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This book is dedicated to my professors who
taught me to think intuitively and express
clearly.



Preface

Every book needs a purpose. This book fills the gap between earthquake science and
engineering by smoothly transitioning from ground motion prediction to structural
analysis and design. This book also fills the gap between prescriptive and complex
analyses. Prescriptive analyses rely on empirical rules which are constantly debated
and routinely updated after significant earthquakes. Complex analyses rely on black
box computer programs whose limitations are not understood by most engineers.
This book provides a middle approach, guided by analyses, that are sufficiently
accurate, transparent, and free of numerical errors. The goal of this book is to
empower engineers to innovate and to confidently stand behind the results of their
analyses.

A secondary purpose of this book is to help non-engineers understand the
concepts of a good seismic design. Ideas are presented in a step-by-step intuitive
manner to enable understanding. The only requirements for following this book are
some knowledge of Engineering Mechanics and an open mind.

Chapter 1 discusses the characteristics of seismic loads which distinguish them
from other loads such as gravity and wind. Chapter 2 discusses the uncertain nature
of seismic loads and how design loads are derived for different types of structures.
Chapters 3–9 present carefully selected examples which illustrate important con-
cepts in seismic design. Preferably, these chapters should be read sequentially, but
they can also be read independently of one another.

It is emphasized throughout this book that the seismic performance of a structure
depends on its mass, strength, deformability, and damping. An engineer may not
have much control over the mass of a structure, but an engineer can control a
structure’s strength, deformability, and damping. Reliance on strength alone, to
improve seismic performance, can be too expensive or impractical. Indiscriminate
increase in strength can sometimes reduce the deformability and damping of a
structure, thereby resulting in a less-safe design. Deformability and damping cannot
be taken for granted. They are ensured through proper detailing and calculated
through proper analysis.
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This book clarifies many misconceptions and introduces some new concepts such
as energy demand, seismic toughness, and the toppling response spectrum.

Sharon, MA, USA Praveen K. Malhotra
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Chapter 1
Ground Motions from Past Earthquakes

Nomenclature

ζ Viscous damping ratio
ADRS Acceleration–deformation response spectrum
ED Energy demand (area within the ADRS)
EOM Equation(s) of motion
g 9.81 m/s2 ¼ acceleration due to gravity
k Stiffness of SDOF system
m Mass of SDOF system
M Magnitude of earthquake
NRS Normalized response spectrum
PD Peak deformation
PF Peak force
PGA Peak ground acceleration
PGD Peak ground displacement
PGV Peak ground velocity
PGVn Normalized peak ground velocity
PPA Peak pseudo-acceleration
PPV Peak pseudo-velocity
PSE Peak strain energy
SDOF Single-degree-of-freedom
T Natural period of structure
Tc Central period of ground motion
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1.1 Introduction

An earthquake is a rupture of the brittle rock in the outer skin (crust) of the earth
[1]. The rupture is caused by the slow deformation of the rock due to the movement
of lava (magma) below the crust. The rate of deformation determines the rate of
earthquakes; it varies from place to place. The size (area) of the rupture can range
from a few square meters to thousands of square kilometers. The strain energy
released by the rupture determines the magnitude M of the earthquake; it correlates
well with the rupture area. The energy is carried by seismic waves traveling in all
directions [1]. When waves arrive at a location, the ground starts to shake. Engineers
are interested in specific characteristics of ground motions; those are discussed in
this chapter.

1.2 Amplitude of Ground Motion

Ground motions that are strong enough to damage structures or liquefy soils are
known as strong motions. Strong motions are measured by accelerometers (acceler-
ation sensors) in three perpendicular directions—usually east, up, and north
[2]. Recorded accelerations are digitally filtered (corrected) to remove perceived
“noise” [2].

Figure 1.1 shows the corrected acceleration histories of ground motion at a site in
Castaic, California during the 1994 magnitude M 6.7 Northridge Earthquake
[3]. The accelerations are expressed in units of g ¼ 9.81 m/s2 ¼ acceleration due

Fig. 1.1 Processed (corrected) acceleration histories at a site in Castaic, CA during the 1994
magnitude M 6.7 Northridge Earthquake in Southern California [3]
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to gravity. The horizontal motion of the ground is of greater interest to engineers than
the vertical motion because most structures can resist vertical (gravity) loads with
high margin of safety. Apparent change in the gravity load due to vertical ground
motion does not pose a problem for most structures, but there can be exceptions.

