the standard deviation is unknown, Student's t-distribution needs to he consid-
ered.

In this case, f = 10 - 1 = 9, and (1 - (x/2) = 0.975. Again, using Appendix 5, we can
show that

to!12,it- l - 10.025.9 = 10.975,9 = 2.262.

Using Equation 5.23, we can calculate the 95% confidence interval for the mean as
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< > = 29, 576 - 2.262 1' 507 ;
29, 576 + 2.262

1, 507
ksiµ 0.95 r---, 10 N."10

= [28,498; 30,6541 ksi.

For a smaller sample size, but with the same sample mean and standard deviation, the
interval width is [28,498; 30,654] ksi, larger than [28,642; 30,510] ksi when the vari-
ance is assumed to be known as in Example 5.6a.

5.4.4 Lower and Upper Confidence Limit for the
Mean with Unknown Variance

As discussed in the previous section, if the information on the variance of the popula-
tion is not known in advance or if the sample size is small, the probability distribution
of (X - µ) / ((y / -j) will have Student's t-distribution. Thus, Equations 5.19 and 5.20
need to be modified by replacing ka with ta. - t

Thus, the (1 - a) lower confidence limit for the mean with unknown variance can
be calculated as

µ = S (.5.24)>1-a .1 _ tear-I
' 1?

Similarly, the (1 - a) upper confidence limit for the mean with unknown variance
is

S
<p1_a -.i-+ta.,r--1 -.

1.17

(5.25)

EXAMPLE 5.10

Suppose that for a sample size of 10, the mean and standard deviation of the Young's
modulus are estimated to be 29,576 and 1.507 ksi, respectively. Calculate the 951'/(:
lower and upper confidence limits for the mean of the Young's modulus.

SOLUTION

Again, following the three steps discussed earlier and using Appendix 5, we can
observe that

t(X.11-1 = tO.o>.9 = t0.9s,9 = 1.833

and
s 1, 57

ta..,r-t = 1.833 = 874 ksi.

The (1 - (x) lower confidence limit for the mean of the Young's modulus with unknown
variance is

µ >0.95 = 29,576 - 874 = 28,702 ksi.

Similarly, the (1 - a) upper confidence limit for the mean of the Young's modulus with
unknown variance is

< 110 95 =29,576 + 874 = 30,450 ksi.
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5.4.5 Sample Sizes in Estimating the
Confidence Interval of Mean

In the discussion of estimating the confidence interval for the mean, the basic
objective was to establish how good the sample mean obtained from a sample of
size n is with respect to the unknown population mean p. Obviously, if the width
of the interval is small, the sample mean is a good predictor of the population
mean. In practical applications, several questions are of considerable interest: (a)
If the confidence interval is too wide for a given confidence level, how many addi-
tional samples are necessary to reduce the interval by a certain amount, such as
10%9 (b) If the width of the confidence interval is reasonable but the confidence
level in the prediction needs to be increased, for example, from 95 to 99%, how
many additional samples are necessary`? (c) If the confidence interval is selected to
be, say, ±1% of the sample mean with a given confidence level, such as 95C/c, what
is the minimum required sample size`?

The information required to answer these questions was discussed in previous sec-
tions. However, it is necessary to elaborate on the selection of the sample size for each
of these cases.

Consider again the example on the Young's modulus. For a sample size of 41, the
sample mean and the standard deviation are estimated to be 29,576 and 1,507 ksi,
respectively. Also assume that the underlying distribution of the population is normal
and the information on the variance is available in advance.

(a) Reducing the Confidence Interval

The 95% confidence interval for the mean, as shown in Example 5.5a, is
found to be [29,115; 30,0371 ksi. Suppose that for the same confidence level,
the interval needs to be reduced by 10%. The new interval = (30.037 -
29,115) x 0.9 = 829.8 ksi. Thus,

6 k - 1,507 k - 1,_507 1.96 = 829.8
r

u!/,

_ 0.025
I? 1' n 1r' i? 2

or, n = 5 1. Thus, an additional 51 - 41 = 10 samples need to be collected.
(b) Increasing the Confidence Level

Suppose that for the example in Part (a), with the same confidence interval of
[29,115; 30,0371 ksi, the confidence level needs to be increased to 99%.
The new a value is 0.01, and as shown in Example 5.5b, k00o> = 2.58. Thus.

,6 k - 1,5072.58= (30,037-29,115)

1. I? .r

or, n 72. Thus, an additional 72 - 41 = 31 samples need to be collected.

(c) For a Given Confidence Interval
Suppose that for the example in Part (a), the confidence interval is ±1 % of the
calculated sample mean. In this case, the interval for the sample mean is
[29,576 - 296; 29,576 + 296] ksi. For a 95% confidence level, the required
sample size is
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k
- 1, 507

k
- 1, 507 1 96 = 296a j 2 0.02>

ti -V 11

or, n = 100. Thus, an additional 100 - 41 = 59 samples need to be collected.
The discussion in this section is also valid if the population variance is unknown,

except that ka/2 needs to replaced by to/2, n-1

5.4.6 Interval Estimation for the Variance

The accuracy of estimating the population variance from a sample of size n is also of
concern; similar to the population mean, the sample variance can be used to evalu-
ate the confidence interval and lower and upper confidence limits for the variance.
However, the mathematics of estimating the confidence interval and the lower and
upper limits for the variance are expected to be much more involved. If the underly-
ing population is normal, irrespective of whether the sample size is small or large,
these quantities can be estimated exactly as discussed next.

Suppose X is a normal random variable and a sample of size n (i.e., x1 .x2, ..., xn)
is collected to estimate the unknown but constant population variance (Y'. As in
Section 5.4.1, these samples may be assumed to come from n independent normal
random variables (i.e., X1, X2, ..., Xf7). The unbiased sample variance can be calcu-
lated as

S2 =
n- l

11 _
I(Xi - X)

2

i=1

(5.26)

where X is the sample mean and is a normal random variable. Assume that u is the
population mean, which is unknown but constant.

The sample variance S2 is a random variable, and its distribution needs to be deter-
mined when X is normal. Equation 5.26 can be rewritten as

(17-1)s 2
= [(Xi

i=1

j(x 2 - 2
= i - t) _17(x -u)

i=1

(5.27)

Dividing both sides of Equation 5.27 by 62 results in

(1?-1)S2 Xi X (5.28)
6 i=1 6 6 17

Since the population mean p and the standard deviation 6 are unknown but constant,
the first term on the right-hand side of Equation 5.28 is the sum of the squares of n
independent standard normal variables and has a chi-square distribution with n degrees
of freedom (Ang and Tang, 1975). It is denoted as The second term on the right-
hand side of Equation 5.28 is also the square of a standard normal variable and has a
chi-square distribution with one degree of freedom. The sum of two chi-square distri-
butions with p and q degrees of freedom is also a chi-square distribution with (p + q)
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degrees of freedom (Hoel, 1962). Thus, the left-hand side of Equation 5.28, that is,
[(ii -1)S2 / 1, has a chi-square distribution with f = (n - 1) degrees of freedom. It is
denoted as xz

-1

If a random variable C has a chi-square distribution with f degrees of freedom, its
PDF is given by

f c (C) = I C(./'/2-1)e-02,
C > 0. (5.29)

2f/2r(f.12)
The PDFs of the chi-square distribution for f = 2, 4, 10, 20, and 30 are plotted in Figure

5.9. As expected, by virtue of the central limit theorem, the chi-square distribution
approaches the normal distribution as f - oo. The CDFs and the values of the chi-square
distribution for various degrees of freedom ,f are given in Appendix 3. As discussed ear-
lier, the PDF of (n - 1) 52/62 has a chi-square distribution with (n - 1) degrees of free-
dom, as shown in Figure 5.10. Thus, the two-sided (1 - a) confidence interval for the
population variance 62 can be expressed as

(n -1)S2<
P ca/2,n-1

62
C1-a12,n-1 =1- a. (5.30a)

Noting that the observed sample variance s2 is a realization of S2, and taking the recip-
rocal of Equation 5.30a, results in

P (n -1)s < 62 < (n -1)s
=1-(X. (5.30b)

2

Cl-a/2,n-1 Ca/2,n-1

The two-sided (1 - a) for the variance can be given by

(I?- 1)s2 (12 - 1)S
2

< ;

Cl-a12,n-1 Ca/2.n-l

fc(c)

0.3

0.2

0.1

f=2

10 20 30 40 50

(5.31)

Figure 5.9 PDF of Chi-
Square Distribution withf
Degrees of Freedom
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fc(c)

Ca12,n-1 c_ (n 1)s2

62

C1 a 2,n-1

Figure 5.10 Two-sided
100(1-a)% confidence interval for a2 Confidence Interval for 62

Using the concept discussed in Sections 5.4.2 and 5.4.4, the lower and upper confi-
dence limit for the population variance can be calculated similarly. We can show the
lower confidence limit for 62 to be

62 >1

2
(n -1)s.-

(5.32)
c 1-a.,l-1

Equation 5.32 states that the population variance 62 is at least 62> 1 - a with a confi-
dence level of I - a.

Similarly, we can show the upper confidence limit for 62 to be

< 6`1-tz = (5.33)
Ca.n - I

Equation 5.33 states that the population variance 62 is less than <21 - a with a confi-
dence level of I - a.

EXAMPLE 5.11

Assume that the Young's modulus considered in the previous sections has a normal dis-
tribution. Using 41 sample points, we find its variance to be 1,5072 ksi2. Determine (a)
the 95% confidence interval for the population variance 62, (b) the 95% lower confi-
dence limit for 62, and (c) the 95% upper confidence limit for 62.

SOLUTION

(a) f = 41 - 1 = 40, and 1 - a = 0.95. Thus, a = 0.05, and a/2 = 0.025. According
to Appendix 3, cU.025 40 = 24.4, and ('0.975. 40 = 59.3. Using Equation 5.31, we
find the 95% confidence interval for the population variance to he

(41 -1)1, 507' (41 -1)1,507 2

< 6 >o.ys =
59.3 24.4

= [1, 531,905-1 3,723,03 1] ksi 2 .
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(b) Again, f = 41 - I = 40, and a = 0.05. From Appendix 3, 40 = 55.8. Using Equation
5.32, we find the 95% lower confidence limit for the population variance to be

(41- l)1,5072
>0.9s _

55.8
= 627,992

.8

(c) In this case, from Appendix 3, Co o> 40 = 26.5. Using Equation 5.33, we find
the 95% upper confidence limit for the population variance to be

(41-1)1,5072 23,427,998 ksi
26.5

5.5 CONCLUDING REMARKS

Modeling and quantifying uncertainties in random variables are the initial and essen-
tial steps in any risk-based analysis and design. Collecting data and extracting infor-
mation from the data in terms of many descriptors are introduced in this chapter.

Descriptions of randomness in terms of many numerical descriptors are routine in
the profession. Procedures to select the underlying distribution of the random vari-
ables, particularly when several of the standard distributions are likely choices, are
introduced in this chapter. To describe a particular distribution, its parameters need to
be determined: procedures to do this are also discussed.

The two most commonly used methods of point estimation of parameters, that is,
the method of moments and the method of maximum likelihood, are introduced in this
chapter. The accuracy of' estimating the mean and variance of a population using a
sample size of n is discussed. Procedures to calculate the confidence interval and the
lower and upper confidence limits are also presented. The sample size required for a
prediction with a preselected confidence level is explained.

The uncertainties in most of the random variables used in engineering practice, in
terms of their distribution and parameters, have already been quantified by many
researchers. For example, the Young's modulus of all grades of steel can be considered
to have a lognormal distribution with a mean value of 29,000 ksi and a coefficient of
variation of 0.06. In other cases, the underlying distribution of a random variable may
have been established, but its parameters will change from location to location. For
example, as discussed in Chapter 4, the maximum annual wind velocity can be con-
sidered to have a Type I extreme value distribution. However, its parameters will
depend on location and need to be estimated using the wind velocity data available at
a particular location. In other cases dealing with parameters whose uncertainty has not
been studied before, both the distribution and its parameters need to be evaluated using
the procedures discussed in this chapter.

5.6 PROBLEMS

5.1 The test scores of a class consisting of 30 students are given in Problem 3. 1.

(a) Plot the data on normal probability paper. Is the normal distribution acceptable in this
case? Estimate the mean and standard deviation from the plot.

(b) Plot the data on lognormal probability paper. Is the lognormal distribution acceptable?
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5.2 The annual rainfall in a city is assumed to be uniformly likely between 100 and 150 cm.
The data on annual rainfall for the city for the last 20 years are as follows: 102. 110, 117,
133, 105. 144, 149, 145, 127, 124, 122, 141, 138. 119, 119. 106. 114. 130. 106. and 136.

(a) What kind of probability paper do you need'?

(b) Plot the data on the probability paper. Is the uniform distribution acceptable based on
this plotting?

(c) Perform a chi-square test on the data. Is the Uniform distribution acceptable at it I ,I

significance level'?

5.3 The time between replacement, T, in days for light bulbs in a particular building is under
consideration. Suppose T is assumed to have an exponential distribution given by its PDF as

fr(t) e-''. t > 0.

(a) Construct an exponential probability paper.

(b) Suppose the following data on T are available: 72. 50. 320. 100, 25.450, 190. 245. 140,
300, 10, 900, 275, 200, 30, 620, 380, 150. 120. 85. and 55.

Plot the data on the probability paper. Is an exponential distribution acceptable for T?

5.4 Perform the chi-square test on the data given in Problem 5.3.

(a) Is an exponential distribution acceptable at a 5% significance level?

(b) Is an exponential distribution acceptable at a 1% significance level?

5.5 Perform the chi-square test on the data given in Problem 3. 1.

(a) Can the underlying distribution of the test score be accepted as normal at it 51% signif-
icance level`?

(b) Can the underlying distribution of the test score be accepted as lognormal at a 59 sig-.
nificance level'?

5.6 The annual precipitation during the past 30 years in Tucson. Arizona. is given in
Problem 3.2.

(a) Perform the chi-square test on the data. assuming a normal distribution.

(b) Can the underlying distribution be accepted as normal at a 5(l significance level"

(c) Is the normal distribution acceptable at it I% significance level'?

(d) Can the underlying distribution be accepted as lognormal at a 5(4 significance level?

5.7 The total numbers of accidents per month at an intersection for a 2-year period are 0. 2, 0.
0,0,0.0, 1, 1, 1, 1,2, 1. 1, 1, 1,3, 1. L. 1, 1, 1.4.and0.

(a) Perform the chi-square test on the data, assuming a Poisson distribution.

(b) Is a Poisson distribution acceptable at it 5(4 significance level'?

5.8 Perform the K-S test on the data given in Problem 3.1 for normal (listributlon. Is normal
distribution acceptable at a 5%%c significance level'?

5.9 Perform the K-S test on the data given in Problem 3.1 for lognormal distribution. Is log-
normal distribution acceptable at a 5% significance level?

5.10 Assume the test scores given in Problem 3.1 can be modeled by a normal random variable.
Estimate its two parameters using the method of moments and using the method of maxi-
mum likelihood.

5.11 Assume the test scores given in Problem 3.1 can be modeled by a lognormal random vari-
able. Estimate its two parameters using the method of moments and using the method of
maximum likelihood.
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5.12 The time intervals, T, in days between two successive accidents in an intersection were
found to be 5, 10, 1, 6, 3. 7, and 5. Suppose T can be modeled by the geometric distribu-
tion. Determine its parameter using the method of moments, and using the method of max-
imum likelihood.

5.13 In Problem 5.7, calculate the parameter of the Poisson random variable using the method
of moments and using the method of maximum likelihood.

5.14 The annual precipitation during the past 30 years in Tucson, Arizona, is given in Problem
3.2

(a) Plot the data on normal probability paper. Is the normal distribution acceptable'?

(b) Calculate the mean and standard deviation of the annual precipitation from the plot.

(c) Determine the 99% confidence interval for the mean of the annual precipitation.

5.15 The posted speed limit on a particular segment of an interstate highway is 65 mph. From
past experience, the standard deviation of vehicle speed is 10 mph. To estimate the average
speed of vehicles, the speeds of 50 vehicles are recorded and the average speed is estimated
to be 67 mph.

(a) Determine the 95% confidence interval for the mean vehicle speed.

(b) Determine the 95% lower and upper confidence limits for the mean vehicle speed.

(c) The confidence interval estimated in Part (a) needs to be reduced by 20(/(.. How many
additional measurements are needed'?

(d) The confidence level of the confidence interval estimated in Part (a) needs to he
increased from 95% to 99%. How many additional measurements are required`?

5.16 Vehicle speed needs to be estimated with an accuracy of ±5 mph of the average speed with
a 99% confidence level. Assume the standard deviation of the vehicle speed is 10 mph.
How many samples are required'?

5.17 The daily water consumption in a desert city is studied for 30 (lays. The mean daily water
Consumption IS found to be 10 million gallons per day (mg(1), and the corresponding stan-
dard deviation is 2 mgd. No prior information on the standard deviation of dally water con-
sumption of the city is available.

(a) Determine the 95% confidence interval for the mean daily water consumption.

(h) Determine the 95% lower and upper confidence limit for the mean daily water con-
Sumption.

(c) The confidence interval of the mean obtained in Part (a) needs to be reduced by 10%.
I-low many additional samples are required'?

5.18 The biological oxygen demand (BOD) level is measured for 10 days for a river at a station
and is found to be 3.6, 4.2, 2.8. 4.5. 3.0, 2.9, 2.8. 5.0. 3.1, and 3.3 mg/L. Assume that the
daily BOD level is a normal random variable.

(a) Calculate the mean and standard deviation of the daily BUD level.

(b) Determine the 99% confidence interval for the mean BOD.

(c) Determine the 99% upper confidence limit for the mean BOD.

(d) Determine the 99% confidence interval for the variance.

5.19 Load tests are conducted on 15 piles at a large construction project. The capacity of each
pile is 80. 90, 75, 93, 100, 76, 89, 80, 82. 87, 91, 98, 84, 86. and 81 kip. No prior informa-
tion on the variance of the pile capacity is available. Assume the pile capacity can be mod-
eled as a normal variable.
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(a) Calculate the mean and variance of the pile capacity.

(b) Calculate the 95% confidence interval for the mean.

(c) Calculate the 95% lower confidence limit for the mean.

(d) Calculate the 95% confidence interval for the variance.

(e) Calculate the 95% lower confidence limit for the variance.

5.20 How will Problem 5.19 change if the variance of the pile capacity, known in advance, is
exactly equal to the value obtained from the data? Recalculate Parts (b) and (c) of
Problem 5.19.



Chapter 6

Randomness in Response Variables

6.1 INTRODUCTORY COMMENTS

Modeling the uncertainty in random variables based on the available data was dis-
cussed in detail in Chapter 5. However, in many engineering problems, the uncertainty
associated with one random variable needs to be estimated indirectly from the infor-
mation on uncertainty in another random variable. For example, wind velocity in miles
per hour (mph) is measured continuously at airports. To design a structure for wind
load, an engineer needs to calculate the wind pressure on the structure, usually in
pounds per square foot (psf); however, no direct information is available on the statis-
tics of wind pressure. By collecting data on wind velocity and following the procedures
discussed in Chapter 5, the engineer can easily quantify the uncertainty in the wind
velocity in terms of its mean; its variance, standard deviation, or coefficient of varia-
tion; and the underlying distribution. However, for probabilistic design, the uncertainty
in the wind pressure needs to be estimated from the uncertainty in the wind velocity.
This type of analysis is discussed in Chapter 6.

According to the American Society of Civil Engineers (ASCE) standard ASCE 7-
95 (Minimum Design Loads for Buildings and Other Structures), the design wind pres-
sure at height = can be calculated as

q_ = O.00256K_ K_, V 21 (6.1)

where q- is the wind pressure in psi', K_ is the velocity pressure exposure coefficient at
height K is the topographic factor, V is the basic wind speed in mph, and I is the
importance factor. Initially, assuming K_, K_t, and 1 are constant, q- is a function of one
random variable V, whose uncertainty is completely defined by its known PDF. In this
case, the nonlinear relationship between q and V is known and is given by Equation
6.1. Since V is a random variable, q- must be a random variable.

In this example, wind pressure can be considered to be the response variable, and it
is functionally related to only one basic random variable, or simply one random vari-

138
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able (i.e., wind velocity). In general, the response variable could be functionally related
to more than one random variable. This will be the case when K:, K:1, I. and V in
Equation 6.1 are assumed to be random variables. In most engineering problems, func-
tional relationships (linear or nonlinear) between the response and basic random vari-
ables are known; however, in some cases, the exact relationship may not be known
explicitly. Since the response variable is a function of other random variables, it will
also be random, whether the exact functional relationship between them is known or not.
The subject of this chapter is the quantification of the uncertainty in the response vari-
able when it is related to other random variables with a known or unknown relationship.

6.2 KNOWN FUNCTIONAL RELATIONSHIP
BETWEEN THE RESPONSE AND A SINGLE
BASIC RANDOM VARIABLE

6.2.1 Linear Relationship

Suppose the response variable Y has a known linear relationship with a single random
variable X given by

Y = a+bX, (6.2)

where a and b are known constants. Since X is a random variable, Y will also be a ran-
dom variable. For the linear functional relationship, it can be shown that Y will have
the same distribution as X. The mean or the expected value of Y, E(Y), can be calcu-
lated as

+00

+0o

E(Y) = f (a + hX ).f x (x)cl v = a f fx + h f -vfx

Since area under the PDF is 1.0 and the first moment of the PDF about the origin is the
mean or expected value, the expected value of Y can be calculated as

E(Y) = a+bE(X). (6.3)

The variance of Y can be shown to he

Var(Y) = f {(a + h.t) - [ci + hE(X )]}-.jX (.v)cl r

+00

=h2 f[x E(X)]2.fx(x)dr.
-00

Since the integral in the preceding equation is the variance of X. the variance of Y In
Equation 6.2 becomes

Var(Y) = b2Var(X ). (6.4)

If X is a normal random variable, the response variable Y is also a normal random
variable with mean and variance obtained using Equations 6.3 and 6.4, respectively.

EXAMPLE 6.1

Shallow strip footing is frequently used for ordinary buildings. Suppose a strip footing
of width B and depth H (H:5 B) from the ground surface needs to be located in a dense
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sand layer. Considering general shear failure, we can calculate the ultimate bearing
capacity of the soil, q11, using Terzaghi's (1943) bearing capacity equation as

qu = cNr . + yHNc/+ 1 yBNy2

where c is the cohesion, 'y is the unit weight of the soil, and N, NT, and N. are the bear-
ing capacity factors and can be estimated from the information on the angle of internal
friction of the soil. Suppose the soil layer has a 0 of 20° and the corresponding bear-
ing capacity factors are 17.69, 7.44, and 3.64, respectively. Further assume that 'y = 115
pcf, H = 3 feet, and B = 4 feet. All the parameters in Terzaghi's bearing capacity equa-
tion are considered to be constant except c; c is assumed to have a normal distribution
with a mean and COV of 400 psf and 0.1, respectively.

(a) Determine the distribution of qrr and its mean and standard deviation.

(b) A safety factor of 3 is generally used to calculate the allowable bearing capac-
ity, qa (i.e., q, = q1r/3). What is the distribution of q, and its mean and standard
deviation?

(c) What is the probability that the allowable hearing capacity is less than 3,000 psf?

SOLUTION

(a) qrr =cx17.69+115x3x7.44

+
1

x 115 x 4 x 3.64 = 3,404 + 17.69c
2

Thus,
E(g11) = 3,404 + 17.69 x 400 = 10, 480 psf

And
Var(grr) = 17.692 x Var(c) = 17.692 x (400 x 0.1)` = 500697.76

or
6q = 17.69 x 40 = 707.6 psf.

Thus, q11 is normal with a mean of 10,480 psf and a standard deviation of
707.6 psf.

(b) g111 = c111 . Thus, qC1 is also a normal random variable with a mean of 10,480/3
3

= 3,493.3 psf and a standard deviation of 707.6/3 = 235.9 psf.

(c) P(q, <3,000)=(D
31000 - 3, 493.3

_(D(-2.09)=1-0.98169=0.01831.
235.9

6.2.2 Nonlinear Relationship

A more general case, in which the functional relationship between the response vari-
able and the basic random variable is not linear, is considered next. To generalize the
discussion, assume that the response variable Y is functionally related to X as

Y = g(X). (6.5)

If Y is a monotonically increasing function of X, then

P(Y<y)=P(X<<-x)
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or

Fy (y) = Fx (x) = Fx [g - ' (y)]

The value g-1(y) can be evaluated by inverting Equation 6.5. If both sides are differ-
entiated with respect to y, the PDF of Y can be obtained as

fY (Y) .fx I g (y-)] g
dv

(6.6)

Thus, if the functional relationship g and the PDF of X are known, the uncertainty in Y
in terms of its PDF can be obtained from Equation 6.6.

If Y decreases with X, dg-1 (y)/dy can be negative. Since the PDF of a random vari-
able cannot be negative, its absolute value is of interest. Therefore, to account for both
cases, the PDF of Y is written as

dg-' (y)
fY (Y) = A

[g-1
(y)] (6.7)

dy

In many cases, the inverse function g-1(y) may have n values x;, and if the fx(x;) are
nonzero positive numbers, Equation 6.7 needs to be modified as

17

(v) _ [.1)] dg' (6.8)f. Yfxgi-0!Y

i=1
dy,

EXAMPLE 6.2

Similar to Equation 6.1, assume the following quadratic relationship between Y and X:

Y=cX2 (6.9)

where c is a constant. Initially, assume X is a lognormal random variable with param-
eters Xx and fix, and its PDF is given by

1 1
fx (x) exp

x 2Tc x
- 1 (lnx-Xx

Zl Sx

21

If Equation 6.9 is inverted, the two roots of X can be shown to be

and dxdg-'(y)+ 1

dy dy 2-\,,"'(-.v

It is discussed in Chapter 4 that the lognormal distribution will have a nonzero PDF
only for positive values of X. Thus, considering only the positive root of X and the
absolute value of dx/dy and using Equation 6.7, we can show the PDF of Y to be

y 1

fY(y) = .fx i-
C 2.\; c y,

or

fr (Y) =
I 1

eXP
x 2

I

1 y.>0. (6.10)
2V y
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On the other hand, if X is a normal random variable with mean µx and standard devi-
ation 6x, its PDF can be shown to be

2
1 1

fx(x) = exp
x-- - ltx -00<X<-

(T x 27t 2 x

For a normal distribution, the PDF exists at both the positive and negative roots, and
the PDF of Y becomes

_ ; y 1

fY(y) = fX + ; +.fx - - _
c 2'V"(-N)

or

fY (Y) - 6x !2n* 2 y

2

21

1 1

+exp

exp

6x

I

-00<y<+00. (6.11)

Although the PDFs of the response variable Y for lognormal and normal random vari-
ables appear to be complicated, they are not difficult to obtain, and no approximation
is involved in their evaluation.

6.3 RESPONSE AS A KNOWN FUNCTION OF
MULTIPLE RANDOM VARIABLES

When the response variable is a function of multiple random variables, its uncertainty
analysis is quite involved. A closed-form analytical solution can be obtained only in
special cases. Some of the cases in which closed-form solutions can be obtained are (a)
multiple random variables with known joint PDF and explicit functional relationships
between the response and basic random variables, (b) sums and differences of inde-
pendent normal random variables, (c) products and quotients of independent lognormal
random variables, and (d) sum of independent Poisson random variables. These cases
are discussed briefly in Section 6.3.1. In many other cases, only partial statistical infor-
mation of the response variable can be obtained in terms of its mean and variance.
Sometimes the mean and variance can be only be estimated approximately, as dis-
cussed in Section 6.4.

6.3.1 Exact Solution

6.3.1.1 Known Joint Density Function and Functional Relationship

Assume two random variables X, and X2 have a known joint PDF of fx,x, (-.Vi x2
They are functionally related to two response random variables Yl and Y2 as
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Yl = VI (xl , .i-2 )

Y2 = 1'2(11, 2

Further assume, as in Section 6.2.2, that unique inverses of these functions exist:

X, = x, (YI Y-)

X-) = x2 (y, v,) .

Then, it can be shown that
.fY,Y,(yI,y,)=.fx,x,(1,x2)I J I

where IJI is the determinant of the Jacobian J defined as

I f I=

(6.12)

(6.13)

I aY2 aY2

Equation 6.12 is rarely used since the joint PDF and the functional relationships
between the random variables are seldom known or easily invertible.

6.3.1.2 Sums and Differences of Independent !Normal Variables

Suppose that X, and X, are statistically independent normal random variables with
means µ x and µ X,, respectively, and corresponding standard deviations 6 x, and (yX, .
They are functionally related to the response variable Y as

Y=g(X,,X2)=X, +X2. (6.14)

When XI's are statistically independent, the CDF of Y can he calculated as

FY (y) = $Jfx, (x1 )fX_, (x, )clv1da2. (6.15)
x,+t,<y

If we change the variable of integration from x, to y, Equation 6.15 becomes
00

FY (y') = f $fx[g'(y,x2)]fx2(x,)

The corresponding PDF of Y is
00

fY (y') = f .fx, [g
-1

(Y' x, )].fX, (-V, )
-00

ag-1(y,X2)

ay

ag,-I(Y,-Y2)

ay

Equation 6.14 can he used to show that

-1 (y°, X-) X] = 1'- x,g

ax,

ay,

ax,

axe

ay,

ax2

aX, a_ 2 ax, ax

1 1 2

and

Thus, Equation 6.17 becomes

00

ag-1o,, x2) _ )XI

ay ay

fY (y') = f exp
6X2 "

dydx2. (6.16)

cLv2 . (6.17)

2

1'22
6X,

. (6.18)
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After simplification, Equation 6.18 becomes

.f (y) = 1 expp
'2TL ; 6 +

6
X

X

of

'-(µx, +µx..
N'6X, +6X

(6.1.9)

From Equation 6.19, it is clear that Y is also a normal random variable with a mean

uY=1µx+µx`

and a corresponding variance of
2 1)

= 6X1 +6Y,GY

The preceding observations can be generalized. Suppose that the Xi's are statistically
independent normal random variables with mean µX and standard deviation 6X , and
they are functionally related to the response variable Y as

Y = a1 X 1 + a2 X, + ... + a,, X (6.20)

where al's are constants. It can be shown that Y is also a normal random variable with
mean and variance of

and

17

uY = ai1tx.
i=1

6Y=laiOxi.
i=1

EXAMPLE 6.3

(6.21)

(6.22)

Assume a random variable Y can be represented by the following relationship:
Y =Xi +2X2 -4X3

where X1, X2, and X3 are statistically independent normal variables with mean values
of 1.0, 1.5, and 0.8, respectively, and corresponding standard deviations of 0.10, 0.20,
and 0.15, respectively. Then Y is also a normal random variable, and its mean and stan-
dard deviation are

µY =1.0+2x1.5-4x0.8=0.8
and

6Y =x.0.12 +22 x0.22 +42 x0.152 = 0.728.

With this information, any probability of Y can be calculated, as discussed in
Section 4.2.1.

EXAMPLE 6.4

Consider a weight that is hung by a cable. The load-carrying capacity or the resistance
of the cable, R, is a normal random variable with a mean and standard deviation of 120
kip and 18 kip, respectively. The load effect, S, is also a normal random variable with
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a mean and standard deviation of 50 kip and 12 kip, respectively. Assume that R and S
are statistically independent. The cable will break when its resistance is smaller than
the applied load. Another variable Y can be introduced as

Y=R- S.
As discussed here, since R and S are independent normal random variables, Y will

also be a normal random variable with pY = 120 - 50 = 70 kip, and
GY = ti 18 ' +12 2 = 21.63 kip. Thus, the cable will break when Y<_ 0, and its proba-

bility can be calculated as

0 - 701
_ (-3.24) = I - 0.99940 = 0.00060.

P(Y
< 0) = 0 (21.63

6.3.1.3 Products and Quotients of Independent Lognormal Variables

In this case, assume that
Y = X

1
X, ... X,1 fl X1 (6.23)

where X1's are statistically independent lognormal variables with parameters fix, and
x(as discussed in Section 4.2.2, these parameters can be estimated from the infor-
mation on the corresponding mean and standard deviation). Following procedures sim-
ilar to Section 6.3.1.2 for sums and differences of independent normal variables, we
can show that the response variable Y is also a lognormal random variable with the fol-
lowing parameters:

11

EXAMPLE 6.5

(6.24)

(6.25)

Assume that the random variable Y can be represented by the following relationship:

Y=
X, 0X'

X;
where X1, X2, and X3 are statistically independent lognormal variables with means of
1.0, 1.5, and 0.8, respectively, and corresponding standard deviations of 0.10, 0.20, and
0.15, respectively. Then, using Equations 4.10 and 4.11, the two parameters of each of
the three lognormal variables are

0.102(2 =1n l+ , =0.0100
1.0

2 0.20'
x, In 1+

1)
=0.0176

1.5

0. 15'2X 3 = In I + = 0.0346
0.8
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and

= ln(0.8) -1 x 0.0346 = -0.2404.
2

k x, ln(1.0)-1x 0.01 = -0.005
x' 2

= ln(1.5) -1 x 0.0176 = 0.3967x2
2

The discussion in this section suggests that Y is a lognormal random variable, and
its two parameters can be calculated using Equations 6.24 and 6.25. For the problem
under consideration, these parameters are

k Y = h x, + k x, - k x 3 = -0.005 + 0.3967 - (-0.2404) = 0.6321

and

Then,

Y = 0.0 I + 0.0 176 + 0.0346 = 0.0622.

r = 0.249.

With this information, any probability of Y can be estimated.

EXAMPLE 6.6

Example 6.4 on the probability of cable failure can be considered again. However, R
and S are now assumed to be statistically independent lognormal random variables with
the same means and standard deviations as before. The COVs of R and S are 18/120 =
0.15, and 12/50 = 0.24, respectively. Since they are relatively small, less than 0.30, we
can assume that COV, as discussed in Chapter 4. For this example

R = 0.15 2 = 0.0225

s 0.242 = 0.0576

and =1n120-1x0.0225=4.7762R 2

= 1n50-
I

x 0.0576 = 3.8832.s 2

In this case, another random variable Y can be defined as

Y - R

S

Thus, Y is also a lognormal random variable with the following parameters:

kY = XR - kS = 4.7762 - 3.8832 = 0.893

Y = s = 'a.0225 + 0.0576 = 0.2830.

In this case, the cable will break if Y< 1, and the corresponding probability of failure
can be calculated as
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R(1, < 1)
= (D

In 1- 0.893
= (D(-3.16) =1- 0.99921 = 0.00079.

0.283

This probability of failure is slightly different than when both R and S were normal ran-
dom variables.

EXAMPLE 6.7

The Reynolds number is used to determine the nature of a flow, that is, whether it is
laminar or turbulent. It can be calculated as

R
VDp

where V is the average velocity in a tube, D is the diameter of the tube, p is the mass
density of the fluid, and t is the viscosity of the fluid. Suppose V, D, p, and µt are sta-
tistically independent lognormal random variables with means of 5 ft/s, 1 foot, 1.94
slug/ft3, and 10-5slug/sec-ft, respectively, and the corresponding COVs are 0.2, 0.05,
0.05, and 0.1, respectively.

(a) Determine the distribution of R.
(b) What is the probability that R is greater than 106?

SOLUTION

(a) As discussed in Section 4.2.2, X1 and 1 are the two parameters of the ith lognormal
random variable, and if its COV bi is relatively small, 1 = Sl. For the problem under
consideration, these parameters for all the lognormal variables can be calculated as

v=0.2, n=0.05, c 0.05, u=0.1

2, =1n5-0.5x0.22 = 1.58944

kD =lnl-0.5x0.052 =-0.00125

?c = ln1.94-0.5x0.052 =0.66144

7µ =1n10-5-0.5x0.12 =-11.51793.

R is also a lognormal random variable, and with Equations 6.24 and 6.25, its
two parameters can be calculated as

kR =1.58944 - 0.00125 + 0.66144 - (-11.51793) = 13.76756

and
R = 0.22 +0.052 +0.052 +0.12 = 0.055.

Thus, cR = 0.23452.

- - (D In 106 -13.76756
(b) P(R >

106

) - 1 - P(R< _ 1
06

1)
0 242

= I - D(0.20) =1- 0.57926 = 0.42074.
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6.3.1.4 Sum of Independent Poisson Random Variables

Suppose Xl and X2 in Equation 6.14 are statistically independent Poisson random vari-
ables with parameters vx, and vx.,, respectively. For the discrete random variable case,
similar to Section 6.3.1.2, the PMF of Y can be shown to be

1)Y (Y) _ 1
all .v,

Y,
allx2

e(-V x1 t )
- (-v-t2 t) te

x2W"
(Y-x2)! X?!

-(VX1 +1'X,, )t_ I
.Y! all .r, X-) ! (V - x, )

The terms within the square brackets in the preceding equation represent a binomial
series and can be shown to be equal to (VVxI t + vx2 t)''. Thus, the PMF of Y becomes

[(TX, + VX2 t (1,X +VX, )tpY (Y) = e
(6.26)

Equation 6.26 shows that Y is also a Poisson random variable with parameter
(1',Y + L,x

l 2
),

*Generalizing the preceding discussion, we can show that if the X1's are statistically
independent Poisson random variables with parameter vx,'s, and they are related to the

r

response variable Y as
Y = XI +X, +...+X11,

then Y is also a Poisson random variable with parameter

(6.27)

11

VY = vxi . (6.28)
r=1

Note, however, that if Y is the difference of Poisson random variables, then Y is not a
Poisson random variable.

EXAMPLE 6.8

A parking garage has three entrances, A, B, and C. The entrance of cars through each
gate can be modeled by three independent Poisson random variables. Past records indi-
cate that an average of 5, 10, and 15 cars per hour enter through Entrances A, B, and
C, respectively. What is the probability that 40 cars will enter the garage in the next 2
hours?

SOLUTION

Let T be the event representing the total number of cars entering the garage. Then,
T = A+B+C.

Since T is the summation of three independent Poisson random variables, it is also a
Poisson random variable with parameter 1T = 5 + 10 + 15 = 30 cars per hour. Thus,



6.4 Partial and Approximate Solutions 149

e-(30x2)(30 X
2)4O

P(T = 40) _ = 0.00143.
40!

6.3.2 Central Limit Theorem

The discussion of the distribution of the sum and product of random variables would
be incomplete without introducing the central limit theorem. This important theorem
states that the sum of a large number of random variables, where none of them domi-
nates the sum and regardless of their initial distributions, tends to the normal distribu-
tion as the number increases. If

X = 1X, (6.29)
1=1

the random variable X tends to have a normal distribution as n approaches 0.
The concept can be extended to the product of a large number of random variables:

where none of them dominates the product and regardless of their initial distributions,
the distribution tends to the lognormal distribution as the number increases. If

11

X = H Xi
r=1

(6.30)

the random variable X tends to have a lognormal distribution as n approaches oo.

6.4 PARTIAL AND APPROXIMATE SOLUTIONS

Besides the cases discussed in Section 6.3, there are many practical problems in which
a random variable Y is a function of many other random variables X. The functional
relationship could he linear or nonlinear; the probabilistic characteristics of Y may not
be defined precisely; it may only be possible to obtain limited information. If the dis-
tributions of the X;'s are not known, or if X, is normal, X is lognormal, and so on, it is
not possible to determine the exact distribution of the response variable Y as in
Equation 6.20; however, its mean and variance can still be extracted from the infor-
mation on the means and variances of the X1's, giving only limited information on its
randomness. If the functional relationship is linear, then the mean and variance of the
response variable can be estimated without any approximation. For nonlinear func-
tional relationships, the mean and variance of the response variable can only be esti-
mated approximately. These are discussed next.

6.4.1 Partial Uncertainty Analysis: Response as a Linear
Function of Multiple Random Variables

Linear relationships are discussed first. Suppose that

Y=aX,+hX, (6.31)

where the Xi's have a mean of µ.X, and standard deviation of 6X , and a and h are con-
stants. Although the exact distribution of Y is unknown, in general its mean and vari-
ance can be shown to be

µY = a t +hlix, (6.32)
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and

Var(Y) = a'-6X, + h262X, + 2ahCov(X1, X2 ). (6.33)

If X1 and X2 are statistically independent, then their covariance will be zero and
Equation 6.33 becomes

Var(Y) = a26XI +b26X2. (6.34)

In Equation 6.31, if

Y=aX1-hX2
then the mean and variance of Y can be calculated as

(6.35)

PY = aµ x, - hµ x, (6.36)

and
Var(Y) = a26X+ b'6X, - 2abCov(X1, X.)). (6.37)

11YaIX; (6.38)
In general, if

;=1

where the Xi's are random variable with mean µx+ and standard deviation 6x and the
a;'s are constants, then the mean and variance of Y can be calculated as

17

and

i=1

it
2

lJ /J

Var(Y) _ a
72 6X +a,a1Cov(X;,X j)

r

j

rr 1

a1a jCov(X; , X J )
=1 j=1

since
Cov(X;, X;) = 6X = Var(X, ).

r

(6.39)

(6.40)

6.4.2 Approximate Solution: Response as a General Function of
Multiple Random Variables

The concept developed in Section 6.4.1 for a linear relationship between the X js can be
extended to any nonlinear relationship. Equation 6.1 will represent this case if in addition to
the wind velocity, some or all of the variables in it are considered to be random. In general,
the response variable Y can be represented by a relation g of a set of random variables as

Y = g(X1,X2,...,X,1). (6.41)

If the mean and variance of each X; are known but the distribution is unknown, the
approximate mean and variance of Y can be estimated, as discussed next.

Expanding the function g(X 1, X2, ..., in a Taylor series about the mean values
µxl, µx2, ..., µ xx, one obtains

17 ag

Y = g(ux ,µx, ,....µx,r )+ (X; - µx,) ax;

l ,l 11

29
(X; - i t x)(X j - µx) +...

2;=1j=1
r ; axiax.j

where the derivatives are evaluated at the mean values of the X;'s.

(6.42)
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Truncating the series at the linear terms, the first-order- approximate mean of Y,
denoted as E(Y'), can be obtained as

E(Y') g(lLx, 4t x, .... ,,ux, (6.43)

which indicates that the first-order mean of Y is approximated by the value of the func-
tion evaluated at the mean values of the XI's. The first-order variance of Y, denoted as
Var(Y'), can be shown to be

ti

ag 11

II

Var Y' = 1Var(X)i +I I Cov X X)
i=1 aX1 I-1;=, aXl aX.;

or

or

Var(Y') n
E1

2Var(Xl.) + E!1EfjCov(XJX 1)
J=1 r=1/=1

JI JI

Var(Y') X 'd,
i=1j=1

(6.44)

where E; and Ej are constants and are the values of the partial derivatives ag / JX; and
ag / aX1, respectively, evaluated at the mean values of the XI's.

If the XI's are uncorrelated, then Equation 6.44 reduces to
JI

Var(Y') E1.2Var(X; ). (6.45)
i=1

The coefficients EI can be interpreted as amplification factors for the uncertainties
in each of the corresponding random variables X. In general, these amplification fac-
tors will show the importance of the variables involved in the formulation. This type
of probabilistic approach will also help to identify primary and secondary variables in
problems where a large number of variables are involved.

This approximation of the mean and variance of Y can be improved by including the
higher-order terms in the Taylor series expansion of g(X1

,
X-,, ..., X,1). If X; and Xi are

uncorrelated, the second-order mean of Y. denoted as E(Y"), can be shown to be

1 JI a?
gE(Y ) g µx, x. ...,ux.)+ar(X1). (6.46)

?I=1 aX!

Again, the partial derivatives are evaluated at the mean values of all XI's. To estimate
the second-order variance, the information on the third and fourth moments of the XI's
must be available. However, in most cases this information will not be available. The
use of the second-order mean and the first-order variance is considered adequate for
most practical engineering applications.

EXAMPLE 6.9

Assume that the random variable Y can be represented by the following relationship:

Y=X1X;X;
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where X1, X2, and X3 are statistically independent random variables with means of 1.0,
1.5, and 0.8, respectively, and corresponding standard deviations of 0.10, 0.20, and
0. 15, respectively. Using Equations 6.43 and 6.45, we find the first-order mean and
variance, respectively, to be

E(Y') = 1.0 x 1.52 x (().8)111 = 2.0887

and

Var(Y') = Var(X) µ' x µ1J + Var(X2)[ µ x (2µ ) x µ1l,3X XI
x, xx ,

+Var(X3) µ x, x l x,
x

1 P-2/3

3
x -1

= (0.10)2 (1.52 X ().81/3)2 +(0.20 )2 (2 x 1.0 x 1.5 x 0.8113 )2

+(0.15)2 1.Ox 1.52 x(1 /3)x0.8-2/3

= (0.10)2 (2.09)2 + (0.20)2 (2.78)2 +(0.15)2 (0.87)2

= 0.04363 + 0.31024 + 0.01704 = 0.37091

and 6 r. = 0.609.

In this example, the amplification factors E1, E,, and E3 are found to be 2.09, 2.78,
and 0.87, respectively, indicating the relative importance of each of the random
variables.

Equation 6.46 can be used to calculate the second-order mean of Y as

E(Y") 2.0887 + 1 Var(X ) x 0 + 1 Var(X ) x x 2.0 x u ll32 2 2 µ x, x

+ Var(X ) x x x ? x -5/3
2 3 µx µx,

3 3
µx

=2.0887+0+ 2 x(0.20)2 x(1.0x2.0x0.8' 3
2

+
1

x (0.15)2 x 1.0 x 1.52 x
)(_?

x 0.8-5/3

2 3 3

= 2.0887 + 0.0371 0.0082 = 2.1176.

In this case, the second-order mean is slightly greater than the first-order mean.

EXAMPLE 6.10

The rate of steady water flow per time unit at a constant depth in a prismatic open chan-
nel can be calculated using the Manning formula as

Cm AR2/3S1/2
n
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where C,,, is a constant of value I in SI units; ii is the Manning roughness factor, which
depends on the boundary materials being used; R is the hydraulic radius; and S is the
slope of the bottom of the channel. Consider a trapezoidal cross section made with
gravel. Assume C,,, is a constant. However, n, A, R, and S are statistically independent
random variables with means of 0.029, 8.0 m2, 1.1 m, and 0.003, respectively, and the
corresponding COVs are 0.30, 0. 1, 0. 1, and 0. 1. respectively. No distributional infor-
mation is available.

(a) Determine the first-order mean and variance of Q.

(b) Determine the second-order mean of Q.

SOLUTION

(a) Equation 6.43 is used to find the first-order mean of Q:

3 x (0.003)'2 = 16. l Om 3/s.E(Q') 1 x 8.0 x 1.12/
0.029

Equation 6.45 is used to find the first-order variance of Q:

V ar(Q') = Var(n) -
1 . 0

X µ., X P R /
3 X

µ. l! 2

2 2

1.0 ,/3 112 1.0 2 - 1+Var(A) x ji x i + Var(R) x µ n x- x µ 1 x µ s`
µ,? 1 t, 3

+Var(S)
1.0

µ
x x 2/3 x Ixµ -1,,2

µ n µ k 2 .s

l

=(0.029x0.3)2
-1.0 x8x1.12'3 x0.003'2

0.029'`

+(8 x0.1)'`
1.

x 1.12/' x0.00312
0.029

+(1.1 x0.1)'`
1 . 0 x8x 2 x 1.1-113 x0.003'!'`

0.029 3

+(0.003 x ().1)
2

o

l.U

029
x 8 x 1.1 2`f3 x

1

2 x 0.003
1J2

= 23.33+2.59+ 1.15+0.65 = 27.72

or 6 Q 5.26 m3/s.

(b) Equation 6.46 is used to find the second-order mean of Q:

E(Q") = 16.10+ I[(0.029 x 0.3)2 2x1
x8x1.12/3 x0.003'12

2 0.0293
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+ (8 X
O.1)2 X0

+(1 1x0 1)2
1

X X. .

0.029 3 3

+(0.003 X 0. 1)2
1 x8x1.1213 xIx -1 X0.003_3/2

0.029 2 2

=16.10+ 1 (2.898+0-0.036-0.040) = 17.51 m3/s.
2

6.5 MULTIPLE RANDOM VARIABLES WITH
UNKNOWN RELATIONSHIP

In many cases, the exact form of g in Equation 6.41 may not be known. Consider a struc-
ture consisting of n members. The lateral deflection of the structure at the top is a func-
tion of each element's length, area, moment of inertia, Young's modulus, applied loads,
and so forth: however, the exact functional relationship between the lateral deflection
and all the other parameters is not known in most cases. A matrix analysis procedure can
be used to estimate the lateral deflection for any specific values of these parameters. The
exact functional relationship is known in algorithmic form but not in any exact func-
tional form. The implication is that the partial derivatives of the function with respect to
the random variables cannot be calculated to approximate the first- or second-order
mean and the first-order variance of the response variable, as discussed in Section 6.4.2.

In this case, the approximate (first-order) mean value of the lateral deflection, repre-
sented by Y in Equation 6.41, can be obtained by analyzing the structure using the mean
values of all the parameters in the problem, the same as in Equation 6.43. Evaluating the
variance of Y will be more involved since the functional form of g is unknown, and its
partial derivatives with respect to the ith random variable in Equation 6.41 cannot be
evaluated. The task is to calculate the variance of Y without information on the analyti-
cal partial derivatives. The Taylor series finite difference (TSFD) estimation procedure
can be used to numerically evaluate the variance of Y, as discussed below.

To evaluate the variance, the structure needs to be analyzed two more times, corre-
sponding to each random variable:

Yip _ g>[ tx, 4.tx, ,...,(l,l.X; + 6x, ),...] (6.47)

and

yi = )[µX1-µx,,...,(µX, -6X ),...]. (6.48)

In simple terms, Equation 6.47 states that the lateral displacement of the structure is
calculated considering the mean values of all the random variables except the ith one,
which is considered to be the mean plus one standard deviation value. Equation 6.48
indicates the same thing, except that for the ith random variable, the mean minus one
standard deviation value needs to be considered. Then, using the central difference
approximation, we can show that

E. = ag =
Yi+ - Yi

. (6.49)
' a.Xi 26X.

t
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Considering all the random variables, the first-order variance of Y is computed as' (y+ - Y- + - Y- )YV . _ % I !

=i 26x, i-1 2 l
(6.50)

Thus, when the functional relationship among the random variables is not known
explicitly, the mean and variance of the response variable can be approximated by ana-
lyzing the problem two additional times for each of the random variables to be con-
sidered in the problem. If there are n random variables present in a problem, the total
number of analyses required is (1 + 2n).

EXAMPLE 6.11

To calculate the uncertainty in the wind pressure, consider Equation 6.1 again. For the
sake of simplicity, Kit and 1 are assumed to be constants with magnitudes of 1.0. V and
K, are assumed to be random variables with means of 63 mph and 0.68, respectively,
and the corresponding coefficients of variation are 0.16 and 0.10. The standard devia-
tions of V and K_ are 10.08 and 0.068, respectively.

Assuming that the functional relationship between the response variable q_ and the
random variables V and KZ, is known and is given by Equation 6.1, we can calculate the
first-order mean of qy as

E(q') = 0.00256 x 0.68 x 63` = 6.909 psf.

The first-order variance of q. can be shown to be

Var(q') = Var(K,) 0.00256 x µV.) 2 + Var(V) 0.00256 x µK_ x 2 x
C -

= (0.068)2 (0.00256 x 632 )2 + (10.08)2 (0.00256 x 0.68 x 2 x 63)2 = 5.366.

To demonstrate the application of the TSFD, it is now assumed that the exact form
of Equation 6.1 is not known. Even in this case, the mean value of q- can be approxi-
mated by evaluating the equation at the mean values of all the random variables. For
the problem under consideration, the mean of q, will be 6.909 psf, as it was when the
functional relationship was known. The partial of q, with respect to the random vari-
ables cannot be calculated. However, using Equation 6.50, we can calculate the vari-
ance of qz as described next.

For the random variable K, the mean plus one standard deviation and the mean minus
one standard deviation values are (0.68 + 0.068 = 0.748) and (0.68 - 0.068 = 0.612),
respectively. The corresponding values for V are 73.08 and 52.92 mph. Using Equations
6.47 and 6.48, we can obtain the following:

YK = 0.00256 x 0.748 x 632 = 7.600

YK_ = 0.00256 x 0.612 x 63 2 = 6.218.

Similarly,

Y,+ = 0.00256 x 0.68 x 73.082 = 9.297

YC = 0.00256 x 0.68 x 52.922 = 4.875.



156 Chapter 6 Randomness in Response Variables

Thus, using Equation 6.50,

7.600-6.218 9.297-4.875 `=
t ul (q_) 2 + 2 5.366.

The same value for the variance of q was estimated when the functional relationship
was known. However, in this case, partial derivatives were numerically calculated using
Equation 6.49. In reality, for complicated problems, the numerical values of the response
variable may need to be calculated with a computer program or other numerical techniques
for different combinations of values for all the random variables. But this simple example
clearly demonstrates that the variance of the response variable can be estimated even when
the functional relationship among the random variables is not known explicitly.

6.6 REGRESSION ANALYSIS

In the previous sections we discussed analytical procedures for calculating uncertain-
ties in the response variable when it is a function of other basic random variables, either
explicit (known) or implicit (analytically unknown but known in an algorithmic sense,
e.g., in the form of a finite element representation). When the functional relationship
between the response and the basic random variables is implicit or unknown, it can be
developed by considering the available information on them. Since some or all of the
variables are random, the relationship will be probabilistic in nature. Regression analy-
sis, a statistical technique that can be used to investigate and model this probabilistic
relationship, is discussed in this section.

For example, in geotechnical engineering, the looseness or denseness of a cohe-
sionless soil deposit is usually characterized by its relative density. The relative den-
sity,, Dr, is defined as

D. = Ymax Y - (6.51)
7 Yniax -'Yinin

where Ymin, and y are the maximum, minimum, and in-place dry density, respec-
tively, of a cohesionless deposit. The basic drawback of this definition is that it is com-
puted from the ratio of small differences between large numbers. This implies that
small variations in the density could lead to large errors in the computed relative den-
sity. The uncertainties in D,. in terms of its coefficient of variation could be on the order
of 0.36, which is not negligible.

The standard penetration test can be used to measure the degree of compactness of in
situ soil. The standard penetration resistance, known as the SPT-value or N value, has
been used since 1948 to estimate the in situ relative density of a cohesionless soil deposit.
N is defined as the number of blows required to drive a split-barrel sampler the last 12
inches of an 18-inch drive using a 140-pound hammer falling 30 inches. Due to the nature
of the testing procedure and the field environment, the N values obtained from the field
will contain a considerable amount of uncertainty. For a homogeneous soil deposit, a
coefficient of variation of 0.25 for N is reported in the literature. Since the N values and
D,. measure the same soil property, there must be some relationship between them. Since
both are random variables, regression analysis can be used to determine the relationship.

Determining the linear relationship between two variables is called sin1J)Ie lineal'
regression analysis. Determining the linear relationship between more than two vari-



6.6 Regression Analysis 157

abler is called multiple linear regression analysis. Determining a nonlinear relationship
between random variables is called nonlinear regression analysis. The basic concept
behind regression analysis is discussed briefly in the following sections.

6.6.1 Simple Linear Regression Analysis

Suppose n pairs of data (xl, yt), (x,, y,), are available for two variables X
and Y. To obtain the relationship between them, the data can be plotted as shown in
Figure 6.1. This graph is known as a scatter diagram and provides a variety of infor-
mation, including whether the relationship is linear or nonlinear and whether the spread
in the data is uniform or constant about the average tendency. For a given value of x, v
will have a range of values. This can be expressed mathematically as

Y=bo+hjX+E. (6.52)

In general, X is called an independent or predictor or regressor variable, and Y is called
the dependent or response variable. h0 and 1), represent the intercept and slope of the
line and are known as regression coefficients. E, representing the error in the estimation
of Y, is a random variable representing the differences between the observed and pre-
dicted values using the regression equation of the dependent variable. The form of
Equation 6.52 suggests that it is the linear regression of Y on X. Obviously, the linear
regression of X on Y is also possible.

In the context of linear regression analysis, Equation 6.52 is generally expressed as

E(YI X =x)=E(YIx)=ho+h,x. (6.53)

Equation 6.53 gives the expected value of Y for a given value of X =..X-. The task is
to calculate the regression coefficients using the data on X and Y. Some of the under-
lying assumptions in estimating the regression coefficients are (a) the scatter diagram
indicates that the relationship between X and Y can be approximated by a straight line;
(b) the error term E has a zero mean and an unknown but constant variance of G2,
implying that the spread in the data about the regression line is constant; and (c) errors
are uncorrelated and normally distributed. A regression model will be unacceptable if
these assumptions are not satisfied.

The most appropriate regression line can be estimated by minimizing the sum of
squares of the differences (errors) between the observed and predicted values of the

300000 600000 900000

X, population Figure 6.1 Scatter- Diagram
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dependent variable. This is usually done using the method of least squares. If the pre-
dicted value of the dependent variable for the ith observation is yi, the error sum of
squares (SSE) for n observations is

n
2

= 1(yi
yi ) 2

SSE

aE2 11

Y, 2(yi -bo -hlxi)(-xi)=0.
ahl i=1

i=1 i=1

With the method of least squares, the two equations for the two unknown regression
coefficients are

aE2 /1

_ 12(yi - b0 - blxi)(-l) = 0
abo i=1

and

If these two equations are solved simultaneously, the estimates of the two regression
coefficients, N), and b1, can be shown to be

1 n h '7

bo=-ly'i - Ixi=y-b.1x
n i=1 17 i=1

b =1 -

where ;r

txiyi-__ixiiyi
1 !1 ,1

1: xi yi - n _Y y
i=1 n i=1 i=1 = i=1

n
2

,Yi - r1X
i=1

1?

n 2
1

n

L xi - - t xi
i=1i=1

n
2=t(yi-h0-b1xi)

)z

(6.54)

(6.55)

(6.56a)

and Y are the estimated mean values of X and Y. Equation 6.56a can also be
conveniently expressed as

17

yi(xi -X)
i=1h1 =

11 _
(xi - x)2

i=1

Thus, the mean least-squares regression is

St,.
(6.56b)

E(Y I X = x) = ho + b1x. (6.57)

The regression equation is applicable only over the range of observed data of the
independent variable X. A regression equation gives a measure of the mean relation-
ship between variables. Obviously, the dispersion about the mean equation, known
as the conditional variance Var (Y I X = x) or Var (Y I x) or the error mean square or
residual mean square (MSE), is also of interest for checking the adequacy of the
regression equation. The unbiased conditional variance can be estimated as

MSE = Var(Y I X = z:) = S2 \ _
1

n

> (yi - yi )2
n-2 i=1

F-
2

SSL

n-2 n-2

(6.58)

The corresponding conditional standard deviation, Sy I x, is known as the standard
error of regression.
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6.6.2 Coefficient of Determination

The adequacy of a proposed regression model in representing the relationship between
the regressor and the response variables is a major concern. One of many parameters
that can be used for such determination is the coefficient of'determrnation R2.

The total variability in the response variable Y, denoted as S,,,,, has two components:
the amount of variability in the observations of the y;'s accounted for by the regression
model (SSR), and the residual variation left unexplained by the regression model (SSE).
Mathematically, the concept can be represented as

JJ 11 1J

V) 2 = (1 J - 1 ) 2

or

(6.59a)

5,.,. = SSR + SSE . (6.59b)

A nondimensional quantity R2, called the coefficient of determination, can be defined
as TT

R 2
SSR I - SSt:, -.i=1
S S /1 - 2
Y `-'. !, (Yi - Y)

i=1

(6.60)

R2 will have a value between 0 and 1. When it is close to 1, it implies that most of the
variability in the dependent variable Y is explained by the regression model.

The information on R2 should he used with caution, since it is always possible to
increase its value. By adding more repressor variables, the R2 value can be increased.
However, the new model is not necessarily better than the old model. The R2 value also
depends on the range of the regressor variable; it will increase as the spread of the regres-
sor variable increases and decrease as the spread in the regressor variable decreases. Also,
a large R2 value does not imply that the regression equation is an accurate predictor.
Montgomery and Peck (1982) presented cases where the relationships between the regres-
sor and dependent variables were nonlinear but a linear model gave a large R2 value. Some
of the other important issues on regression analysis are briefly discussed in Section 6.6.3.

EXAMPLE 6.12

Water consumption, expressed in gallons per capita per day, is a major concern to city admin-
istrators in a growing desert city. To address the problem comprehensively, 10 cities of differ-
ent population sizes in the Southwest were studied. The results are summarized in Table 6.1;
X denotes the population size and Y denotes water consumption in gallons per capita per day.
The scatter diagram in Figure 6.1 indicates that a linear relationship exists between X and Y.

(a) Determine the regression equation of Y on X.
(b) Determine the conditional variance and conditional standard deviation.
(c) Determine the coefficient of determination.

(d) Suppose the population of the city will be 750,000 in 2010. If the water con-
sumption corresponding to a given population is a normal random variable,
what is the probability that the per capita water consumption will exceed 150
gallons per day?
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Table 6.1 Example on Linear Regression

City (x100 v x10 x1010 x104 y' ti' v 2 -
1 0.5 100 5.00 0.25 1.0000 102.505 -2.505 6.2739 718.24
2 1.0 110 11.00 1.00 1.2100 106.078 3.922 15.3830 282.24
3 2.0 110 22.00 4.00 1.2100 113.223 -3.223 10.3877 282.24
4 2.5 113 28.25 6.25 1.2769 116.796 -3.796 14.4077 190.44

5 3.0 125 37.50 9.00 1.5625 120.369 4.632 21.4508 3.24

6 4.0 130 52.00 16.00 1.6900 127.514 2.486 6.1802 10.24

7 5.0 130 65.00 25.00 1.6900 134.660 -4.660 21.7109 10.24

8 6.0 145 87.00 36.00 2.1025 141.805 3.195 10.2080 331.24
9 7.0 155 108.50 49.00 2.4025 148.951 6.050 36.5965 795.24

10 8.0 150 120.00 64.00 2.2500 156.096 -6.096 37.1612 538.24

1 39.0 1,268 536.25 210.50 16.3944 179.7630 3,161.60

SOLUTION

(a) Observing the trend in the scatter diagram in Figure 6.1, we consider for the
problem a linear regression equation of the form given by Equation 6.53.
Using Equations 6.55 and 6.56a, and the numbers summarized in Table 6.1,
we can calculate the two regression coefficients h,; and h, as

536.25 x 106 - -1 x 39 x 105 x 1, 268
10h1 = 1 = 0.71455 x 10-4

210.5x1010- x 39x10'
10

and

0.71455x10_4

ho, = x 19268- x 39 x 105 = 98.932.
10 10

Thus, the regression equation becomes

E(Y I X=,t)= 98.932+0.71.455x10-4

.t-.

(h) Using the information from Table 6.1, we find SSE to be 179.763. Using
Equation 6.58, we can calculate the conditional variance as

179.7630
,SY, . _ = 22.470.

10-2
The corresponding conditional standard deviation is

SY 1.1- = 22 470 = 4.740.

(c) Using the information from Table 6.1. we can observe that ,S',.,. = 3.161.60
(note the mean value of y is 126.8), and SSE = 179.763. Thus, using Equation
6.60, we find the coefficient of determination to be

R22=1-179.763=0.943.

3161.60

The scatter diagram shown in Figure 6.1 and the estimated R2 value indicate
that the predictability of the regression equation is quite high.
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(d) Using the regression equation, the mean per capita water consumption in 201() will be

E(Y I X = 750,000) = 98.932 + 0.71455 x 10 x 750,00() = 152.523.

Thus

P(Y > 150 I X = 750, 000) = I -
cDr 150 - 152.523

l 4.740

= 1- $(-0.53) _$(0.53) = 0.70194.

6.6.3 Residual Analysis

The underlying assumptions for the preceding regression analysis were identified in
Section 6.6.2. Before a regression model is accepted, it is important to evaluate the
extent to which these assumptions are satisfied.

This is done using residual analysis. The residual, E1, in a regression analysis is usu-
ally defined as the observed value of the dependent variable minus the predicted value
and can be expressed as

(6.61)

Physically, the residual is a measure of the variability in the dependent variable Y not
accounted for by the regression model. Thus, any local deviations from the assump-
tions made in the regression model will show up in the residuals.

Though several statistical techniques are available, residual plotting is probably the most
informative for residual analysis. The residuals can be plotted on normal probability paper, as
discussed in Section 5.2.1.1. If the plot appears to be linear, it will satisfy the normality
assumption of the residuals. Montgomery and Peck (1982) noted that for sample size n< 16.
the normal probability plots may deviate substantially from linearity. Also, the normal proba-
bility plots often exhibit no unusual behavior even if the errors E; are not normally distributed.

A considerable amount of information can he obtained by plotting the residuals ver-
sus the predicted values y; of the dependent variable. if the residuals have a horizon-
tal band on both sides of the zero axis, as shown in Figure 6.2. the mean value of the
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Figure 6.2 Residual Analysis of Data Shown in Figure 6.1
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(a) Nonconstant variance
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(h) Nonlinear relationship

Figure 6.3 Residual
Analysis, (a) Nonconstant
Variance; (b) Nonlinear
Relationship

residual is approximately zero, and the variance is constant about the regression line.
If the residuals diverge as shown in Figure 6.3a, the variance is not constant, thus inval-
idating the regression analysis. Weights on independent variahles can be used to
address the nonconstant variance problem (Ang and Tang, 1975). If the residuals
appear as shown in Figure 6.3b, the linear regression analysis is unsatisfactory; higher
order terms may he necessary, for example, a square term or some other transforma-
tion of the independent variable. The residuals can also be plotted against the inde-
pendent variable X, providing similar information.

The point is that linear regression analysis may appear to he simple, but in reality it
is not. Several underlying assumptions need to be satisfied before a regression equa-
tion can be accepted.

EXAMPLE 6.13

Determine whether the assumptions of regression analysis are satisfied for the water
consumption problem considered in Example 6.11.

SOLUTION

Since the normal probability plot is not expected to be informative for a relatively
small sample size, in this case n = 10, it is not considered here. However, Figure 6.2
indicates that the variance is constant about the regression line. Also, the residuals are
evenly distributed over both sides of the zero axis, indicating that its mean is expected
to be 0. In fact, for this particular example, the calculated value of the mean of the
residuals is 0. Thus, the example satisfies the assumptions of regression analysis.

EXAMPLE 6.14

Composite materials are now being used in structural design. It is known that the
stress-strain properties depend on many factors including the types of fiber and matrix
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used; the orientation, volume ratio, and layering of fibers; and manufacturing proce-
dures. To determine the Young's modulus of a batch of composite material, a cross sec-
tion with an area of 0.5 in.2 and length of 8 inches is subjected to a monotonically
increasing tensile load in the laboratory, and the corresponding elongation of the rod is
noted. The results are shown in Table 6.2. It is necessary to estimate the Young's mod-
ulus of the material using these observations.

SOLUTION

For the observed data, the stress (Y) can be calculated as load/area, and the strain (X)
can be calculated as elongation/8. Assuming the stress-strain diagram to he linear in
the observed ranges of data, and noting that when the stress is zero, the strain will also
be zero, we can consider the following linear regression model (without intercept):

E(Y I X =x)=hx. (6.62)

In this case, the sum of the squares of the differences for n observations becomes
,l

SSE = F-2 _ (til - hx; )2 .
r=1

(6.63)

The least-squares estimate of the slope can be calculated using
2 ,laF

_ 12(yi - hx, )(-_v1) = ()
ah

or the estimated slope (h) of the regression line can be shown to be
11

x1 i

b- r=1 (6.64)
11

x2i
i=1

The estimated slope of the regression line is the Young's modulus of the compos-
ite material.

Table 6.2 Young's Modulus Calculation

Strain = Stress =
Load Elongation elongation/8 load/area A- x; ) (y; _ y )) 2 5,,,, _

No. (kip) (x 10-3in.) x; (x 10-4) y; (ksi) (x 10-1) (x 10-4) -1 . (ksi) (1 U-) y; -2
1 0.5 1.9 2.375 1.0 5.641 2.375 0.936 4.096 3.331

2 0.7 2.9 3.625 1.4 13.141 5.075 1.429 0.841 2.031

3 1.0 4.2 5.250 2.0 27.563 10.500 2.070 4.900 0.681

4 1.3 5.0 6.250 2.6 39.063 16.250 2.464 18.496 0.051

5 1.5 6.0 7.500 3.0 56.250 22.500 2.957 1.849 0.031

6 1.8 7.5 9.375 3.6 87.891 33.750 3.697 9.409 0.601

7 2.0 7.9 9.875 4.0 97.516 39.500 3.894 11.236 1.381

8 2.5 10.3 12.875 5.0 165.766 64.375 5.077 5.929 4.731

1 492.831 194.325 56.756 12.838
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Figure 6.4 Data on Stress
0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 and Strain With and Without

X, strain Intercept

All the calculations necessary to estimate the Young's modulus using Equation
6.64 are summarized in Table 6.2. The Young's modulus in this case is

194.325x 10h= =3,943 ksi.
492.831 x

10-9

The corresponding regression equation is
E(Y I X = x) = 3,943x.

Using the information from Table 6.2, we can observe that 5,,,. = 12.838 (note the mean
value of y is 2.825 ksi), and SS1,, = 56.756 x 10-3. Thus, using Equation 6.60, we find
the coefficient of determination to he

_.S.SE _56.7.56x10-3 «
R

2 =1 =1
SN.1. 12.838

If the intercept ho is not assumed to be zero, then following the same procedures dis-
cussed in the previous example, and using eight sets of observations on X and Y given
in Table 6.2, we can obtain the following regression equation:

E(Y I X = x) = 0.0546 + 3879.8x.

The R2 value is found to be 0.995. Thus, both regression equations, one without the
intercept and the other with intercept, have high R2 values, but the corresponding
Young's modulus values are 3,943 and 3,879.8 ksi, respectively. Both regression equa-
tions are plotted in Figure 6.4, and they appear to be similar. However, considering the
physical aspects of the problem, the equation without the intercept is more appropriate
in this case.

6.6.4 Multiple Linear Regression

The discussion on linear regression analysis in the previous section can be generalized
to consider multiple independent variables, X1, X,,..., X,,,. Similar to Equation 6.53,
the mean value of the regression equation can be expressed as
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~(Y I ,,_-2,...,-Vin ) _ bob +b] .v1 +...+b,1x111 (6.65)

where b11, h1, b,, ..., h,,, are regression coefficients or partial regression b1

represents the change in the mean value of the dependent variable Y for a unit change
in t.j. The partial regression coefficients need to be estimated using the available data.
As before, the basic assumption is that the conditional variance Var(Y I .v1, xxx2, ..., .t,,,) is

a constant. Similar to Equation 6.54, the total sum of squared errors in this case is

11

SS 2 = (yl - yl )2 =
1=

Y=Xb+ (6.68)

(6.66)

Using the least-squares principle, minimizing 8' with respect to the h;'s will result in
(in + 1) number of equations. Solving these equations simultaneously will give the esti-
mate of all the partial regression coefficients.

Once the regression coefficients are evaluated, F2 can be estimated using Equation
6.66. An unbiased estimate of the conditional variance can be calculated as

2 (6.67)
YIXI 17-n1-1

where n is the number of sets of data, and in is the number of independent variables.
Using Equation 6.60, we can also calculate the corresponding coefficient of determi-
nation, R2.

The algebraic method of minimizing 822 and solving (in + 1) simultaneous equations
is quite cumbersome for a large number of variables (in) and a large number of data
sets (n). A more compact method is to use matrix notation, as discussed next.

For each regressor variable X;, n sets of data are collected, giving the total number
of sample points n x n2: in other words, each data set consists of ni observations repre-
senting nn repressor variables. The general form of a regression model in the matrix
notation can be expressed as

or

!1 111

V; - hc) - h1-X-1 i
!- 1=1

Y1 1 " 0... -`1111A21 ... ... h1
Y2 1 112 .22 ... ... ...

h

...:::=i::: ::: . . .

Y I
'v 1 17 'k 211 .V

11111

7
h

(6.69)

where Y is a vector of size (n x 1) containing ii observations of the dependent variable.
X is a matrix of size /? x (nn + 1), x;i is the observation on the All repressor variable in
the jth data set, b is a vector of size (nl + 1) x 1 containing all the partial regression coef-
ficients to be determined, and c is a vector of'size (11 x 1) containing the errors or resid-
uals. E; is similar to E in Equation 6.52 for linear regression; the E; 's are uncorrelated
and identically distributed normal random variables with zero mean and a variance
of 62.

The corresponding regression equation is
E(Y I X = x) = xb. (6.70)

Equations 6.68 and 6.69 are simply vector addition formulas, as shown in Figure 6.5.
As mentioned earlier, the method of least-squares fit minimizes the sum of squares of
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Figure 6.5 Vector Representation of the
Principles of Least Squares

the errors. With reference to Figure 6.5, the length of the residual vector £ is defined
as

1£1= ?. (6.71)
1i .

V r=1

Therefore, minimizing the sum of squares of the errors (the right-hand side of Equation
6.71) would also minimize the length of the residual vector £ (the left-hand side of
Equation 6.71). From Figure 6.5, it is clear that the minimum length of the vector £ is
achieved when c is perpendicular to the vector Xb, that is, when the dot product of the
two vectors is zero. This condition is written as

We F_ = 0 (6.72)
or

[Xb]'e = 0

btXt(Y - Xb) = 0

btXtY = btXtXb.
Here, the superscript t refers to the transpose of a matrix. Therefore,

b = [XtX]-' [XtY 1. (6.73)

This is a well-known formula to obtain the coefficients of the multiple linear regres-
sion model. Note that the matrices X and Y are available from observed data, as
defined in Equation 6.69. The matrix multiplication and inversion routines are readily
available in many computer programs and spreadsheets.

Once the regression coefficients are available, the SSr, .SYi r , ` . and R2 values
can he calculated using Equations 6.66, 6.67, and 6.60, respectively.

EXAMPLE 6.15

Trichlorophenol (TCP), a nonbiodegradable organic compound, can be removed by
chemical oxidation using an oxidant such as hydrogen peroxide, with ferrous sulfate as
a catalyst. The ratio of the concentration of TCP after the oxidation to the concentra-
tion of TCP before the oxidation is denoted as Y in this example and is affected by four
variables: temperature (XI), acidity measured by pH (X2), concentration of the oxidant
(X3). and concentration of the catalyst (X4). The available data from 12 different exper-
iments are shown in the following table:
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X 1

(°C)

X2 X3

(mg/L)

X4

(mg/L)

Y

20 3.5 1000 50 0.53
10 3.8 500 40 0.80
15 4.0 600 25 0.82
30 2.7 1200 100 0.26
25 4.2 1800 75 0.25
18 2.5 900 80 0.50
27 3.0 700 30 0.69
22 3.2 1500 150 0.19
32 3.7 450 130 0.37
16 2.4 1000 90 0.47
20 3.9 800 60 0.54
35 4.5 1800 100 0.15

(a) Fit a multiple linear regression model to these data.
(b) Determine the R2 value for the regression model.

SOLUTION

(a) The linear regression model to represent the four regressor variables can he
expressed as

E(YI x,,x2,_V3,x4)=h()+b1x1 +b7x1 +b .rz+b4x4

The X matrix in Equation 6.70 is

1 20 3.5 1000 50
1 10 3.8 500 40
1 15 4.0 600 25
1 30 2.7 1200 100
1 25 4.2 1800 75
1 18 2 5 900 80X=
1 27

.

3.0 700 30
1 22 3.2 1500 150
1 32 3.7 450 130
1 16 2.4 1000 90
1 20 3.9 800 60
1 35 4.5 1800 100

The Y vector is

Yt = 10.53 0.80 0.82 0.26 0.25 0._500.690.190.370.47 0.54 0.151
The quantities Xf X and Xt Y are calculated as:

12 270 41.4 12250 930
270 6692 942.7 292500 22500

X`X = 41.4 942.7 148.02 43035 3163
12250 292500 43035 14922500 1034500

930 22500 3163 1034500 88750
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and

5.570
112.170

X`Y- 19.133
4740.500

350.75()

The regression coefficients are obtained as

b0 1.06619
b, r -0.00760
b, _ [X

X]_ [XrY]

= 0.01080
b3 -0.00024
54 -0.00288

Thus, the regression equation is
E(Y I x1, .x2 , x3, x4) = 1.06619 - 0.00760x1 + 0.01080X2-0.00024-V3- 0.00288x;

(b) The coeffecient of determination R2 is found using Equation 6.60. In this
equation, V, the average of the observed values of Y, is found to be 0.4642.
The predicted values, y1, are computed from the regression equation for each
of the 12 data sets, and the observed values, yl, are readily available from the
data. Thus R2 is calculated as

I(^ 59180 5. .
=0.977.-2 0.57209

The coefficient of determination is high, indicating that the regression equation mod-
els the observed data quite well. However, in all cases, the analyst must ensure that the
model is also physically meaningful.

6.6.5 Nonlinear Models

The procedure just discussed for multiple linear regression can also be used to fit poly-
nomial models and other nonlinear models that are similar to linear models. Consider
a polynomial model as

E(Y I X = x) = ho + h1x + h2.2 +... + h,ll_V (6.74)

Each of the powers of X can simply be considered to be a different variable, for exam-
ple, X 1 = X, X2 = X2, and so on, and the same multiple regression formula used in
Equation 6.73 can be used to determine the coefficients of the polynomial model.

Other nonlinear models such as exponential and power models can also be trans-
formed to linear form to facilitate the use of linear regression. Consider the exponen-
tial model as

E(Y I X = x) = h0 exp(h1 x).

Taking the natural logarithm on both sides results in

E(InYIX=x)=In b0+hl.x.

(6.75)

(6.76)
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Since In h0 can be considered to be another regression coefficient, Equation 6.76 rep-
resents a linear regression model as discussed in Section 6.6. 1. Here, the independent
variable is X and the dependent variable is In Y.

EXAMPLE 6.16

The initial bacterial concentration of a pure culture suspended in water needs to be
estimated. It is known from previous experience that the bacteria grow in an exponen-
tial form, given by Equation 6.75. Every 30 minutes, the number of cells in the culture
is calculated, and the results are given as follows:

Time Concentration
(hour) (x 105 cell/mL)
0.5 1.80

1.0 1.85

1.5 2.25
2.0 4.53
2.5 5.34
3.0 9.50
3.5 13.50

4.0 18.50

(a) Calculate the expected initial bacterial concentration of the culture.
(b) Calculate the coefficient of determination of the regression equation.

SOLUTION

The scatter diagram of number of bacteria NB versus time T is plotted in Figure 6.6a.
Similar to Equation 6.75, the following regression equation is selected:

E(NB I T = t) =1)0 exp(b1t).

2.00E + 06

1.50E + 06

1.00E + 06

5.00E + 05

0.00E + 00

E(NB IT = t) = 97538 e0 .7 3 1 1 ,

T i I I i I i I i I I 1 1

0.5 1 1.5 2 2.5 3 3.5 4

Time

(a)

Figure 6.6a Na Versus Time
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Taking the natural logarithm of both sides results in
E(In N. I T = t) = In b0 + bit = bo + bit.

Thus, a 1 inear regression analysis between In N13 and T is carried out and the results are
summarized in Table 6.3. Equations 6.55 and 6.56a can be used to estimate the two
regression coefficients h and h :

244.102- 1 x 18 x 105.075
8_bI

and

51.00-1x(18.0)2
= 0.7317

b' =1x105.075-
c 8 8

Thus, the regression equation becomes

E(ln N. I T = t) = 11.488 + 0.7317t.

This is shown in Figure 6.6b. The regression equation can also be expressed as

E(N11 I T = t) = e11.488+0.73171 = 97, 538e0 7317

The initial concentration of bacteria at t = 0 is 97,538 cell/mL.

(h) Using the information given in Table 6.3, we can calculate the coefficient of
determination of the regression equation to be

R2=1-0.1710=0.970.

5.7930

Consider next the regression of a power model of the form

E(ZIX=x,Y=y)=axby`. (6.77)

Again, by taking natural logarithms on both sides, Equation 6.77 becomes a linear
model of the form

E(lnZIX-x,Y=y)=lna+binx+clny. (6.78)

Equation 6.78 represents a multiple linear regression model as discussed in Section 6.6.4.
In this case, the regressor variables are In X and In Y, and the dependent variable is In Z.

Table 6.3 Regression Analysis on Number of Bacteria Versus Time

t 11B
2 2 2

No. (11ouIs) (X l0 ) 11B = 11111 t 111B ti
,

nB; j1B1

,
(nf? - )11,!) (17Kf - n

1 0.5 1.80 12.1007 6.0504 0.25 146.4272 11.8538 0.0609 1.0685

2 LO 1.85 12.1281 12.1281 1.00 147.0911 12.2197 0.0084 1.0126
3 1.5 2.25 12.3239 18.4858 2.25 151.8774 12.5856 0.0685 0.6569
4 2.0 4.53 13.0236 26.0473 4.00 169.6154 12.9514 0.0052 0.0123
5 2.5 5.34 13.1882 32.9704 6.25 173.9273 13.3173 0.0167 0.0029
6 3.0 9.50 13.7642 41.2927 9.00 189.4537 13.6832 0.0066 0.3966
7 3.5 13.50 14.1156 49.4047 12.25 199.2506 14.0490 0.0044 0.9628
8 4.0 18.50 14.4307 57.7228 16.00 208.2450 14.4149 0.0002 1.6804

1 18.() 105.075 244.102 51.00 1,385.888 SSE = 0.1710 Svy. = 5.7930
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14.5

13.5

12.5

11.5
0.5 1 1.5 2 2.5

Time

(b)

Figure 6.6b In NB Versus Time

General Comments

3 3.5 4

The analysis of scatter diagrams or residual analysis will indicate whether the rela-
tionship between the variables is linear or nonlinear. Determining the exact form of the
nonlinear relationship is not simple in many cases, since numerous types of nonlinear
terms can be considered, (e.g., square, cube or higher order terms, mixed terms, loga-
rithmic transformation, etc.). Statistical methods like Box-Cox (1964) can be used for
this purpose. These advanced topics are beyond the scope of this book.

EXAMPLE 6.17

As discussed in Section 6.6, the looseness or denseness of a sand deposit can be esti-
mated directly by measuring the relative density, D,., or indirectly using the SPT value
or N value. Since D,. and N measure the same soil characteristic, a relationship between
them is expected. The following form of the relationship is suggested:

E(D,. I N = n) = ho + h1- n . (6.79)

To determine the regression coefficients h0 and b1, an investigation was carried out and
the following results were obtained:

D
1.

N
0.30 4

0.35 6

0.50 8

0.55 10

0.66 15

0.70 18

0.72 20

0.80 25

0.95 30

(a) Determine the relationship between D,. and N.
(b) Calculate the coefficient of determination of the regression equation.
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SOLUTION

(a) In this case, the independent or regressor variable is - N . The scatter- diagram
for the problem is shown in Figure 6.7a. The information required to formu-
late the regression equation is summarized in Table 6.4. Equations 6.55 and
6.56a can be used to estimate the two regression coefficients:

and

22.5601 - 1 x 33.5051 x 5.53
b1 = 1 = 0.1751

136 - - x (33.5051)2
9

h =-X51 . 53 -
0.1751

x 33.5051 = -0.0374.c'
9 9

Table 6.4 Regression Analysis on Dr and N-value

No. I11 dR. 11i =
J11i

ni dR
,

1'1 2
2

1R dR. (CIR, - dR,) (dR. - dR)

1 4 0.30 2.0000 0.6000 4 0.0900 0.31275 0.0002 0.0989
2 6 0.35 2.4495 0.8573 6 0.1225 0.39147 0.0017 0.0699
3 8 0.50 2.8284 1.4142 8 0.2500 0.45783 0.0018 0.0131
4 10 0.55 3.1623 1.7393 10 0.3025 0.51629 0.0011 0.0042-

5 15 0.66 3.8730 2.5562 15 0.4356 0.64074 0.0004 0.0021

6 18 0.70 4.2426 2.9698 18 0.4900 0.70548 0.0000 0.0073
7 20 0.72 4.4721 3.2199 20 0.5184 0.74567 0.0007 0.0111
8 25 0.80 5.0000 4.0000 25 0.6400 0.83810 0.0015 0.0344
9 30 0.95 5.4772 5.2034 30 0.9025 0.92167 0.0008 0.1126

E 5.53 33.5051 22.5601 136 3.7515 SSE = 0.0082 5,.,. = 0.3536

1

0.8

0.2
4 9 14 19

N ; SPT (N - Values)

(a) Dr vs. N

24 29

Figure 6.7a Dr Versus N
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0

3 3.5 4 4.5

V ; Square Root of SPT (N - Values)

(b) Dr vsvN

Figure 6.7b Dr Versus N

5 5.5

Thus, the regression equation is

E(D,. IN=n)_-0.0374+0.1751-.jn.

The regression equation between D,* and '\,/ N is shown in Figure 6.7b.

(b) Using the information given in Table 6.4. we can calculate the coefficient of
determination of the regression equation as

R2 = 1- 0.0082 = 0.977.
0.3536

6.7 CONCLUDING REMARKS

In many practical engineering problems, the statistical information on a random vari-
able cannot be obtained directly but needs to be evaluated indirectly from statistical
information on other random variables. The concept of uncertainty evaluation of the
response variable is introduced in this chapter. Some of the methods that can be used
for this purpose are identified. The choice of method depends on whether the
response variable is a known function (linear or nonlinear) of one or more random
variables, or whether the functional relationship is known or unknown. Some of the
methods are approximate and provide only limited statistical information on the
response variable in terms of its mean and variance, without providing any informa-
tion on the underlying distribution. In many cases this limited information is valuable
if used intelligently.