In Fig. 1.1, the maximum acceleration in the east direction is 0.570 g and the
maximum acceleration in the north direction is 0.516 g. It is conceivable that the
peak horizontal acceleration will not be in the east or the north directions, but some
other direction in the horizontal plane. To determine the peak horizontal ground
acceleration, the resultant accelerations are calculated from the accelerations in east
and north directions. The instantaneous value of resultant horizontal acceleration is:

ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e þ a2n

q

where ae and an are instantaneous values of accelerations in east and north directions,
respectively. The instantaneous direction of resultant acceleration (clockwise from
north) is:

θ ¼ tan �1ae=an

Figure 1.2 shows a plot of the resultant horizontal ground accelerations during the
earthquake. The peak horizontal ground acceleration is PGA ¼ 0.574 g.

The ground accelerations in Fig. 1.1 are numerically integrated to obtain ground
velocities [2]. Numerical integration is easily performed by using software tools such
as MATLAB [4]. Any “unreal” trends in the velocity histories are removed based on
judgment. Figure 1.3 shows corrected velocity histories in east, up, and north
directions. The resultant horizontal velocities are calculated in a similar manner as
the resultant horizontal accelerations. Figure 1.4 shows resultant horizontal veloci-
ties during the earthquake. The peak horizontal ground velocity is PGV ¼ 58 cm/s.
The ground velocities in Fig. 1.3 are numerically integrated to obtain ground
displacements [2]. Any “unreal” trends in the displacement histories are removed
based on judgment. Figure 1.5 shows corrected displacement histories in east, up,
and north directions. Figure 1.6 shows resultant horizontal displacements during the
earthquake. The peak horizontal ground displacement is PGD ¼ 17.2 cm.

Ground displacements derived from acceleration measurements may not be very
accurate [2] because “slowly changing” displacements of the ground do not produce
enough accelerations to be picked up by the accelerometers. Fortunately, slowly
changing displacements of the ground do not induce significant response in most
structures. Therefore, displacements derived from acceleration measurements are
reasonable for most engineering analyses.

The amplitude of a ground motion is defined by three parameters—PGA, PGV,
and PGD [5]. Sometimes, these are called intensity measures IM. A ground motion
is composed of many different frequencies. It will become more clear later in this
chapter that PGA, PGV, and PGD correlate with high-, medium-, and low frequen-
cies in the ground motion. High value of PGA (Fig. 1.2) implies that the ground
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Fig. 1.2 Resultant horizontal accelerations

Fig. 1.3 Velocity histories in three orthogonal directions [3]
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Fig. 1.4 Resultant horizontal velocities

Fig. 1.5 Displacement histories in three orthogonal directions [3]
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motion is abundant (rich) in high frequencies. Low value of PGD (Fig. 1.6) implies
that the ground motion is deficient (poor) in low frequencies. Moderate value of PGV
(Fig. 1.4) implies that the ground motion is neither rich nor poor in intermediate
frequencies. PGA, PGV, and PGD are not fully correlated with each other [5]. High
PGA does not imply high PGV and PGD. Therefore, PGA alone cannot define the
amplitude of a ground motion. All three parameters (PGA, PGV, and PGD) simul-
taneously define the amplitude of a ground motion.

A more complete (frequency-by-frequency) description of the amplitude of a
ground motion is provided by its response spectrum [6–10]. But it takes some
additional effort to generate the response spectrum of a ground motion. To describe
the concept of response spectrum, a simple mathematical model of the structure is
discussed next.

Fig. 1.6 Resultant horizontal displacements
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1.3 Single-Degree-of-Freedom System

Any real structure can be approximately represented by one or more single-degree-
of-freedom (SDOF) systems of the type shown in Fig. 1.7 [6–10]. The deformed
state of a SDOF system is completely defined by a single variable—spring defor-
mation u. If the spring is linear with stiffness k, the force required to deform the
spring by u0 is ku0. When the force is suddenly released, the mass m starts oscillating
as shown in Fig. 1.8. The time taken to complete each oscillation cycle, T, is known
as the natural period of the SDOF system. An increase in mass lengthens the natural
period, and an increase in stiffness shortens the natural period. For a linear system,

k

m

u

F = ku

0

0

(a) (b)

Fig. 1.7 SDOF model of a structure (e.g., a multistory building)

Fig. 1.8 Free-vibration response of SDOF system shown in Fig. 1.7
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T does not depend on u0, it only depends on k and m. T is given by the following
expression [6–10]:

T ¼ 2π

ffiffiffiffi
m
k

r
ð1:1Þ

The free-vibration response in Fig. 1.8 is unreal because it implies that the system
keeps oscillating forever with the same amplitude. Real structures experience some
loss of energy in each cycle. Important sources of energy loss are:

• Air resistance
• Yielding and cracking of material
• Slippage in connections
• Damage to walls, partitions, and finishes in a building
• Sliding and rocking at the base of structure and
• Radiation of waves away from the foundation of a structure

All sources of energy loss can be approximately modeled by a viscous damper
which tries to slow down the mass by applying a force opposite to the direction of
motion (velocity). The viscous force ¼ velocity � damping constant c.