When the functional relationship between variables is not known and at least one
of the variables is random, the regression analysis technique can be used to develop a
statistical relationship. Procedures were presented to formulate a linear or nonlinear
relationship between two or more variables. The adequacy of the regression equation
was evaluated by calculating the coefficient of determination. Various assumptions
and limitations of regression analysis were also discussed.
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6.8 PROBLEMS

6.1 The head loss due to sudden enlargement in a pipeline, as shown in Figure P6.1. can be cal-
culated as

2 2

h y1 Ar
2g A2

where A
1

and V1 are the area and velocity of the fluid in the smaller pipe, and A-, and V2 are
the area and velocity of the fluid in the larger pipe. If A 1/A2 is a constant of magnitude 0.5
and V 1 has an exponential distribution with mean of t v, , determine the distribution of h,.

A

Figure P6.1 Sudden Expansion of Flow
in a Pipe

6.2 In Problem 6.1, if V1 is normally distributed with parameters and o, determine the
distribution of hl.

6.3 The drag force, F/), acting on an immersed body by a moving fluid can be calculated as

FD=CDA
pU2

2

where CD is the drag coefficient, A is the projected area of the body on a plane normal to the
flow, p is the mass density of the fluid, and U is the undisturbed velocity of the fluid.
Suppose CD, A, and p are known constants of values 0.6, 10 ft2, and 1.94 slug/ft3, respec-
tively. U is a lognormal random variable with parameters Xi, and cL,.

Determine the distribution of F.

6.4 In Problem 6.3, if U has a normal distribution with parameters µi7 and 6l;, determine the dis-
tribution of FD.

6.5 Consider a saturated clay layer of thickness H with an existing effective overburden pres-
sure Po at the midheight of the layer. The construction of a building above it causes an
increase in pressure, Ap. It is necessary to calculate the settlement S associated with the con-
struction. Considering only the primary settlement, S can be calculated as

S = CCH
log

Pu + Ap

1 + eo Po

where Cc is the compression index, eo is the initial void ratio, and the other parameters were
discussed earlier. Suppose H, po, Ap, and eo are known constants of value 4 m, 98 kN/m2,
13 kN/m2, and 1.0, respectively. For the given void ratio, the compression index is normally
distributed with a mean of 0.27 and a standard deviation of 0.04.

(a) What is the distribution of the settlement S? Calculate the parameters of the distribution.

(b) If the allowable settlement is 40 mm, what is the probability that the building will suf-
fer damage due to excessive settlement?
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6.6 To calculate the bearing capacity of soil under a strip footing, Terzaghi suggested the fol-
lowing equation:

cl =cN.+qN +1yBN,,

where c is the cohesion, q is the surcharge, 11 is the unit weight of the soil. B is the width of the
foundation, and Ne., N,,, and N1 are the bearing capacity factors. q can he calculated as yH, where
H is the depth of the foundation. For a particular site, consider that y = 115 pcI',I1= 4 ft, B = 4 ft,
NC = 17.69, N,i = 7.44, and N,, = 3.64, and assume that all these parameters are constants. c is a
normally distributed random variable with a mean of 400 psf and a COV of 10%.

(a) What is the distribution of q and its mean and standard deviation'?

(b) What is the probability that the ultimate bearing capacity is less than 9,00( psf?

(c) Suppose that the allowable bearing capacity qU is defined as c1 /3. What is the probabil-
ity that it is less than 3,000 psf?

6.7 Suppose that instead of a strip footing, a square footing needs to he designed for a column at the
site considered in Problem 6.6. Terzaghi suggested the following equation for a square footing:

q = 1.3ck + yHN,7 + 0.4yBN,I.

Consider a square footing of size 4 ft x 4 ft.

(a) Determine the distribution of q and its mean and standard deviation.

(b) Using a safety factor of 3. determine the distribution of cl,, and its mean and standard
deviation.

(c) If an axial load of 60 kip is applied to the column, what is the probability Of failure of
the column'?

6.8 A 15-ft deep-cut slope (i.e., f1= 15 ft) has to be made in a soft, saturated clay deposit with its
side rising at an angle of 70°, as shown in Figure P6.8. The average cohesion CC,/ that will he
developed along the sliding surface in an undrained condition can he calculated as

where 7 is the unit weight of the soil deposit (assumed to be 110 pcf in this case). H is the
depth of the cut of 15 ft, and in is a nondimensional parameter referred to as the stability
number. The slope will fail if c,j is greater than the undrained shear strength cr,. Assume H
and,y are known constants in this problem and c is 500 psf. The stability number in corre-
sponding to the slope of 70° can be calculated as 0.215 (Das, 1998).

Assume in is a normally distributed normal random variable with a mean of 0.215 and a
COV of 0.2.

(a) Determine the distribution of Cad and its mean and standard deviation.

(b) Calculate the probability of failure of the cut.

Figure P6.8 A deep-cut slope
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6.9 The total gravity load on each floor of a five-story building consists of dead load and live
load and can be expressed as

T=D+AX
where 1) is the dead load, A is the floor area, and X is the live load. D and A are assumed to
be deterministic quantities of values 600 kip and 10,()0() ft'-, but X is assumed to be a nor-
mal random variable with a mean of 0.015 kip/ft'- and a COV of 0.40. Assume further that
X in one floor is statistically independent of X in another floor.

(a) Suppose the design load L for each floor is defined as the 95th-percentile value of T;
determine L.

(b) What is the probability that the design load L will be exceeded on more than one floor
of the five-story building?

(c) Suppose the strength, S, of the soil supporting the five-story building is also it normal
variable with a mean of 4,200 kip and a COV of 0.20. The structure will be seriously
damaged if the total gravity load of the building exceeds the soil strength. What is the
probability that the structure will he seriously damaged? Assume the soil strength is sta-
tistically independent of the gravity load.

6.10 To estimate the settlement due to consolidation of a homogeneous saturated soil deposit.
the information on the coefficient of consolidation, c,.. is very important. It can be calcu-
lated as

k
Cr _

where k is the hydraulic conductivity or coefficient of permeability. nn,. is the coefficient of
volume compressibility, and y,,, is the unit weight of water. For this example consider y,,, to
have it constant value of 9.81 Mm'. Assume that k and m,. are statistically independent
lognormal random variables with means of 1.3 x 1O-' m/min and 0.0011 m2/kN, respec-
tively. Both have COVs of 10%.

(a) Determine the distribution of cc,. and the parameters of the distribution.

(b) What is the probability that c,. is greater than 1.2 x 1()-5M2/Min?

6.11 In Problem 6.8, suppose in and y are statistically independent lognormal random variables
with means of 0.215 and 110 pcf, respectively. The corresponding COVs are 0.2 and 0.05.
respectively.

(a) Determine the distribution of cal and the parameters of the distribution.

(b) What is the probability of failure of the cut?

6.12 Seismic activity in the San Francisco area may come from three major fault systems: the
San Andreas (S), Calaveras (C), and Hayward (H) faults. Assume that earthquakes of rnag-
nitudes greater than 4 occur in these faults according to the independent Poission process,
with mean activity rates of 0.6, 0.25, and 0.2 per year, respectively.

(a) What is the probability that there will be no earthquake with a magnitude greater than
4 in the San Francisco area next year?

(b) What is the probability that there will he at least one earthquake with it magnitude
gthan 4 next year'?greater

(c) What is the probability that there will be at least one earthquake with it magnitude
greater than 4 in the next 2 years'?
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6.13 The standard penetration test value N and the relative density D, are intended to measure
the degree of compactness of in situ sand. For normally consolidated sand, Marcuson and
Bieganousky (1977) suggested the following relationship:

D,. = 11.7 + 0.76 x 1222N + 1600 - 536;. - 5()C
1/2

where 6',. is the effective vertical stress in psi and C is the uniformity coefficient. Assume
C« is a constant of value 1.5, and the relative density needs to be estimated at a depth where
the effective vertical stress is 10 psi. At that depth, N of 15 is measured. Assume that this
is the mean value of N and has a COV of 0.25.

(a) Calculate the first-order mean and standard deviation of D,..

(b) Suppose D,. is normally distributed with the mean and standard deviation obtained in
Part (a). What is the probability that D,. is less than 55V

6.14 The total shear resistance I -'of soil between B and C against slope failure, shown in Figure
P6.14, can be calculated as

where C is the cohesion, P is the pressure normal to the arc BC, 0 is the friction angle of
the soil, and L is the length of the arc BC. L is assumed to be 10 ft, a known constant.
However, C, P, and 0 are statistically independent random variables with mean values of
0.5 ksf, 2 ksf. and 25°, respectively, and corresponding COVs of 0.20, 0.10, and 0.20,
respectively. No information on their distribution is available.

(a) Determine the first-order mean and variance of F.

(h) Determine the second-order mean of F.

Figure P6.14 Shear Strength Evaluation

6.15 In Problem 6.3, suppose CD, A. p, and U are statistically independent random variables with
means of 0.5, 10 ft2, 1.94 slug/ft3, and 10 ft/s, respectively, and corresponding COVs of 0.1,
0.05, 0.05, and 0.2, respectively. However, no information is available on their distribution.

(a) Determine the first-order mean and variance of FU.

(b) Determine the second-order mean of Fn.

6.16 Consider Problem 6.15 again. Using the Taylor series finite difference procedure, calculate
the first-order variance of F1).

6.17 The wind pressure acting on a circular tank can be calculated from

0.00256K- K,:1V

where K_ is the velocity pressure exposure coefficient evaluated at height K:f is the top-
ographical factor, V is the basic wind speed, I is the importance factor, G is the gust effect
factor, and C,1 is the force coefficient. For a given tank, the mean values of K:, V. G1, and
Cf1 are 1.00, 0.7 x 90, 0.85, and 0.7. respectively. The corresponding uncertainties in terms
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of COV are 0.1, 0.16, 0.12, and 0.1, respectively. Assume K,1 and I are constants of mag-
nitude 1.0. Assume all the random variables are statistically independent.

(a) Determine the first-order mean and variance of p.

(b) Determine the second-order mean of p.

6.18 Using the Taylor series finite difference procedure, calculate the first-order variance of p
in Problem 6.17.

6.19 To estimate the depth of penetration, X0, of projectiles into concrete barriers, an extensive
experimental investigation is carried out. Based on the experimental outcomes, a dimen-
sionless impact factor I is introduced, which is a function of the weight, velocity, and diam-
eter of a projectile and the compressive strength of the concrete barrier. The ratio of X0 and
the diameter of the projectile is denoted as Y. The relationship of Y and I is then studied.
The following 10 sets of values for Y and I are available:

Y I
0.70 3.0
0.78 3.5

0.80 4.0

0.92 5.0
1.15 8.0
1.20 10.0

1.50 13.0

1.65 15.0

1.95 19.0

2.00 20.0

(a) Develop a regression equation of the form E(Y I i) = h0 + hli.

(b) Calculate the conditional variance Var(Y I i).

(c) Calculate the coefficient of determination of the regression model.

6.20 To avoid using very irregular earthquake load time histories, equivalent uniform cyclic
loadings Neq, can be used, specifically in geotechnical engineering. Fifteen recorded earth-
quake time histories are considered and the corresponding Nq values are calculated. The
magnitude of the earthquake on the Richter scale M and the corresponding NEegq values are
as follows:

M Neq

5.2 5.6

5.4 5.7

5.6 5.8

5.8 5.9

6.0 6.5

6.2 6.9

6.3 7.5

6.4 8.5

6.6 9.0

6.8 11.0

7.0 13.2

7.2 14.5

7.5 18.0

7.9 24.0

8.0 26.0
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(a) Plot M along the X-axis and Neq along the Y-axis.

(b) Assuming Var(Neq I m) is constant, develop a regression equation of the form
E(Negim)=bo+hi m.

(c) Calculate Var(Neq I m).

(d) Calculate the coefficient of determination.

6.21 Consider again the data on M and NE,,, given in Problem 6.20.

(a) Assuming Var(Neq I m) is constant, develop a regression equation of the form
E(Neq I m) = bo + h i m + h2 m2.

(b) Calculate Var(Neq I m) and the coefficient of determination.

(c) Comment on the predictability of the two regression equations developed in Problems
6.20 and 6.21.

6.22 To develop a relationship between the peak shear stress t and the normal stress a', seven
drained direct shear tests on an overconsolidated clay were conducted as follows:

6' 'r

(kN/m2) (kN/m2)
75.0 75.7

100.0 92.6
150.0 1 1 5.2

200.0 143.0

250.0 165.0

270.0 179.2

290.0 190.2

(a) Plot the data and develop a regression equation of the form E('r 1(5') = bo + hl 6'.

(b) Calculate the cohesion of the clay deposit. Hint: It is the intercept b0.

6.23 The monthly water consumption, C, in a city depends on the average daily temperature, T.
and the rainfall, R, in a particular month. Records for a 12-month period are as follows:

C T R
(x106 gallons) (°F) (inch)

45 60 3

40 55 1

55 60 0

60 65 1

60 70 2

80 75 2

90 80 1

80 80 3

70 75 2

65 70 3

60 65 2

60 60 4

(a) Assuming the conditional variance Var(C I t,r) is constant, the following regression
equation is suggested:

E(C I t, r) = b0 + bi t + b2 r.

Estimate the three regression coefficients and the conditional variance.

(b) Calculate the coefficient of determination of the regression equation.
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6.24 The minimum safe stopping distance (S) for vehicles on level roads depends on the speed
(v) at the beginning of the deceleration and the coefficient of friction (f) between the tires
and the pavement. The following relationship is suggested to estimate the stopping distance
for wet pavement:

E(S I v, f)=avhf`.
Using the following 20 sets of data, estimate a, h, and c.

S

(ft)
v

(mph)
f

9 10 0.40
22 15 0.36
43 20 0.29
80 25 0.27
74 30 0.40

125 35 0.33
170 40 0.31

190 45 0.36
185 48 0.40
35 18 0.33

185 38 0.27
95 33 0.36
65 28 0.40

160 42 0.36
110 36 0.40
215 50 0.40
100 30 0.31

142 40 0.36
3 5 0.27

75 25 0.30



Chapter 7

Fundamentals of
Reliability Analysis

7.1 INTRODUCTORY COMMENTS

In general, engineering design consists of proportioning the elements of a system so
that it satisfies various criteria of performance, safety, serviceability, and durability
under various demands. For example, a structure should be designed so that its strength
or resistance is greater than the effects of the applied loads. However, there are numer-
ous sources of uncertainty in the load- and resistance-related parameters. Methods for
identifying and quantifying uncertainties in random variables were discussed in
Chapters 5 and 6. Incorporating the information on uncertainty into actual design prob-
lems is the subject of this chapter.

7.2 DETERMINISTIC AND
PROBABILISTIC APPROACHES

In the presence of uncertainty, it is not simple to satisfy the basic design requirements.
Figure 7.1 shows a simple case considering two variables (one relating to the demand
on the system, e.g., load on the structure, S, and the other to the capacity of the system,
e.g., resistance of the structure, R). Both S and R are random in nature; their random-
ness is characterized by their means (t and µR, standard deviations as and 6R, and cor-
responding probability density functions fs(s) and fR(r), respectively, as shown in
Figure 7.1. Figure 7.1 also identifies the deterministic (nominal) values of these param-
eters, SN and RN, used in a conventional safety factor-based approach. The purpose of
this chapter is to develop a rational procedure to incorporate the information in Figure
7.1 into actual designs.

181
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PS

ksas

S. R,\. PR

kR 6R

R, S
Figure 7.1
Fundamentals of Risk
Evaluation

The concept of risk-based design was introduced by Freudenthal (1956) and was
summarized by Freudenthal, Garrelts, and Shinozuka (1966). The concept has matured
since then and is presented in the following sections.

7.3 RISK AND SAFETY FACTORS CONCEPT

Before the risk-based design format is developed, the concept of risk and the corre-
sponding safety factor need some elaboration. The application of the risk-based format
in various engineering disciplines can he described, at best, as nonuniform. Most of the
progress has been made in structural engineering. Design guidelines using the load and
resistance factor design (LRFD) concept are essentially based on the risk-based design
format. In the following discussion, the risk-based design format in structural engi-
neering is emphasized. However, the same concept can also be applied to other engi-
neering disciplines by replacing resistance and load by supply and demand as discussed
in Section 1.1 of Chapter 1. We hope the following discussion will help to accelerate
the implementation of the risk-based design concept in other engineering disciplines,
where necessary. Referring to Figure 7.1, design safety is ensured in a deterministic
approach by requiring that RN be greater than S1 with a specified margin of safety as

Nominal Sr = RN / SN (7.1)

where Sr is the safety factor.
The nominal resistance (or capacity) RN is usually a conservative value, perhaps

one, two, or three standard deviations below the mean value. The nominal load (or
demand) SN is also a conservative value; however, it is several standard deviations
above the mean value. Thus, the intended conservatism introduced in designs in the
form of the nominal safety factor depends on many other factors, namely the uncer-
tainty in the load and resistance and how conservatively the nominal load and resist-
ance values are selected. The nominal safety factor may fail to convey the actual
margin of safety in a design.

Conceptually, then, in a deterministic design the nominal safety factor can be
applied to the resistance, to the load, or to both. The allowable stress design methods
use a safety factor to compute the allowable stresses in members from the ultimate
stress, and a successful design ensures that the stresses caused by the nominal values
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of the loads do not exceed the allowable stresses. In other words, referring to Figure
7.1 and Equation 7. 1, RN is divided by a safety factor to compute the allowable resist-
ance Re,, and safe design requires that the condition S.v < Ra he satisfied. In this case,
the safety factor is used for the resistance only. In the ultimate strength design method,
the loads are multiplied by certain load factors to determine the ultimate loads, and the
members are required to resist various design combinations of the ultimate loads. That
is, in Figure 7. 1, SN is multiplied by a load factor to obtain the ultimate load .5',,, and
safe design requires the satisfaction of the condition S < R;\;. In this case, the safety
factors are used in the loads and in load combinations. In some designs, for example,
in concrete design or in steel design using the load and resistance factor design (LRFD)
concept, the capacity reduction factor (generally less than one) and load factors (gen-
erally more than one) are used to achieve the same objective. Essentially, the safety
factors are used to estimate both the resistance and the loads.

The intent of these conventional approaches can he explained by considering the
area of overlap between the two curves (the shaded region in Figure 7. 1), which pro-
vides a qualitative measure of the probability of failure. This area of overlap depends
on three factors:

1. The relative positions of the two curves: As the distance between the two
curves increases, reducing the overlapped area, the probability of failure
decreases. The positions of the curves may he represented by the means (µR
and [ts) of the two variables.

2. The dispersion of the two curves: If the two curves are narrow, then the area
of overlap and the probability of failure are small. The dispersion may he
characterized by the standard deviations ((TRand 6s) of the two variables.

3. The shapes of the two curves: The shapes are represented by the probability
density functions ,ff(r) and .f S(s).

The objective of safe design in deterministic design procedures can also be achieved,
perhaps more comprehensively, by selecting the design variables in such a way that the
area of overlap between the two curves is as small as possible, so that the underlying risk
is not compromised within the constraints of economy. Conventional design approaches
achieve this objective by shifting the positions of the curves through the use of safety fac-
tors. A more rational approach would be to compute the risk by accounting for all three
overlap factors, and selecting the design variables so that an acceptable risk of failure is
achieved. This is the foundation of the risk-based design concept. With this approach,
however, the information on the probability density functions of the resistance and loads
(as in Figure 7.1) is usually difficult to obtain, and engineers must formulate an accept-
able design methodology using only the information on means and standard deviations.

7.4 RISK-BASED DESIGN CONCEPT AND
THE DEVELOPMENT OF THE RISK-BASED
DESIGN FORMAT

Instead of using the safety factor for the resistance alone, as in the working stress
method, or for the loads alone, as in the ultimate strength method, it is more rational to
apply safety factors to both resistance and loads, as is done in concrete or steel (LRFD)
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structural design. The following idealized discussion is presented to develop a parallel
between the deterministic approaches in terms of the capacity reduction factor and load
factors with risk-based design. Referring to Figure 7. 1. where the uncertainties in the
load and resistance variables are expressed in the form of the probability density func-
tions, we can express the measure of risk in terms of the probability of the fa lure event
or P(R < S) as:

p1* = P(failure) = P(R < S)

= f(
00

s .fR (r)d1' s (s)ds (7.2)

= foFR (s),fs (s)cls

where FR(S) is the CDF of R evaluated at s. Equation 7.2 states that when the load is S
= s, the probability of failure is FR(S), and since the load is a random variable, the inte-
gration needs to be carried out for all the possible values of S, with their respective like-
lihoods represented by the PDF of S. Equation 7.2 can be considered to be the basic
equation of the risk-based design concept. The CDF of R or the PDF of' S may not
always be available in explicit form, and thus the integration of'Equation 7.2 may not
be practical. However, Equation 7.2 can be evaluated easily, without performing the
integration, for some special cases. They are considered first in the following sections.

7.4.1 Load and Resistance Normal Variables: Single Load Case

Consider a structure with resistance R subjected to a single load S. The structure is sub-
jected to one load at a time (i.e, dead load alone, live load alone, wind load alone, seis-
mic load alone, etc.). If both R and S are normal variables, that is, N(p., (TR) and N(µ5,
(YS), then another random variable Z can be introduced as

Z=R-S. (7.3)

Since it is quite reasonable to assume that R and S are statistically independent, based
on the discussion in Section 6.3.we can infer that Z is also a normal random vari-
able, that is, N(µ R - µS, 6R + 6

S
). Then, Equation 7.2 can be used to define the

probability of failure as

or

or

P f = P(Z < 0)

0-(PR -us)
N'6R+6S

P1. = 1- ,uR -µs
K+6S (7.4)

where (D is the CDF of the standard normal variate. To develop the explicit expression
for the risk-based design format, Equation 7.4 can be rewritten as

gR µs + - (1- j'.t 6s (7.5)

where (D-1(1 - pf) is the value of the standard normal variate at the probability level
(I - pf). Introducing P = (D- I (I - p1), and considering the equality condition, we can
rewrite Equation 7.5 as
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From Equation 7.4,
-1(1_p µR - tS (7.7)

1 , ,

2 2
1" 6 R + 6 S

If f3 is large, p1. will be small, implying that the underlying risk is small.
To eliminate the square root sign to separate R and S in Equation 7.6, a parameter E

can be introduced as
R 6.S (7.8)

6R +6S
E can be considered to be approximately 0.75 in most cases. Substituting Equation 7.8
into Equation 7.7, one obtains

R = itR - ltS

E(6R +Gs)
After the variables are separated, the equation becomes

µ R- ER6 R= PS+ E RG S
or

(1-E13 R) R =(1+Ea6S)µ.s
where

(7.9a)

(7.9b)

6sbR -6R and bS --
µR It S

Before considering the nominal safety factor, using Equation 7.9b, we can introduce
the concept of the central safety factor by taking the ratio of the mean values of the
load and resistance (refer to Figure 7. 1):

R = 1 + ep6s
(7.10)

las 1-CPR
Referring to Equation 7.9b, we can express the capacity reduction factor corresponding
to the central safety factor as

0 = 1- (7.11 a)
The corresponding load factor can be shown to be:

Y = I + 08S. (7.11 b)

To define the nominal safety factor, the nominal or characteristic values of the load and
resistance need to be introduced as

R.\ - µ R (l - kRbR 1 (7.12a)

SN_ .s (l + ksos). (7.12b)
Again, the nominal value of R is kR standard deviations below the mean and the nom-
inal value of S is ks standard deviations above the mean, as shown in Figure 7.1. The
conventional or nominal safety factor, as in Equation 7.1, becomes

= R;v = µ R 0 (1- kRSR) = (I+ E161- kRSR (7.13)
SN µs (I + ksbs) I + ksbs 1- EI3SR

Thus, after the variables are separated, the nominal capacity reduction factor and the
load factor, in terms of 0 RN ? ys.. , can be shown to be

0 _ 1- E(3 R

1 - k
(7.14a)

R R
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1 +ERos

.
(7.14b)

I +

It is clear from these two equations that the probability-based capacity reduction
factor and load factor convey more information than the corresponding deterministic
factors. Both of them depend on four factors: F-, R, sR or 5S, and kR or k,5. Equation 7.14a
indicates that for normal engineering design when (E(3) is expected to be greater than
kR, the capacity reduction factor 0 will be less than one, which is commonly assumed
in a deterministic design. It also indicates that the capacity reduction factor is a func-
tion of (3, representing the acceptable risk for the structure being considered. If 13 is
large, implying that the acceptable risk is small, the capacity reduction factor is
expected to be small given that the other parameters remain the same. For small accept-
able risk, more conservatism is introduced in estimating the resistance by using a low
4) factor. The capacity reduction factor also depends on the uncertainty in the resistance,
8R. It can be shown that if the uncertainty in R is large, the 0 factor will be smaller. It
depends on how conservatively the nominal resistance value, represented by the
parameter kR, is selected. If kR is large, indicating that the nominal resistance was
selected very conservatively, then the 0 factor will approach unity, as expected. The
capacity reduction factor is also a function of F-, representing the uncertainty in both the
resistance and load variables.

The load factor for normal engineering design (F -P > k.s), represented by Equation
7.14b, is expected to be greater than one. As stated earlier, its value depends on four
factors. The load factor depends on the uncertainty in the load under consideration. If
different loads have different amounts of uncertainty, the load factors are expected to
be different while all the other parameters remain the same. The uncertainty in the dead
load is expected to be smaller than that in the live load. Thus, the load factor for the
dead load will be smaller than that of the live load. If (3 is large, implying that the
acceptable risk for the project is small, the corresponding load factor will also be large.
If the design load is selected very conservatively, implying that ks is large, then the load
factor will approach unity, as expected. If c is large, the load factor will also be large.

In deterministic design, the capacity reduction factor and load factors are deter-
mined subjectively based on judgment, intuition, and experience: in probabilistic
designs, they can be estimated explicitly project by project considering the specific
conditions, giving more control to the design engineers.

7.4.2 Load and Resistance Normal Variables:
Multiple Load Case

In engineering design, components need to be designed to meet the maximum demand
considering all possible loads that may act on them during their lifetime. Considering one
load at a time may not be sufficient; the likely combinations of loads need to be consid-
ered. It is extremely unlikely that all possible loads will act simultaneously on a structure,
but some of them will act together. For example, in a typical structural design, some of
the common load combinations are dead plus live loads, dead plus live plus wind loads,
dead plus live plus seismic loads, and dead plus wind loads. Thus, it is essential that mul-
tiple load effects be considered when estimating load and resistance factors.
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To consider the effect of multiple loadings, S can be represented as S = .S1 + S, + ... + S,,. An
obvious choice in this case is to combine the multiple load effects into one, as was dis-
cussed extensively in Chapter 6. Since S is a linear function of other random variables,
its mean and variance can be estimated using Equations 6.32 and 6.33 or 6.34. Then,
assuming S is a normal random variable and using the discussion in the previous sec-
tion, we can estimate the resistance and load factors. The load factor will give a com-
posite value considering the effect of loads in that particular combination; it will not
give the individual load factors.

To estimate the individual load factors, the following procedure can be followed.
For the multiple loads case, assuming S1, S,..., S are statistically independent as in
Equation 6.34, Equation 7.6 can be rewritten as:

µR _ (,usl 2 +...+µs )+R 6S +65 +...+6
1

Introducing the parameter E, similar to Equation 7.8, results in
PR = (PSI +µs, +...+ t )

11

-

-
1 (7.15)

+ER 61z + j 65 + IDS) +... + 65 , .

Again, to help separate the load variables, and using the information on the individual
mean and standard deviation of the loads, we can eliminate the square root sign in
Equation 7.15 can by introducing a parameter similar to E in Equation 7.8, as

Enn

6S, +65, +...+65
(7.16)

USA +6S` +...+65,:

Equation 7.15 can be rewritten as

µR - (PSi +µS, )+ER(6R +E,rn(6Si +65)

or

(1 - E18R)9R = (1 + EEnn13 SI )PS, (7.17)
+(l + )j.52 + .. + (1 + E,1nNoS )1iS

The form of Equation 7.17 is identical to that of Equation 7.9b. By following the
same logic as for the single load case, we can show that for the case of multiple loads,
the central and nominal capacity reduction factors can still be evaluated from
Equations 7.11 a and 7.14a, respectively. However, the central and nominal load factors
for the ith load, similar to Equations 7.11 b and 7.14b, respectively, become

'Yi = 1 + EE1111p8s (7.18a)

and

+ F-Enno6s.
y; _ (7.18b)

I + k,s.; 8S,

Suppose a structural member is subjected to dead load (D) and live load (L) only.
For design purposes, the following relationship needs to be satisfied:

ORN ! 'YD D + yr. L. (7.19)

If the safety margin is defined by Equation 7.3, then 0, yj), and yL can be estimated by
Equations 7.14a and 7.18b, respectively.
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EXAMPLE 7.1

A simply supported steel beam with a 30-foot span has been designed to carry a dead
load of 70 psf and a live load of 100 psf, as shown in Figure 7.2. The beams are spaced
10 feet apart and are continuously laterally supported by the concrete slab. Using A36
steel and the American Institute of Steel Construction (AISC)'s Manual of Load and
Resistance Factor Design, an engineer suggests a steel section of W 14 x 61. Based on
the preceding discussion, what will be the corresponding resistance and load factors?

To calculate these factors, some additional information is required. Consider that the
nominal dead load and live load are both selected to be two standard deviations above
the corresponding mean values, and the nominal resistance of the steel section is
selected to be two standard deviations below the mean value. Further assume that the
uncertainties in the dead load and live load in terms of COV are 0. 13 and 0.37, respec-
tively. The uncertainty in the resistance of the steel section, considering the uncertain-
ties in material properties, fabrication, and modeling, is 0.13. These COVs are typical
values reported in the literature. Consider first that all the variables are normal random
variables.

Nominal dead load = DN

= x..1.17 + 2,j D = 1)

or

or

11+2 (YD
I ti)

70=µ.i,(1+2x0.13)

= µl)(1 +261)

µn = 55.56 psf and 6U = 0.13 x 55.56 = 7.22 psf.
Similarly, the mean and standard deviation of the live load can be shown to be

µ L = 57.47 psf and 61. = 0.37 x 57.47 = 21.26 psf.

It is quite logical to assume that the dead and live loads are statistically independent.
Denoting S = D + L, and using Equations 6.21 and 6.22, we can show the mean and
standard deviation of S to be

Uniform dead load = 70 psf
Uniform live load = 100 psf

W14x61

W14x61

W14x61

Beams

30 ft Figure 7.2 Resistance and Load Factor
Evaluation for Beams
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and

µs = 55.56 + 57.47 =113.03 psf

6s = V7.222 + 21.262 = 22.45 psf.
Thus, bs = 22.45/113.03 = 0.199.

For a simply supported beam of span I and subjected to a uniform load (per unit
length) of S, the applied moment can be calculated using the formula M = 512/8.
Denoting the moment caused by the applied dead and live loads as MA, we can esti-
mate its mean and standard deviation as

µ,M` = (113.03 x 10 x 302 x 12) / (8 x 1, 000) = 1, 525.91 kip - in.

and
(TMA = 0.199 x 1, 525.91 = 303.66 kip - in.

Nominal resistance = RN =R - 2(YR.

The plastic moment capacity of a beam M1, can be considered to be the nominal
moment capacity of the beam. Thus,

RN =MP =ZF,, =102x36=3,672=µR(1-2x0.13)
or

µR = 4, 962.16 kip - in. and 6R = 0.13 x 4,962.16 = 645.08 kip - in.

Equation 7.4 can be used to estimate the probability of failure of the beam subjected to
the dead and live loads considered here:

Pf -1- (D(4,962.l6-1,525.91
645.082 +303.66 2

= 1- (D(4.82) = 0.72 x 10-6.

For this example (3 is 4.82. The resistance and load factors for this design can be
estimated as discussed next. Using Equation 7.8, we can show that

N 645.082 +303.66 2

-0.75.
645.08 + 303.66

Using Equation 7.16, we can calculate F-,,,, as

47.22
- 0.79.

E11" - 7.22+21.26
Using Equations 7.14a and 7.18b, we can estimate the resistance and load factors as

1-0.75x4.82x0.13 =0.72
1-2x0.13

1+ 0.75 x 0.79 x 4.82 x 0. 13
7D= =1.09

1+2x0.13
I + 0.75 x 0.79 x 4.82 x 0.37

1+2x0.37
Thus, the design equation is

or

0.72R = 1.09D + 1.18L

R = 1.51 D + 1.64L.
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7.4.3 Load and Resistance Lognormal Variables:
Single Load Case

Considering the physical aspects of a design problem, R and S can be more appropri-
ately considered to be statistically independent lognormal variables, that is, LN(XR, R)
and LN(k5, S), since they cannot take negative values. In this case, another random
variable Y can be introduced as

Y = R / S (7.20a)

or

lnY = Z =1nR-1nS.

The failure event can be defined as when Y < 1.0 or Z < 0.0. Since R and S are lognor-
mal, In R and In S are normal (see Section 6.3.1.3); therefore, In Y or Z is a normal ran-

dom variable, that is, Z N a'R - ? , R + s . The probability of failure, similar to

Equation 7.4, can be defined as

=1- c kR kS (7.21)2Pf
VR + s

Using the relationships between the mean, standard deviation, and coefficient of
variation and the parameters of the lognormal distribution (Equations 4.10 and 4.11),
we can rewrite Equation 7.21 as

2

111 8
/1+(SS

R

ln(l+6R)(1+bs)

(7.20b)

(7.22)

If oR and bs are not large, say < 0.30, Equation 7.22 can be simplified as

Pf ~1-(1?

In µR
alts)
2 2bR +8S.

In this formulation, 13 as in Equation 7.7 can be shown to be

R -(b-1(1-

(7.23)

1+8s4tR rual
n (µs )1+6R lnl s J (7.24)

f
V ln(1 + 52)(1 + bs) 5R + 52R S

In many engineering problems of practical interest, the simplification suggested in
Equation 7.23 may not be appropriate, since the uncertainty in many loads in terms of
COV can be large (greater than 0.3). As in Equation 7.6, an alternative form of
Equation 7.22 can be expressed as

l+bR
ex In 1+b2 +ln 1+82 (7.25)µR µs 2 p ( R) ( S)s

where (3 = -1 (1 - p f), as given by Equation 7.24.
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The parameter F-l, similar to e in Equation 7.8, can be introduced as:

El 2 2 (7.26)
rln(1+SR)

Proceeding as in the normal variables case in Section 7.4.1, the capacity reduction fac-
tor and the load factor corresponding to the central safety factor can be expressed as

exp -PF-l N ln(1 + sR
(7.27a)

and

exp (3F-, ln(l +52)
(7.27b)

-57

v.1+8s

To obtain these factors with respect to the nominal safety factor, as in Equation 7.12,
the nominal values of the resistance can be shown to be

InRN=In tR-kRSR
or

RN - µ.R exp(-kRSR ). (7.28a)

Similarly, the nominal load can be expressed as
SN= µ.s exp(ks8s ). (7.28b)

The nominal safety factor becomes

_ RN _ 1R exp(-kRSR)
(7.29)

SN is exp(ksbs )

The corresponding nominal capacity reduction factor and load factor are
_ exp(kR5R ) (7.30a)

and
Y = y exp(-ksbs) (7.30b)

and can be estimated from Equations 7.27a and 7.27b, respectively.

7.4.4 Load and Resistance Lognormal Variables:
Multiple Load Case

To consider the effect of statistically independent multiple load cases (i.e., when S =
S1 + S2 + ...+ S,,), the parameter E,l, similar to Equation 7.16, can be estimated by trial
and error from the following equation as

If
exp pE1,Iln(1 + 8') 11

+ 82

exp perm, N' ln(1 + bs )

(1+82s
r

(7.31)
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The nominal capacity reduction factor can still be calculated by using Equation 7.30a:
however, the load factor corresponding to the central safety factor for the ith load
becomes

exp REiE,,r In(] +8S2.
Ys; _

1 +8S

and the corresponding nominal load factor for the ith load is
Ys; = "Ys exp(-k,s, bs! ).

EXAMPLE 7.2

(7.32)

(7.33)

Example 7.1 is considered again, except that now both the load and resistance are
assumed to be lognormal random variables. The means, standard deviations, and coef-
ficients of variation of all the parameters were calculated earlier. In this case, the prob-
ability of failure of a beam can be calculated as

Pf =I - (1)

In
4,962.16 /

1, 525.91 (1 + 0.132 )

ln(l + 0.132)(l + 0.1992 )
=1-(D(5.05)=0.2213x10-6.

In this case, P is 5.05. With Equation 7.26, El can be calculated as

= jln(1+ 0.132) + ln(l + 0.199)
Ef - = 0.72.

ln(l +0.13`) + In(] +0.199`)

With Equation 7.31, F-,, l can be calculated by trial and error as:

113.03
exp 5.05x0.72x1V1n(1+0.1992)

N'1+0.1992

exp

5.05 x 0.72 x E,,, ;J ln(1 + 0.372 )

-v J1+0.37'`

E,,1 is found to be 0.77. Equations 7.27a, 7.30a, 7.32, and 7.33 can be used to obtain the
following information:

exp -5.05x0.72x-\,iln(1 +0.13`)
= 0.62

11l +0.132
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exp 5.05x0.72x0.77x1n(l+0.132)
'ID- 2 =1.42

-,,11+0.13

exp 5.05 x 0.72 x 0.77 x - j in(1 + 0.372 )
2.56

1+0.37 2

=0.62exp(2x0.13)=0.80
7L) = 1.42exp(-2x0.13)= 1.09

YL = 2.56 exp(-2 x 0.37) = 1.22

Thus, the design equation is

or

0.8R = 1.09D+ 1.22L

R = 1.36D + 1.53L.

The two examples given here clearly indicate that it is not difficult to estimate the
underlying resistance and load factors in a particular design for a set of assumptions.
Whether these factors are acceptable is a different question. In actual building design
codes, these factors are usually calibrated to satisfy current practice. Furthermore,
assuming that the acceptable risk is going to remain the same for all the load combi-
nations to be considered for the design of a structure, the engineer can calculate the cor-
responding resistance and load factors similarly for all load combinations. Maintaining
uniform risk for different loads and load combinations is not practical in deterministic
designs. The ability to design a structure for uniform risk with several loads and load
combinations is one of the many desirable features of risk-based design.

The discussion and the examples clearly indicate that conventional safety
factor-based deterministic designs, in terms of capacity reduction factor and load fac-
tors, and probability-based load and resistance factor designs are essentially parallel to
each other. However, probabilistic design addresses the necessary design conservatism
more explicitly, perhaps better and more comprehensively, through treatment of the
uncertainty in the random variables, the conservatism used in selecting the design val-
ues, and the desired underlying reliability. Engineers are empowered to use judgment in
selecting these factors on a case-by-case basis. This concept is the basis of all the relia-
bility-based design codes being developed in different areas of engineering worldwide.

7.5 FUNDAMENTAL CONCEPT OF
RELIABILITY ANALYSIS

The basic concept of the classical theory of structural reliability and risk-based design
can now be presented more formally. We have seen that it is not difficult to calculate
the underlying resistance and load factors for a given design, assuming an acceptable
level of risk. However, it is more relevant to calculate the underlying risk of' a given
design, as is discussed in the following sections.

The first step in evaluating the reliability or probability of failure of a structure is to
decide on specific performance criteria and the relevant load and resistance parameters,
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called the basic variables X;, and the functional relationships among them correspon-
ding to each performance criterion. Mathematically, this relationship or pert brmance
function can be described as

Z = (7.34)

The. failure sui f ace or the limit state of interest can then be defined as Z = 0. This is
the boundary between the safe and unsafe regions in the design parameter space, and
it also represents a state beyond which a structure can no longer fulfill the function for
which it was designed. Assuming R and S are the two basic random variables, the fail-
ure surface and the safe and unsafe regions are shown in Figure 7.3. The limit state
equation plays an important role in the development of structural reliability analysis
methods. A limit state can be an explicit or implicit function of the basic random vari-
ables, and it can be in simple or complicated form. Reliability analysis methods have
been developed corresponding to limit states of different types and complexity, as dis-
cussed in the following sections.

Using Equation 7.34, we find that failure occurs when Z < 0. Therefore, the proba-
bility of failure, pf, is given by the integral

P.t' = J... f fx(x1,x2, .... x,,)ch 1dx2 ...dx, 7.35
<0

in which fx(xI, x2,. . ., t-,,) is the joint probability density function for the basic random
variables X1, X,,..., X and the integration is performed over the failure region. that is,
gO < 0. If the random variables are statistically independent, then the joint probability
density function may be replaced by the product of the individual probability density
functions in the integral.

Equation 7.35 is a more general representation of Equation 7.2. The computation of
pJ_ by Equation 7.35 is called the full distributional approach and can be considered to
he the fundamental equation of reliability analysis. In general, the joint probability den-
sity function of random variables is practically impossible to obtain. Even if this infor-
mation is available, evaluating the multiple integral is difficult. Therefore, one
approach is to use analytical approximations of this integral that are simpler to com-
pute. To clarify the presentation, these methods can be grouped into two types, namely,
first-order reliability methods (FORM) and second-order reliability methods (SORM).

The limit state of interest can be linear or nonlinear functions of the basic variables.
FORM can be used to evaluate Equation 7.35 when the limit state function is a linear func-
tion of uncorrelated normal variables or when the nonlinear limit state function is repre-

S

0
M0

Resistance R Figure 7.3 Limit State Concept
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sented by a first-order (linear) approximation with equivalent normal variables, as is elab-
orated further in Section 7.6. SORM estimates the probability of failure by approximating
the nonlinear limit state function (including a linear limit state function with correlated
nonnormal variables) by a second-order representation. SORM is discussed in Chapter 8.

7.6 FIRST-ORDER RELIABILITY METHODS (FORM)

The development of FORM can be traced historically to second-moment methods,
which used the information on first and second moments of the random variables.
These are first-order second-moment (FOSM) and advanced first-order second-
moment (AFOSM) methods. In FOSM methods, the information on the distribution of
random variables is ignored; however, in AFOSM methods, the distributional informa-
tion is appropriately used.