Figure 1.9 shows a viscously damped SDOF system. Figure 1.10 shows the free-
vibration response of a viscously damped SDOF system. The damped response is
more realistic because the amplitude of oscillation reduces with each cycle, implying
that the system loses energy from one cycle to the next. An increase in damping
constant c causes the system to lose energy at a faster rate. If the damping constant is
raised to a certain critical value [6–10]:

k

m
cFig. 1.9 Viscously damped

SDOF model of a structure
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ccrit ¼ 2
ffiffiffiffiffiffi
km

p
ð1:2Þ

the system does not oscillate when released from the deformed position [6–10]. Fig-
ure 1.11 shows the free-vibration response of a critically damped system; the system
arrives at the zero (undeformed) position from one side only—without crossing over
to the other side. It is customary to express damping as a fraction (ratio) of the critical
damping. The damping ratio is defined as:

Fig. 1.10 Free-vibration responses of damped and undamped SDOF systems [10]

Fig. 1.11 Free-vibration responses of underdamped and critically damped SDOF systems
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ζ ¼ c
ccrit

¼ c

2
ffiffiffiffiffiffi
km

p ð1:3Þ

Structural systems (buildings, bridges, dams, etc.) are generally underdamped;
meaning that the damping ratio ζ is less than 1. The damping ratio of systems
discussed in this book is between 0.02 and 0.64 (2% and 64% of critical). Certain
mechanical systems (e.g., shock absorbers in cars and door stoppers) can be critically
damped or even overdamped [10].

A SDOF system is defined by its mass m, stiffness k, and damping constant c.
Alternatively, a SDOF system can be defined by its mass m, natural period T, and
damping ratio ζ. Recall that T is the natural period of an undamped system. The
natural period of a damped system is longer; it is given by the following expression
[6–10]:

Td ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p ð1:4Þ

Since Td is related to T and ζ, even a damped linear system is completely defined
by m, T, and ζ.

If the amplitude of a viscously damped system is kept fixed at u0, a certain amount
of energy will have to be supplied to replenish the loss. The energy loss in each cycle
is given by the following expression:

El ¼ 2π2
c
T
u20 ð1:5Þ

1.4 Dynamic Response of a SDOF System

The equation of a motion (EOM) of a SDOF system responding to ground shaking is
[7–10]:

m€u tð Þ þ c _u tð Þ þ ku tð Þ ¼ �ma tð Þ ð1:6Þ

where u(t) ¼ deformation of the system (spring) at time t, and a(t) ¼ acceleration of
the ground at time t. The overdot represents differentiation with respect to time.
Dividing throughout by m and making use of Eqs. 1.1 and 1.3, the EOM of a SDOF
system can be rewritten as:

€u tð Þ þ 4πζ
T

_u tð Þ þ 2π
T

� �2

u tð Þ ¼ �a tð Þ ð1:7Þ
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It is apparent from Eq. 1.7 that for a given acceleration history a(t), the deforma-
tion history u(t) depends only on the natural period T and the damping ratio ζ.
Equation 1.7 is a second-order linear differential equation which can be numerically
solved by using MATLAB [4].

Consider a SDOF system of period T ¼ 0.5 s and damping ζ ¼ 0.05 (5% of
critical). The system is subjected to the east-direction ground acceleration history
shown in Fig. 1.1. Equation 1.7 is solved for deformation history u(t) using
MATLAB [4]. The upper part of Fig. 1.12 displays the east-direction deformation
history. Next, the same SDOF system is subjected to the north-direction acceleration
history shown in Fig. 1.1. The north-direction deformation history is displayed in the
lower part of Fig. 1.12. At any given time, the SDOF system has deformed in both
east and north directions. The amplitude and direction of resultant deformation are
computed at various times from the instantaneous deformations in east and north
directions. Figure 1.13 shows a plot of the resultant horizontal deformations of the
SDOF system during the earthquake. The peak value of resultant horizontal defor-
mation of 0.5 s period, 5% damped system is PD(0.5 s) ¼ 9.38 cm.