7.6.1 First-Order Second-Moment Method (FOSM) or
MVFOSM Method

The FOSM method is also referred to as the mean value first-ordler second-moment
(MVFOSM) method in the literature. The MVFOSM method derives its name from the
fact that it is based on a first-order Taylor series approximation of the performance
function linearized at the mean values of the random variables, and because it uses only
second-moment statistics (means and covariances) of the random variables. The origi-
nal formulation by Cornell (1969) uses the simple two-variable approach of the previ-
ous sections. A performance function in this case can be defined by Equation 7.3.
Assuming that R and S are statistically independent normally distributed random vari-
ables, the variable Z is also normally distributed. As demonstrated earlier, its mean and
variance can be readily determined. The event of failure is R < S, or Z < 0. The proba-
bility of failure is given by Equation 7.4. The probability of failure depends on the ratio
of the mean value of Z to its standard deviation. This ratio is commonly known as the
safety index or reliability index and is denoted as P:

R = µL = LR P S
I 26L 6R

+
6S

(7.36)

The probability of failure in terms of the safety index can be obtained by rewriting
Equation 7.4 as

p1. = (N-1) = I - CD(R) (7.37)

An alternative formulation proposed by Rosenbleuth and Esteva (1972) may also he
used, assuming that the variables R and S are statistically independent lognormal ran-
dom variables. As discussed in Section 7.4.3, for physical reasons these variables are
restricted to positive values; hence it is more reasonable to assume that they are log-
normally distributed. The performance function in this case can be defined by Equation
7.20a or 7.20b. Z is again a normal random variable, and the probability of failure may
be computed using Equation 7.21.

These formulations may be generalized for many random variables, denoted by a
vector X. Let the performance function be written as

(7.38)
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A Taylor series expansion of the performance function about the mean value gives

Z=g(µx)+ (Xi -µX
i=1 aX; r

a2
J

+ -
C

(X1 Xr )(".1 X ) + .. .
2 i=1 1=1 aX,aX 1

(7.39)

where the derivatives are evaluated at the mean values of the random variables (X1, X,,
..., X,,), and µx is the mean value of X. As discussed in Section 6.4.2, truncating the
series at the linear terms, we obtain the first-order approximate mean and variance of Z as

laz = 9(PX1 "P-X1 ,...,µx (7.40)
and

1=1j=1aX1 ax1

where Cov(X;, Xj) is the covariance of X; and Xj.
If the variables are uncorrelated, then the variance is simply

(7.41)

7

a2 g JVar(Xi). (7.42)
aX

The safety index can be calculated by taking the ratio of the mean and standard devia-
tion of Z as in Equation 7.36. It is important to repeat here that the performance func-
tion is linearized at the mean values of the random variables, reflecting the concept
behind the MVFOSM method.

Using the safety index (3, we can find the exact probability of' failure in only a few
cases. For example, if all the X;'s are statistically independent normal variables and if
Z is a linear function of the X; values, then Z is normal and the probability of failure is
given by Equation 7.37. Similarly, if all the Xi's are statistically independent lognormal
variables and if g(X) is a multiplicative function of the X;'s, then Z = In g(X) is normal
and the probability of failure is given by Equation 7.37. However, in most cases it is
not 1 ikely that all the variables are statistically independent normals or lognormals. Nor
is it likely that the performance function is a simple additive or multiplicative function
off these variables. In such cases, the safety index cannot be directly related to the prob-
ability of failure; nevertheless, it does provide a rough idea of the level of risk or reli-
ability in the design. As shown in detail in Section 7.4, the MVFOSM approach could
be used to derive a set of safety factors for loads and resistance, thereby establishing
the consideration of design uncertainty on a logically sounder basis. The MVFOSM
method was used to derive earlier versions of the reliability-based design formats, such
as the American Institute of Steel Construction, Inc. (AISC, 1986), Canadian Standard
Associations (CSA, 1974), and Comite European du Beton (CEB, 1976), to cite just a
few examples.

However, the MVFOSM approach has some deficiencies. The method does not use
the distribution information about the variables when it is available. The function g( )
in Equation 7.34 is linearized at the mean values of the X; variables. When g( ) is non-
linear, significant error may be introduced by neglecting higher order terms. More
importantly, the safety index defined by Equation 7.36 fails to be constant under dif-
ferent but mechanically equivalent formulations of the same performance function. For
example, the safety margins defined as (R - S < 0) in Equation 7.3 and (RIS < 1) in

67 --- ` COv(X1, X 1)
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Equation 7.20a are mechanically equivalent. Yet the probabilities of failure given by
Equations 7.4 and 7.21 or 7.22 are different for the two formulations. Furthermore, an
engineering problem can be formulated in terms of stress or strength, as elaborated
with the help of the following examples, and should produce identical results in either
case. But the simplified method just discussed will give two different safety indexes.
These observations can be explained with the help of simple examples.

EXAMPLE 7.3

A W 16 x 31 steel section made of A36 steel is suggested to carry an applied deterministic
bending moment of 1,140 kip-in. The nominal yield stress F,. of the steel is 36 ksi, and the
nominal plastic modulus of the section Z is 54 in.3. Consider that the distributions of these
random variables are unknown; only the means, standard deviations, and COVs are known:

µF. = 38 ksi, 6F. = 3.8 ksi, and bF. = 0.1

µz = 54 in.3, 6z =2.7 in.3, and 6z =0.05.
It is quite logical to assume that F, and Z are statistically independent.

Strength Formulation

Considering the strength formulation first, the resistance R = F Z and the load S =
1,140 kip-in. In this example, the load is a constant; thus µs = 1,140, 6S = 0, and 6.5 =
0. Using Equations 7.40 and 7.42, we can calculate the first-order mean and standard
deviation of R as

µR f ,, µi = 38 x 54 = 2,052 kip- in.

and

6R = Var(F,,)
aR

aF
+ Var(Z) a-7

ti

=3.82x µ2+2.72x

]1/2

z µ F,.

1/2

= [(3.8 x 54)2 + (2.7 x 38)2
1/2

= 229.42 kip-in.

Thus, SR = 229.42/2,052 = 0.112.
Assuming the performance function to be of the form represented by Equation 7.3, we
can write the limit state equation as

gO=FF.Z-1,140=0. (7.43)

The corresponding safety index, as in Equation 7.7, is
2,052-1,1403= =3.975.

,/(229.42)2+o2

If the performance function is assumed to be of the form represented by Equation 7.20,
the corresponding safety index, according to Equation 7.24, becomes

- ln(2,052 / 1,140) = 5.248.
(0.1 12)` +0`

Obviously, these two safety indexes and the corresponding probabilities of failure are
quite different.
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Stress Formulation

The same problem can also be formulated in term of stresses. The limit state equation
in this case can be expressed as

1,140
go = F, - Z = 0. (7.44)

In this case, the resistance R is represented by the random variable F,,, and the load
S = 1,140/Z. Thus,

µ R H-1 F = 38 ksi
and

.1.and SR=0-1-
6R = 3.8 ksi(7

The first-order mean and standard deviation of S can be calculated as
1,140 1,140

µs _ - 21.11 ksi
µZ 54

1/2

- 1,140 = 1,140 - 1,140 - 5
6S Va1 (Z) 6Z 2.7 1.0.- 6 ksi.

µZ 7 54`

Thus
bs = 1.056/21.11=0.05.

The safety index according to Equation 7.7 for the stress formulation is found to be

38-21.11 = 4.282.
1!(3.8)2 +(1.056 )2

The corresponding safety index according to Equation 7.24 is

ln(38/21.11) = 5.258.
(0.1) 2 +(0.05 )

The observations are summarized in Table 7.1.

Table 7.1 Variance Problem in the MVFOSM Method

Normal Lognormal

Strength formulation 3.975 5.248
Stress formulation 4.282 5.258

The results clearly indicate that the safety indexes depend on the formulation of the limit
state equation as well as the underlying assumption about the distribution of the limit state.

In the early 1970s, this lack of invariance problem was observed by many
researchers. It was overcome by the advanced first-order second moment (AFOSM)
method proposed by Hasofer and Lind (1974) for normal variables, as discussed next.

7.6.2 AFOSM Method for Normal Variables
(Hasofer-Lind Method)

The Hasofer-Lind (H-L) method is applicable for normal random variables. It first
defines the reduced variables as
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XXl - !tx:
(i = 1, 2, ...17) (7.45)l =

6 xi
where Xi' is a random variable with zero mean and unit standard deviation. Equation
7.45 is used to transform the original limit state g(X) = 0 to the reduced limit state,
g(X') = 0. The X coordinate system is referred to as the original coordinate system.
The X' coordinate system is referred to as the transformed or reduced coordinate sYs-
tem. Note that if Xi is normal, X1' is standard normal. These notations will he used
throughout this chapter to denote different coordinate systems. The safety index PHI is
defined as the minimum distance from the origin of the axes in the reduced coordinate
system to the limit state surface (failure surface). It can be expressed as

I3HL = .\,' (X"^ )f (X "'t") (7.46)

The minimum distance point on the limit state surface is called the design point or
checking point. It is denoted by vector xv in the original coordinate system and by vec-
tor x'x in the reduced coordinate system. These vectors represent the values of all the
random variables, that is, X 1, X2, ..., X,1 at the design point corresponding to the coor-
dinate system being used.

This method can be explained with the help of Figure 7.4. Consider the linear limit
state equation in two variables,

Z=R-S=0. (7.47)

This equation is similar to Equation 7.3. Note that R and S need not be normal vari-
ables. A set of reduced variables is introduced as

and

R'=R -uR
OR

S'=S µs
GS

(7.48)

(a) Original coordinates (h) Reduced coordinates

(7.49 )

Figure 7.4 Hasofer-Lind Reliability Index: Linear Performance Function
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If we substitute these into Equation 7.47, the limit state equation in the reduced coor-
dinate system becomes

() =6RR'-6S.S'+µR -IaS = 0. (7.50)

The transformation of the limit state equation from the original to the reduced coordi-
nate system is shown in Figure 7.4b. The safe and failure regions are also shown. From
Figure 7.4b it is apparent that if the failure line (limit state line) is closer to the origin
in the reduced coordinate system, the failure region is larger, and if it is farther away
from the origin, the failure region is smaller. Thus, the position of the limit state sur-
face relative to the origin in the reduced coordinate system is a measure of the relia-
bility of the system. The coordinates of the intercepts of Equation 7.50 on the R' and
S' axes can be shown to be [-(p.R - tS) / 6R, 01 and [0, (µ R - t ) / ] , respectively.
Using simple trigonometry, we can calculate the distance of the limit state line
(Equation 7.50) from the origin as

_ µR tS
PHL - T, (7.51)

I6R + 6S

This distance is referred to as the reliability index or safety in'tde... It is the same as the
reliability index defined by the MVFOSM method in Equation 7.36 if both R and S are
normal variables. However, it is obtained in a completely different way based on geom-
etry. It indicates that if the limit state is linear and if the random variables R and S are
normal, both methods will give an identical reliability or safety index. This may not be
true for other cases, as will be discussed further later.

In general, for many random variables represented by the vector X = (.vl, .1:,, ...,
in the original coordinated system and X' = (X,', X,', ..., in the reduced coor-

dinate system, the limit state g(X') = 0 is a nonlinear function as shown in the reduced
coordinates for two variables in Figure 7.5. At this stage, Xi"s are assumed to he
uncorrelated. Consideration of correlated random variables is discussed in Chapter S.
Here, g(X') > 0 denotes the safe state and g(X') < 0 denotes the failure state. Again.
the Hasofer-Lind reliability index PHI is defined as the mllllmurn distance from the
origin to the design point on the limit state in the reduced coordinates and can be
expressed by Equation 7.46, where x" represents the coordinates of the design point
or the point of minimum distance from the origin to the limit state. In this definition
the reliability index is invariant, because regardless of the form in which the limit
state equation is written, its geometric shape and the distance from the origin remain
constant. For the limit state surface where the failure region is away from the origin.

x2

'" (Design point)

g(X') = 0

}X i Performance Function
Figure 7.5 Hasoler-Lind Reliability Index: Nonlinear
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it is easy to see from Figure 7.5 that
x':

is the most probable failure point. As will be
elaborated with the help of an example later, the Hasofer-Lind reliability index can
be used to calculate a first-order approximation of the failure probability as
f = (D(-PHL) This is the integral of the standard normal density function along the
ray joining the origin and x". It is obvious that the nearer x' is to the origin, the larger
is the failure probability. Thus the minimum distance point on the limit state surface
is also the most probable failure point. The point of minimum distance from the ori-
gin to the limit state surface, x'v, represents the worst combination of the stochastic
variables and is appropriately named the design point or the most probable point
(MPP) of failure.

For nonlinear limit states, the computation of the minimum distance becomes an
optimization problem:

Minimize D=1r'X X
r (7.>2)

Subject to the constraint g(x) = g(x) = 0

where x' represents the coordinates of the checking point on the limit state equation in
the reduced coordinates to be estimated. Using the method of Lagrange multipliers, we
can obtain the minimum distance as

aXi
RIIL = - L (7.53)

ah

1' i = aX'

where (ag/aX'i)" is the ith partial derivative evaluated at the design point with coordi-
nates (x1'*, The asterisk after the derivative indicates that it is evaluated at

(rl'*, x2'",..., design point in the reduced coordinates is given by:

.Vi = -aiOHL (i = 1,2,...,n) (7.54)
where

ai
I

I J1

(7.55)
gI

raxi

are the direction cosines along the coordinate axes Xi'. In the space of the original coor-
dinates and using Equation 7.45, we find the design point to he

{i = uX - ai6X; RHL (7.56)

An algorithm was formulated by Rackwitz (1976) to compute RHL and .x"i as follows:

Step 1. Define the appropriate limit state equation.
Step 2. Assume initial values of the design point xi---, i = 1, 2, ..., n. Typically,
the initial design point may be assumed to be at the mean values of the random
variables. Obtain the reduced variates x':' = (xr - µx axt, .

Step 3. Evaluate (ag/aX1')' and ai at xi'v.
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Step 4. Obtain the new design point x1'*, in terms of 13H1' as in Equation 7.54.

Step 5. Substitute the new .k1'`' in the limit state equation g(x' `) = 0 and solve
for PHI;
Step 6. Using the 3HL value obtained in Step 5, reevaluate x1 = -aj RHL.

Step 7. Repeat Steps 3 through 6 until PHI -converges.

This algorithm is shown geometrically in Figure 7.6. The algorithm constructs a lin-
ear approximation to the limit state at every search point and finds the distance from
the origin to the limit state. In Figure 7.6, Point B represents the initial design point,
usually assumed to be at the mean values of the random variables, as noted in Step 2.
Note that B is not on the limit state equation g(X) = 0. The tangent to the limit state at
B is represented by the line BC. Then AD will give an estimate of PIIL in the first iter-
ation, as noted in Step 5. As the iteration continues, 131IL value converges.

Ditlevsen (1979a) showed that for a nonlinear limit state surface, NHL lacks compara-
bility; the ordering of I3HL values may not be consistent with the ordering of actual relia-
bilities. An example of this is shown in Figure 7.5 with two limit state surfaces: one flat
and the other curved. The shaded region to the right of each limit state represents the cor-
responding failure region. Clearly, the structure with the flat limit state surface has a dif-
ferent reliability than the one with the curved limit state surface; however, the RHL values
are identical for both surfaces and suggest equal reliability. To overcome this inconsis-
tency, Ditlevsen (1979a) introduced the generalized reliability index, f3g, defined as

f3,_(D- f ... f ... O(x" )d v dx; ... d.v

0>u
(7.57)

where (D and 0 are the cumulative distribution function and the probability density
function of a standard normal variable, respectively. Because the reliability index in
this definition includes the entire safe region, it provides a consistent ordering of sec-
ond-moment reliability. The integral in the equation looks similar to that in Equation
7.35 and is difficult to compute directly. Hence, Ditlevsen (1979a) proposed approxi-
mating the nonlinear limit state by a polyhedral surface consisting of tangent hyper-
planes at selected points on the surface.

x'2

A

Note: A number in parentheses indicates iteration number.

-XI

Figure 7.6 Algorithm for Finding PHL
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EXAMPLE 7.4

Denoting R and S as the random variables representing the resistance and the applied
load on a structure, assume that the limit state equation is represented by Equation 7.47
in the original coordinate system and by Equation 7.50 in the reduced coordinate sys-
tem. These are shown in Figures 7.4a and 7.4b, respectively. Using Equation 7.55, we
can evaluate the direction cosines aR and as as

and

(agIaR') GRaR -
a /aR'2+ a Ias'2 - ;'I62+62

US
2 2

U R + 6 .S

Notice that in Figure 7.4b, OCR = cos OR and ocs = cos O. The angles 8R and 0S are
defined as counterclockwise angles of rotation from the positive directions of R' and S'
axes to the positive direction of the a vector (i.e., vector of direction cosines). Using
Equation 7.54, we can show the coordinates of the checking point in the reduced coor-
dinate to be

6
2 R NI1I.

6R+6S

,'''{_-(XSPHI =
6S

2 I3HLUR
+6s

Substituting these new checking points in Equation 7.50, we can calculate the reliabil-
ity index RHL as

PHL
µ R S-

; 5
-\,. R + 6 S

Since it is a linear limit state equation, iteration is not required. This is the same result
as obtained by Equation 7.36, indicating that the algorithm works correctly. Using
Equation 7.56, we find the new checking point in the original coordinates to be

2
OR tR - S P'RUS + PSUR

1 = l,.t R- f
2

6 R
2 2

1 r 6R + 6S 1 6R + aS 6R + 6s

6s
S

µR !ItS RUS + i-S6R
2

jGR+O S 6R2 +62

S 6R + 6S

In this case, r* = S", indicating that the checking point is on the limit state line, which
is at a 45° angle to both coordinate axes.

Several important observations can be made by comparing the safety indices calcu-
lated by the MVFOSM (Equation 7.36) and the AFOSM proposed by Hasofer and Lind
(Equation 7.53). As long as the limit state equation of resistance and load is linear and all
the variables are normal, the safety indices calculated by the two methods will be the
same. However, strictly speaking, the MVFOSM does not use any information on the dis-
tribution of the resistance and load, whereas the AFOSM proposed by Hasofer and Lind
is applicable when they are normal. The most important difference is that in the
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MVFOSM method, the design point is at the mean values of R and S, indicating they are
not on the limit state line. The AFOSM (Hasofer-Lind) method indicates that the design
point is on the limit state line. This can be elaborated further with the help of an example.

EXAMPLE 7.5

Suppose a cable of resistance R needs to carry a weight S. Assume both R and S are
normal random variables with means of 120 kip and 50 kip, respectively, and corre-
sponding standard deviations of 18 kip and 12 kip, respectively. The limit state equa-
tion can be represented by Equation 7.47. Then, the safety index according to the
MVFOSM and the Hasofer-Lind methods will be the same, that is,

P _ 120-50
- IHL = 2 2

= 3.236.
18 +12

The design point according to the MVFOSM is (120, 50) as shown in Figure 7.4a.
The coordinates of the design point according to the Hasofer-Lind method can be
estimated as

.L _ R6S +'tsu? _ 120 x 122 + 50 x 18'`Rj _ s
' +62 182 + 12'`

= 71.54.
R S

The coordinates for the checking point are (71.54, 71.54), indicating that it is on the
limit state equation as shown in Figure 7.4b.

7.6.3 AFOSM Methods for Nonnormal Variables

The Hasofer-Lind reliability index can be exactly related to the failure probability
using Equation 7.37 if all the variables are statistically independent and normally dis-
tributed and the limit state surface is linear. For any other situation, it will not give cor-
rect information on the probability of failure. Rackwitz and Fiessler (1978), Chen and
Lind (1983), and others corrected this shortcoming and included information on the
distributions of the random variables in the algorithm for both the linear and nonlinear
limit state equations. In the context of AFOSM, the probability of failure has been esti-
mated using two types of approximations to the limit state at the design point: first
order (leading to the name FORM) and second order (leading to the name SORM). The
MVFOSM discussed in Section 7.6.1 is an earlier version of FORM. At the present
time, AFOSM is known as FORM. The Hasofer-Lind method discussed in Section
7.6.2 is an earlier version of AFOSM, applicable when all the variables are normal.
Other FORM methods are discussed next, and SORM is discussed in Chapter 8.

7.6.3.1 Equivalent Normal Variables

The deficiency in the Hasofer-Lind method, that it is applicable only for normal vari-
ables, needs to be addressed at this stage. If not all the variables are normally distrib-
uted, as is common in engineering problems, it is necessary to transform the nonnormal
variables into equivalent normal variables. The Rosenblatt transformation (Rosenblatt,
1952) can be used to obtain a set of statistically independent standard normal variables,
if the joint CDF of all the random variables is available. Conceptually, statistically
independent nonnormal variables can be transformed to equivalent normal variables in



7.6 First-Order Reliability Methods (FORM) 205

several ways. Procedures to transform correlated nonnormal variables are discussed in
Chapter 8. Because a normal random variable can be described uniquely by two param-
eters (mean and standard deviation), any two appropriate conditions can be used for
this purpose. Paloheimo (1973) suggested approximating a nonnormal distribution by
a normal distribution having the same mean value and the same P percentile (the value
of the variate at which the cumulative probability is P%). He set P equal either to the
target failure probability p/. if the variable was a loading variable or to (1.0 - P/) if the
variable was a resistance variable. The Rackwitz-Fiessler method (two-parameter
equivalent normal), the Chen-Lind method, and the Wu-Wirsching method (three-
parameter equivalent normal) can also he used for this purpose and are discussed next.

7.6.3.2 Two-Parameter Equivalent Normal Transformation

Rackwitz and Fiessler (1976) estimated the parameters of the equivalent normal distri-
bution, µX, and 6X,, by imposing two conditions. The cumulative distribution functions
and the probability density functions of the actual variables and the equivalent normal
variables should be equal at the checking point (x1 *, x2*,..., x,1*) on the failure surface.
Considering each statistically independent nonnormal variable individually and equat-
ing its CDF with an equivalent normal variable at the checking point results in

6,v Fxr (X1 (7.58)
X:

in which (D( ) is the CDF of the standard normal variate, µX and 6X, are the mean
and standard deviation of the equivalent normal variable at the checking point, and

f ,
(xi) is the CDF of the original nonnormal variables. Equation 7.58 yields

J. x; = xi - (D- [Fx; (xt )]6x, (7.59)

Equating the PDFs of the original variable and the equivalent normal variable at the
checking point results in

.tx. (JL i ) (7.60)

in which and fX (xl) are the PDFs of the equivalent standard normal and the prig-
inal nonnormal random variable. Equation 7.60 yields

N 0 ( x ) ] }:'Il
-6X = y (7.61)

` fXI (.1.1 )

Having determined µX, and
Ni6Xand proceeding similarly to the case in which all ran-

dom variables are normal, we can obtain Pl_{L using the 7 steps described earlier. Then
Equation 7.37 can be used to calculate the failure probability. This approach became well
known as the Rackwitz-Fiessler method and has been used extensively in the literature.

This approximation of nonnormal distributions can become more and more inac-
curate if the original distribution becomes increasingly skewed. For highly skewed
distributions, such as the Frechet (Type II distribution of maxima, see Section 4.5.5),
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the conditions represented in Equations 7.59 and 7.61 need to be modified. In this
case, the mean value and the probability of exceedence of the equivalent normal vari-
able are made equal to the median value and the probability of exceedence of the orig-
inal random variable, respectively, at the checking point (Rackwitz and Fiessler,
1978). µXr and 6X1 can be estimated as

X1 = F ' (0.5) = median of X;

and

(7.62)

N _ x; µX1 (7.63)
(x*X1

(D-1 [FX1 r

in which F ' () is the inverse of the nonnormal CDF of X;.
For highly skewed random variables, usually load-related variables, and relatively

large values of x;*, the cumulative distribution function at x;* will be close to one,
and the value of the density function at x1 will be very small. Rackwitz and Fiessler
(1978) observed, as we did, that if Equations 7.59 and 7.61 are used to calculate µX;
and 6X1, µX1 will be forced to be small. The larger x;* is, the smaller µ.X1 will
tend to be. But this may destroy the validity of the distribution of X;; for example,
for the Frechet distribution; it is only valid for the positive values of the random vari-
able. As shown by Ayyub and Haldar (1984), this problem might occur in many
designs. A lower limit on µXr of zero is suggested and has been proven to give accu-
rate estimates of 13 and pl. using the optimization algorithm of FORM and SORM. If
this lower value is imposed on µX1, then if µX1 < 0,

and

X;
(7.64)

µX1 = 0; (7.65)

otherwise use Equations 7.59 and 7.61.
The 7 steps described in Section 7.6.2 to calculate 131-IL are still applicable for the

Rackwitz-Fiessler method if all the random variables in the limit state equation are
normal. If some or all of them are not normal random variables, then another step is
necessary. In this step the equivalent normal mean and standard deviation of all the
nonnormal random variables at the design point need to be estimated.

Two optimization algorithms are commonly used to obtain the design point and the
corresponding reliability or safety index. The first method (Rackwitz, 1976) requires
solution of the limit state equation during the iterations and will be referred to as
FORM Method 1 in the following discussion. The second method (Rackwitz and
Fiessler, 1978) does not require solution of the limit state equation. Instead, it uses a
Newton-type recursive formula to find the design point. This method will be referred
to as FORM Method 2 in the subsequent discussion.

7.6.3.3 FORM Method 1

The steps in this method to estimate the reliability or safety index are explained as fol-
lows including the computation of parameters for equivalent normal variables. Some
improvements in the algorithm suggested by Ayyub and Haldar (1984) are included in
these steps. The original coordinate system is used in describing these steps.
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Step 1. Define the appropriate limit state equation.
Step 2. Assume an initial value of the safety index P. Any value of 13 can be
assumed; if it is chosen intelligently, the algorithm will converge in a very few
steps. An initial (3 value of 3.0 is reasonable.

Step 3. Assume the initial values of the design point _.V- , I' = 1, 2, ..., ii. In the
absence of any other information, the initial design point can be assumed to he
at the mean values of the random variables.

Step 4. Compute the mean and standard deviation at the design point of the
equivalent normal distribution for those variables that are nonnormal.

Step 5. Compute partial derivatives evaluated at the design point .vi .

Step 6. Compute the direction cosines a, at the design point as

Or

.
6 x;

f (7.66)
X -

Note that Equations 7.55 and 7.66 are identical. In Equation 7.55, the direction cosines
are evaluated in the reduced coordinates where the standard deviations of the reduced
variables are unity. In Equation 7.66, if the random variables are normal, then their
standard deviations can be used directly; otherwise, for nonnormal random variables,
the equivalent standard deviations at the checking point need to be used.

Step 7. Compute the new values for checking point x-j"' as

- t t x.- a r[3 6
x

(7.67)

If necessary, repeat Steps 4 through 7 until the estimates of a, converge with a
predetermined tolerance. A tolerance level of 0.005 is common. Once the direc-
tion cosines converge, the new checking point can be estimated, keeping (3 as
the unknown parameter. This additional computation may improve the robust-
ness of the algorithm. Note that the assumption of an initial value for (3 in Step
2 is necessary only for the sake of this additional computation. Otherwise, Step
2 can be omitted.

Step 8. Compute an updated value for f3 using the condition that the limit state
equation must be satisfied at the new checking point.
Step 9. Repeat Steps 3 through 8 until 13 converges to a predetermined tolerance
level. A tolerance level of 0.001 can be used, particularly if the algorithm is
developed in a computer environment.

The algorithm converges very rapidly, most of the time within 5 to 10 cycles,
depending upon the nonlinearity in the limit state equation. A small computer program
can be written to carry out the necessary calculations.

EXAMPLE 7.6

To help implement the preceding algorithm, an example of a detailed step-by-step solu-
tion is given next.
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Example 7.3, summarized in Table 7.1, is considered again. To estimate the safety
index using FORM, the distributions of F, and Z need to be considered. For illus-
tration purposes, assume that F is a lognormal variable with a mean of 38 ksi and
standard deviation of 3.8 ksi, and Z is a normal random variable with a mean of 54
in.3 and standard deviation of 2.7 in.3 The strength limit state is considered in this
example. The 9 steps necessary to estimate the safety index using FORM are sum-
marized in Table 7.2. For ease of comprehension, these steps are explained in detail
as follows.

Step 1. Using the strength formulation, we can express the limit state equation
for the problem as g( = F,.Z - 1,140 = 0.

Step 2. Assume 1i = 3.0.

Step 3. The initial design point is assumed to be 38 and 54, the mean values of
F,: and Z, respectively.

Step 4. Since Z is a normal random variable, no additional transformations are
needed. However, since F,, is a lognormal variable, its equivalent normal mean
and standard deviation at the design point can be estimated in two ways, as dis-
cussed next.

Alternative 1 Using Equations 7.59 and 7.61

In this case, bF = U.1. Thus,

ln(l+b .,) ln(l+0.12) =0.0997513

Table 7.2 Steps in FORM Method 1

Step 1 (Y() = Z - 1,140
Step 2 3.0 5.002 5.150
Step 3 38. 27.64 29.02 23.96 24.50 24.21

z'` 54. 50.37 50.17 47.59 47.32 47.10
Step 4 :v 37.81 36.30 36.70 34.89 35.13 35.00

:v 3.79 2.76 2.89 2.39 2.44 2.42

:v 54.0 54.0 54.0 54.0 54.0 54.0
.tZ

2.7 2.7 2.7 2.7 2.7 2.7
6Z

Step 5 ag * 54.0 50.37 50.17 47.59 47.32 47.10

(aF)I
38.0 27.64 29.02 23.96 24.50 24.21

C)Z

Step 6 ar 0.894 0.881 0.880 0.869 0.868 0.867
aZ 0.448 0.473 0.475 0.494 0.496 0.498

Step 7 Go to Step 3. Compute the new checking point using
information from Step 6.

Step 8 13 5.002 5.150 5.151
Step 9 Repeat Steps 3 through 8 until (3 converges.

The final checking point is (24.22, 47.07).
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and

2
2.

t,. 2In µ . 1 In 38 - 1 (0.0997513)'` = 3.632611

I n f ,,- 7t, - 2

(38) = 1 *exp-1
n F. fY 2 F,:

-,,/271(0.0997513)(38)
exp

1n38-3.632611FF (f{)=P(0<F,. <<38(D
0.0997513

Thus,

1 1n38-3.632611

2 0.0997513

= cD(U.0498756).

=0.10511.57

(D-' [F,,,. (fv) = 0.0498756

1 1

[(0o4987s6)21 = 0.3984464.
V27r 2

Using Equations 7.61, we can show that
0.3984464r = = 3.7905487.
0.1051157

Using Equation 7.59, we can show that

F = 38 - (0.0498756)(3.7905487) = 37.810944.

Alternative 2 (Simplified Approach)

For a lognormal random variable X with parameters XX and X, the equivalent normal
mean and standard deviation at the design point x" can be shown to be

6X = XX (7.68)

and

Thus,

and

µx = x*(1 - In x + X ).

r. (0.0997513)(38) = 3.7905494

(7.69)

F = 38(1-1n 38 + 3.632611) = 37.810944.

These are the same values estimated using Alternative 1. The information is summa-
rized in Table 7.2.

Step 5. For the example under consideration, the partial derivatives (ag/aXl)*
evaluated at the design point can be shown to be

a Y a`
38.aF = z = 54 and

(az
ti



210 Chapter 7 Fundamentals of Reliability Analysis

Step 6. Equation 7.66 can be used to calculate the direction cosines for F, and Z:

r ,,
54 x 3.7905487

oc - = 0.8939809
j(54 x 3.7905487)2 + (38 x 2.7)2

ocz
- 38 x 2.7 = 0.4481049.

j(54 x 3.7905487)2 + (38 x 2.7)2

Step 7. Equation 7.67 is used to find the coordinates of the new design point:

fy; = 37.810944 - 0.8939809 x 3.0 x 3.7905487 = 27.644908

and

z 54-0.4481049x3.0x2.7=50.37035.

The second iteration will start with the coordinates of the new design point just cal-
culated in Step 7, as shown in Table 7.2. Steps 3 through 7 are repeated until the
direction cosines converge at a tolerance level of 0.005. The detailed calculations are
not shown here; however, they are similar to the calculations just discussed. At the
third iteration, a and ott converge to 0.8800674 and 0.4748486, respectively.

Step 8. The coordinates of the new design point, keeping 13 as the unknown
parameter, are

36.698103 - (0.8800674)(2.8942793)13= 36.698103 - 2.5471613

and

z = 54 - (0.4748486)(2.7)13= 54 -1.2820913.

A new 13 value can be estimated by satisfying the limit state equation as

(36.698103 - 2.5471613)(54 - 1.2820913) - 1, 1 40 = 0.

When this equation is solved, 13 is found to be 5.002. This updated 13 is considerably
different than the initial assumed value of 3.0. With the updated 13 value, the coordi-
nates on the new design point become

fy. = 36.70 - 0.880 x 5.002 x 2.89 = 23.96

and

z* = 54- 0.475 x 5.002 x 2.7 = 47.59.

Thus, the fourth iteration will start with the updated information on the coordinates
of the design point, as shown in Table 7.2. Again, the direction cosines converge after
the fifth iteration, and the updated 13 becomes 5.150.

Step 9. Steps 3 through 8 are repeated until 13 converges to a tolerance level of
0.005. As shown in Table 7.2, at the sixth iteration, 13 converges to 5.151 with a
tolerance level of 0.005, and the corresponding checking point is (24.22, 47.07).

7.6.3.4 FORM Method 2

Notice that in Step 8 of FORM Method 1, the limit state equation needs to be solved
to find the new design point. This may be difficult in the case of complicated nonlin-
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ear g-functions. Also, in many practical problems, the g-function may not even be
available in closed form. In that case, it is impossible to perform Step 8, thus limiting
the usefulness of FORM Method 1. Therefore, an alternative Newton-Raphson type
recursive algorithm, referred to as FORM Method 2 in this section, is presented here
to find the design point. This algorithm, suggested by Rackwitz and Fiessler (1978), is
similar to FORM Method 1 in that it linearizes the performance function at each itera-
tion point; however, instead of solving the limit state equation explicitly for P, it uses
the derivatives to find the next iteration point.

The algorithm can best be explained with the help of Figures 7.7 and 7.8. Consider
first the linear performance function shown in Figure 7.7. Since the limit state is not
available in closed form, the starting point x0' (usually the vector of mean values of the
random variables) may not be on the limit state 9(X1% X2') = 0, but on a parallel line
g(X 1', X2') = k. Hence the optimization algorithm has to start from point x0' which may
not be on the limit state, and converge to the minimum distance point x'-' on the limit
state. The linear performance function g(x') may be expressed as

g(x') = b + a'x'
(7.70)

Here a' = (a, a2) is the transpose of the gradient vector (i.e., vector of first derivatives)
of the performance function. The magnitudes of the vectors x("* and x''* denote the dis-
tance from the origin to starting point and to the limit state g(x') = 0, respectively.
Using geometry, x'* can be expressed in terms of as

X = Ia'x'x-g(x'*)]{a} (7.71a)'x 1

Ia12 0

Rewriting Equation 7.71 a in terms of the components of all the vectors results in

Jx; 2

X2 a1

al
Ia1 1 + a2Ao2

2 la2J
(7.71 b)

Since the performance function is linear in this case, its gradient is constant; hence the
distance to the limit state from the origin is obtained in one step.

X21

g (xl,X2) = 0

Figure 7.7 FORM Method 2 for a Figure 7.8 FORM Method 2 for a Nonlinear
Linear Performance Function Performance Function
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Equation 7.71 a can be generalized for a nonlinear performance function as shown
in Figure 7.8 as

x [vg(x7x.," - '(x ) o (x ) (7.72)k+l , k .
k

I Vg(X )12
k

where Vg(xk) is the gradient vector of the performance function at xk , the kth iter-

ation point. Note that k refers to the iteration number. Therefore x,T is a vector with

components {xik ,.2k , ... , x" }' , where n is the number of random variables. The mean-

ing of xk
1
is similar.

Since the performance function is nonlinear, the gradient is not constant but varies from
point to point. Therefore, instead of a one-step solution in the case of the linear perform-
ance function, the point of minimum distance has to be searched through the recursive for-
mula given in Equation 7.72. This formula can be geometrically interpreted using Figure
7.8. At each iteration point, the performance function is approximated by the tangent at the

point, that is, the performance function is linearized with g( x" ) and Vg( x'*) correspon-

ding to and a, respectively, in Equation 7.71 a. The next iteration point xk+1 is com-
puted the same way as in the case of the linear performance function. If the performance

function were linear, x ± 1 would be identical to x kx, fork > 0. However, since the per-

formance function is nonlinear, its value and gradient at xk:1 are different from those at

xkx. Therefore it is again linearized at xk+l and another iteration point xk+, is computed.
The algorithm is repeated until convergence, satisfying the following two criteria:

If I xk - xk*
1

I stop.

If I g(x,:,) I < F, stop.

Both b and 1 are small quantities, say 0.001.
From this discussion, it is obvious that the recursive formula in Equation 7.72

results from the linearization of the performance function. Consider a first-order Taylor
series approximation of the performance function as

g(x1) = g(xk ) + Vg(xk )(xk+1 - xk )(7.73)

Thus, the limit state (xk+1) = 0 becomes
g(xk.±)

+
xk:k)

= 0. (7.74)

Rearrangement of the terms in this equation gives Equation 7.72 as the solution for
the minimum distance point on the linearized limit state. (The distance is measured
from the origin.)

Compared to other nonlinear optimization algorithms available in the literature,
the algorithm just described requires the least computation at each step. The next
iteration point is computed using a single recursive formula that requires informa-
tion only about the value and the gradient of the performance function. The storage
requirement is therefore minimal. The algorithm is also found to converge fast in
many cases. For these reasons, this algorithm has been widely used in the literature.
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Convergence Problems

This algorithm may fail to converge in some situations. It may converge very slowly, or
oscillate about the solution without convergence, or diverge away from the solution. Two
such examples are shown in Figures 7.9 and 7. 10. For the case of a single variable x', the
formula in Equation 7.72 reduces to the Newton-Raphson method to find the root of g(x')
= 0 (see Equation 7.74). It is well known that the Newton-Raphson formula may fail to
find the roots of a function in certain circumstances. Figure 7.9 illustrates one such situ-
ation where the Newton-Raphson method diverges further and further away from the
solution. In the example with two variables (Figure 7.10), the performance function is

g(x') = xix; - d. (7.75)

If the starting point (a, b) falls on one of the two ellipses (X'1)2 + (x',)2 + X11 x', + d = 0
and (X,'1)2 + W2 )2 - X11 x'2 - d = 0, then the algorithm generates points that oscillate
between (a, b) and (b, a), as shown by Liu and Der Kiureghian (1986).

Thus, it is possible that the Rackwitz-Fiessler algorithm may not converge to the MPP
(minimum distance point, or most probable point of failure) in some cases. Other optimiza-
tion algorithms such as sequential quadratic programming or the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) method (Vanderplaats, 1984) may be used in that case.

Similar to FORM Method 1, FORM Method 2 can be described as follows. Both the
original and equivalent standard normal or reduced coordinate systems are used in this
method.

Step 1. Define the appropriate performance function.

Step 2. Assume initial values of the design point x;``, 1 = 1, 2, ..., n, and com-
pute the corresponding value of the performance function g( ). In the absence of
any other information, the initial design point can be the mean values of the
random variables.

Step 3. Compute the mean and standard deviation at the design point of the
equivalent normal distribution for those variables that are nonnormal. The coor-
dinates of the design point in the equivalent standard normal space are

Figure 7.9 Example of Failure of
the Newton-Raphson Method
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x'2

ax', + bx'

(-r'1)2+(-V'2)2+x'1

(x'1)2 + (a'2)2 - r'1 x'2 - d = 0

x'2+d=0

Xi t Xi

Xr

Figure 7.10 N onconvergence of
the Rackwitz-Fiessler
Algorithm-Bivariate Case

(7.76)

Step 4. Compute the partial derivative ag/aX; evaluated at the design point x;*.
Step 5. Compute the partial derivatives ag/aX'; in the equivalent standard nor-
mal space by the chain rule of differentiation as

7 77. (.)6 x
dg = ag aX; = ag

N
dX; dX; dX; dX;

The partial derivatives ag/aX'; are the components of the gradient vector of
the performance function in the equivalent standard normal space. The com-
ponents of the corresponding unit vector are the direction cosines of the per-
formance function, computed as

ag "g 6 N

ax! _ ax; X (7.78)
i I rt a

2*
I r1 @g

2*

1=,
ax

; ax; x:

Note that this is exactly the same formula as in Equation 7.66. Although the direction
cosines are not directly used in the current algorithm, they are used later in the imple-
mentation of SORM, the second-order reliability method, discussed in Chapter $.

Step 6. Compute the new values for the design point in the equivalent standard
normal space (x';*) using the recursive formula of Equation 7.72.

Step 7. Compute the distance to this new design point from the origin as

(7.79)
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Check the convergence criterion for P (i.e., the change in the value of P between
two consecutive iterations is less than a predetermined tolerance level, say 0.001).

Step 8. Compute the new values for the design point in the original space (x1) as

.f, = ji X . + 6 XrX l

Compute the value of the performance function g( ) for this new design point,
and check the convergence criterion for g( ): that is, check that the value of g(
is very close to zero, say within 0.001. If both convergence criteria are satisfied,
stop. Otherwise, repeat Steps 3 through 8 until convergence.

EXAMPLE 7.7

Consider again the performance function g( = F. Z - 1,140 used to demonstrate
FORM Method 1 in Example 7.6. Note that FORM Method 2 is particularly useful
when the performance function is implicit, that is, when it cannot be written as a
closed-form expression in terms of the random variables. However, this simple closed-
form performance function is chosen for the sake of illustration and comparison with
FORM Method 1. Issues related to implicit functions are discussed in detail by the
authors in another book titled Reliability Assessment Using Stochastic Finite Element
Analysis, published by John Wiley & Sons in 2000.

FV is assumed to have a lognormal distribution with a mean value of 38.0 ksi and a
standard deviation of 3.8 ksi. Z is assumed to have a normal distribution with a mean
value of 54.0 in.3 and a standard deviation of 2.7 in.3. The 8 steps of FORM Method 2
are summarized in Table 7.3. For ease of comprehension, the first iteration is discussed
here.

Step 1. The performance function is g( = F,, Z - 1,140.

Step 2. The initial values of the design point are chosen to be the same as the
= 54. For thismean values of the two random variables, that is, 38 and 7*

initial design point, the value of g( ) is computed as

g( ) = (38)(54) -1,140 = 912.

Step 3. The equivalent normal mean and standard deviation for the lognormal
variable F. are computed in the same way as in FORM Method I as

µF = 37.81 and 6f, = 3.79. Since Z is a normal random variable, its equiva-

lent mean and standard deviation are the same as the original mean and stan-
dard deviation. Using Equation 7.76, the coordinates of the design point in the
equivalent standard normal space are

,x-38-37.81=0.05, 27-27=0.
f 3.79 2.7

Step 4. The partial derivatives evaluated at the design point are
7C

7K

ag = z = 54 and 38.
aFti aZ
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Table 7.3 Steps in FORM Method 2

Step 1

Step 2

Step 3

g() = F, Z- 1,140

Initial values: j= 38, = 54, gO = 912.0

37.81 35.116 34.960 35.003

3.79 2.44 2.405 2.415

54.00 54.00 54.00 54.00

2.70 2.70 2.70 2.70

0.05 -4.365 -4.510 -4.471

0.00 -1.765 -2.479 -2.558

Step 4
a

54.00 49.235 47.307 47.093
F

38.00 24.464 24.112 24.207
a7_(Lg)*

Step 5 aP
204.69 120.15 113.78 113.71

.
ti

102.60 66.05 65.10 65.36
a7_'

Step 6 New fl* -3.521 -4.509 -4.471 -4.466

New Y* -1.765 -2.479 -2.558 -2.567
Step 7 New 3.939 5.145 5.151 5.151

AP 1.206 0.006 0.0001

Step 8 New 24.464 24.112 24.207 24.22

New 7* 49.235 47.307 47.093 47.07
New go 64.500 0.679 -0.020 -0.0002

Convergence criteria in Steps 7 and 8: (1) IDlil < 0.001, (2) Ig( )I 5 0.001.
The final checking point is (24.22, 47.07).

Step 5. Equation 7.77 is used to find the partial derivatives in the equivalent
normal space as

6F. = 54 x 3.79 = 204.69

./ = 38 x 2.7 = 102.60.

1z, ) az)
Step 6. The coordinates of the new design point in the equivalent standard nor-
mal space are computed using the recursive formula of Equation 7.72 as

Y'
__

1 ag a ( a; ),j
1.7

f,
New J f )1* 1 2

a
, --
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1 204.69

2()4.69' +102.60'`1
(204.69 x 0.05 + 102.60 x 0.0 - 912) 102.60

-3.521
1-1.765

Step 7. Using Equation 7.79, we find the value of (3 to be

N.
(-3.521) +(-1.765 )2 = 3.939.R=

The check for convergence at this step will start during the second iteration. In
the second iteration, (3 is calculated as 5.145. Therefore, the change in the value
of 13 between the first and second iterations is 1.206 > 0.001.

Step K. Equation 7.80 is used to find the coordinates of the new iteration point
in the original space:

=37.81+3.79x(-3.52l)=24.464

z =µ +6Jz=54.0+2.7x(-1.765)=49.235.
At these values, the performance function is evaluated as

g( ) = 24.464 x 49.235 - 1.140 = 64.5.

The convergence criterion for g( ) is checked. The current gO value is greater than
the tolerance level of 0.001. Therefore, proceed to the next iteration at Step 3.

The search is stopped after four iterations since the value of (3 has converged to
5.151 and the value of g( ) has become less than 0.001. As expected, both FORM meth-
ods gave identical results. However, the advantage of FORM Method 2 is clear; it does
not require solution of the limit state equation and simply uses a recursive formula to
converge to the design point. Comparing Tables 7.2 and 7.3, we can observe that the
same quantities are computed in both methods. The only difference is in how the new
iteration point is computed. Also, during the first iteration, since both the algorithms
were started from the mean values of the variables, many of the quantities have the
same values.

Observations

Several important observations can he made at this time. The safety index obtained
using any one of the FORM methods is different than the safety indexes shown in Table
7.1. It is also interesting to note that if the stress formulation of the limit state was con-
sidered, the safety index would have the same value (i.e., 5.151) as the strength for-
mulation. The Hasofer-Lind algorithm ignores the information on the distributions of
the random variables, essentially assuming both random variables are normal; if it is
used, (3HL is found to be 4.261.

The FORM methods clearly demonstrate that information on the distribution of ran-
dom. variables is important in calculating the safety index and the corresponding prob-
ability of failure. To amplify the point, the safety indices of the same beam problem
just considered are calculated assuming F. and Z have different distributions, the
results are summarized in Table 7.4.

In this example, only two random variables are present in the limit state equation.
However, there could be any number of random variables in the limit state equation; as
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Table 7.4 Safety Index Under Various Probability Distributions

Limit state equation = g() = F,, Z - 1.140 = 0

Random variables FY Z_ P

Probability Distribution Normal Normal 4.26 1

Normal Lognormal 4.266
Lognormal Normal 5.151
Lognormal Lognormal 5.213

long as they are uncorrelated, either of the two algorithms discussed here can be used
without modification to calculate the safety index or the corresponding probability of
failure. If the random variables are correlated, some modifications in the algorithm are
necessary, as discussed in Chapter 8.

To demonstrate the application of FORM to a more complicated problem involving
several random variables, the moment capacity of a singly reinforced rectangular pris-
matic concrete beam is considered here. The moment capacity or resistance MR of such
a beam can be calculated using the following expression-

MR= A '.d I - AS f` (7.81)S.f, hd f.

where AS is the area of the tension reinforcing bars,.f is the yield stress of the rein-
forcing bars, d is the distance from the extreme compression fiber to the centroid of the
tension reinforcing bars, 11 is the concrete stress block parameter, fc ' is the compressive
strength of concrete, and b is the width of the compression face of the member. It is
extensively reported in the literature that all these variables are random. Their mean
values and coefficients of variation are tabulated in Table 7.5. Assume further that the
beam is subjected to a moment M, which is also a random variable. Its mean value and
coefficient of variation are shown in Table 7.5.

The limit state equation for the problem can be expressed as

=A d l- As -M=0.
fc

Table 7.5 Uncertainty in the Design Parameters of a Reinforced Concrete Beam

(7.82)

Random variables M ean Coefficient of variation

A,, (in.2) 1 .56 0.036
A, (ksi) 4 7.7 0.15
fl! (ksi) 3.5 0.21
h (in.) 8.0 0.045
d (in.) 1 3.2 0.086

11 0 .59 0.05
M (kip-in.) 32 6.25 0.17
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Table 7.6 Safety Index of a Reinforced Concrete Beam Under Various Probability
Distributions

Random variables Probability distribution

AS Normal Normal Lognormal Lognormal
A. Normal Normal Lognormal Lognormal

fe Normal Normal Lognormal Lognormal
b Normal Normal Lognormal Lognormal
d Normal Normal Lognormal Loggnormal
rl Normal Normal Lognormal Lognormal
M Normal Lognormal Normal Lognormal
i 3.833 3.761 4.388 4.091

For various distributions of the random variables in Equation 7.82, the safety indices
are calculated using the FORM method. It is not possible to show the detailed calculations
in tabular form as in the previous example. A computer program is used for this purpose.
The results summarized in Table 7.6 clearly indicate that the distributions of random vari-
ables play a very important role in safety index or probability of failure estimation.

7.6.3.5 Three-Parameter Equivalent Normal Transformation

Chen and Lind (1983) proposed an extension of the Rackwitz-Fiessler algorithm using
a three-parameter approximation. It is known as the Chen-Lind method. For each non-
normal variable X;, a third parameter A; (referred to as a scale factor) is introduced, in
addition to the mean and standard deviation, by imposing the condition that at the
checking point the slopes of the probability density function must be equal for both the
original and the equivalent normal distributions.

Wu and Wirsching, (1987) proposed an alternative way to obtain a three-parameter
equivalent normal transformation. In their approach, the scale factor AI is approxi-
mately computed as the ratio of the failure probability estimate with the actual distri-
bution to the failure probability estimate with the equivalent normal distribution
(assuming a linearized g-function and replacing the effect of all other variables by a
single normal variable). Then the other two parameters It and 6Xr are computed by
minimizing the sum of squares of the errors in the probability estimate between the
actual distribution and the equivalent normal distribution.

7.7 RISK-BASED DESIGN FORMAT USING FORM

The concept of risk-based design format was introduced in Section 7.4. Considering
performance functions of the form given by Equations 7.3 (for normal variables) and
7.20a (for lognormal variables), we estimated the central and nominal load and resist-
ance factors in a design. Essentially, these factors were estimated using the MVFOSM
method. Now that a more advanced reliability method, namely FORM, is known, it will
be of interest to calculate the central and nominal load and resistance factors using this
method. The following simple example for normal variables is given to demonstrate the
procedure. However, with the same procedures, these factors can also be calculated for
nonnormal and correlated variables (to be discussed in Chapter 8).
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EXAMPLE 7.8

Example 7.1 given in Section 7.4.2 is considered again. A simply supported steel beam
of 30-foot span is subjected to nominal dead and live loads of'70 and 100 psf, respec-
tively. Assuming the beams are spaced 10 feet apart and are continuously laterally sup-
ported by the concrete slab, and using AISC's LRFD design criteria, an engineer
suggests a W14 x 61 section of A36 steel. Denoting µD, µL. and has the mean values
of the dead and live loads and the resistance of the W section, and the corresponding
nominal values as DN, LN, and RN, respectively, Ellingwood et al. (1980) showed that
it may be very reasonable to assume DN/LD = 1.05, LN/µL = 1.4, and R,%;/.R= 0.9. The
uncertainty in the dead load and live load and the resistance in terms of COV are 0. 13,
0.37, and 0.13, respectively. It is necessary first to design the beam and then calculate
the central and nominal load and resistance factors for this design corresponding to a
reliability index f3 of 3.0.

SOLUTION

The design requirements using the LRFD concept can be expressed as
,71

ORN > 17iSNi
r=1

(7.83)

where 0 is the resistance factor, subscript N denotes the nominal design values for load
and resistance, y; is the ith load factor, and n7 is the number of loads that need to be con-
sidered for the critical load combination. For dead and live loads, Equation 7.83
becomes

ORN = y D DN + 71,L N . (7.84)

The performance function for this design is
gO=R - D - L. (7.85)

From the information given in the problem, the mean values of dead and live loads are
70/1.05 = 66.67 psf and 100/1.4 = 71.43 psf, and the corresponding COVs are 0.13 and
0.37, respectively. The mean value of the moment caused by the applied dead load can
be calculated as

66.67x10x302 x 12; _ = 900.05 k- in.
8 x 1000

The standard deviation of the bending moment due to the dead load MD is
6mr) = 0.13 x 900.05 = 117.01 kip- in.

Similarly, the mean value of the moment caused by the applied live load is
71.43xl0x302 x12

= 964.31 kip-in.
8 x 1, 000

The corresponding standard deviation of the live load moment M1 is
6J = 0.37 x 964.31 = 356.79 kip- in.

Equation 7.67 can be used to find the checking point for R, D, and L for (3 = 3:

rv µR - aRx 3x(0.13µR)
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d* =900.05-aD x3x117.01

and

l* = 964.31-a1, x 3 x 356.79.

The checking point must satisfy the performance function given by Equation 7.85, that
is,

g()=0=(9R-(XRx(3xGR)-4tD-a1)xRx(3D)
(7.86)

-41L-afXRX6L).

The partial derivatives of the performance function with respect to R. D, and L evalu-
ated at the checking point are

aR ' aD aL
Equation 7.66 is used to find the corresponding direction cosines:

_ 6R _ -61)
R

62 + 62 + 62
aU 6 '

aL + 6D + 62JR D L R + 6D + 61. R LL

Substituting these direction cosine values in Equation 7.86 and simplifying will result
in

RR - RD Rl, = R. (7.87)

For the problem under consideration, Equation 7.87 becomes
RR- 900.05 - 964.31 -'I

.

2
(0.13 x RR) +117.01 2 + 356.79`

This is a quadratic equation in terms of the mean value of R. Solving the equation gives
k= 3,692.75 kip-in. Thus, 6R = 0.13 x 3,692.75 = 480.06 kip-in. The direction cosines
can now be evaluated as

OCR =
480.06 _ 480.06 = 0.788

R
J480.062 + 1 17.012 + 356.792 609.47

a -
D

-117.01 =_0.192
609.47

and
-356.79

aL = _ -0.585.
609.47

For a linear performance function no iteration is necessary. The nominal value of the
resisting bending moment is

RN=0.9x3,692.75=3,323.48 kip-in.
Since the unbraced length of the beam is zero, and we assume the section is compact,
it is expected to develop full plastic moment. Thus, if A36 steel is used, the required
plastic section modulus for the beam is

z = 3, 323.48 = 92.32 in.3
req

36
A W 14x61 section of A36 steel is used for the beam. The same section can be obtained
by designing the beam according to the AISC's LRFD code.
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Using either Equation 7.56 or 7.67, for the ith normal variable, we can show that

.r = µx - ax Pax = µx; (1- ax; 1bx (7.88)

Thus, the central resistance and load factors are (1- ax; I3bx: ). For the problem under
consideration, these factors are

µ4 = I - 0.788 x 3 x 0. 13 = 0.693

µ,rD = 1+0.192x3x0.13= 1.075

µYI = 1+0.585x3x0.37=1.649.

Thus, the design requires
0.693µR >-1.075 x tD + 1.649 x µ1'. (7.89)

Since the ratios of nominal to mean values are known for all the three parameters,
Equation 7.89 can be rewritten in terms of nominal values as

0.693 RL' > 1.075 +1.649 1.
0.9 1.05 1.4

or

0.77RN >_ 1.02DN + 1.18LN. (7.90)

These resistance and load factors correspond to the reliability index 13 of 3. If the reli-
ability index (3 is selected to be 4, indicating a much safer or conservative design, and
the procedures just discussed are followed, the design requirements (similar to
Equation 7.90) become

0.62R11, - 1.03D;v + 1.24L.\; . (7.91)

For this relatively more conservative design, the resistance factor decreased and load
factors increased, as expected. For a specific application, the reliability index needs to
be calibrated considering the acceptable practice in the profession. This simple exam-
ple clearly demonstrates the mathematical basis for the resistance and load factors
commonly used in design codes.

7.8 CONCLUDING REMARKS

The risk-based design concept is presented in this chapter. It was shown that the con-
ventional safety factor-based deterministic designs in terms of capacity reduction fac-
tor and load factors, and the risk or probability-based load and resistance factor
designs, are essentially parallel to each other. However, the risk-based design explic-
itly incorporates more information in developing these factors. It is perhaps a better
and more comprehensive approach, and it empowers engineers to make better design
decisions on a case-by-case basis. Using the fundamental concept of risk-based design,
various reliability analysis methods with different degrees of complexity and com-
pleteness are available. They are presented systematically in this chapter. The steps to
extract the necessary information are identified and clarified with the help of examples.

The information presented in the first seven chapters of this book is expected to pro-
vide readers with the necessary background to calculate the probability of failure or the
reliability of simple structural components. Some of the more advanced topics on risk
and reliability estimation are presented in Chapter 8.
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7.9 PROBLEMS

7.1 A simply supported steel beam with a span of 40 ft needs to be designed to carry a dead load
of 80 psf and a live load of 50 psf. The beams are spaced 10 ft apart and are laterally sup-
ported at the supports and at the midspan. Using A36 steel and the AISC's LRFD code, a
steel section of W21 x 73 is suggested. Assume the following:

Nominal moment capacity of the beam, MR = 151 x 36 = 5,436 k-in.

Nominal MR = mean - 2 x standard deviation value

Nominal dead load = 80 psf = mean + 1 x standard deviation value

Nominal live load = 50 psf = mean + 2 x standard deviation value

The COVs of MR, dead load, and live load are 0.13, 0.13, and 0.37, respectively. Consider
all the random variables to be normally distributed. Using the concept discussed in Section
7.4, calculate the following:

(a) The probability of failure of the beam.

(b) The corresponding central safety factor, capacity reduction factor, and load factors.

(c) The nominal safety factor, capacity reduction factor, and load factors.

7.2 If all the random variables in Problem 7.1 are lognormally distributed, calculate the following:

(a) The probability of failure of the beam.

(h) The corresponding central safety factor. capacity reduction factor. and load factors.

(c) The nominal safety factor, capacity reduction factor, and load factors.

7.3 The bearing capacity, C, of soil under a square foundation of size 9 ft2 is determined to be
a random variable with a mean of 3 ksf and a standard deviation of 0.5 ksf. The applied axial
load, P, acting on the foundation is also a random variable with a mean of 15 kip and a stan-
dard deviation of 2 kip. Assume C and P are statistically independent and no information on
their distribution is available. Using a limit state function of the form 0( = 9 C - P and the
MVFOSM method, calculate the reliability index for the foundation.

7.4 Consider Problem 7.3.

(a) If C and P are statistically independent normal random variables with the same means
and standard deviations, calculate the reliability index and the corresponding probabil-
ity of failure of the foundation.

(b) If C and P are statistically independent lognormal random variables with the same
means and standard deviations, will the reliability index be different? Can the probabil-
ity of failure of the foundation he calculated exactly?

7.5 A simply supported beam of span L = 360 inches is loaded by a uniformly distributed load
iv in kip/in. and a concentrated load P in kip applied at the midspan. The maximum deflec-
tion of the beam at the midspan can he calculated as

5 wL I PL3

384 EI 48 EI

A beam with EI = 63.51 x 106 kip-in.2 is selected to carry the load. Both tit' and P are statis-
tically independent random variables with mean values estimated to be 0.2 kip/in. and 25
kip, respectively. The corresponding standard deviations are 0.03 kip/in. and 2.5 kip, respec-
tively. Assume the distributions of viw and P are unavailable. The allowable deflection, 8a' for
the beam is a constant of value 1.5 inch. Considering the limit state equation of the form
g() = Sir - bniax = 0, calculate the reliability index for the beam in deflection using the
MVFOSM method.
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7.6 In Problem 7.5, suppose both ti' arid P are statistically independent normal random variables with
the same means and standard deviations. Using FORM Method 1, calculate the reliability index
for the beam. Discuss why the reliability indexes obtained in Problems 7.5 and 7.6 are the same.

7.7 Consider Problem 7.6. Calculate the reliability index of the beam using FORM Method 2.
Is it identical to the value obtained in Problem 7.6?

7.8 In Problem 7.5, suppose ww is a normal random variable and P is a lognorl ial random vari-
able with the same means and standard deviations. If wtw and P are statistically independent,
calculate the reliability index for the beam using FORM Method 1. Discuss why the relia-
bility indices obtained in Problems 7.6 and 7.8 are different.

7.9 Consider Example 7.6. The limit state equation according to the strength formulation is g(
= F,Z - 1.140 = 0, in which F,. has a lognormal distribution with a mean and COV of 38 ksi
and 0.1. respectively, and Z has a normal distribution with a mean and COV of 54 in.' and
0.05. respectively. Table 7.2 indicates that for this problem, 13 = 5.151 and the checking point
is (24.22, 47.07). The limit state equation is rewritten in the stress formulation as

g( F,
1,140 _

Using either Method 1 or Method 2, show that the reliability index and the checking point
will be unchanged according to FORM.

7.10 The fully plastic flexural capacity of a steel beam section can be estimated as Y Z, where Y
= the yield strength of steel and Z = the plastic section modulus of the section. If the applied
bending moment at a location of interest is M, the performance function may be defined as

gO=YZ - M.
Assume Z is a constant of value 50 in.3 and Y and M are independent normal random variables
with mean values of 40 ksi and 1,000 kip-in., respectively, and corresponding COVs of 0.125 and
0.20, respectively. Estimate the reliability of the beam using FORM (Method I or Method 2).

7.11 In Problem 7.10. if Y and M are independent lognormal random variables with the same
means and COVs, and Z is a constant of value 50 in.', estimate the reliability of the beam
using FORM (Method 1 or Method 2).

7.12 In Problem 7. 10, consider Y to be a normal and M to be a lognormal random variable with
the same means and COVs, and Z to be a constant with a value of 50 in.3 Estimate the reli-
ability of the beam using FORM (Method 1 or Method 2).

7.13 A simply supported steel beam needs to be designed to carry dead. live, and snow loads. The
nominal bending moments produced by these loads are 945, 1.350, and 675 kip-ill.. respec-
tively. The nominal to mean value ratios for the dead, live, and snow loads and resistance are
assumed to be 1.05, 1.4. 1.2, and 0.9, respectively. The uncertainties in the dead. live, and
snow loads and the resistance in terms of COV are 0.13, 0.37, 0.26, and 0.13, respectively.
Assume they are normal random variables.

(a) If the yield stress f.' of the steel section being used is 36 ksi, and assuming that the
beam will develop plastic moment Mi,(i.e., MJ, = F,. Z, where Z is the plastic section
modulus) design the beam in terms of Z and select the corresponding W section.

(b) Calculate the central and nominal load and resistance factors for this design corre-
sponding to a reliability index (3 of 3.0.

7.14 In Problem 7.13, suppose the beam needs to be designed for the dead and snow loads only.
The nominal bending moments due to dead and snow loads and their COV and the resist-
ance are the same as in Problem 7.13.

(a) For the yield stress of steel of 36 ksi. design the beam.

(b) Calculate the central and nominal load and resistance factors for this design corre-
sponding to a reliability index of 2.5.



Chapter 8

Advanced Topics on
Reliability Analysis

8.1 INTRODUCTORY COMMENTS

The essential concepts in calculating the reliability of a component are discussed in
Chapter 7. As mentioned earlier, the knowledge in this area of study is still evolving. The
discussion would be incomplete if some of the more advanced topics on risk and reliabil-
ity were not mentioned and briefly discussed. These areas will he of considerable interest
to serious students who would like to advance the state of the art. Some of these more
advanced topics are presented in this chapter.

8.2 SECOND-ORDER RELIABILITY METHODS (SORM)

As mentioned in Chapter 7, limit states (explicit or implicit, linear or nonlinear), are
essential in risk and reliability analysis. The computations required for the reliability
analysis of problems with linear limit state equations are relatively simple. However,
the limit state could be nonlinear either due to the nonlinear relationship between the
random variables in the limit state equation or due to some variables being nonnormal.
A linear limit state in the original space becomes nonlinear when transformed to the
standard normal space (which is where the search for the minimum distance point is
conducted) if any of the variables is nonnormal. Also, the transformation from corre-
lated to uncorrelated variables might induce nonlinearity; this transformation is dis-
cussed in detail in Section 8.3. If the joint probability density function, PDF, of the
random variables decays rapidly as one moves away from the minimum distance point,
then the first-order estimate of failure probability is quite accurate. If the decay of the
joint PDF is slow and the limit state is highly nonlinear, then one has to use a higher-
order approximation for the failure probability computation. Consider the two limit

225
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g(X') = 0

xi Figure 8.1 Linear and Nonlinear Limit States

states shown in Figure 8. 1, one linear and one nonlinear. Both limit states have the
same minimum distance point, but the failure domains, shown by the shaded regions,
are different for the two cases. The FORM approach will give the same reliability esti-
mate for both cases. But it is apparent that the failure probability of the nonlinear limit
state should be less than that of the linear limit state, due to the difference in the fail-
ure domains. The curvature of the nonlinear limit state is ignored in the FORM
approach, which uses only a first-order approximation at the minimum distance point.
Thus the curvature of the limit state around the minimum distance point determines the
accuracy of the first-order approximation in FORM. The curvature of any equation is
related to the second-order derivatives with respect to the basic variables. Thus, the
second-order reliability method (SORM) improves the FORM result by including addi-
tional information about the curvature of the limit state.

The Taylor series expansion of a general nonlinear function g(X 1, X'?, ...' X,,) at the

value (.v1 X2, Xn) is

(8.1)

+ - (-r; -
X;:;c

)(x - .v) -+- .. .

2 1=1.i=1 )X;aX i

where the derivatives are evaluated at the design point of the X1's.
The variables (X 1, X2, ..., are used in Equation 8.1 in a generic sense. One

should use the appropriate set of variables and notation depending on the space
being considered. In the case of reliability analysis, the second-order approxima-
tion to g( ) is being constructed in the space of standard normal variables, at the
minimum distance point. The following notation is used in this section: X; refers
to a random variable in the original space, and Y refers to the random variable in
the equivalent uncorrelated standard normal space. If all the variables are uncor-
related, Y = (X; - t ') / 6X where p x, and 6X, are the equivalent normal mean
and standard deviation of X; at the design point x;". The transformation from Xi to
Y; for correlated variables is discussed in Section 8.3.

In the Taylor series approximation given in Equation 8. 1, FORM ignores the terns
beyond the first-order term (involving first-order derivatives), and SORM ignores the
terms beyond the second-order term (involving second-order derivatives).
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The SORM approach was first explored by Fiessler et al. (1 979) using various quad-
ratic approximations. A simple closed-form solution for the probability computation
using a second-order approximation, Pj2, was given by Breitung (1984) using the the-
ory of asymptotic approximations as

,2-1

P./-2
=

0(-(3)fl(1
+ f3Ki)-112 (8.2)

i=1

where K; denotes the principal curvatures of the limit state at the minimum distance point,
and (3 is the reliability index using FORM. Breitung showed that this second-order prob-
ability estimate asymptotically approaches the first-order estimate as 1 approaches infin-
ity, if 13Kg remains constant. Refer to Hohenhichler et al. (1987) for a theoretical
explanation of FORM and SORM using the concept of asymptotic approximations.

In Equation 8.2, it is necessary to compute the principal curvatures Ki. To do this, first
the Y; variables (in the Y space) are rotated to another set of variables, denoted as Yi', such
that the last Yi' variable coincides with the vector a, the unit gradient vector of the limit
state at the minimum distance point. This is shown in Figure 8.2 for a problem with two
random variables. It is apparent that this is simply a rotation of coordinates.

The transformation from the Y space to the Y' space is an orthogonal transformation:

Y'=RY (8.3)
where R is the rotation matrix. For the simple case of two random variables, it is

R = cos O sin 0 (8.4)[-sine cos0
where 0 is the angle of rotation as shown in Figure 8.2 (counterclockwise rotation of
the axes gives positive 0). When the number of variables is more than two, the R matrix
is computed in two steps. In Step 1, first a matrix, R0, is constructed as follows:

1 0 . . . 0
0 1 0 . . 0

R0 = (8.5)

Lai a, . . . a12 1

where a1,oc2, ..., ot11 are the direction cosines, that is, components of the unit gradient
vector a shown in Figure 8.2. In Step 2, a Gram-Schmidt orthogonalization procedure
(refer to Appendix 6) is applied to this matrix, and the resulting matrix is R.

iY1

Figure 8.2 Rotation of Coordinates
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Once the R matrix is obtained, a matrix A, whose elements are denoted as all, is
computed as

(RDR' )I.;
a, - I DG 1, f = 19 21

(vv )
I

(8.6)

where D is the n x n second-derivative matrix of the limit state surface in the standard
normal space evaluated at the design point, R is the rotation matrix, and IDG(y*)I is the
length of the gradient vector in the standard normal space.

In the rotated space, the last variable Y coincides with the (3-vector computed in
FORM. In the next step, the last row and last column in the A matrix and the last row
in the Y' vector are dropped to take this factor into account. The limit state can be
rewritten in terms of a second-order approximation in this rotated standard normal
space Y' as

Y/1
1 ,'Ay,

/1

+
2

y (8.7)

where the matrix A is now of the size (n - 1) x (n - 1).
Finally, the main curvatures K1, used in Breitung's formula, are computed as the

eigenvalues of the matrix A. Once the Kl's are computed, Breitung's formula can be
used to compute the second-order estimate of the probability of failure.

Breitung's SORM method uses a parabolic approximation; that is, it does not use a
general second-order approximation. (It ignores the mixed terms and their derivatives
in the Taylor series approximation in Equation 8.1.) Also, as mentioned earlier, it uses
the theory of asymptotic approximation to derive the probability estimate. The asymp-
totic formula is accurate only for large values of (3, which is the case for practical high-
reliability problems. However, if the value of 1 is low, the SORM estimate could be
inaccurate. Tvedt (1990) developed two alternative SORM formulations to take care of
these problems. Tvedt's method uses a parabolic and a general second-order approxi-
mation to the limit state, and it does not use asymptotic approximations. Refer to Tvedt
(1990) for a detailed presentation of this method.

Der Kiureghian et al. (1987) approximated the limit state by two semiparabolas
using curve-fitting at several discrete points around the design point and used both sets
of curvature in Breitung's formula (Equation 8.2). This strategy helps to avoid the com-
putation of a full second-derivative matrix using the original limit state and is efficient
for problems with a large number of random variables.

EXAMPLE 8.1

Example 7.6 in Section 7.6.3 of Chapter 7. discussed in detail in Table 7.2, is consid-
ered again. Using FORM and the strength formulation, assuming F to be a lognormal
variable with a mean of 38 ksi and standard deviation of 3.8 ksi, and assuming Z to be
a normal variable with a mean of 54 in.3 and standard deviation of 2.7 in.3, we found
the safety index to be 5.151. Using SORM, estimate the safety index.

SOLUTION

The estimation of a safety index using FORM and to a greater extent using SORM is
rarely undertaken using hand calculations; computer programs are used for this pur-
pose. However, as in FORM where the detailed calculations are summarized in Table
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7.2, in this section the detailed steps in SORM are explained for better understanding
of the concept.

Table 7.2 reveals that the final design point in the original variable space is (24.22 ksi,
47.07 in.3), and the corresponding direction cosines for F. and Z are 0.867 and 0.498,
respectively. The equivalent normal mean and standard deviation of'F,, at the design point
are 35.008 and 2.416, respectively. Transforming F. and Z from the original to standard
normal space results in

F\ - l F,
YF, = N

6r-,

and

Y =Z P/i 61

The coordinates of the design point in the standard normal space become

24.22 - 35.008
-4.466

2.416

and
- 47.07 - 54.00 = -2.567.

Y Z
2.7

The design point is graphically shown in the standard normal space in Figure 8.3.
The first step in SORM is to construct the rotation matrix R in Equation 8.4 or 8.5.

For the two-variable problem under consideration, Equation 8.4 is sufficient. In this
example, YF, is the first coordinate and YZ is the second coordinate. In the rotated coor-
dinates, the second coordinate Yl needs to coincide with the unit gradient vector a.
The corresponding rotation angle 0 is shown in Figure 8.3. Therefore, the R matrix is

R = 0.498 -0.867
0.867 0.498

Notice that the elements of R are easily available from the direction cosines, that is, the
components of the unit gradient vector a.

1st order

Figure 8.3 Design Point
and Rotation of
Coordinates in the
Standard Nonal Space
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The next step is to construct the D matrix, containing second derivatives of the
performance function, in the standard normal space. For the performance function of
g( ) = F,, Z - 1,140 in the original space, using the chain rule of differentiation, the
elements of D are

Igo aF,. aF,.
N_ :a2g() a [I a

aF12 = aF, aF, aF" aFl' = aF
=o

a2_() a Ir() az az
zi2 =az az az/ az/=az F,.6Z 6Z-°

a

a2g() a f ag() aZ aFy: _ a

aF,'aZ " - aFv l az az' aF - aF,.

Therefore, matrix D is assembled as

D=
z 6F

0

,6Z GT, = 6Z6N, .

0
.416

2.7x.416 J1=r6 3[6.523
J[2.7x2

Next, matrix A from Equation 8.6 needs to be computed. To do this, the length of
the gradient vector in the standard normal space at the design point is needed.
Normally, this would be readily available from the FORM analysis. In fact, the direc-
tion cosines given previously are simply the components of the unit gradient vector.
However, the computation is shown in detail as follows, for the sake of clarity.

In order to evaluate VG(y*) in Equation 8.6, the following two partial derivatives
need to be evaluated:

1 = Z6F

and

aF aF,, aF ,.

ag()=ag()aZ=F.6.
az' az az' Z

At the design point, the two partial derivatives are

VG(y*)= - Il}.{424)22 x 2.761165.394

The length of the vector is

( 1 1 +(65.394 )2 = 1.31.182.

Equation 8.6 is used to compute matrix A as

_ 1 [0.498 -0.867T 0 6.523 0.498 0.867
[A] - 131.182 [0.867 0.498 ][6.523 0 1-0.867 0.498

= -0.043 -0.025
-0.025 0.043

As explained in the text, the rotation of coordinates makes the last variable coincide
with the R-vector. Therefore, the last row and the last column of A are dropped for
future consideration. For this two-variable problem, that leaves the matrix A with ,just
one element, a 11 = -0.043. Therefore, the eigenvalue of this one-element matrix is sim-
ply K1 =all =-0.043.
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Table 8.1 Comparison of FORM and SORM Results

g(F1Z-1,140=0,

µ f; = 38 ksi, bF = 0. L, tz = 54 in.3. and b,, = 0.05.

Probability distributions Safety indexes

Fti, L FORM SORM

Normal Normal 4.261 4.246
Lognormal Normal 5.151 5.139

Normal Lognormal 4.266 4.259
Lognormal Lognormal 5.213 5.21 1

Equation 8.2 is used to compute the probability of failure using the second-order
approximation:

p1 (D(-5.151)[1+5.151x(-0.043)[ 2 =1.4708x10

For the sake of comparison with FORM, a new safety index is computed as the inverse
of this failure probability estimate as

RsoRM =-(D-1(1.4708x 10-7) = 5.139.

Note that for this example, the second-order approximation should give a larger failure
probability estimate, as shown in Figure 8.3. Correspondingly, the safety index for
SORM is less than that for FORM.

Considering the same example and using various distributions of 1: and Z. we can
calculate the safety indexes according to the FORM and SORM methods. The results
are summarized in Table 8.1. The underlying distributions of random variables have a
considerable amount of influence on the safety index calculations; however, their dif-
ferences are not significant for the FORM and SORM methods in this problem, since
the limit state is barely nonlinear.

8.3 RELIABILITY ANALYSIS WITH
CORRELATED VARIABLES

The FORM and SORM methods described in the previous sections implicitly assume
that the basic variables X1, X2, ..., X,?. are uncorrelated. However, usually some variables
are correlated. Consider the X;'s in Equation 7.34 to he correlated variables with means
µx,, standard deviations 6X , and the covariance matrix represented as

62 cov(X1. X, ) ... cov(X1. X11 )X,

[C] =
I

cov(X2, Xr ) X, ... cov(X,,X
(8.8)

cov(X,,, X1) cov(XX-))

If the reduced variables X; are defined as

X'=X' µX' i=12 8 9,..., ( . ).( )
6X,
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then it can be shown that the covariance matrix [C'] of the reduced variables X'; is

[C'J =

Px, ,x
1

PXPX,;'XI
(8.10)

where px,.x1 is the correlation coefficient of the X; and X. variables.
The FORM and SORM methods can be used if the Xi's are transformed into uncor-

related reduced Y variables and Equation 7.34 is expressed in terms of the Y variables.
This can be done using the following equation:

{X} = [r]rr]{Y} + {jt}X (8.11)

in which t and 6X are the equivalent normal mean and standard deviation, respectively,
of the X; variables evaluated at the design point on the failure surface using Equations 7.59
and 7.61, and T is a transformation matrix to convert the correlated reduced X' variables to
uncorrelated reduced Y variables. Note that the matrix containing the equivalent normal
standard deviation in Equation 8.11 is a diagonal matrix. The "I' matrix can be shown to be

00)

0;1)

0(2) ... 0(17)
I 1

0(2) ... 0(17)

(8.12)[TJ --

8(1)
0(2) ... 0(11)

11 11 17

IT] is basically an orthogonal transformation matrix consisting of the eigenvectors of
the correlation matrix [C'] (Equation 8. 10). { H(') } is the eigenvector of the ith mode.
010), 020), ..., 0J7 1) are the components of the ith eigenvector.

Using Equation 8.11, we can write Equation 7.34 in terms of reduced uncorrelated
normal Y variables. For this case, estimating the probability of structural failure is sim-
ple, as outlined in this section.

For practical large problems. the correlated variables may also be transformed into
uncorrelated variables through an orthogonal transformation of the form

Y=L 1(X')' (8.13)

where L is the lower triangular matrix obtained by Cholesky factorization of the correlation
matrix [C' J. If the original variables are nonnormal, their correlation coefficients change on
transformation to equivalent normal variables. Der Kiureghian and Liu (1985) developed
semiempirical formulas for fast and reasonably accurate computation of I Q.

The procedure discussed here can he applied when the marginal distributions of all
the variables as well as the covariance matrix are known. When the joint distributions
of all the correlated nonnormal variables are available, an equivalent set of independ-
ent normal variables can be obtained using the Rosenblatt transformation. From a prac-
tical point of view, this situation would be rare unless all the variables are either normal
or lognormal. Furthermore, it is not possible to define the joint probability density
function uniquely using the information on marginal distributions and the covariance
matrix (Bickel and Doksum, 1977).

When the random variables are correlated, two types of problems can be envisioned.
In the first type, all the random variables are normal, however, they are correlated to
each other. In the second type, some or all the correlated random variables are non-
normal. These cases are explained with the help of examples in the following sections.
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8.3.1 Correlated Normal Variables

EXAMPLE 8.2

Example 7.3 considered in Section 7.6.1 and represented by the limit state given by
Equation 7.43, can be considered again. To illustrate the procedures for safety index or
probability of failure evaluation for the correlated normal variables case, both random
variables FV and Z are considered to be normal with the mean and the coefficient of vari-
ation given in Table 8.1. The correlation coefficient between them is assumed to be 0.3.

Because the random variables are all normal, it is only necessary to rewrite the limit state
Equation 7.43 in terms of the Y variables, that is, uncorrelated normal variables using Equation
8.11. The transformation matrix T needs to be evaluated at this stage using Equation 8.12. The
correlation matrix [C'] given by Equation 8.10 for the problem under consideration is

[C'] = 1 0.3
0.3 1

The two eigenvalues of [C'] can be calculated by solving the following equation

det[(1-X) 0.3 _0
0.3 (1-X)

or

or

(1-X)2 -0.32 =0

X1 = 0.7, and X2 = 1.3.

The ?c1's are the variance of the YI's.
The corresponding eigenvectors can be obtained by solving the following equation:

0(1'
1

0(i
2

= 0.

For each eigenvalue, the corresponding eigenvector can be calculated. For the problem under
consideration, the eigenvectors are { 0(1) } = { 1 -1 } and 10(2)1 = { I I }, respectively. The [T]
matrix in Equation 8.12 represents the normalized eigenvectors and can be expressed as

[T] = 0.707 0.707
-0.707 0.707

Equation 8.11 can now be expressed as

IFV1= 3.8 0 IFO.707 0.707 Y1 + 38
Y2 54Z f 0 2.71-0.707 0.707If f I

or

F. = 2.687Y1 + 2.687Y2 + 38
and

Z = -1.9(.)9Y2+ 1.909Y, + 54.

Equation 7.43 can now be rewritten in terms of the uncorrelated normal Y variables as

(2.6587Y1 + 2.687Y2 + 38)(-1.909Y1 + 1.909Y, + 54) - 1,140 = 0

or

g( _ -5.129483 Y12 + 5.129483 Y22 + 72.556 Y1 + 217.640 Y2 + 912 = 0 . (8.14)

Considering Equation 8.14 to be the limit state equation and using the nine steps of
FORM Method I. we can estimate the reliability index for the problem under consid-
eration. All the necessary steps are summarized in Table 8.2. FORM Method 2 can also
be used for this purpose, as discussed in Chapter 7.
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Table 8.2 Steps in FORM Method 1 for Correlated Normal Variables

Step 1 g( _ -5.129483 Y12 + 5.129483 Y22 + 72.556 Yj + 217.64 Y, + 912 = 0
Step 2 (3 5.0 3.927
Step 3 y 0.0 -0.996 -1.477 -1.535 -1.212 -1.104

V 0.0 -5.536 -5.336 -5.302 -4.160 -4.218

Step 4
Y 0.0 0.0 0.0 0.0 0.0 0.0

,v \.0.7
0.837 0.837 0.837 0.837 0.837

Y' =0.837

Y,
0.0 0.0 0.0 0.0 0.0 0.0

6 y,

Steps

Step 6

Step 7
Step 8
Step 9

1.140
1.140 1.140 1.140 1.140 1.140

off,
72.556 82.774 87.709 88.304 84.990 83.882

aYJ

og 217.64 160.846 162.898 163.247 174.963 174.368
Y)

(XY1 0.238 0.353 0.367 0.369 0.336 0.333

U_ Y, 0.971 0.936 0.930 0.929 0.942 0.943

Go to Step 3. Compute the new checking point using information from Step 6.

P 3.927 3.922
Repeat Steps 3 through 8 until 13 converges.

The final checking point is (23.732, 48.036).

8.3.2 Correlated Nonnormal Variables

EXAMPLE 8.3

Example 8.2 for correlated normal random variables can be considered again, except
that the random variable F,. is a lognormal random variable with a mean of 38 ksi and
a standard deviation of 3.8 ksi. The random variable Z is again normal, with mean and
standard deviation of 54 in.3 and 2.7 in.3, respectively. Assume further that F`, and Z
are correlated with a correlation coefficient of 0.3.

In general, the limit state equation for correlated nonnormal variables is quite
involved. Since FORM is an iterative procedure, at each iteration the checking point
and the corresponding equivalent mean and standard deviation of nonnormal variables
are expected to be different, indicating that the limit state equation needs to be rede-
fined in each iteration. It is not necessary to give complete hand calculations to esti-
mate the safety index here. However, all the necessary steps required to solve the
problem are outlined as follows. The results are summarized in Table 8.3.

As an approximation, it is assumed that the covariance matrix [C], the correlation
matrix [C'], and the corresponding eigenvalues, eigenvectors, and transformation
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matrix [T] do not change with the distribution of the random variables. Thus, the eigen-
values of 0.7 and 1.3 and the corresponding [T] matrix obtained earlier when both F,.
and Z are normal variables can be used in this case also. The steps of FORM Method
1 are illustrated next.

Iteration 1

Based on past experience with similar problems, it is expected that the safety index (3
will be closer to 5.0 than 3.0. Thus, (3 is assumed to be 5.0 in the first iteration.
However, (3 can still be assumed to be 3.0, but it will take more iterations to reach con-
vergence.

As before, the initial checking point values of F. and Z can be assumed to be the
same as their mean values: 38 and 54, respectively. Since F is lognormal with
Xr = 3.63261 1 and cry = 0.0997513, its equivalent mean and standard deviation at
the checking point can be estimated as (See Alternative 2 in Example 7.6)

6F = 0.0997513 x 38 = 3.791

and

µ F. = 38(1- In 38 + 3.632611) = 37.81 1.-

Table 8.3 Steps in FORM Method 1 for Correlated Nonnormal Random Variables

Step 1 g( FZ-1,140=0
Step 2 13 5.0 4.576 4.585

Step 3
.x

38. 20.305 23.855 25.058 25.058 25.037
Y

* 54. 45.320 44.695 45.496 45.550 45.535z

Step 4 T 37.811 32.930 34.843 35.367 35.367 35.359t FY

6r 3.791 2.025 2.380 2.500 2.500 2.498

µ
z

54.0 54.0 54.0 54.0 54.0 54.0

'N 2.7 2.7 2.7 2.7 2.7 2.76j

Step 5
of

72.231 26.139 29.688 32.605 32.689 32.622
a Y1

ag
217.317 103.654 120.762 128.269 128.360 128.212

aY2

Step 6 ayi 0.2370 0.1820 0.1775 0.1834 0.1837 0.1835

(X a
Y2

0.9715 0.9833 0.9841 0.9830 0.9830 0.9830

Step 7 Go to Step 3. Compute the new checking point using information from Step 6.
Step 8 (3 4.576 4.585 4.586
Step 9 Repeat. Steps 3 through 8 until (3 converges.

The final checking point is (25.038, 45.531).



236 Chapter 8 Advanced Topics on Reliability Analysis

Then, using Equation 8.11, we can show that

F,. = 3.791 0 0.707 0.707 Y, +137.8111
X 0 2.7 -0.707 0.707 Y, 54

or,
F. =2.681Y, +2.681Y2 +37.811

Z = -1.909Y1 + 1.909Y2+54.

Thus, the limit state equation becomes

(2.681Y1 +2.681Y2 +37.811)(-1.909Y, + 1.909Y) +54)-1,140 = 0

or

Thus,

F,x = 38 - 37.811 54-54
= 0.050 and = 0

3.791 2.7

aY2

1

The random variables F,, and Z in the reduced coordinates at the checking point
become

Since the transformation matrix T is orthogonal, T-1 = T'. Using Equation 8.11, we can
show that Y = T' V. Thus, the coordinates of the checking point in the Y coordinates
become

Thus,

-5.1 18 Y,2 + 5.118 Y2 + 72.593 Y, + 216.955 Y,)+901.794=0.

r ag

= 10.236 x 0.0354 + 216.955 = 217.317.
aY,

The direction cosines of Yj and Y2 can be shown to be

a YI =

and

ag
= -10.236Y + 72.593

ay,

ag

707 -
[00 .707 0.707

]{0. (50} _
10.0354}.

_ -10.236 x 0.0354 + 72.593 = 72.231

:

= 10.236Y2 + 216.955.

72.231 x 0.7
= 0 2370.

x0.7+217.317` x 1.3j72.2312

oc

Y'

- 217.317x13 =0.9715.
,/72.23 12 x0.7+217.3172 x 1.3

Then,
y1 x 5.0 = -0.9914

=-0.9715x-1 3 x 5.0 = -5.5384.
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The new checking point in the original coordinate becomes

2.681(-0.9914-5.5384)+37.81 1 = 20.305

=-1.909(-0.9914)+1.909(-5.5384)+54=45.320.

This completes the first iteration.

Second Iteration

With this new checking point, the equivalent normal mean and standard deviation of
F,, are calculated again. Proceeding in a manner similar to the first iteration and using
Equation 8.11, we can show the relationships between F,. and Z. and Y1 and Y. to be

F,. = 1.432(Yl + Y,) + 32.930

Z=1.909(-Y, +Y,)+54.

The direction cosines of Y1 and Y2 are found to be 0.1820 and 0.9833, respectively.
They do not converge to the values from the first iteration with a tolerance level of
0.005. However, they are found to be 0.1775 and 0.9841, respectively, after the third
iteration satisfying the tolerance criterion, as shown in Table 8.3. With f3 as an
unknown parameter, the checking point in the Y coordinates becomes

yl = -0.1775 x N"0.713 = -0.14853

and
y2 = -0.9841 x ,. 313 = -1.1220(3.

The checking point in the original coordinates becomes

f;. = 1.683(-0.1485 13 -1.1220 13)+34.843=-2.l383 f3+34.843

.. =1.909(0.1485 0-1.1220 (3)+54=-1.8584 (3 +54.
Substituting these in the limit state equation, we find 1310 be 4.576. This 13 value is not
acceptable with a tolerance level of 0.005. With this new 13 value, a new checking point
can again be defined. Proceeding as in the previous steps, we find the direction cosines
of Y1 and Y2 to be 0.1834 and 0.9830, respectively. These values are not acceptable
with a tolerance level of 0.005. However, in the next iteration, they converse to 0.1837
and 0.9830, respectively. The corresponding 13 value is found to be 4.585. Again, this
is not acceptable with a tolerance level of 0.005.

When the new (3 value of 4.585, the direction cosines of Y1 and Y2 become 0. 1835
and 0.9830, satisfying the tolerance criterion. The corresponding safety index is found
to be 4.586, which satisfies the tolerance criterion. Thus, for this problem with corre-
lated nonnormal variables, the safety index is found to be 4.586 and the corresponding
checking point is (25.038, 45.531). The results are summarized in Table 8.3.

This example clearly indicates that hand calculations for this type of problem can
be very cumbersome, but a computer program can be easily written to implement the
algorithm.

8.4 PROBABILISTIC SENSITIVITY INDICES

Because all input random variables do not have equal influence on the statistics of the
output, a measure called the sensitivity index can be used to quantify the influence of
each basic random variable. The quantity Vg(Y), which is the gradient vector of the
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performance function in the space of standard normal variables, is used for this purpose.
Let a be a unit vector in the direction of this gradient vector. Then, because the design
point can be expressed as y'` = -(3a, it is easily seen that

as
(8.15)

ay'r

Thus, the elements of the vector a are directly related to the derivatives of f3 with
respect to the standard normal variables. If these are related to the original variables
and their statistical variation, a unit sensitivity vector can be derived as (Der
Kiureghian and Ke, 1985)

SB`a
8.16

ISBtaI ()
where S is the diagonal matrix of standard deviations of the input variables (equivalent
normal standard deviations for the nonnormal random variables) and B is also a diag-
onal matrix required to transform the original variables X to equivalent uncorrelated
standard normal variables Y. i.e., Y = A + B X. For the /th random variable, this trans-
formation is Y = (X; - ltxi)/6x. Thus, the matrix B contains the inverse of the standard
deviations or the equivalent normal standard deviations. If the variables are statistically
independent, then in Equation 8.16, the product of S B1 will be a unit diagonal matrix.
Thus, the sensitivity vector will be identical to the direction cosines vector of the ran-
dom variables. However, if the variables are correlated, another transformation matrix
T, as in Equation 8.11, will come into the picture. Then, the sensitivity vector and the
direction cosines vector will be different.

The elements of the vector T may be referred to as sensitivity indices of individual
variables. The sensitivity indices can be used to improve computational efficiency.
Variables with very low sensitivity indices at the end of the first few iterations can be
treated as deterministic at their mean values for subsequent iterations in the search for
the minimum distance. This significantly reduces the amount of computation because,
as a practical matter, only a few variables have a significant effect on the probability
of failure. These sensitivity indices are also useful in reducing the size of problems
with random fields, in which the random fields are discretized into sets of correlated
random variables (Haldar and Mahadevan, 2000; Mahadevan and Haldar, 1991) and in
reliability-based optimization (Mahadevan, 1992).

8.5 SYSTEM RELIABILITY EVALUATION

In the previous sections of this chapter, reliability was estimated for a single perform-
ance criterion or limit state using FORM or SORM. In general, any engineering sys-
tem has to satisfy more than one performance criterion. Even for a simple beam, the
performance criterion could be strength related (e.g., bending moment or shear) or
serviceability related (e.g., deflection or vibration). Thus, the beam can fail in more
than one performance mode. A structure such as a truss or a frame consists of multiple
structural elements or components, and failure may occur in one or more components.
The long-distance telephone communication system between the East and West. Coasts
consists of several networks. At any given time, one or more such networks may not
be in operating condition. Ordinary service may or may not suffer disruption depend-
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ing upon the availability of alternative systems. The water Supply to a community may
come from different sources through a network of piping. Again, the water supply from
different sources and/or networks may be disrupted, but water may still he available to
the community. The concept used to consider multiple failure modes and/or multiple
component failures is known as system reliability evaluation. A complete reliability
analysis includes both component-level and system-level estimates.

In general, system reliability evaluation is quite complicated and depends on many
factors. Some of the important factors are (1) the contribution of the component fail-
ure events to the system's failure, (2) the redundancy in the system, (3) the postfailure
behavior of a component and the rest of the system, (4) the statistical correlation
between failure events, and (5) the progressive failure of components. Considering the
beam example, we can estimate its reliability by calculating the probability of satisfy-
ing all the performance criteria. An engineering system usually Consists Of multiple
components, and system failure may occur when one or more components fail. This is
still an active area of research. Only the fundamental concepts essential for system reli-
ability evaluation are introduced briefly in this section.

In the simplest case of a system that has multiple performance criteria. system fail-
ure may be defined as occurring when any of the criteria are violated. Such a system is
referred to as a series system or weakest link system. In this case. system failure is
defined by the union of the individual performance failures. Alternatively, a system
might fail only when all the components fail, as in the case of a multiple cable system
to carry a load. This is called a parallel or redundant system. In this case, system fail-
ure is defined by the intersection of the individual (component) failure events. Some
systems may be defined through a combination of series and parallel connections of
subsystems. For example, in a frame structure, each member might fail when it fails to
satisfy one of several performance criteria (bending, shear, axial force, deflection, etc.),
whereas the overall structure may fall when some (not necessarily all) of the members
fail. In a system with redundancy, significant computational effort is needed to identify
the ways in which the system fails or survives.

The application of the concept of system reliability in various engineering disci-
plines can be described, at best, as nonuniform. Most of the progress has been made in
structural engineering, and in the following discussion, the application of the system
reliability concept in structural engineering is emphasized.

Two basic approaches used for system reliability evaluation are the cut-set or failure
mode approach (FMA) or performance mode approach (PMA), and the tie-set or stable
configuration approach (SCA). In the FMA, all the possible ways a structure can fail are
identified. A ful.llt tree diagram, which decomposes the main failure event into unions
and intersections of subevents or combinations of subevents. can he used for this pur-
pose. Alternatively, an event tree, which systematically identifies the possible sequence
of events, can also be used to identify the important failure sequences of the Structure.
Several sequences might lead to the same system failure mode. For example, if the fail-
ure of Components 1, 2, and 3 constitutes a system failure mode, the sequences could
be 1-2-3, 1-3-2, 2-3-1, and so on. Some of these sequences may have a higher prob-
ability than others. A system is considered to fail if any of the failure sequences (or
modes) occur. This leads to the definition of the system failure event as the union of sev-
eral sequences (or failure modes defined by the sequences). Neglecting some of the
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potential failure modes or sequences may result in an underestimation (unconservative)
of the probability of system failure. The FMA is very effective for systems with ductile
components (components that continue to carry loads after reaching their capacity), par-
ticularly when the dominant failure mechanisms of the system can be easily identified.

The SCA considers how a system or its damaged states can carry loads without fail-
ure. A system is not expected to fail if any of its states are stable under the applied
loads. This leads to the intersection of survival (no failure) events. In the SCA, neglect-
ing some of the stable configurations will result in the overestimation (conservative) of
the probability of system failure. The SCA is effective for highly redundant systems
with brittle components (components that fail to carry loads after reaching their capac-
ity) or with ductile and brittle components.

Once the failure modes or stable configurations of a system are identified, system reli-
ability evaluation involves evaluating the probability of union and intersection of events
considering the statistical correlation between them. However, in many cases, the statis-
tical correlation may be difficult to estimate. Also, as discussed in the following section,
it is difficult to estimate the joint probabilities of more than two failure events. These dif-
ficulties result in an estimation of upper and lower bounds for the system reliability eval-
uation. These bounds are usually estimated by assuming that all the events are either
perfectly correlated or statistically independent, as discussed in the following sections.
The actual probability of failure of the system will be between these bounds. Several
methods are available to reduce the width of these bounds. In the following sections, sys-
tem reliability evaluation procedures are discussed for some simple but basic cases.

8.5.1 Series Systems or Weakest Link Systems

Consider the steel portal frame shown in Figure 8.4. All three members are assumed to
have identical plastic moment capacity M. The frame is subjected to two loads, V and
H, which are considered to be random variables and are assumed to follow the Gaussian
distribution. Three types of system collapse mechanisms are considered: beam mecha-
nism, sway mechanism, and combined mechanism. The limit states corresponding to
each of these mechanisms are shown in Figure 8.5. The system failure domain is shown
by the shaded region, which is the union of the failure domains for individual mecha-
nisms. System failure probability is defined as the integral of the joint probability den-
sity function of the random variables V and H over the system failure domain.

H

H

IV

1

H - + H - 4

Figure 8.4 Portal Frame-Three Plastic
(a) beam (b) sway (c) combined Collapse Modes
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Figure 8.6 Statically Determinate Truss-Series
or Weakest Link System

A statically determinate truss with n components is shown in Figure 8.6, where the
failure of one or more components constitutes the failure of the truss. The multiple fail-
ure modes of the frame or the failure of one or more components of the truss represents
the series or weakest link system.

With E; representing the failure event of the ith component, the event of the failure
of a series system can be defined by the union of all the component failure events. After
the failure probabilities for the individual events are computed, determining the prob-
ability of the union of all the failure modes is a difficult problem. Consider the proba-
bility of the union of three failure events E1, E,, and E3, defined as

P(E1 uE, uE3)=P(El )+P(E,)+P(E3)-P(EIE,)-P(E,E,)
-PEE +PEE,E (K.17)

(3 1) (l 3)

where P(E1 E2) refers to the joint probability of El and E2. Other joint probability terms
are similarly obvious from the equation. Because it is difficult to determine the joint
probabilities of more than two failure events except by using Monte Carlo simulation
or numerical integration, several approximate bounds have been proposed for the sys-
tem failure probability. The simplest among these are the first-order bounds suggested
by Ang and Amin (1967) and Cornel I (1967). With denoting the probability of fail-
ure of the system, these first-order bounds are

max[P(E; )] < ht,, < min P(Ei ), 1 (8.18)

where P(E1) is the probability of failure of the ith failure event, and n is the number
of failure events. In Equation 8.18, the lower bound represents the system failure
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probability if all the events are perfectly dependent, and the upper bound represents
the system failure probability if all the events are mutually exclusive. If the events are
statistically independent, the upper bound becomes

n

pfs = < 1- fl [l - P(EI )]. (8.19)
i=1

The foregoing first-order bounds could be quite wide; for accurate estimation, sec-
ond-order bounds are used. These include the second-order terms in Equation 8.17, that
is, the joint probabilities of two events. The following second-order bounds are widely
used (Ditlevsen 1979b):

n i-1

P(Ej ) + Imax P(EI)- P(EjEj.) 0 <
i=2 j=1

min
n ,z

P(EI)- maxP(EjEj) , 1 .

i=1 i=2 i<;

(8.20)

Experience shows that ranking the individual events in the order of decreasing proba-
bility will give the narrowest bounds in this formula. In that case. P(E1) is the proba-
bility of the most probable event.

EXAMPLE 8.4

Consider the five-member statically determinate truss shown in Figure 2.5. For this
illustration, assume that the probability of failure of each of the five members is 0.00 l ,

0.002, 0.003, 0.004, and 0.005, respectively. Calculate the first-order hounds for the
probability of failure of the truss.

SOLUTION

Using Equation 8.18, we can show the first-order bounds of the probability of failure
of the truss to be

0.005<-pfs <-0.015.

If the failures of the members are assumed to be statistically independent, then using
Equation 8.19, we find the first-order bounds to he

0.005 :- p fs < 1- (I - 0.001)(1- 0.002)(1- 0.003)(1- 0.004)(1- 0.005)

or

EXAMPLE 8.5

0.005< pj,s < 0.0149.

A beam can fail by exceeding the bending moment capacity, by exceeding the shear
force capacity, or by excessive deflection. The corresponding probabilities of failure
are calculated to be 10-3, 10-5, and 10-6, respectively. Calculate the probability of fail-
ure of the beam.
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SOLUTION

Equation 8.18 is used to find the first-order bounds of the probability of failure of the
beam:

10-3<pts<1.011xl0-3

The two bounds are very narrow in this example, indicating that if the probabilities of
failures are very different from each other, the maximum probability of failure will
control the design.

8.5.2 Parallel Systems

A parallel (or redundant or fail-safe) system is one in which system failure requires
the occurrence of all the individual failure events. In this case, the probability of sys-
tem failure is the probability of the joint occurrence of all the individual failure
events. Suppose n cables are carrying a load of P as shown in Figure 8.7. In this case,
all cables must fail to have a system failure. Thus, unlike the series system case where
the unions of the failure events are considered, in a parallel system the intersections
of the failure events are considered. The bounding methods can still be used; however,
the bounds for the intersection of failure events will not, in general, he as close as the
bounds for the union of failure events (Bennett and Ang, 1983). The first-order
bounds for the parallel system are

max 1 - [l - P(Ei )l, 0 p f;. <_ min[P(Ei )]. (8.21)
i=1

In most cases, the lower bound will be close to zero. The upper bound is exact if the
failure events are perfectly correlated. For statistically independent events, the lower
bound becomes

,7

[1PE1) Pt5.
i=1
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(8.22)

Figure 8.7 Parallel System



244 Chapter 8 Advanced Topics on Reliability Analysis

The second-order bounds for the parallel system (Quek and Ang, 1986) are

max U P(E, ), [tP(Ei)_trninP(Ei u Ed < pts <
i=1 !=l i=2 J<r

!1 1-I
P(EI) - max 2 - i - P(E,) + P(E, u E J) , 0 .

i=2 j=( J

(8.23)

Usually, the upper bound of system failure probability is of interest for risk assess-
ment, design decisions, and resource allocation for practical problems. The upper
bound in Equation 8.23 is one of several versions of the upper bound proposed by
Ditlevsen (1979b) as

f i - I _ _
Pf., <-l P(EI)+Imax 0, P(E,)-Y, P(E,nE;)

i=2 j=l
(8.24)

This bound is order-dependent. For best results, the individual events should be num-
bered in increasing order in terms of their failure probabilities, that is,

P(EI)<P(E2)<.........

Other equivalent forms of Ditlevsen's bounds are given by Thoft-Christensen and
Murotsu (1986) and Karamchandani (1987). Xiao and Mahadevan (1994c) showed the
equivalence of these various forms and showed that for problems where the individual
failure probabilities of the events are less than 0.25 (which is usually true for practical
problems), Ditlevsen's upper bound reduces to a very simple formula:

Pj:<P(EInE2). (8.25)

That is, the joint probability of the two least probable failure events provides a good
second-order upper bound for practical problems, requiring very little computation. In
fact, one can consider this simple formula as the first of three options increasing in
accuracy and computational effort. The second option is

P1. < min[P(E1 n Ej)], J = 2,.......... ii. (8.26)

That is, compute the joint probability of the least probable event E1 with all other
events and take the minimum of these joint probabilities as the upper bound. The third
option was given by Murotsu et al. (1981) as

Pf: <- min[P(E, n i # JI 1,2,..........n. (8.27)

This is also computationally the most intensive, since it requires the computation of
joint failure probabilities of all two-event intersections and then using the minimum of
these as the upper bound.

EXAMPLE 8.6

For the safe operation of nuclear power plants, the power supply must be available at
all times. To ensure this, several levels of redundancy are incorporated in the power
supply system. In case a plant fails to generate any power, it is connected to another
plant. In case this offsite source of power is not available when needed, multiple diesel
generators are placed onsite, which are designed to start operating when other sources
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of power are unavailable. If the diesel generators fail to start, batteries are available to
supply the necessary power to at least shut down the plant. In this case, the offsite and
onsite power sources can be considered to constitute a parallel system. The plant will
face catastrophe only if all four sources of power are unavailable at a given time.

Suppose the probabilities that power will not he available from the plant itself, the
offsite plant, the diesel generators, and the batteries are 0.01, 0.05, 0.002, and 0.005,
respectively. Assuming all four sources of power supply are statistically independent
of each other, and using Equations 8.21 and 8.22, we find the first-order bounds to be

(0.01)(0.05)(0.002)(0.005) < 1Pjv < 0.002
or

5x10-'° <-hf, <0.002.

8.5.3 Nonlinear System Reliability

The individual failure probabilities in Equations 8. 18 to 8.27 are estimated using a
first-order or second-order approximation to the limit state in a space that has been
obtained through an approximate equivalent normal transformation of the basic ran-
dom variables. Therefore, the "bounds" are not the true bounds of the system failure
probability. They become more approximate as one begins to compute the joint prob-
abilities of two events, as described next.

To use second-order bounds, the joint probability of two events P(E1 E1) needs to be
estimated. A first-order approximation of the joint probability, constructed by Ditlevsen
(1979b), is illustrated geometrically in Figure 8.8 for two linear limit states. The indi-
vidual probabilities of failure events in the first-order analysis are determined as

P(EI) = (1)(-Pi). (8.28)

In the equivalent standard normal space, each limit state may be represented as
in

9i Pi (8.29)

Figure 8.8 Joint Probability of Two
Failure Modes
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where m is the number of random variables. The angle between two limit states pro-
vides information about the correlation between the two failure modes. Thus, the cor-
relation coefficient is obtained as

ni

Pij = ai,-U-jr = cos vii . (8.30)
r=1

Once Pi, Pf, and pit are known, the joint probability of failure can be calculated as
(Madsen et al., 1986)

P(Ei n Ef) = (D2(-Pi9 -3JIP;) (8.31)

where (D2 refers to the joint cumulative distribution of two standard normal variables.
This is computed as

(D2 (-Ni -Y.1' Pit) + S2(-131,-131,t)dt (8.32)
0

where

1 Pl - 2tpip j + P'
02 (-Pi , 3J , t) - exp - (8.33)

2 1-t
is the joint probability density function of two standard normal variables. A similar
general formula to compute the joint probability of more than two events was provided
by Hohenbichler and Rackwitz (1983), and its accuracy was further improved by
Gollwitzer and Rackwitz (1988) using asymptotic analysis.

This method for joint probability estimation could be inaccurate for nonlinear limit
states, as shown in Figure 8.9. In such cases, one needs to find the exact intersection
between the two limit states and then estimate the joint probability by constructing lin-
ear approximations of the limit states at this intersection. In a multidimensional random
variable space, the intersection is a hypersurface. Therefore, the minimum distance
point on this intersection hypersurface is found and linear approximations of the two
limit states are constructed at this point, which may be referred to as the joint most
probable point (joint MPP).

The joint MPP can be estimated using a nonlinear programming algorithm in which
the objective is to minimize the distance subject to two limit state constraints.

X2 n

gl()=0

Second-Order
Intersection

First-Orc
Intersect

Figure 8.9 Two Nonlinear Limit
x i States
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Alternatively, the Rackwitz-Fiessler algorithm can be extended to the case of two limit
states to achieve this objective (Mahadevan and Cruse, 1992).

Once the individual mode failure probabilities and the two-mode joint failure prob-
abilities are computed, approximate second-order bounds for the system failure proba-
bility can be computed as discussed previously.

8.6 IMPLICIT PERFORMANCE FUNCTIONS

In the discussions in Chapters 7 and 8 on reliability methods, we mention that risk or
reliability is calculated for a given performance criterion or a performance function.
However, for most realistic structures or systems, the response has to be computed
through a numerical procedure such as finite element analysis. This brings another
level of complexity to reliability analysis because the performance function g(X) is not
available as an explicit, closed-form function of the input variables. In such cases, the
derivatives of g(X) with respect to the random variables X, required in searching for
the minimum distance point on the limit state, are not readily available.

Several computational approaches could be pursued for the reliability analysis of
structures with implicit performance functions. These can be broadly divided into three
categories, based on their essential philosophy: Monte Carlo simulation (including
efficient sampling methods and variance reduction techniques), the response surface
approach, and sensitivity-based analysis.

Monte Carlo simulation is discussed in Chapter 9. The examples in Chapter 9 fea-
ture closed-form explicit performance functions. However, simulation can also be used
for problems with implicit performance functions, as long as an algorithm is available
to compute the structural response. However, if the deterministic structural analysis is
time-consuming, as with structures requiring finite element analysis, Monte Carlo sim-
ulation may become impractical.

With the response surface approach, a polynomial is constructed to approximate
g(X) through a few selected simulations in the neighborhood of the most likely failure
point, and then a regression analysis of these results is performed or a set of linear
equations is solved. Once the approximate closed-form representation of the limit state
function is available, the FORM or SORM reliability methods discussed earlier can be
used to estimate the failure probability (Haldar and Huh, 1999).

In the sensitivity-based approach, the sensitivity of the structural response to the
input variables is computed and used in the FORM/SORM discussed earlier. The value
of the performance function is calculated from deterministic analysis and the gradient
is computed using sensitivity analysis. In the case of an explicit performance function,
the gradient is computed simply by analytical or numerical differentiation of the per-
formance function with respect to each random variable, as discussed in FORM
Method 1. In the case of problems with an implicit performance function, FORM
Method 2 can be used. Several approximation methods are also available to compute
the gradient of the performance function.

The sensitivity-based reliability analysis approach is more elegant and, in general,
more efficient than the simulation or response surface methods. This approach is also
efficient in that it considers some of the random variables as deterministic if their
importance on the reliability estimation is marginal.
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The response sensitivities can be computed in three different ways: (I) through a
finite difference approach, by perturbing each variable and computing the correspon-
ding change in response through multiple deterministic analyses: (2) through classical
perturbation methods that apply the chain rule of differentiation to finite element analy-
sis; and (3) through iterative perturbation analysis techniques. All these methods have
their own domains of usefulness.

Reliability estimation when the performance function is implicit, in general, is quite
involved. The subject is discussed in detail by the authors in another book (Reliability
Assessment Using Stochastic Finite Element Anal vsis, by Haldar and Mahadevan, John
Wiley & Sons, New York, NY, 2000) in the context of the stochastic finite element
method (SFEM) or probabilistic finite element method (PFEM). Interested readers are
referred to this book.

8.7 CONCLUDING REMARKS

Some advanced topics in reliability estimation are presented in this chapter, and the
concept of the second-order reliability method is introduced. Correlated random vari-
ables are often present in reliability analysis. The additional steps necessary for corre-
lated variables are described in this chapter. Not all the variables in a problem may
need to be considered random. To evaluate their relative importance in the overall reli-
ability evaluation, the concept of prohablistic sensitivity indices is introduced.
Variables whose sensitivity indices are relatively low at the end of the first few itera-
tions can be treated as deterministic, essentially reducing the size of the problem.

In the previous discussions in this book, reliability was estimated for a single per-
formance criterion of a single component or element. The concept of system reliabil-
ity for multiple failure modes and/or multiple component failures is introduced in this
chapter. A complete reliability analysis includes both component-level and system-
level estimates.

Reliability evaluation procedures when performance functions are implicit are
briefly introduced. However, the problem is addressed in more detail elsewhere
(Haldar and Mahadevan, 2000).

The information presented in the first eight chapters of this hook provides readers
with the necessary background to calculate the probability of failure or the reliability
of simple systems. However, to verify the reliability results of analytical methods. sim-
ulation is essential. The concept of simulation is introduced in the next chapter.

8.8 PROBLEMS

8.1 Consider Problem 7.6. Use SORM to calculate the probability of failure.

8.2 Consider Problem 7.8. Use SORM to calculate the probability of failure.

8.3 Consider Problem 7.11. Use SORM to calculate the probability of failure.

8.4 Consider Problem 7.5. If www and P are correlated normal variables with p,,.n = 0.7. with all
other information remaining the same. use FORM to calculate the safety index.

8.5 In Problem 8.4, if w is a normal radom variable and P is a lognornial random variable with
the same means and standard deviations, and the correlation coefficient between them is still
0.7, use FORM to calculate the safety index.
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8.6 In Problem 8.4, if w and P are correlated lognormal variables with p,,.p = 0.7, with all other
information remaining the same, calculate the safety index using FORM.

8.7 The quality of water in a stream can be studied by considering the turbidity (T), concentra-
tion of organic materials (0), and concentration of other hazardous materials (H). The prob-
abilities of high T, 0, and 11 are 10-4, 10-4, and 10-51, respectively.

(a) Calculate the first-order bounds of the probability of poor water quality in the stream.

(b) If T. 0, and H are assumed to be statistically independent, how will the bounds obtained
in Part (a) change?

8.8 To go to an airport, a passenger can use a personal car (C), the subway (S), or a taxicab (T).
On a particular winter morning, these modes of transportation may be unavailable with
probabilities of 0.001, 0.0001, and 0.0001, respectively.

(a) Calculate the first-order bounds that the passenger will not he able to go to the airport.

(b) If C, S. and T are assumed to be statistically independent, how will the bounds in
Part (a) change'?



Chapter 9

Simulation Techniques

9.1 INTRODUCTORY COMMENTS

Several methods with various degrees of complexity that can be used to estimate the
reliability or safety index or the probability of failure are discussed in Chapters 7 and
8. Many of these methods are applicable when the limit state equations are explicit
functions of the random variables involved in a problem. In FORM Method 2 pre-
sented in Chapter 7, we also introduce the concept of reliability evaluation when the
limit state equations are implicit functions of the random variables involved in a prob-
lem. The reliability estimation procedures when the limit states are implicit are dis-
cussed in more detail elsewhere (Haldar and Mahadevan, 2000). In any case,
estimating the probability of failure using these techniques requires a background in
probability and statistics, as discussed in the previous chapters of this hook. But with
a simple simulation technique, it is possible to calculate the probability of failure for
both the explicit or implicit limit state functions without knowing these analytical tech-
niques and with only a little background in probability and statistics. The availability
of personal computers and software makes the process very simple. In fact, to evaluate
the accuracy of these sophisticated techniques or to verify a new technique, simulation
is routinely used to independently evaluate the underlying probability of failure.

In the simplest form of the basic simulation, each random variable in a problem is
sampled several times to represent its real distribution according to its probabilistic
characteristics. Considering each realization of all the random variables in the problem
produces a set of numbers that indicates one realization of the problem itself. Solving
the problem deterministically for each realization is known as a simulation cycle, trial,
or run. Using many simulation cycles gives the overall probabilistic characteristics of
the problem, particularly when the number of cycles N tends to infinity. The simulation
technique using a computer is an inexpensive way (compared to laboratory testing) to
study the uncertainty in the problem.

250
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9.2 MONTE CARLO SIMULATION TECHNIQUE

The method commonly used for this purpose is called the Monte Carlo .simulation
technique. The name itself has no significance, except that it was used first by von
Neumann during World War II as a code word for nuclear weapons work at the Los
Alamos National Laboratory in New Mexico. Most commonly the name Monte Carlo
is associated with a place where gamblers take risks. This technique has evolved as a
very powerful tool for engineers with only a basic working knowledge of'probability
and statistics for evaluating the risk or reliability of complicated engineering systems.

The Monte Carlo simulation technique has six essential elements: (1) defining the
problem in terms of all the random variables; (2) quantifying the probabilistic charac-
teristics of all the random variables in terms of their PDFs or PMFs and the corre-
sponding parameters; (3) generating the values of these random variables; (4)
evaluating the problem deterministically for each set of realizations of all the random
variables, that is, numerical experimentation; (5) extracting probabilistic information
from N such realizations; and (6) determining the accuracy and efficiency of the sim-
ulation. All these elements are discussed in the following section. Initially, all the ran-
dom variables are considered to be uncorrelated. The use of the Monte Carlo
simulation technique for correlated random variables is discussed in Section 9.4.

9.2.1 Formulation of the Problem

Consider a simply supported beam, shown in Figure 9.1, subjected to a uniformly dis-
tributed load W and a concentrated load P at the midspan. Assume that both W and P
are random variables and thus the design bending moment M at the midspan is also a
random variable. The task is to evaluate the probabilistic characteristics of the design
bending moment using the Monte Carlo simulation technique. If the span of the beam
is 30 feet, the expression for the design bending moment can be written as

M = WL2 /8+PL/4
or

M=112._5W+7.SP.

9.2.2 Quantifying the Probabilistic Characteristics of Random
Variables

(9.1)

Detailed discussions are presented in Chapters 3 and 5 on how to determine the under-
lying distribution of a random variable in terms of its CDF and/or PDF or PMF and the
corresponding parameters to define it uniquely. No additional discussion is necessary at
this stage.

L/2 L/2 Figure 9.1 Simply
L Supported Beam
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9.2.3 Generation of Random Numbers

The random variable to be generated could be continuous or discrete. Although the
same concept underlies the generation of random numbers for continuous and discrete
random variables, they need to be discussed separately.

9.2.3.1 Generation of Random Numbers for Continuous Random Variables

Assume W is a normal random variable with pw = 2 kip/ft and 6W = 0.2 kip/ft, and
P is a uniformly distributed random variable between 10 and 20 kip. Further assume
that they are statistically independent random variables. Of course, they could have
any distribution, and one of them could be a known deterministic constant. If both of
them are constants, then the bending moment is a constant and probabilistic study is
not necessary. The task now is to generate N random numbers for W according to its
probabilistic characteristics (i.e., in this case, a normal distribution with specified
mean and standard deviation) and another N random numbers for P, which is uni-
formly distributed.

The generation of random numbers according to a specific distribution is the heart
of Monte Carlo simulation. In general, all modern computers have the capability to
generate uniformly distributed random numbers between 0 and 1. Sometimes the ran-
dom number generators use bits and binary digits, and in most cases they are linear
congruential generators. Corresponding to an arbitrary seed value, the generators will
produce the required number of uniform random numbers between 0 and 1. By chang-
ing the seed value, different sets of random numbers can be generated. Depending upon
the size of the computer, the random numbers may be repeated. However, this repeti-
tion will usually start only after generating a very large quantity of random numbers,
such as 109. Random numbers generated this way are called pseudo random numbers.
From a practical point of view, random numbers are rarely needed in this quantity; thus
the repetition of random numbers is of academic interest only. One hundred random
numbers for a uniform distribution between 0 and 1 are given in Table 9.1. These ran-
dom numbers will be used in the subsequent discussion.

The next task is to transform the uniform random numbers ui between 0 and 1, either
generated by a computer or obtained from a table, to random numbers with the appro-
priate characteristics. The process is shown graphically in Figure 9.2. This is com-
monly known as the inverse transformation technique or inverse CDF method. In this
method, the CDF of the random variable is equated to the generated random number
ui, that is, FX (xi) = ui, and the equation is solved for xi as

x1 = FX'(u1). (9.2)

A simple example to describe the technique is the transformation of a uniform ran-
dom number U between 0 and 1, such as u = 0.86061 (the first number in Table 9.1),
to another uniform random number x 1 between two limits a and b. The CDF of U is
ui. Since X is uniform, its CDF will be Fx(x) = (x - a)l(h - a). The transformation to
obtain the corresponding xi value can be accomplished by equating the two CDFs as

U;
x1 -a

h-a
or

X1 = a + (') - a)u1. (9.3)
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Table 9.1 Uniform Random Numbers Between 0 and I

0.86061 0.15017 0.42172 0.48932
0.92546 0.74098 0.95349 0.54707
0.41806 0.58515 0.16119 0.64271
0.28964 0.70074 0.58394 0.66930
0.14225 0.09666 0.95626 0.27681

0.44961 0.97948 0.20661 0.90451

0.24653 0.65400 0.24566 0.79163
0.21687 0.67980 0.94934 0.42397
0.56503 0.46872 0.16118 0.68086
0.40015 0.12846 0.01988 0.82174

0.83771 0.12237 0.27493 0.94600
0.73006 0.17468 0.03348 0.26457
0.56341 0.21305 0.38943 0.31697
0.82178 0.82744 0.36283 0.05336
0.32715 0.20220 0.41536 0.82238

0.68853 0.98479 0.30607 0.97673
0.74358 0.53164 0.14563 0.72927
0.24672 0.58442 0.44542 0.68251
0.90324 0.11799 0.53053 0.23987
0.79263 0.29124 0.58757 0.02894

0.44281 0.73958 0.17326 0.87885
0.70826 0.51527 0.10593 0.80716
0.22664 0.63765 0.72448 0.14197
0.62557 0.52224 0.44245 0.74708
0.48342 0.46079 0.37091 0.80193

Fu(u) Fx(x)

U

1.0 1.0

0.8 0.8

0.6---0.6
0.4 0.4

0.2 0.2

0.0 0.0
XfU(11)

U 1 cr; 0 x1 Random variable, X

Figure 9.2 Mapping for Simulation
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When a = 0 and h = 1, X. = ui, which is obvious. If X is uniform between 10 and 20,
the corresponding first random number is

xl = 10 + (20 - 10) x 0.86061 = 18.6061.

If X is normally distributed, that is, N(µx, 6x), then S = (X - px)l6x is a standard
normal variate, that is, N(0, 1), as discussed in Section 4.2.1. It can be shown that

uFx(xi)=(D(si)=(D xi µx (9.4)
Gx

or

Thus,

Si = _ X1 - µ x
Gx

xi = }.,l,x + GxSi = fix + 6x(D-I (ui ). (9.5)

Equation 9.5 suggests that in this case, the ui values first need to be transformed to si .
that is, si = (D- 1(u), and (D-1 is the inverse of the CDF of a standard normal variable.

Table 9.2 Standard Normal Random Numbers Corresponding to the Uniform Numbers in
Table 9.1

1.08306 -1.03571 -0.1.9750 -0.02677
1.44279 0.64637 1.67968 0.11826

-0.20686 0.21509 -0.98958 0.36571

-0.55444 0.52653 0.21198 0.43798
-1.07027 -1.30081 1.70884 -0.59234

-0.12665 2.04313 -0.81824 1.30769

-0.68545 0.39614 -0.68821 0.81209
-0.78281 0.46714 1.63849 -0.19175

0.16373 -0.07849 -0.98962 0.47011

-0.25296 -1.13370 -2.05621 0.92202

0.98509 -1.16322 -0.59797 1.60725

0.61299 -0.93583 -1.83193 -0.62932
0.15962 -0.79588 -0.28081 -0.47619
0.92217 0.94410 -0.35090 -1.61313

-0.44780 -0.83379 -0.21378 0.92447

0.49169 2.16458 -0.50702 1.99047

0.65442 0.07939 -1.05536 0.61061

-0.68485 0.21321 -0.13724 0.47473
1.30024 -1.18509 0.07660 -0.70672
0.81558 -0.54977 0.22130 -1.89656

-0.14385 0.64205 -0.94136 1.16926

0.54831 0.03829 -1.24847 0.86748
-0.74996 0.35218 0.59620 -1.07151

0.32014 0.05578 -0.14476 0.66533
-0.04157 -0.09844 -0.32944 0.84854
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Table 9.2 shows the set of 100 standard normal random numbers corresponding to the
uniform random numbers between 0 and 1 given in Table 9.1. The .x; values can be cal-
culated from the information on the s; values. For u = 0.86061, s = (D-1(0.86061) =
1.08306; with the information on µx and 6X, the corresponding x, can be calculated.
For the uniform load under consideration, the first random number according to the
normal distribution is

x1 = 2 + 0.2 x 1.08306 = 2.21661.

If the random variable X is lognormally distributed with parameters XX and Xj then
the ith random number x; according to the lognormal distribution can be generated as

u _ In .v; - k x

or

or

. J

In x;_Xx+cX(D (u,)

x; = exp[kx + x(D-1(u;
)]. (9.6)

A computer program can be written to generate random numbers according to any
distribution. In fact, many available computer programs can generate random numbers
for commonly used distributions. If the computer cannot generate a specific distribu-
tion, Equation 9.2 can be used to obtain it.

EXAMPLE 9.1

Generate random numbers for the Type II extreme value distribution discussed in
Section 4.5.5, whose CDF is given by Equation 4.45:

FF(x) = exp - -

where it and k are the parameters of the distribution.

SOLUTION

Assuming that an available computer program cannot generate random numbers for the
Type II extreme value distribution, they can be easily generated using Equation 9.2, as
shown next. Denoting u; as a uniform random number between 0 and 1, then

u; = FF(x1) = exp

or

it
xr

In 1
111k

(9.7)

Thus, for any ul, the corresponding x; according to the Type II extreme value distribu-
tion can be calculated using Equation 9.7.
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9.2.3.2 Generation of Random Numbers for Discrete Random Variables

If X is a discrete random variable, its CDF F,,(x1) needs to be calculated by taking the
summation of the individual PMFs, as in Equation 3.12. The inverse transformation
technique can be used to generate discrete random numbers. It is necessary to equate
u; to the corresponding FX(.v) value. Thus, it is necessary to evaluate the CDF for all
possible values of X. Then, a numerical search procedure is needed to obtain the dis-
crete random number, by satisfying the condition

Fx(x.i-I) < u; <_ FX(x;)

EXAMPLE 9.2

(9.8)

The CDF of a binomial distribution is shown in Figure 3.4. Suppose ui = 0.86061, the
first uniform number between 0 and I in Table 9. 1. Figure 3.4 indicates that

Fx(2) < 0.86061 < FX(3).

In this case Xi = 3.
Generalizing the procedure, we can state that if X is a discrete random variable with

CDF of Fx(xi), then

xi is such that i is the smallest integer with u S Fx (,vi.). (9.9)

Generating discrete random numbers can be cumbersome in many cases. Several
other procedures are available to generate discrete random numbers in a Computer envi-
ronment (Abramowitz and Stegum, 1964). They should be used whenever possible.

The discussion clearly indicates that any quantity of random numbers, discrete or
continuous, according to specific CDFs can be generated from the information on uni-
form random numbers between 0 and 1.

9.2.4 Numerical Experimentation

N random numbers for each of the random variables in the problem will give N sets of
random numbers, each set representing a realization of the problem. Thus, solving the
problem N times deterministically will give N sample points, essentially generating
information on the randomness in the output or response of the system to each set of
input variables. The N generated sample points for the output or response can then be
used to calculate all the required sample statistics, the histogram, the frequency dia-
gram, the PDF or PMF and the corresponding CDF, and the probability of failure con-
sidering various performance criteria. The accuracy of the evaluation will increase as
the number of simulations N increases. This is illustrated next.

EXAMPLE 9.3

The probabilistic characteristics of the bending moment for the beam shown in Figure
9.1 and represented by Equation 9.1 can now be generated using the Monte Carlo sim-
ulation technique. For the sake of brevity, only 10 simulation cycles are considered
here. Again, W is N(2 kip/ft, 0.2 kip/ft) and P is uniform between 10 and 20 kip. Since
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Table 9.3 Monte Carlo Simulations

W - N(2, 0.2) P Uniform between 10 and 20 iii=112.5iv+7.5p;
11i Si Vt't Ill. pf 111!

0.86061 1.08306 2.21661 0.83771 18.3771 387.1972
0.92546 1.44279 2.28856 0.73006 17.3006 387.2173
0.41806 -0.20686 1.95863 0.56341 15.6341 337.6014
0.28964 -0.55444 1.88911 0.82178 18.2178 349.1587
0.14225 -1.07027 1.78595 0.32715 13.2715 300.4553
0.44961 -0.12665 1.97467 0.68853 16.8853 348.7902
0.24653 -0.68545 1.86291 0.74358 17.4358 340.3459
0.21687 -0.78281 1.84344 0.24672 12.4672 300.8909
0.56503 0.16373 2.03275 0.90324 19.0324 371.4270
0.40015 -0.25296 1.94941 0.79263 17.9263 353.7557

Mean of moment = 347.69 kip-ft: standard deviation of moment = 30.38 kip-ft.

P is uniformly distributed, its mean value and COV can be calculated from Table 4.2.

In this case, the mean value is Ji = (10 + 20) /2 = 15 kip and the COV is 8/, = 2 / ` l 2

x (20 - 10) / (20 + 10) = 0.192.5, and the corresponding standard deviation is 6p =
0.1925 x 15 = 2.89 kip.

Suppose 10 uniform random numbers between 0 and 1 (the first 10 numbers in
Table 9.1) are generated for W and another 1O (the next 10 numbers, i.e, numbers 11
through 20 in Table 9.1) are generated for P. The steps involved in generating a set of
10 random numbers for w; and p; according to their- statistical characteristics and the
corresponding m, are summarized in Table 9.3.

Using the 10 sample points for the bending moment thus generated, we can calculate
its mean and standard deviation to be 347.68 k-ft and 30.38 k-ft, respectively. The statis-
tical distribution of the bending moment can also be obtained by generating enough data
to draw a histogram or by using other statistical techniques discussed in Chapter 5. The
optimal numbers of simulation cycles required are discussed in Section 9.2.6.

If the mean value first-order second moment (MVFOSM) method discussed in
Section 7.6.1 is used, the mean value and standard deviation of the bending moment
are estimated as

P M

m =/ l 12.5' x 0.22 +7.5 2 x 2.892 = 31.24 kip-ft.

The differences between the parameters estimated by the two methods are expected to
become narrower as the number of simulation cycles increases. The first-order approxi-
mation does not use the information on distributions of random variables and thus may
not match the simulation results even when the number of simulation cycles is very large.

This simple example indicates the power and simplicity of the simulation technique.
The most significant point is that detailed knowledge of the analytical methods in
Chapter 7 is not required to generate the necessary probabilistic information. The task
is much simpler it 'a computer program is used for this purpose.
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9.2.5 Extracting Probabilistic Information Using Simulation

The method described in the previous section can also be used to evaluate the risk or
reliability of an engineering system. Consider the limit state represented by Equation
7.34 corresponding to a failure mode for a structure. With all the random variables in
Equation 7.34 assumed to be statistically independent, the Monte Carlo simulation
approach consists of drawing samples of the variables according to their PDFs or PMFs
and then feeding them into the mathematical model 9( ). The samples thus obtained
would give the probabilistic characteristics of the response random variable Z. The
extraction of such information could be cumbersome. However, if the objective is only
to estimate the failure probability, that can be done quite simply, as follows.

It is known that if the value of g( is less than zero, it indicates failure. Let Nf. he the

number of simulation cycles when g( is less than zero and let N he the total number of
simulation cycles. Therefore, an estimate of the probability of failure can be expressed as

N
P./' = N . (9.10)

9.2.6 Accuracy and Efficiency of Simulation

The ability of Equation 9.10 to accurately estimate the probability of failure is a mat-
ter of concern. Obviously, the accuracy of the estimate will depend on the number of'
simulation cycles. For a small failure probability and/or small N, the estimate of p/.
given by Equation 9. 10 may be subject to considerable error. The estimate of the prob-
ability of failure would approach the true value as N approaches infinity. The accuracy
of Equation 9.10 can be studied in several ways. One way would be to evaluate the
variance or COV of the estimated probability of failure (Ayyub and Haldar, 1985). The
variance or COV can be estimated by assuming each simulation cycle to constitute a
Bernoulli trial, and the number of failures in N trials can be considered to follow a
binomial distribution. Then, the COV of p f can be expressed as

(1-1).1- )1).t.

N (9.11)COV(pf-)=6p
1

A smaller value of 6is desirable. Equation 9.11 indicates that bapproaches zero
as N approaches infinity.

Another way to study the error associated with the number of' simulation cycles is
by approximating the binomial distribution with a normal distribution and estimating
the 95% confidence interval of the estimated probability of failure (Shooman, 1968).
It can be shown that

P -2 < <2 -0.9.5 (9.12)
N N

p/
\ N

where pj is the true probability of failure. The percentage error can be defined as

Nt 7.

N - p.t- (9.13)
E%= T -X100%.

Pf
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Combining Equations 9.12 and 9.13, we obtain

c (1 .1) cEIo= x200/c. (9.14)
Nxp

Equation 9.14 indicates that there will he about 20% error if i))7f is 0.01 and if 10,000
trials were used in the simulation. It can also be stated that there is 95% probability that
the probability of failure will be in the range of 0.01 ± 0.002 with 10,000 simulations.
Conversely, if the desired error is 10% and I)f is 0.01, then from Equation 9.14, the
required number of simulations N = 39,600.

Both Equations 9.11 and 9.14 indicate that the number of simulation cycles to achieve
a certain level of accuracy depends on the unknown probability of failure. In many engi-
neering problems, the probability of failure could be smaller than 10 Therefore, on
average, only 1 out of 100,000 trials would show a failure. Thus, at least 100,000 simu-
lation cycles are required to predict this behavior. For a reliable estimate, at least 10 times
this minimum (i.e., 1 million simulation cycles) is usually recommended. If the problem
has n random variables, then n million random numbers are necessary if the Monte Carlo
simulation is to successfully estimate the probability of failure.

EXAMPLE 9.4

The probability of failure of a beam is under consideration. The following performance
function for the beam can be used:

gOF,.Z-M (9.15)

where F is the yield stress, Z is the section modulus, and M is the applied bending
moment. They are considered to be random variables. Their statistical characteristics
are given in Table 9.4.

First, using the MVFOSM method and Equation 9.15, we estimate the safety index
to be 3.251 as shown in Table 9.5. When the FORM method is used, the safety index
is found to be 2.340. As expected, they are quite different since the limit state equation
is nonlinear and the distributions of two out of three random variables are nonnormal.
The difference tends to be larger when the difference between the mean values
(required for the MVFOSM method) and the design point on the failure surface

Table 9.4 Probabilistic Characteristics of Basic Parameters

Parameter Mean value COV Probability distribution

F,. 38 ksi 0.10 Normal
Z 60 in.3 0.05 Lognormal
M 1,000 kip-in. 0.30 Type II

Table 9.5 Results of MVFOSM and FORM Methods

Reliability methods 13 P/-= I - (D(P)

MVFOSM
FORM

3.251
2.340

0.000577
0.009650
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(required for the FORM method) gets larger. Thus, MVFOSM may or may not he a
realistic measure of probability of failure, depending on the nature of the problem
under consideration.

The result obtained by FORM is more reliable and the corresponding probability of
failure is found to be 0.009650, a comparatively large number considering actual design
practice. This large probability of failure is intentionally considered in this example so that
the results can be compared with a simulation study with a reasonable number of simula-
tions. For this example, the probability of failure is of the order of 10-2. thus about 1,000
simulation cycles are necessary for a reasonable estimate of the probability of failure.

Using the limit state given by Equation 9.15 and the Monte Carlo simulation tech-
nique, we can calculate the probability of failure of the beam in two different ways: by
considering the statistics of the limit state equation, and by counting the failures in dif-
ferent cycles of simulations. In the first method, using the mean and the standard devi-
ation of g( ), we calculate the safety indices as shown in Column 2 in Table 9.6.
Assuming g( ) is a normal random variable, the corresponding probability of failure is
shown in Column 3. As the number of simulation cycles increases, the probability of
failure does not show any convergence behavior.

Using the same simulation data with the counting technique given by Equation 9. 10,
we again calculate the probability of failure of the beam, and the results are shown in
Column 4 of Table 9.6. In this case, when the number of simulation cycles is relatively
small, such as less than 100, none of the trials resulted in failure of the beam [(g( ) < 01,
giving the corresponding probability of failure to be zero. However, as the N values
increase, the probability of failure converges to about 0.011. The probabilities of fail-
ure obtained by the two methods, that is, the sample statistics and the counting meth-
ods, are quite different. If the performance function g( ) is not normally distributed, this
type of difference is expected. In general, since g( ) may not be normal in most cases,
direct simulation with failure counting is superior to the first method.

The probabilities of failure obtained using FORM and the Monte Carlo simulation
method are almost the same when the number of simulation cycles is relatively large.

Table 9.6 Summary of Simulation Results

Conditional
Number expectation VRT +
of cycles, Condit ional antithetic variates

N Direct simulation expectation VRT VRT

Using sample statistics Counting

6, pf= 1 - ((p) p1= N1/N P/' COVvp1) pj- COV(p1)
1 2 3 4 5 6 7 8

10 3.345 0.000412 0.0000009- 0.010924 0.204 0.010067 0.048

50 3.224 0.000632 0.000000* 0.009504 0.090 0.010322 0.029
100 3.427 0.000305 0.000000* 0.009368 0.062 0.010327 0.024
250 3.177 0.000744 0.008000 0.010067 0.041 0.010299 0.017
500 2.964 0.001518 0.016000 0.010471 0.030 0.010323 0.012

1000 3.081 0.001032 0.011000 0.010170 0.021 0.010365 0.009

*Nf- = 0 for these cases.
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This indicates that the Monte Carlo method can also be used to evaluate the probability
of failure if the number of simulation cycles is relatively large. This also points out the
weakness of the direct Monte Carlo simulation technique. The probability of failure of a
complicated system is not known in advance; thus, it will be difficult to estimate a rea-
sonable number of simulation cycles in advance. A trial-and-error approach may need to
be employed. Also, if the probability of failure is relatively small, as is expected in many
engineering designs, the number of cycles necessary to estimate the probability of failure
with reasonable accuracy will be very large. making the simulation method time-con-
suming. With advancements in computer technology, the time required to complete such
a large number of simulations may not be a problem, but it could still be prohibitive if
the deterministic system analysis for each simulation is computationally intensive.

9.3 VARIANCE REDUCTION TECHNIQUES

The concept behind simulation appears to be simple: however, its application in engi-
neering reliability analysis and its acceptance as an alternative reliability evaluation
method depend mainly on the efficiency of the simulation. To achieve efficiency, the
number of simulation cycles needs to he greatly reduced. It is the simulator's task to
increase the efficiency of the simulation by expediting the execution and minimizing
computer storage requirements. Alternatively, efficiency can be increased by reducing
the variance or the error of the estimated output variable without disturbing the expected
or mean value and without increasing the sample size. This need led to the development
of several eariunce-reduction techniques (VRTs). The type of VRT that can be used
depends on the particular model under consideration. It is usually impossible to know
beforehand how much variance reduction might be achieved using a given technique.

The VRTs can be grouped in several ways. One method is to consider whether the
variance reduction method alters the experiment by altering the input scheme, by alter-
ing the model, or by special analysis of the output. The VRTs can also he grouped
according to description or purpose (i.e., sampling methods, correlation methods. and
special methods). These groupings are somewhat arbitrary, however, they produce a
better understanding of the concept involved.

The sampling methods either constrain the sample to be representative or distort the
sample to emphasize the important aspects of the function being estimated. Some of
the commonly used sampling methods are systematic sampling. importance sampling,
stratified sampling, Latin hypercube sampling, adaptive sampling, randomization sam-
pling, and conditional expectation. The correlation methods employ strategies to
achieve correlation (both positive and negative) between functions, random observa-
tions, or different simulations to improve the accuracy of the estimators. Some of the
commonly used correlation methods are common random numbers, antithetic variates,
and control variates. Other special VRTs available are partition of the region, random
quadratic method, biased estimator, and indirect estimator. The VRTs can also be com-
bined to further increase the efficiency of the simulation.

VRTs increase the efficiency and accuracy of the risk or reliability estimation using a rel-
atively small number of simulation cycles; however, they increase the computational diffi-
culty for each simulation, and a considerable amount of expertise may he necessary to
implement them. The most desirable feature Of simulation, its basic simplicity, is thus lost.
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Also, in the age of high-speed computers, the number of simulation cycles or time required
to analyze a problem may be less important than in the past. In any case, it is important to
understand the logic and concepts behind some of the VRTs commonly used in engineer-
ing. The commonly used VRTs include sampling methods and correlation methods. The
two types of methods can also be combined, as discussed briefly in the following section.

9.3.1 VRTs in Sampling Methods

9.3.1.1 Importance Sampling

The basic idea of importance sampling is to concentrate the distribution of sampling
points in the region of most importance, that is, the area that mainly contributes to the
failure probability, instead of spreading them out evenly among the whole range of
possible values of the basic variables. One method to achieve this is illustrated in
Figure 9.3 (Harbitz, 1986). Efficient variance reduction is obtained by simulating only
outside the (3-sphere, because no failure occurs within the P-sphere.

The basic mathematical definition of failure probability is given by Equation 7.35,
in which the joint probability density function for basic random variables, X, is inte-
grated over the failure region, that is, g(x) < 0. A simple indicator function with respect
to the performance function g(x) can be defined as

I (x) _ 0, if >(x) > 0 (9.16)
,9 1, if g(x) < 0

With this, Equation 7.35 can be rewritten as

P f. SIg(x).fx(x)dx.
g'(x)<O

(9.17)

This is just the expected value of Ig(x). Therefore, in basic Monte Carlo simulation, the
probability of failure is simply

1

n _ n./
p1.

Y,

where n f is the number of failures.

x'2

Sampling domain

(9.18)

Figure 9.3 Harbitz's Importance Sampling
Method
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For importance sampling, a new sampling PDF. fI(x) is defined so as to obtain sam-
ples in the desired region. fi(x) is known as the sampling density function. The proba-
bility of failure is given by

pf= l 1L, (x) f (x) (x)dx. (9.19)it
ti fl (X)

Equation 9.19 is obtained by multiplying and dividing the integrand in Equation 9.17
by f, (x). Similar to Equation 9.18, the simulated estimate of 1) f- is

P fh(x') (9.20)
.1 ( r)

N r = 1 ( X

where N is the number of simulations and xi, that is, is the set of values
of the basic random variables at the ith simulation.

The accuracy of the importance sampling estimate depends on the choice of the
sampling density.ft(x). Several methods have been developed for this purpose (Har-bitz.
1986; Karamchandani et al., 1989; Melchers, 1989 etc.)

9.3.1.2 Stratified Sampling

In the stratified sampling method, the domain of integration is divided into several
regions, so that emphasis can be placed by simulating more from the regions that con-
tribute to the failure event. The total domain of' integration is divided lntO in mutually
exclusive regions, that is, R , R2, ...., R,,,. Using the theorem of total probabi I ity, we can
estimate the probability of failure as

,» I ;\

lpt-= P(R1) 1, (x!) (9.21 )
.i= N;

where P(RA) is the probability of region R. Ni is the number of simulation cycles per-
formed in region R1, and 1,( ) is the indicator function defined in Equation 9.16. This
strategy ensures that no region is missed.

9.3.1.3 Adaptive Sampling

In the importance sampling method, the region of 1111portance is usually not known in
advance. However, the efficiency of the simulation can he improved if it can he
updated using the information obtained from the first few simulation cycles. This
observation led to the development of the adaptive sampling methods. Two methods of
adaptive sampling are multimodal sampling (Karamchandani et a1.,1989) and curva-
ture-based sampling (Wu, 1992). Both methods start with a sampling density centered
around the design point identified by FORM. As the simulation progresses, the sam-
pling density is updated. In the multimodal method, the sampling density is a weighted
sum of density functions centered in different regions. Mahadevan and Dey (1997)
used this concept for system reliability analysis. In the curvature-based method, the
curvature of the limit state is updated every few simulations, and this information is
used in selecting the future samples. It has been reported in the literature (Ayyub and
McCuen, 1997; Mahadevan and Dey, 1997) that this technique can reasonably estimate
the probability of failure with only 100 to 400 cycles, whereas similar results can only
be obtained by using several million direct simulation cycles.
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9.3.1.4 Conditional Expectation

In the conditional expectation method, all the basic random variables are simulated
except one, known as the control variable. The control variable is generally selected to
be the random variable with the largest variability, and its CDF provides a known func-
tion in terms of other simulated variables. The conditional expectation can be evalu-
ated by this known expression. The only limitation is that the control random variable
must be statistically independent of all other random variables in the performance func-
tion of interest. The variance is reduced by removing the random fluctuations of the
control variable on which conditioning was not performed by not generating them. The
steps involved in the conditional expectation method can he summarized as follows:

Step 1. Select the control variable (i.e., the random variable of the largest vari-
ability). Let it be Xi.

Step 2. Rewrite the quantity to be estimated, in this case pt; as

1p.I1 = P[Xi < g'(X1,X2, ..,X1_1,Xi_l (9.22)

Step 3. Randomly generate values of all these variables except X1 using Monte
Carlo simulation and calculate a sample of p1l as follows:

Pf = P[X < g'(x1 ,x2f,...,.k:(J-1)f' X(.i+ terr )] (9.23)

or

p.1. = Fx. [g'(x1i,x,i,...,x( (9.24)

where FX ,[ ] is the CDF of Xi.
Step 4. Repeat Step 3 N times then calculate the mean of p denoted as ptas

Y, 1'I
i=1 (9.25)

N
The variance of p f is

1
N

Var ( - N) _ I(/),.( /).i,) 2

Var(p.)= p.tr = 1;=1
t N N

EXAMPLE 9.5

(9.26)

Consider Example 9.4, for which the performance function is given by Equation 9.15.
In this example, the applied bending moment has the largest variability. To estimate the
probability of failure of the beam using the conditional expectation VRT using
Equation 9.24, Equation 9.15 needs to be modified as follows:

P' f = P(g < 0) = P(M > FI.Z). (9.27)

Since M is considered to have a Type II extreme value distribution, its CDF is given by
Equation 4.45, and Equation 9.27 can be expressed as

P(M > FZ) = 1 - exp (9.28)
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where u and k are the parameters of the distribution and can be estimated from the infor-
mation on the mean and variance of M, using Equations 4.47a and 4.47c. For this exam-
ple they are [ 1,000/x(0.75) = 1000/1.22542 = 8 1 6.051 and 4, respectively. Therefore, the
simulation algorithm is to generate F, and Z as in direct Monte Carlo simulation and use
Equation 9.28 to calculate the probability of failure of the beam N times.

The results are summarized in Columns 5 and 6 of Table 9.6. The mean value of the
probability of failure of the beam obtained using only 10 cycles with the conditional expec-
tation VRT is very similar to that of the direct Monte Carlo Simulation technique. If a larger
number of simulation cycles is used for the conditional expectation VRT, the estimates of
the mean probability of failure do not change significantly; however, the coefficient of vari-
ation of the mean probability of failure decreases, indicating a better estimate.

9.3.2 Correlation-Based VRTs

9.3.2.1 Antithetic Variates

In the antithetic variates method, a negative correlation is induced between different
cycles of simulation to decrease the variance of the estimated mean value. If 'U is a uni-
formly distributed random variable between 0 and I used in the first run of generating
a basic random variable X;, then another random variable I - U can be introduced in
the second run. If U is uniformly distributed between 0 and 1, then I - U is also uni-
formly distributed in the same range and is negatively correlated to U. The concept can
be used very efficiently when it is combined with other VRTs, for example, the condi-
tional expectation VRT discussed in the previous section. It is elaborated further in the
following section.

9.3.3 Combined Conditional Expectation and
Antithetic Variates Method

As discussed in the previous sections, VRTs can be used individually to improve the
overall efficiency of the simulation. Using some of these VRTs together also will fur-
ther improve efficiency. One simple combination would be the conditional expectation
plus antithetic variates VRT. The following steps can be followed to combine the two
VRTs.

Step 1. Select the control variable and define ht* in terms of its CDF as in the
conditional expectation VRT. Refer to Equation 9.27 as an example.
Step 2. Using the Monte Carlo simulation method, generate random numbers
U;'s for all the basic random variables except the control variable; using
Equation 9.24, calculate the corresponding probability of failure, denoted as

cry
PJ'i

Step 3. Use another set of random numbers corresponding to (I - U,) 's and,
following the procedures in Step 2, calculate p').
Step 4. Evaluate the average value of the two runs in Steps 2 and 3 as

1 (2)

(9.29)
2
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Step 5. Repeat Steps 2 to 4 N times. An estimate of the mean and variance of pf
is given by

(9.30)

and
Var(p_fr) _ Var(p fI)) + Var(pf')) + 2Cov(h f >, p )

Var(p.l.) = - i f, (9.31)
N 4N

Since the covariance of p J> > and p is negative, the variance of 1)f- will be reduced.

EXAMPLE 9.6

Example 9.5 is considered again. The conditional expectation and antithetic variates
VRTs are combined to calculate the probabilities of failure of the same beam. The
results are shown in Columns 7 and 8 of Table 9.6. Comparing Columns 5 and 7 reveals
that the mean value of the probability of failure did not change considerably. However,
the coefficient of variation of its estimation is considerably smaller for the combined
VRTs than for the conditional expectation VRT alone. Thus, the conditional expecta-
tion plus antithetic variates VRT is more efficient than the conditional expectation VRT
alone, for this example.

In this example, about 1,000 direct simulation cycles gave a reasonable estimate of
the probability of failure. However, if the probability of failure is about 10-5, as is
expected in most structural engineering problems, the number of direct simulation
cycles is expected to he about a million. Thus, whenever possible, some type of VRT
Should be used to increase the efficiency of simulation.

The example also indicates the important role of simulation in reliability estimation of
engineering systems. As mentioned earlier, simulation is used to verify results obtained
using more sophisticated analytical methods. The latter can only be used by experts in the
areas of risk and reliability, whereas the simulation method is quite simple to use. Also,
the simulation method is robust. It can provide failure probability estimates for any prob-
lem. The analytical methods might sometimes fail to converge in their iterations.

9.4 SIMULATION OF CORRELATED
RANDOM VARIABLES

The discussion in the previous sections assumes that all the random variables are
uncOrTelated. In some cases, it may be necessary to estimate the probability of failure
of a structure when some or all the random variables are correlated.

The fundamental concepts that need consideration are how to convert the correlated
random variables to uncorrelated or statistically independent random variables, and
how to modify the original function expressed in terms of correlated variables into a
function of uncorrelated random variables.

The methods proposed by Morgenstern (1956) and Nataf (1962) can be used to con-
vert correlated variables to uncorrelated random variables. Nataf's model is discussed
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very briefly here, since it is more flexible than Morgenstern's model. Suppose X1. X,,
..., X are correlated random variables with covariance matrix [C] given by Equation
8.8. The correlation coefficient between X, and Xi is denoted as px, x . The X;'s can
be transformed into standard normal variates U;'s as

U; = ( D -r F X (-,vi) : i = 1, 2, ... ,1T. (9.32)

The U;'s have a zero mean and unit standard deviation. However, the transformation
may change the correlation coefficient between any two correlated random variables to
pi,l .(;i2, or simply p' in subsequent discussions. Using Equations 3.36 and 3.39, we can
show that

Px,,x, x, 6x, = E(X1X,) - E(X1)E(X2 ). (9.33)

With the transformation of X;'s to U,'s, the expectation operation in Equation 9.33
becomes difficult, and in some cases, approximate solutions such as the use of Taylor's
series may be necessary. Nataf's model can be used, but the calculations become very
tedious. Der Kiureghian and Liu (1985) suggested an empirical relationship between
the two correlation coefficients as

p" = FPx:.x, (9.34)

in which F >- 1.0. Liu and Der Kiureghian (1986) estimated the values of F for several two-
parameter distributions of X; and XJ., as shown in Table 9.7. If one of the two variables is
normal, F may be a constant or a function of the COV of the other random variable.
However, in all cases, the maximum error in the estimation of F is very small. For com-
binations of distributions not shown in Table 9.7, refer to Liu and Der Kiureghian (1986).

The symbol p' indicates the correlation coefficient between two standard normal
variables with zero mean and unit standard deviation. The correlation matrix for this
case can be written as

rP'l Lt:1= 1p 1 '

Table 9.7 Evaluation of F Parameter

(9.35)

X; Xi F Maximum error

Normal Normal 1.0

Normal Uniform 1 .023 0.0%
Normal Shifted exponential 1 .107 0.0Y/c

Normal Shifted Rayleigh 1 .014 ().(')C/(,

Normal Type I largest value 1 .031 0.0%.

Normal Type I smallest value 1 .031 0.0%
Normal Lognormal Exact

8X /\l n(1+ 6X

Normal Gamma 0 0%1.001-0.007 8X ,
+0.1 186 .

Normal Type II largest value 2 1%01.030 + 0.238 8x +0.3648 .

Normal Type III smallest value 2 1 %0
1 031 - 0 195 8 3286+0

.

.. x; . .
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Denoting V as the uncorrelated standard normal variables, we can show that
{U} = [T] {V} (9.36)

As shown in Section 8.3, the transformation matrix T is composed of the eigenvec-
tors of [Co;] and can be shown to be

F I I

[T] = (9.37)

L 2 J

The corresponding eigenvectors (1 - p) and (I + p) are the variances of V, and V2.
Thus, V 1 and V2 are two independent normal variables with zero mean, and the corre-
sponding variances are (1 - p) and (1 + p), respectively.

The modifications of the original function to be simulated in terms of V,'s are dis-
cussed in the following sections with the help of examples. For ease of presentation,
the discussion is divided into two parts: simulation of correlated normal random vari-
ables, and simulation of correlated nonnormal random variables.

9.4.1 Simulation of Correlated Normal Variables

To demonstrate the simulation procedure for correlated random variables, the example
discussed in Section 9.2.1 can again be considered. For this example, the expression
for the design bending moment at the midspan of the beam is given by Equation 9.1.
Previously, the two random variables W and P in Equation 9.1 were considered to be
statistically independent. The task now is to simulate them and calculate the bending
moments if they are correlated.

For the purpose of illustration, first consider both W and P to be normal random
variables with means of 2 kip/ft and 15 kip, respectively, and corresponding standard
deviations of 0.2 kip/ft and 2.5 kip, respectively. The correlation coefficient of the two
variables is assumed to be p14w = 0.3.

To demonstrate the difference in simulation between uncorrelated and correlated
random variables, W and P are first considered to be independent normal random vari-
ables. Using 10 simulation cycles, we can calculate the bending moments at the
midspan of the beam, with results summarized in Table 9.8. In this example, the first
10 uniform numbers between 0 and 1 are assigned to W, and the next 10 uniform num-
bers between 0 and I are assigned to P. The mean and the standard deviation of the
bending moment are calculated to be 344.29 kip-ft and 26.34 kip-ft, respectively.

To consider the effect of correlation between W and P, the following steps can be
performed.

Step 1. Transform the correlated normal variables to correlated standard normal
variables, U;'s. The U;'s have a zero mean and unit standard deviation. For this
particular example, it can be shown that

W-µwU =
1

6 w
or

W= tw +6wUI .
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Table 9.8 Monte Carlo Simulations for Uncorrelated Normal Variables
W -N(2, 0.2), P -- N(15, 2.5), PwP= 0

W-rN(2,0.2) P-N(15,2._5) ,ni= 112.5 vi+7.5pi

Iii Si K'i III Si 1)i 1711

0.86061 1.08306 2.21661 0.83771 0.98509 17.46273 380.33910
0.92546 1.44279 2.28856 0.73006 0.61299 16.53248 381.45660
0.41806 -0.20686 1.95863 0.56341 0.15962 15.39905 335.83875
0.28964 -0.55444 1.88911 0.82178 0.92217 17.30543 342.31560
0.14225 -1.07027 1.78595 0.32715 -0.4478() 13.88050 305.02313
0.44961 -0.12665 1.97467 0.68853 0.49169 16.22923 343.8696()
0.24653 -0.68545 1.86291 0.74358 0.65442 16.63605 334.34775
0.21687 -0.78281 1.84344 0.24672 -0.68485 13.28788 307.04610
0.56503 0.16373 2.03275 0.90324 1.30024 18.25060 365.56388
0.40015 -0.25296 1.94941 0.79263 0.81558 17.03895 347.10075

Mean of moment = 344.29 kip-ft; standard deviation of moment = 26.34 kip-ft.

Similarly,
P=µP+c5PU2.

Step 2. Evaluate the correlation coefficient p' between U, and U2 In terms of
the correlation coefficient of the original correlated normal variables. As shown
in Table 9.7, when both variables are normal, the parameter F is 1.0. Thus.

P' = 0.3.

Step 3. Transform the correlated standard normal variables Ui' s to uncorrelated
standard normal variables Vi's. Using Equation 9.36, we can show that

U = 1.---

(VI + V))1 N,2 i

and

U, = 1 (-Vi +V,
_2

Step 4. Express the function to be simulated in terms of Vi's. For the problem
under consideration, it can be shown that

and

W=µ,.j;
+6«.

(Vi+V2)
V 2

P=µp+6P (-1/ +V,).
_v2

Thus,

M=112.5W+7.5P=112.5 +V,)

+7.5 µ/' +
6P

(-V1 +V2) .'\/2
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By substituting the mean and standard deviation values in the equation and sim-
plifying, we can show that

M = 337.5+2.65165V1 +29.16815V,.

As mentioned earlier, V
1

and V, are normal random variables with zero mean
and corresponding standard deviations of / 1- p' = -v' 1- 0.3 = 0.837 and
,v'l +p' = /i +0.3 = 1.140, respectively.

Step 5. Carry out standard Monte Carlo simulation using the modified function
expressed in terms of V;'s. Considering the first 10 uniform random numbers between
0 and 1 in Table 9.1 for V 1 and the next 10 for Vj, we can calculate the bending
moments as summarized in Table 9.9. The mean and standard deviation of the bend-
ing moment for the correlated case are 353.29 kip-ft and 22.03 kip-ft, respectively.

9.4.2 Simulation of Correlated Nonnormal Variables

In the previous example, both W and P could have nonnormal distributions. The gen-
eral steps discussed next can be used for the simulation of correlated nonnormal vari-
ables. For simplicity of discussion, consider W to be a normal random variable with a
mean of 2.0 kip/ft and a standard deviation of 0.2 kip/ft. However, P is a lognormal
random variable with a mean of 15 kip and a standard deviation of 2.5 kip. Equations
4.10 and 4.11 are used to find the two parameters of the lognormal distribution: 2p =
2.694 and n = 0.166. The coefficient of variation of P is 8p = 0.167. Again, the five
steps discussed in the previous section can be carried out in the following way.

Step 1. Since W is a normal random variable, it can he shown that

W=µw+5wU,.
Since P is a lognormal random variable, the following additional calculations
are necessary:

Table 9.9 Monte Carlo Simulations for Correlated Normal Variables
W --- N(2,0.2), P -N(15,2.5), pit: r = 0.3

iii = 337.5 + 2.65165 i

V1 - N(0, 0.837) 1/1 - N(0. 1.140) + 29.16815

U! Si 1'I
r 1l! Si V -); nli

0.86061 1.08306 0.90652 0.83771 0.98509 1.12300 372.65961

0.92546 1.44279 1.20762 0.73006 0.61299 0.69881 361.08518
0.41806 -0.20686 -0.17314 0.56341 0.15962 0.18197 342.34862
0.28964 -0.55444 -0.46407 0.82178 0.92217 1.05127 366.93305
0.14225 -1.07027 -0.89582 0.32715 -0.44780 -0.51049 320.23455
0.44961 -0.12665 -0.10601 0.68853 0.49169 0.56053 353.56852
0.24653 -0.68545 -0.57372 0.74358 0.65442 0.74604 357.73930
0.21687 -0.78281 -0.65521 0.24672 -0.68485 -0.78073 312.99016
0.56503 0.16373 0.13704 0.90324 1.30024 1.48227 381.09846
0.40015 -0.25296 -0.21173 0.79263 0.81558 0.92976 364.05795

Mean of moment = 353.29 kip-ft; standard deviation of moment = 22.03 kip-ft.
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(D(Ul)=(D
or

U2

or

or li1P=kP

P = exp(XP +

Step 2. From Table 9.7, the parameter F can he estimated as

F= b

lnP - X

cP

P 0.167

N/1n(1 +b;,) ^\;,'ln(1 +0.1672)

Using Equation 9.34,

=1.00692.

p'= Fps%;,P = 1.00692x0.3=0.302.

Step 3. The relationships between the U;'s and V1's discussed in the previous
example will remain the same.

Step 4. For the problem under consideration. it can be shown that

W= µw +6 (VI +V))=2.0+Q.2(1/i +l!,)
' 2

and

P = exP r ) + ' (-Vi + V,) = exp 2.694 +
U 166 (-`I +

! 2 ; }

Thus, the function to estimate the bending moment can be expressed in terms of
Vi's. As discussed before, V1 and V, are normal random variables with zero
mean and corresponding standard deviations of p' _ r l - 0.302 = 0.83
and . /i=Jl+0.302 =1.141.
Step 5. Considering the first 10 uniform numbers between 0 and 1 in Table 9.1
for Vl and the next 10 for V2, we can calculate the bending moments, as sum-
marized in Table 9.10. The mean value of the bending moment is found to be
352.22 kip-ft, and the corresponding standard deviation is 22.38 kip-ft.

9.5 CONCLUDING REMARKS

The use of simulation techniques to estimate the probability of failure for both explicit
and implicit performance functions is discussed in this chapter. The simulation method
can he carried out without knowing more complicated analytical techniques and with
a working knowledge of probability and statistics. This method is also robust. The sim-
ulation method can provide estimates for any problem, whereas analytical methods
may not always converge in their iterations. With the advancement in computer tech-
nology, simulation is becoming an attractive alternative to classical analytical methods.

The accuracy of simulation is always a major concern. Simulation is expected to
give accurate results as the number of simulation trials approaches infinity. In the age
of high-speed computing, a large number of simulation cycles may not be an important
hurdle. However, it is important to understand the logic and concepts behind some of
the commonly used variance reduction techniques to increase the efficiency and accu-
racy of simulation. Some of them are introduced in this chapter.
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Table 9.10 Monte Carlo Simulations for Correlated Nonnormal Variables
W - N(2,0.2). P - LN(2.694, 0.166), pt, p = 0.3

112.5 wi +7.5

0.2=2+

V1 - N(0, 0.835)

Vt,

V-) -1\i(0, 1.141)

1 11
l l Si

0.166
2.694 + (-r1 +

0.86061 1.08306 0.90436 0.83771 0.98509 1.12399 371.09798
0.92546 1.44279 1.20473 0.73006 0.61299 0.69942 359.83725
0.41806 -0.20686 -0.17273 0.56341 0.15962 0.18213 340.79820
0.28964 -0.55444 -0.46296 0.82178 0.92217 1.05220 366.89708
0.14225 -1.07027 -0.89368 0.32715 -0.44780 -0.51094 318.68070
0.44961 -0.12665 -0.10575 0.68853 0.49169 0.56102 352.20398
0.24653 -0.68545 -0.57235 0.74358 0.65442 0.74669 357.2808()
0.21687 -0.78281 -0.65365 0.24672 -0.68485 -0.78141 31 1.44740
0.56503 0.16373 0.13671 0.90324 1.30024 1.48357 380.70840
0.40015 -0.25296 -0.21122 0.79263 0.81558 0.93058 363.28470

Mean of moment = 352.22 kip-ft.: standard deviation of moment = 22.38 kip-fl.

The basic simulation method assumes that the random variables to be simulated are
essentially statistically independent. In practice, however, some or all the random vari-
ables may be correlated. Simulation of correlated normal and nonnorrnal random vari-
ables is therefore discussed in this chapter.

A working knowledge of simulation methods is helpful because they are not only
simple and robust but also necessary for the validation of more sophisticated analyti-
cal methods.

9.6 PROBLEMS

(Note: The following problems are intended for homework assignments using the uni-
form random numbers given in Table 9.1. Answers for homework assignments are
requested with very few simulations, since the number of uniform random numbers in
Table 9.1 is very limited and a considerable amount of time would be needed for a large
simulation cycle using hand calculation. This way students will get unique results and
it will be easier for the teacher to check their accuracy. However, if a teacher prefers to
use a computer, then the number of simulations could be large. In that case, the results
may vary depending on the computer being used and the seed value used to generate
uniform random numbers. However, the results are expected to be similar, particularly
when relatively large numbers of simulation cycles are used.)
9.1 The total shear resistance of soil between B and C against slope failure is given by (refer to

Figure P6.14 in Chapter 6)

F=(C+PtanO)L
where C is the cohesion. P is the pressure normal to arc BC, 0 is the friction angle of soil.
and L is the length of arc BC = 10 ft. Assume C. P, and 0 are statistically independent ran-
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dom variables and L is a constant. Further assume that C is a uniformly distributed random
variable between 0 and 1, P is uniformly distributed between 1 and 3. and 0 is uniformly
distributed between 20 and 30 degrees.

(a) Calculate the first-order mean and variance of F.

(b) Using 10 cycles of simulation, calculate the mean and variance of F.

9.2 The drag force, F13, acting on an immersed body by moving fluid can he calculated as

F I) =Ci) A
pU2

2

where CD is the drag coefficient, A is the projected area of the body on a plane normal to the
flow, p is the mass density of the fluid, and U is the undisturbed velocity of the fluid.
Suppose A and p are constants with values of 10 ft2 and 1.94 slug/ft3, respectively. CD and
U are both assumed to be statistically independent normal random variables with means of
0.5 and 10 ft/s, respectively, and corresponding COVs of 0. 1 and 0.2. respectively.

(a) Calculate the first-order mean and variance of F,).

(b) Using 15 cycles of simulation, calculate the mean and variance of FD.

9.3 A simply supported beam of span L and stiffness El is loaded with a concentrated load P at
the midspan and a uniformly distributed load w along the length of the beam. The maximum
deflection at the midspan can be calculated as

PLC S wL'

48E1 385 EI
Suppose L and FI are constants of values 30 ft and 4.495 x 107 kip-in.2. but P is a normal
random variable with a mean of 50 kip and a standard deviation of 10 kip, and w is a log-
normal variable with a mean of 1 kip/ft and a standard deviation of 0. 1 kip/ft. Using 20
cycles of simulation, calculate the mean and standard deviation of the maximum deflection
of the beam.

9.4 Consider Problem 6.10. It can be shown that the coefficient of consolidation. c,., has a log-
normal distribution with X = -11.3267 and = 0.1414. The probability of c,. being greater
than 1.2 x 10 -' m2/inin can be calculated as 0.51197. Using 20 cycles of simulation. calcu-
late the probability of c,. being greater than 1.2 x 10 -5 rn2/min. Discuss the accuracy of the
result.

9.5 The fully plastic flexural capacity of a steel beam section can be given by YZ. where
Y is the yield strength of steel and Z is the plastic section modulus of the section. If the applied
bending movement at a section of interest is M, the performance function can be defined as

g(YZ-M.
Assume Z is a constant with a value of 40 in.3. Y is uniformly distributed between 25 and 55
ksi, and M is uniformly distributed between 500 and 1,500 kip-in. Assume Y and M are sta-
tistically independent. Using 20 cycles of simulation, calculate the probability of failure of
the beam. Briefly discuss the accuracy of the result and how it could be improved.

9.6 In Problem 9.5, suppose Y and M are statistically independent normal random variables with
mean values of 40 ksi and 1,000 kip-in., respectively, and corresponding COVs of 0.125 and
0.20, respectively. Assume Z is a constant with a value of 40 in.3.

(a) What is the distribution of g( ) and its parameters`?

(b) What is the probability of failure of the beam?

(c) Using 15 cycles of simulation, calculate the probability of failure of the beam.
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(d) Using 15 cycles of simulation and the conditional expectation VRT, calculate the prob-
ability of failure of the beam.

(e) Using 15 cycles of simulation and the combined conditional expectation and antithetic
variates VRT, calculate the probability of failure of the beam.

9.7 In Problem 9.5, if Y and M are statistically independent lognormal random variables and all
other information remains the same, calculate the probability of failure of the beam in the
following ways:

(a) Using 15 cycles of simulation.

(b) Using 15 cycles of simulation and the conditional expectation VRT.

(c) Using 15 cycles of simulation and the combined conditional expectation and antithetic
variates VRT.

(d) Comment on the accuracy of the results in Parts (a), (b), and (c).

9.8 In Problem 9.6, if Y and M are correlated normal variables with pyM = 0.70 and all other
information remains the same, calculate the probability of failure of the beam using 15 sim-
ulation cycles.

9.9 Repeat Problem 9.8, with Y as a normal variable with a mean of 40 ksi and a COV of 0.125
and M as a uniform random variable between 500 and 1,500 kip-in., and the correlation
coefficient between them is still 0.70.

9.10 Repeat Problem 9.8, with Y as a normal variable with a mean of 40 ksi and a COV of 0.125
and M as a lognormal variable with a mean of 1,000 kip-in. and a COV of 0.20, and the
correlation coefficient between them still 0.70.
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Table of the CDF of the Standard
Normal Distribution

(D(x) = 1 $xe2/2)ds

x c(x) x '(x) x t(x) x (D(x)

0.00 0.50000 0.25 0.59871 0.50 0.69146 0.75 0.77337

0.01 0.50399 0.26 0.60257 0.51 0.69497 0.76 0.77637

0.02 0.50798 0.27 0.60642 0.52 0.69847 0.77 0.77935

0.03 0.51197 0.28 0.61026 0.53 0.70194 0.78 0.78230
0.04 0.51595 0.29 0.61409 0.54 0.70540 0.79 0.78524

0.05 0.51994 0.30 0.61791 0.55 0.70884 0.80 0.78814

0.06 0.52392 0.31 0.62172 0.56 0.71226 0.81 0.79103

0.07 0.52790 0.32 0.62552 0.57 0.71566 0.82 0.79389

0.08 0.53188 0.33 0.62930 0.58 0.71904 0.83 0.79673

0.09 0.53586 0.34 0.63307 0.59 0.72240 0.84 0.79955

0.10 0.53983 0.35 0.63683 0.60 0.72575 0.85 0.80234

0.11 0.54380 0.36 0.64058 0.61 0.72907 0.86 0.80511

0.12 0.54776 0.37 0.64431 0.62 0.73237 0.87 0.80785

0.13 0.55172 0.38 0.64803 0.63 0.73565 0.88 0.81057

0.14 0.55567 0.39 0.65173 0.64 0.73891 0.89 0.81327

0.15 0.55962 0.40 0.65542 0.65 0.74215 0.90 0.81594

0.16 0.56356 0.41 0.65910 0.66 0.74537 0.91 0.81859

0.17 0.56749 0.42 0.66276 0.67 0.74857 0.92 0.82121

0.18 0.57142 0.43 0.66640 0.68 0.75175 0.93 0.82381

0.19 0.57535 0.44 0.67003 0.69 0.75490 0.94 0.82639

0.20 0.57926 0.45 0.67364 0.70 0.75804 0.95 0.82894

0.21 0.58317 0.46 0.67724 0.71 0.76115 0.96 0.83147

0.22 0.58706 0.47 0.68082 0.72 0.76424 0.97 0.83398

0.23 0.59095 0.48 0.68439 0.73 0.76730 0.98 0.83646

0.24 0.59483 0.49 0.68793 0.74 0.77035 0.99 0.83891
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x t(x) x (D(x) X O(x) . (D(.v)

1.00 0.84134 1.50 0.93319 2.00 0.97725 2.50 0.99379

1.01 0.84375 1.51 0.93440 2.01 0.97778 2.51 0.99396

1.02 0.84614 1.52 0.93574 2.02 0.97831 2.52 0.99413

1.03 0.84849 1.53 0.93699 2.03 0.97882 2.53 0.99430
1.04 0.85083 1.54 0.93822 2.04 0.97932 2.54 0.99446

1.05 0.85314 1.55 0.93943 2.05 0.97982 2.55 0.99461

1.06 0.85543 1.56 0.94062 2.06 0.98030 2.56 0.99477
1.07 0.85769 1.57 0.94179 2.07 0.98077 2.57 0.99492

1.08 0.85993 1.58 0.94295 2.08 0.98124 2.58 0.99506
1.09 0.86214 1.59 0.94408 2.09 0.98169 2.59 0.99520

1.10 0.86433 1.60 0.94520 2.10 0.98214 2.60 0.99534

1.11 0.86650 1.61 0.94630 2.11 0.98257 2.61 0.99547

1.12 0.86864 1.62 0.94738 2.12 0.98300 2.62 0.99560
1.13 0.87076 1.63 0.94845 2.13 0.98341 2.63 0.99573

1.14 0.87286 1.64 0.94950 2.14 0.98382 2.64 0.99585

1.15 0.87493 1.65 0.95053 2.15 0.98422 2.65 0.99598
1.16 0.87698 1.66 0.95154 2.16 0.98461 2.66 0.99609

1.17 0.87900 1.67 0.95254 2.17 0.98500 2.67 0.99621

1.18 0.88100 1.68 0.95352 2.18 0.98537 2.68 0.99632
1.19 0.88298 1.69 0.95449 2.19 0.98574 2.69 0.99643

1.20 0.88493 1.70 0.95543 2.20 0.98610 2.70 0.99653
1.21 0.88686 1.71 0.95637 2.21 0.98645 2.71 0.99664
1.22 0.88877 1.72 0.95728 2.22 0.98679 2.72 0.99674
1.23 0.89065 1.73 0.95818 2.23 0.98713 2.73 0.99683
1.24 0.89251 1.74 0.95907 2.24 0.98745 2.74 0.99693

1.25 0.89435 1.75 0.95994 2.25 0.98778 2.75 0.99702
1.26 0.89617 1.76 0.96080 2.26 0.98809 2.76 0.99711

1.27 0.89796 1.77 0.96164 2.27 0.98840 2.77 0.99720
1.28 0.89973 1.78 0.96246 2.28 0.98870 2.78 0.99728
1.29 0.90147 1.79 0.96327 2.29 0.98899 2.79 0.99736

1.30 0.90320 1.80 0.96407 2.30 0.98928 2.80 0.99744
1.31 0.90490 1.81 0.96485 2.31 0.98956 2.81 0.99752

1.32 0.90658 1.82 0.96562 2.32 0.98983 2.82 0.99760
1.33 0.90824 1.83 0.96638 2.33 0.99010 2.83 0.99767
1.34 0.90988 1.84 0.96712 2.34 0.99036 2.84 0.99774

1.35 0.91149 1.85 0.96784 2.35 0.99061 2.85 0.99781

1.36 0.91308 1.86 0.96856 2.36 0.99086 2.86 0.99788

1.37 0.91466 1.87 0.96926 2.37 0.99111 2.87 0.99795

1.38 0.91621 1.88 0.96995 2.38 0.99134 2.88 0.99801

1.39 0.91774 1.89 0.97062 2.39 0.99158 2.89 0.99807

1.40 0.91924 1.90 0.97128 2.40 0.99180 2.90 0.99813

1.41 0.92073 1.91 0.97193 2.41 0.99202 2.91 0.99819
1.42 0.92220 1.92 0.97257 2.42 0.99224 2.92 0.99825
1.43 0.92364 1.93 0.97320 2.43 0.99245 2.93 0.99831

1.44 0.92507 1.94 0.97381 2.44 0.99266 2.94 0.99836

1.45 0.92647 1.95 0.97441 2.45 0.99286 2.95 0.99841

1.46 0.92785 1.96 0.97500 2.46 0.99305 2.96 0.99846
1.47 0.92922 1.97 0.97558 2.47 0.99324 2.97 0.99851

1.48 0.93056 1.98 0.97615 2.48 0.99343 2.98 0.99856
1.49 0.93189 1.99 0.97670 2.49 0.99361 2.99 0.99861
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x fi(x) x l(x) x 1 - cD(x)

3.00 0.99865 3.50 0.99977 4.00 3.1686e-05
3.01 0.99869 3.51 0.99978 4.05 2.5622e-05
3.02 0.99874 3.52 0.99978 4.10 2.0669e-05
3.03 0.99878 3.53 0.99979 4.15 1.6633e-05
3.04 0.99882 3.54 0.99980 4.20 1.3354e-05

3.05 0.99886 3.55 0.99981 4.25 1.0696e-05
3.06 0.99889 3.56 0.99981 4.30 8.5460e-06
3.07 0.99893 3.57 0.99982 4.35 6.8121 e-06

3.08 0.99896 3.58 0.99983 4.40 5.4170c-06
3.09 0.99900 3.59 0.99983 4.45 4.2972c-06

3.10 0.99903 3.60 0.99984 4.50 3.4008c-06
3.11 0.99906 3.61 0.99985 4.55 2.6849e-06
3.12 0.99910 3.62 0.99985 4.60 2.1146e-06
3.13 0.99913 3.63 0.99986 4.65 1.6615e-06
3.14 0.99916 3.64 0.99986 4.70 1.3023e-06

3.15 0.99918 3.65 0.99987 4.75 1.0183c-06
3.16 0.99921 3.66 0.99987 4.80 7.9435e-07
3.17 0.99924 3.67 0.99988 4.85 6.1815c-07
3.18 0.99926 3.68 0.99988 4.90 4.7987e-07
3.19 0.99929 3.69 0.99989 4.95 3.7163e-07

3.20 0.99931 3.70 0.99989 5.00 2.8710e-07
3.21 0.99934 3.71 0.99990 5.10 1.7012e-07
3.22 0.99936 3.72 0.99990 5.20 9.9834e-08
3.23 0.99938 3.73 0.99990 5.30 5.8022e-08
3.24 0.99940 3.74 0.99991 5.40 3.3396e-08

3.25 0.99942 3.75 0.99991 5.50 1.9036e-08
3.26 0.99944 3.76 0.99992 5.60 1.0746e-08
3.27 0.99946 3.77 0.99992 5.70 6.0077e-09
3.28 0.99948 3.78 0.99992 5.80 3.3261 e-09
3.29 0.99950 3.79 0.99992 5.90 1.8236e-09

3.30 0.99952 3.80 0.99993 6.00 9.9012e-10
3.31 0.99953 3.81 0.99993 6.10 5.3238e-10
3.32 0.99955 3.82 0.99993 6.20 2.8347e-10
3.33 0.99957 3.83 0.99994 6.30 1.4947c- 10

3.34 0.99958 3.84 0.99994 6.40 7.8049e- I I

3.35 0.99960 3.85 0.99994 6.50 4.0358c-1 1

3.36 0.99961 3.86 0.99994 6.60 2.0665e-11

3.37 0.99962 3.87 0.99995 6.70 1.0479e-1 1

3.38 0.99964 3.88 0.99995 6.80 5.2616e-12
3.39 0.99965 3.89 0.99995 6.90 2.6161 c-12

3.40 0.99966 3.90 0.99995 7.00 1.2881 e-12

3.41 0.99968 3.91 0.99995 7.10 6.2805c-13
3.42 0.99969 3.92 0.99996 7.20 3.0320c-13
3.43 0.99970 3.93 0.99996 7.30 1.4500e-13
3.44 0.99971 3.94 0.99996 7.40 6.8612e-14

3.45 0.99972 3.95 0.99996 7.50 3.2196e-14
3.46 0.99973 3.96 0.99996 7.60 1.4988e-14
3.47 0.99974 3.97 0.99996 7.70 6.8834e-15
3.48 0.99975 3.98 0.99997 7.80 3.1086c-15
3.49 0.99976 3.99 0.99997 7.90 1.4433e-15



Appendix 2

Evaluation of Gamma Function

Exact evaluation (Euler's integral)

r(z) = $t_Ie_tdt
Approximate evaluation of gamma function

1. Integer values, x

F(1 + x) = xI,(x) = x!

2. Noninteger values, x

a. For 1 <_z <_2 (i.e., 0 <x <_ 1),I,(z)=I,(1 +x)
Polynomial approximation for gamma function*

i. r(1 + x) = 1 + a 1x + a2x2 + a3x3 + a4x4 + a5 X5 + E(x), IE(x)I <_ 5 x 10-5

a 1 = -0.5748646, a2 = 0.9512363, a3 = -0.6998588
a4=0.4245549, a5=-0.1010678

ii. r(1 + x) = I + b lx + h2x2 + b3x3 + b4x4 + h5x5 + b6x6 + h7 x7 + h8xs + E(x),
IE(x)I<_3x 10-7

h
1

= -0.577191652, b2 = 0.988205891, b3 = -0.897056937,
b4 = 0.9182068575 b5 = -0.756704078, b6 = 0.482199394,
b7 = -0.193527818, b8 = 0.035868343

*Abramowitz, M., and Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. U.S. Department of Commerce, National Bureau of Standards, Applied Mathematics
Series 55, Washington, DC, 1964.
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Appdendix 2 Evaluation of Gamma Function 279

Example: 1(11/8) = F(1 + 3/8) = 1 - 0.577191652 x (3/8) + 0.988205891 x (3/8)2 + .. .
+ 0.035868343 x (3/8)8 = 0.888913365

b. For 0 < z <- 1,1(z) =1(1 - x) use reflection formula.

1(z)=1(1-x)= Ttx

1(1+x)sin(rcx)

Example: r(5/8) = I'(1 - 3/8) =1t(3/8)/[r(1 + 3/8) sin(37t/8)]
=1t(3/8)/[0.888913365 sin(37t/8)] = 1.434519178

c. For z > 2 (i.e., x > 1), r(z) =1(1 + x) use recurrence formula.
k

1(z) = r(1 + x) _ fl (z - n) F(1 + a)
Ln=1

where 0 <- a < 1, integer value k = (x - a), and 1(l + (x) can be obtained
from Equations i or ii.

Example: 1(5.2) = I'(1 + 4.2) = (5.2 - 1) x (5.2 - 2) x (5.2 - 3) x (5.2 - 4)
x1(1 + 0.2) = 35.4816 x 0.918168911
= 32.578102, where z = 5.2, x = 4.2, a=0.2,k=(4.2-0.2)=4

Evaluation of gamma function using spreadsheets

Microsoft Excel-EXP(GAMMALN(z))
EXP(GAMMALN(11/8)) = 0.888913569,
EXP(GAMMALN(5/8)) = 1.434518848,

EXP(GAMMALN(5.2)) = 32.57809604.

Quattro Pro--a EXP(@JGAMMALN(X))
@a EXP(@a GAMMALN(11/8)) = 0.88891336,
@EXP(@GAMMALN(5/8)) = 1.43451904,
@a EXP(@a GAMMALN(5.2)) = 32.57809603.



Appendix 3

Table of the CDF of the
Chi-Square Distribution with
f Degrees of Freedom

P(C < c ) = «.f 1 (1'/2)-l e`12dsa.f fo f/22 1 - ( J ' / 2)

f a 0.001 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995 0.999

I 1.57e-06 3.93e-05 1.57e-04 9.82e-04 3.93e-03 1.58c- 02 2.706 3.841 5.024 6.635 7.879 10.83

2 2.00e-03 1.00e-02 0.0201 0.0506 0.1026 0.21 07 4.605 5.991 7.378 9.210 10.60 13.82

3 2.43e-02 7.17e-02 0.1148 0.2158 0.3518 0.58 44 6.251 7.815 9.348 11.34 12.84 16.27

4 9.08e-02 0.2070 0.2971 0.4844 0.7107 1.0 64 7.779 9.488 11.14 13.28 14.86 18.47

5 0.2102 0.4118 0.5543 0.8312 1.145 1.6 10 9.236 11.07 12.83 15.09 16.75 20.51

6 0.3810 0.6757 0.8721 1.237 1.635 2.2 04 10.64 12.59 14.45 16.81 18.55 22.46

7 0.5985 0.9893 1.239 1.690 2.167 2.8 33 12.02 14.07 16.01 18.48 20.28 24.32

8 0.8571 1.344 1.647 2.180 2.733 3.4 90 13.36 15.51 17.53 20.09 21.95 26.12

9 1.152 1.735 2.088 2.700 3.325 4.1 68 14.68 16.92 19.02 21.67 23.59 27.88

10 1.479 2.156 2.558 3.247 3.940 4.8 65 15.99 18.31 20.48 23.21 25.19 29.59

11 1.834 2.603 3.053 3.816 4.575 5.5 78 17.28 19.68 21.92 24.73 26.76 31.26

12 2.214 3.074 3.571 4.404 5.226 6.3 04 18.55 21.03 23.34 26.22 28.30 32.91

13 2.617 3.565 4.107 5.009 5.892 7.0 41 19.81 22.36 24.74 27.69 29.82 34.53

14 3.041 4.075 4.660 5.629 6.571 7.7 90 21.06 23.68 26.12 29.14 31.32 36.12

15 3.483 4.601 5.229 6.262 7.261 8.5 47 22.31 25.00 27.49 30.58 32.80 37.70

16 3.942 5.142 5.812 6.908 7.962 9.3 12 23.54 26.30 28.85 32.00 34.27 39.25

17 4.416 5.697 6.408 7.564 8.672 10. 09 24.77 27.59 30.19 33.41 35.72 40.79

18 4.905 6.265 7.015 8.231 9.390 10. 86 25.99 28.87 31.53 34.81 37.16 42.31

19 5.407 6.844 7.633 8.907 10.12 11. 65 27.20 30.14 32.85 36.19 38.58 43.82

20 5.921 7.434 8.260 9.591 10.85 12. 44 28.41 31.41 34.17 37.57 40.00 45.31
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f a 0.001 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995 0.999

21 6.447 8.034 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40 46.80
22 6.983 8.643 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.8() 48.27

23 7.529 9.260 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 49.73

24 8.085 9.886 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 51.18

25 8.649 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 52.62

26 9.222 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 54.05

27 9.803 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.65 55.48

28 10.39 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 56.89
29 10.99 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 58.30
30 11.59 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 59.70

40 17.92 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 73.40
45 21.25 24.31 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 73.17 80.08

50 24.67 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49 86.66
55 28.17 31.73 33.57 36.40 38.96 42.06 68.80 73.31 77.38 82.29 85.75 93.17

60 31.74 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 99.61

70 39.04 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 104.21 112.32

80 46.52 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.6 3 112.33 116.32 124.84

90 54.16 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30 137.21

100 61.92 67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.17 149.45



Appendix 4

Values of D°` for the
Kolmogorov-Smirnov Test

n
Do.2

n
D'. 15 D0.1

n n
D0.05

DO-01n n

5 0.446 0.474 0.510 0.563 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.409 0.486

11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404

20 0.231 0.246 0.264 0.294 0.352
25 0.21 0.22 0.24 0.264 0.32
30 0.19 0.20 0.22 0.242 0.29
35 0.18 0.19 0.21 0.23 0.27
40 0.17 0.18 0.19 0.21 0.25
45 0.16 0.17 0.18 0.20 0.24
50 0.15 0.16 0.17 0.19 0.23

1.07 1 14 1.22 1 36 1 63>50 . . .
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Appendix 5

Table of the CDF of Student's
t-Distribution

pat.
r[(f'+1)]SZ/2

ds11+-
FTffF(f/2) f

0.600 0.750 0.800 0.900 0.950 0.975 0.990 0.995 0.999

1 0.325 1.000 1.376 3.078 6.314 12.706 31.821 63.656 318.289
2 0.289 0.816 1.061 1.886 2.920 4.303 6.965 9.925 22.328

3 0.277 0.765 0.978 1.638 2.353 3.182 4.541 5.841 10.214

4 0.271 0.741 0.941 1.533 2.132 2.776 3.747 4.604 7.173

5 0.267 0.727 0.920 1.476 2.015 2.571 3.365 4.032 5.894

6 0.265 0.718 0.906 1.440 1.943 2.447 3.143 3.707 5.208

7 0.263 0.711 0.896 1.415 1.895 2.365 2.998 3.499 4.785

8 0.262 0.706 0.889 1.397 1.860 2.306 2.896 3.355 4.501.

9 0.261 0.703 0.883 1.383 1.833 2.262 2.821 3.250 4.297

10 0.260 0.700 0.879 1.372 1.812 2.228 2.764 3.169 4.144

11 0.260 0.697 0.876 1.363 1.796 2.201 2.718 3.106 4.025

12 0.259 0.695 0.873 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.694 0.870 1.350 1.771 2.160 2.650 3.012 3.852

14 0.258 0.692 0.868 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.691 0.866 1.341 1.753 2.131 2.602 2.947 3.733

16 0.258 0.690 0.865 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.689 0.863 1.333 1.740 2.110 2.567 2.898 3.646

18 0.257 0.688 0.862 1.330 1.734 2.101 2.552 2.878 3.610

19 0.257 0.688 0.861 1.328 1.729 2.093 2.539 2.861 3.579

20 0.257 0.687 0.860 1.325 1.725 2.086 2.528 2.845 3.552
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a 0.600 0.750 0.800 0.900 0.950 0.975 0.990 0.995 0.999

21 0.257 0.686 0.859 1.323 1.721 2.080 2.518 2.831 3.527

22 0.256 0.686 0.858 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.685 0.858 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.685 0.857 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.684 0.856 1.316 1.708 2.060 2.495 2.787 3.450

26 0.256 0.684 0.856 1.315 1.706 2.056 2.479 2.779 3.435

27 0.256 0.684 0.855 1.314 1.703 2.052 2.473 2.771 3.421

28 0.256 0.683 0.855 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.683 0.854 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.683 0.854 1.310 1.697 2.042 2.457 2.750 3.385

40 0.255 0.681 0.851 1.303 1.684 2.021 2.423 2.704 3.307
50 0.255 0.679 0.849 1.299 1.676 2.009 2.403 2.678 3.261

60 0.254 0.679 0.848 1.296 1.671 2.000 2.390 2.660 3.232
100 0.254 0.677 0.845 1.290 1.660 1.984 2.364 2.626 3.174
120 0.254 0.677 0.845 1.289 1.658 1.980 2.358 2.617 3.160

150 0.254 0.676 0.844 1.287 1.655 1.976 2.351 2.609 3.145

200 0.254 0.676 0.843 1.286 1.653 1.972 2.345 2.601 3.131
00 0.253 0.674 0.842 1.282 1.645 1.960 2.326 2.576 3.090



Appendix 6

Gram-Schmidt Orthogonalization

Consider a matrix Ro, with row vectors r01, r02, .... r0,,. This has to be transformed to
a matrix R, whose row vectors rl, r,, ..., r,z are orthogonal to each other, with the nth
row the same as in matrix R0, that is, rn =

The Gram-Schmidt (G-S) method to achieve this may be written as follows. The
nth row vector of matrix R is simply rn = r0n. The other rows of matrix R are computed
[going from (n - l )th row to the first row, in that order] using the formula

rjrok
rk=rOk - I fr;

j=k+l r.r j
(A6.1)

where the superscript t implies the transpose of the row vector. Note that the rows of
R have to be computed in the reverse order, from n to 1.

If the rows of R are required to be orthonormal (i.e., the rows are orthogonal to each
other, and each row vector is of unit length), then each row should be normalized sep-
arately at the end.

Example (Application of the G-S Method to Structural Reliability)

Consider Example 8.1 in Section 8.2. The direction cosines of the f3-vector are al =
0.867, oc2 = 0.498. The coordinate system (Y1, Y2) has to be transformed to another
orthogonal coordinate system (Y1, Y'2) such that Y'2 is along the 13-vector. To do this, a
transformation matrix R needs to be constructed such that Y' = RY.

First, a matrix RO is selected as
_ 1 0

R0 - [0.867 0.498

The rows of the transformed matrix R are obtained using the G-S method as follows.
The second row is simply r2 = [0.867 0.498]. To compute the first row, use Equation
A6. 1. In this formula, k = 1 and n = 2. Therefore,
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286 Appendix 6 Gram-Schmidt Orthogonalization

{0.867 0.498}{ 10
rl = {1 01 - {0.867 0.498}

{0.867 0.498}j 0.498}

= {0.248 -0.432}.

Normalizing the elements of rl to produce a unit vector, r _ {0.498 -0.867}.
Thus, the matrix R is obtained as

R _x0.498 -0.8671
L0.867 0.498

This is identical to the result obtained with the special equation for two variables in
Equation 8.4.



CONVERSION FACTORS

inches (in.)
inches (in.)
inches (in.)

feet (f t)
yards (yd)
miles (miles)

degrees (°)

acres (acre)
acre-feet (acre-f t)
gallons (gal)
gallons (gal)

pounds (lb)
tons (ton, 2000 lb)

pound force (lbf )
pounds per sq in.

(psi)
pounds per sq ft

(psf)

foot-pounds (f t-lb)
horsepowers (hp)
British thermal units

(BTU)
British thermal units

(BTU)

Customary to SI

meters (m) 0.0254
centimeters (cm) 2.54
millimeters (mm) 25.4

meters (m) 0.305
meters (m) 0.914
kilometers (km) 1.609

radians (rad) 0.0174

hectares (ha) 0.405
cubic meters (m3) 1233
cubic meters (m3) 3.79 X 10-3
liters (1) 3.79

kilograms (kg) 0.4536
kilograms (kg) 907.2

newtons (N) 4.448
newtons per sq m 6895

(N/m2)
newtons per sq m

(N/m2)
47.88

joules (J) 1.356
watts (W) 746
joules (J) 1055

kilowatt-hours (kwh) 2.93 X 10-4

DEFINITIONS

newton-force that will give a 1-kg mass an acceleration of 1 m/sect
joule work done by a force of 1 N over a displacement of 1 m
1 newton per sq m (N/m2) = 1 pascal
1 kilogram force (kgf) = 9.807 N
1 gravity acceleration (g) = 9.807 m/sect
1 are (a) = 100 m2
1 hectare (ha) = 10,000 m2
1 kip (kip) = 1000 lb
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A

ABET, 3
Accelerated testing, 87, 105
Acceptable risk, 186, 193
Acceptable tolerance, 2
Advanced first-order second-moment

(AFOSM) method, 195, 198
Airport, 2
Allowable bearing capacity, 140
Allowable design stress, 182
Allowable resistance, 183
American Institute of Steel Construction

(AISC), 3, 188
Amplification factor, 151
Angle of internal friction, 140
Approximate solution, 149, 150
Arithmetic scale, 107
ASCE 7-95, 138
Associative rule, 15
Asymptotic analysis, 246
Asymptotic approximation, 228
Asymptotic convergence, 91
Asymptotic distribution, 89
Asymptotic form, 92, 94

Type I, 89
Type II, 91
Type III, 94

Automobile exhaust, 26
Average value, 37
Axioms of probability, 17, 41

B

Basic random variable, 138
Bayes' theorem, 25, 28
Bayesian approach, 7
Beam mechanism, 240
Bearing capacity factors, 140
Bernoulli sequence, 74, 76, 77
Bernoulli's theorem, 5
Bernoulli trial, 258
Beta distribution. 72, 73, 83

standard, 72
Beta function. 72
Bidding process, 2
Binomial coefficient, 75
Binomial distribution, 74
Biological oxygen demand (BOD), 82
Bivariate normal, 58
Brake pact, 104
Bridge, 21
Bridge pier, 1 05
Brittle components, 240
Broyden-Fletchei--Goldfarb-Shanno

method, 213

C

Cable. 68
Calculus, I
Capacity. 2. 4
Capacity reduction factor, 183, 186
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Carelessness, 34
Catalyst, 166
Catchment area, 2
Central Arizona Project (CAP), 11
Central limit theorem, 149
Central moment

first, 37
second, 37
third, 38, 46

Central safety factor, 4
Central value, 37
Centroidal distance, 46
Characteristic value, 88-97
Checking point, 199
Chen-Lind method, 205
Chi-square distribution, 98, 132
Cholesky factorization, 232
Coefficient of determination (R2), 159, 165
Coefficient of variation (COV), 37
Cofferdam. 105
Cognitive source, 5. See also Fuzzy sets
Cohesion, 140
Collectively exhaustive events, See Events
Combination of events, See Events
Combination of loads, 186
Combined mechanism, 240
Commutative rule, 15
Comparability, 202
Complementary event, 13

complimentary set, See Sets
Component-level reliability, 7
Composite material, 162
Compressive strength of concrete, 218
Concept of reliability, 1, 182
Conditional probability, 20

conditional probability density func-
tion, 50

conditional probability mass function, 50
Conditional standard deviation, 158
Conditional variance, 158
Confidence interval, 121, 126

for mean, 121-131
for variance, 131-134
lower confidence limit, 121
one-sided, 121
two-sided, 121
upper confidence limit, 121

Confidence level, 85, 120, 121
Confidence limit

lower with known variance, 125

lower with unknown variance. 129
upper with known variance. 125
upper with unknown variance. 129

Consistency of estimator, 117
Construction of probability paper, 107
Continuous random variable, 40, 45
Control variate, 264
Correlated nonnormal variables. 205. 232, 234
Correlated variables. 231
Correlation

correlation analysis, 51
correlation coefficient, 52
negative correlation, 52
positive correlation, 52

Correlation matrix, 232
Corrosion, 7
Cost of failure, 3
Counting technique, 260
Covariance, 51
Covariance matrix, 231, 232
Creep. 7
Cumulative distribution function (CDF). 40
Curvature

main, 228
principal, 227

Cut set, 239

D

Dam, 34
Decision analysis, 7
Degrees of freedom, 127
Demand, 2
de Morgan's rule. 15, 19, 23, 24
Density function, See Probability density

function
Design point, 199, 201
Determination of probability distribution, 106
Dewatering, 34
Direction cosine, 214
Discrete random variable, 43, 47
Dispersion measure of, 37
Distribution function, See Cumulative distri-

bution function
Distributive rule, 15
Drunkenness, 34
Dry density, 156
Ductile components, 240
Dust, 26
Dynamic load, 7
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E

Earthquake
intensity, 33
occurrence, 33

Efficiency of estimator, 117
Eigenvalue, 234
Eigenvector, 232, 234
Electricity, 22
Electronic device, 89
Empirical relationship, 39
Empirical safety factor, 3
Empty set, 10
Environmental engineering, 2
Environmental factor, 7
Environmental Protection Agency (EPA), 2
Equality of sets or events, 14
Equivalent normal transformation

two-parameter, 205
three-parameter, 219

Equivalent normal variable, 204, 205
Error

mean square (MSE), 158
sum of errors (SSE), 158

Estimation of correlation coefficient, 52
Estimation of parameter, 118, 119

interval estimation, 120-134
maximum likelihood method, 118
method of moments, 117
point estimation, 117

Event, 10
certain event, 10
collectively exhaustive events, 14, 25, 27
combination of, 12
complementary event, 11, 13, 14, 20
equality of events, 14
impossible event, 10
mutually exclusive events, 10, 13, 14, 17,

20, 25
statistically independent events, 20, 22
union and intersection of, 12, 13, 20

Event tree, 239
EXCEL, 63, 74
Expected value, See Mean value

of estimator, 117
of sample mean, 117

Exponential distribution, 80, 81, 97
Exponential probability paper, 135
Exponential series, 79
Extremes,

asymptotic distributions, 89

probability distributions of, 87-97
statistics of, 87

Extreme value distributions,
Type I largest, 89
Type I smallest, 90
Type II largest, 91
Type II smallest, 92
Type III largest, 94
Type III smallest, 94

F

Factor of safety, 182
Failure event, 184
Failure line, 200
Failure mode approach (FMA), 239
Failure surface, 194
Fatigue, 7

fatigue life, 105
fatigue loading, 110

Fault tree diagram, 239
Ferrous sulfate, 166
Finite difference approach, 248
Finite element method, 5
Finite sample space, 11
First moment, See Mean value
First occurrence time, See Recurrence time
First-order approximation, 151
First-order mean, 151, 154, 196
First-order reliability method (FORM), 194
First-order second moment (FOSM)

method, 195
First-order variance, 15 1-154, 196
Flat-top pool, 34
Flow, 147
FORM Method 1, 206
FORM Method 2,206,210
Foundation, 21
Frechet distribution, 91, 206
Frequency diagram, 6, 38, 39, 40, 106

observed frequency, 112, 114
theoretical frequency, 112, 114

Full distributional approach, 194
Function of random variable

exact solution, 142
multiple random variables, 142
partial and approximate solutions, 149
product and quotients of independent

lognormal variables, 145
product of random variables, 142, 145
quotient of random variables, 142, 145
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single random variable, 139-142
sum and differences of independent nor-

mal variables, 142, 143
sum of independent Poisson random vari-

ables, 142, 148
unknown relationship, 154

Fundamental of reliability analysis, 181, 193
Fuzzy set theory, 6,

See also, Cognitive sources

G

for mean, 120
for mean with known variance, 121
for mean with unknown variance, 126
for variance, 131
two-sided, 132
lower confidence limit, 133
upper confidence limit, 133

Intuition, 7
Inverse CDF method, 252
Inverse function, 141
Inverse transformation technique, 252

Gamma function, 72, 73, 278
Gaussian, See Normal distribution
Generation of random numbers

continuous random variable, 252
discrete random variable, 256

Geometric distribution, 76
return period, 76

Geotechnical Engineering, 2, 156
Goodness-of-fit test for distribution, 107

Chi-square test, 112
Kolmogorov-Smirnov test, 112

Gradient, 212
Gradient vector, 214, 230, 237
Gram-Schmidt orthogonalization, 227, 285
Gumble distribution, 89

H

Hasofer-Lind method, 198
Health hazard, 26
Highway bridges, 110
Histogram, 6, 38, 39
Human factor, 6
Hydraulic engineering, 2
Hydrogen peroxide, 166
Hydrology engineering, 2
Hyperbinomial distribution, 83-87
Hypergeometric distribution, 83-87

I

Implicit performance function, 247, 250
Indirect information, 7
Industrial exhaust, 26
Infinite sample space, 11
Infinite series, 79
Inherent randomness, 5
Intersection of events, See Event
Interval estimation,

J

Jacobian, 143
Joint distribution, 49
Joint probability density function of

bivariate normals, 58
Joint probability distribution, 49
Joint probability mass function, 49
Judgment, 7

K

Kolmogorov-Smirnov (K-S) goodness-of-fit
test, 114

L

Lagrange multiplier, 201
Layering of fibers, 163
Least-squares regression, 158
Likelihood function, 119

logarithm of, 119
Limit state equation, 194
Linear congruential generator, 252
Linear function,

mean and variance, 139
normal variates, 143

Linear graph in probability paper, 107
Linear regression, See Regression
Linear relationship, 139
Load,

combination, 2, 186
dead and live load, 188
design load, 4
nominal, 4
service, 4

Load and resistance factors, 4
Load and Resistance Factor Design (LRFD),

3, 182, 188
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Load combination, 186
Load factor, 183, 186
Load-related random variables, 48, 121
Logarithmic normal. See Lognormal.
Logarithmic paper, 107
Lognormal distribution, 68

product of lognormal variates, 145
relation to normal distribution, 69
relation to parameters to mean and

variance, 69, 71
Lognormal probability paper, 107
Lognormal random variable, 68
Lower triangular matrix, 232

M

Main descriptors, See Random variables
Manning formula, 152
Margin of safety, 182
Marginal distribution, 232
Marginal probability density function, 51
Marginal probability mass function, 5 1
Mathematica, 63
Mathematics of probability, 20, 28
MATLAB, 63, 74
Maximum likelihood estimator,

See Method of maximum likelihood
Mean occurrence rate, 77
Mean occurrence time, See Return period
Mean value,

of general function, 150
of linear function, 139
population mean, 120
sample mean, 120

Mean value first-order second-moment
(MVFOSM) method, 195

Mean-value function,
See Regression equation; Regression line

Mechanical engineering, 2
Mechanism,

beam, 240
combined, 240
sway, 240

Median, 48, 71
Method of least squares, 158, 162
Method of rnaximurn likelihood, 118, 119
Method of moments, 117
Minimum-maximum approach, 37
Modal value, See Mode
Mode, 48

Modeling error, 5
Modeling uncertainty, 5
Modified Mercalli scale, 81
Moment of inertia. 98
Moments of functions of random variables,

liner function, 139
general function, 140-149

Monotonically increasing function, 140
Monte Carlo simulation. 241, 247. 251-271

See also Random number generation;
variance reduction technique

accuracy, 251, 258
efficiency. 251, 258

Most probable point (MPP). 201, 213, 246
Most probable value, See Mode
Multidimensional random variables. 246
Multiple linear regression, 164-168
Multiple performance criteria, 239
Multiple random variables, 49
Multiple random variables with known rela-

tionship, 142
Multiple random variables with unknown

relationship, 154
Multiplication rule, 20
Multivariate distributions, 58
Mutually exclusive events, See Event

N

Nataf's model, 267
Newton-Raphson recursive algorithm,

211, 213
Nominal capacity reduction factor, 191
Nominal load, 182
Nominal load factors, 192
Nominal resistance, 182, 186
Nominal safety factor, 4, 182
Noncognitive sources,

inherent, 5
modeling, 5
statistical, 5

Nondestructive experiments, 83
Nonlinear regression, 168

cube, 171
exponential, 168
logarithmic, 171
power model, 168
square, 171

Nonlinear relationship, 140
Nonlinear system reliability, 245
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Nonsyrnmetry, 38
Normal distribution, 64-68

bivariate normal distribution, 58
standard normal distribution, 64
table of normal probability, 275
See also Gaussian

Normal population, 122
Normal probability paper, 107
Nuclear power plant, 7, 81
Null set, 10, 17
Numerical experimentation, 251, 256

O

Operating basis earthquake (OBE), 81
Operational rule, See Sets
Optimal number of simulation cycles, 257
Original coordinate system, 199
Orthogonal transformation matrix, 232
Overtopping, 34

P

Parabolic approximation, 228
Parallel systems, 239, 243
Parameter of distribution, 106
Parking garage, 148
Partial derivative, 196
Partial regression coefficients, 165
Partial solution, 149
Partial uncertainty analysis, 149
Pattern, 2
Percentile value, 48, 66
Performance criterion, 2, 4, 7
Performance function, 194, 196-197, 212, 215

explicit, 225
implicit, 225

Performance mode approach (PMA), 239
Perturbation

classical, 248
iterative, 248

Pile, 32
Plastic moment capacity, 240
Point estimation,

method of maximum likelihood, 118
method of moments, 117

Poisson distribution, 77
sum of Poisson variates, 148

Poisson process, 77
assumptions, 77
relation to Bernoulli sequence, 77

Polyhedral surface, 202
Population, 36

mean. 120
in sampling, 120
standard deviation, 120
variance. 120

Post-failure behavior, 239
Power supply, 22
Principle curvature, 227
Probabilistic design, 35
Probabilistic relationship, 156
Probabilistic sensitivity index. 237
Probability.

axioms. 16
basic concepts of, 1

mathematics of, 9
of union and intersection of events,

12-14
Probability bounds,

first-order, 241, 243
second-order, 242, 244

Probability density function (PDF). 6. 40
Probability distribution,

common distributions, 63-99
empirical determination of distribution,

98
useful distributions, 63-99
validity of distribution model, 106-117

Probability law, See Probability distribution
Probability mass function (PMF). 40, 44
Probability of failure, 194
Probability of survival. 194
Probability paper, 106, 107

commercial, 107
construction of, 107
general, 107
lognormal, 107
normal, 107
Rayleigh, 109-111
Weibull distribution. 107

Probability tables,
Chi-square distribution, 280
Gamma function, 278
Kolmogorov-Smirnov test, 282
standard normal, 275
Student's t-distribution, 283

Product of random variables,
of independent variates, 15 1
of lognormal variates, 145

Professional factor, 3
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Progressive failure, 239
Propagation of uncertainty, 138
Proportional limit, 36
Pseudo random numbers, 252@ IX 1:

Q

QUATTRO PRO, 63, 74
Quotient of lognormal variables, 145

R

Rackwitz-Fiessler method, 205
Randomness, 2
Random numbers, 255
Random number generation,

correlation between numbers, 266
for continuous random variable, 252
for discrete random variables, 256
inverse transform method, 252

Random sampling, 119
Random variables, 2

continuous, 40
discrete, 43
functions of, 139-156

Range of random variable, 39
Rayleigh distribution, 97, 109

Rayleigh probability paper, 111
Reconstituted sample space, See also

Conditional probability
Recurrence time, 76
Reduced coordinate system, 199, 200
Reduced variable, 231
Redundant system, 239
Regression,

linear regression, 156, 157
multiple linear regression, 157, 164
multiple regression, 168
nonlinear regression, 157, 168
simple linear regression, 156, 157

Regression analysis, 156
dependent variable, 157
independent variable, 157
partial regression coefficients, 165
predictor variable, 157
repressor variable, 157, 159, 165, 169
response variable, 157
with constant variance, 157
with nonconstant variance. 162

Regression coefficients, 157, 166
partial regression coefficients, 165

Regression equation, 157
Regression line, 157
Reinforced concrete beam, 218
Relative density, 156
Reliability,

component, 239
concept, 1. 181
index, 4, 195
system, 239

Reliability analysis
with correlated variables, 231
with nonnormal variables, 234
with normal variables, 233

Repeated trials,
See Bernoulli sequence

Replacement cost, 7
Residual analysis, 161

nonconstant variance, 162
nonlinear relationship, 162

Residual mean square (MSE), 158
Residual vector. 166
Resistance,

factor, 186
nominal, 186

Resistance-related random variables, 48, 121
Response surface approach, 247
Response variable, 138
Return period,

of Bernoulli sequence, 76
of Poisson process, 81

Richter's scale. 104
Risk-based design. 1824
Risk-based design concept. 183
Risk-based design format. 183
Risk-based design using FORM, 219
River channel, 104
Rosenblatt transformation, 204, 232
Run, 250

S

Safe shutdown earthquake (SSE), 81
Safety factor, 183, 191

central, 4, 185, 191, 192
conventional, 185
empirical, 3
margin, 196
nominal, 4, 182. 185, 191

Safety index, 4, 195-197, 200
Sample, 36
Sample point, 10
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Sample size, 86, 121
in confidence interval of mean, 130

Sample space, 6, 10
continuous, 11, 18
discrete, 11
finite, 1.1

infinite, 1l
Sample statistics, 7

sample mean, 120
sample standard deviation, 120
sample variance, 120

Satisfactory performance, 3
Scatter diagram, 157, 159
Second moment, See Variance
Second-order approximation, 151
Second-order derivative, 226
Second-order mean, 151
Second-order reliability method (SORM),

194, 225
Second-order variance, 151, 154
Seed value, 252
Seismic hazard analysis, 104
sensitivity-based analysis, 247
Sensitivity index, 237-238
Series-parallel systems, 239
Series systems, 239, 240
Service load, 4
Sets, theory, 9,16

complementary set, 13
empty, 10
equality of sets, 14
null, 10, 17
operational rule, 14
subsets, 10

Shallow strip footing, 139
Shear failure, 140
Significance level, in Chi-square test, 112

in Kolmogorov-Smirnov test, 115
Simulation, 250, See Monte Carlo simulation
Simulation concept, 8
Simulation cycle, 250
Simulation of correlated nonnormal random

variables, 270
Simulation of correlated normal random

variables, 268
Simulation of correlated random variables, 268
Single random variable,

linear relationship, 139
nonlinear relationship, 140

Skewness measure, 37
skewness coefficient, 38

S-N relation. 156, 171-173
Sources of uncertainty. 5

cognitive, 5
noncognitive, 5

Speeding, 34
Split-barrel sampler, 156
Square of errors, 166
Stable configuration approach (SCA), 239
Standard beta distribution, 72
Standard deviation, 37
Standard error of regression, 158
Standard normal distribution, 64

table of standard normal probability, 275
Standard penetration test, 156
Standard v ari ate, 70. 109, 110
Statistical estimation, See Estimation
Statistical independence, 20
Statistical tests, 106, 112

Chi-square, 112
Kolmogorov-Smirnov, 112, 114

Statistical uncertainty, 5
Statistics, 6
Stochastic finite element, 215. 248
Stochasticity, 2
Stopping distance, 180
Strain, 163
Strength formulation, 197
Stress, 163, 197
Stress formulation, 198
Stress range parameter, 110
Stress-strain property, 162
Structural engineering, 2
Student's t-distribution, See t-distribution
Subset. 10
Sufficiency of estimator, 117
Sung of random variables,

sum of independent Poisson variates, 148
sum (and difference) of normal 143

sum of squares, 131
Superstructure, 21
Supply, 2
Sway mechanism, 240
Symmetry, See skewness
System behavior, 3
System-level reliability, 7
Systems reliability, 238-247

first-order bounds, 242, 244
lower bound, 240, 241
second-order hounds, 242, 244
upper bound, 240, 244
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T

t-distribution, 98, 126
Table of the CDF of the Chi-square distribu-

tion, 280
Table of the CDF of the Student's t-distribu-

tion, 283
Table of critical values of Dn for the

Kolmogorov-Smirnov test, 282
Table of cumulative standard normal distri-

bution, 275
Tables of probability, See Probability table
Tangent hyperplanes, 202
Taylor series, 150, 196, 226
Taylor series finite difference (TSFD), 154
Tension reinforcement, 218
Testing validity of distribution, 106
Theorem of total probability, 25, 28
Theoretical frequency, 112
Third central moment. See Skewness measure
Three-parameters equivalent normal trans-

formation. 219
Tie-set, 239
Time-invariant reliability, 7
Tirne-variant reliability, 7
Tiredness, 34
Total probability theorem, 25
Transformation matrix, 235
Transformed coordinate system, 199
Transportation engineering, 2
Trial, 250
Triangular distribution, 98, 106
Trichlorophenol, 166
Turbine engine, 105

U

Ultimate bearing capacity, 140
Ultimate strength, 36
Unbiased estimator, 117, 122
Unbiased sample variance,
Uncertainty, 2
Unified frame work, 7
Uniform distribution, 72, 98, 106
Uniform random numbers, 252
Union of events, See Event
Unit diagonal matrix, 238
Unit gradient vector, 227
Unit sensitivity vector, 238
Unit vector, 214

Unpredictable, 35
Unsymmetrical. See Skewness

V

Variable transformation technique, 64
Variance.

approximate variance, 151
conditional variance, 158, 165
confidence interval of, 131
of general function, 150
of linear function, 131
of sample mean, 122
population variance, 120
sample variance, 45
sum of random variables, 143, 148

Variance reduction techniques, 261
correlation methods, 261, 268

antithetic variates, 261, 265
common random numbers. 261
control variates. 261

sampling methods, 261
adaptive sampling. 261, 263
conditional expectation, 261, 264
importance sampling, 261, 262
Latin hypercube sampling, 261
randomization sampling, 261
stratified sampling, 261, 263
systematic sampling, 261

special methods, 261
biased estimator, 261
indirect estimator, 261
random quadratic method, 261

Venn diagram, 12, 18, 25
Volume ratio, 163

W

Weakest link system, 239, 240
Weather condition. 34
Weibull distribution, 96-97, 107
Width of interval, 38-39
Wind,

load, 138
velocity, 138

Wu-Wirsching method, 205. 219

Y

Yield stress. 218
Young's modulus. 36
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