Next, the period of the SDOF system is increased to T ¼ 1 s, but the damping is
maintained at ζ ¼ 0.05 (5% of critical). Figure 1.14 shows the resultant horizontal
deformations during the earthquake. The peak resultant horizontal deformation of
the 1 s period, 5% damped system is PD(1 s) ¼ 24.7 cm. Next, the period of the
system is changed to T ¼ 2 s, but the damping is still maintained at ζ ¼ 0.05 (5% of
critical). Figure 1.15 shows the resultant horizontal deformations during the earth-
quake. The peak resultant horizontal deformation of the 2 s period, 5% damped
system is PD(2 s) ¼ 33.4 cm.

Fig. 1.12 Deformations of a SDOF system of period T ¼ 0.5 s, and damping ζ ¼ 0.05 (5% of
critical), subjected to horizontal ground motions shown in Fig. 1.1
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1.5 Deformation Response Spectrum

The deformation response spectrum of a ground motion is a plot between the natural
period T and peak deformation PD, for a fixed value of damping ζ. Figure 1.16
shows the 5% damping deformation response spectrum of ground motion shown in
Fig. 1.1. Note that PD(T ¼ 0) ¼ 0. According to Eq. 1.1, a zero-period system is
either infinitely stiff or it has no mass at all; such a system is not expected to deform
during ground shaking. With increase in T, the peak deformation PD generally
increases at first and then decreases to approach the peak ground displacement
PGD at T ¼ 1. According to Eq. 1.1, a system with infinite period has infinite
mass or zero stiffness. For such a system, the mass remains stationary while the
ground moves underneath, or the deformation of the spring equals the ground
displacement. Therefore, for an infinite-period system, PD ¼ PGD, irrespective of
damping.

Fig. 1.13 Resultant horizontal deformations of SDOF system of 0.5 s period and 5% damping,
subjected to the horizontal ground motions shown in Fig. 1.1
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1.6 Pseudo-Acceleration Response Spectrum

The peak force in the spring is the product of peak deformation and spring stiffness:

PF ¼ k ∙PD ð1:8Þ

With the help of Eq. 1.1, the stiffness k can be expressed in terms of m and T to
yield the following expression for the peak force:

PF ¼ m ∙ 2π
T

� �2

∙PD ð1:9Þ

The multiplier of massm in the above expression has the units of acceleration, but
it is only approximately equal to the “true” peak acceleration of the mass. Therefore,
it is simply called the peak pseudo-acceleration PPA, defined as follows:

Fig. 1.14 Resultant horizontal deformations of SDOF system of 1 s period and 5% damping,
subjected to the horizontal ground motions shown in Fig. 1.1
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PPA ¼ 2π
T

� �2

∙PD ð1:10Þ

The expression for the peak force in the spring (Eq. 1.9) can be rewritten as:

PF ¼ m ∙PPA ð1:11Þ

Note that the “true” force in the spring is obtained by multiplying the mass by the
“pseudo-acceleration.”

A plot of PPA versus T is known as the pseudo-acceleration response spectrum. A
pseudo-acceleration response spectrum can be generated from a deformation
response spectrum simply by using Eq. 1.10. For example, PD(1 s) ¼ 24.7 cm.
Therefore, PPA(1 s) ¼ (2π/1)2 � 24.7 ¼ 974 cm/s2 ¼ 0.993 g. PPA values can be
similarly calculated for other periods. Figure 1.17 shows a plot of the 5% damping
pseudo-acceleration response spectrum of ground motion shown in Fig. 1.1. It is
customary to express pseudo-accelerations in units of g (acceleration due to gravity).
Note that PPA(T ¼ 0) ¼ PGA. A zero-period system is so stiff that it does not
deform; it moves in unison with the ground. Because the system does not deform, the

Fig. 1.15 Resultant horizontal deformations of SDOF system of 2 s period and 5% damping,
subjected to the horizontal ground motions shown in Fig. 1.1
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damping force is zero and the peak force in the spring is m ∙ PGA, or PPA ¼ PGA.
For this reason, PGA is sometimes known as zero-period acceleration ZPA. For an
infinite-period system, the spring has zero stiffness, therefore the spring force is zero
or PPA(T ¼ 1) ¼ 0.

1.7 Pseudo-Velocity Response Spectrum

The peak strain energy in the spring is:

PSE ¼ 1
2
k ∙PD2 ð1:12Þ

With the help of Eq. 1.1, the stiffness k can be expressed in terms of m and T to
yield the following expression for the peak strain energy:

Fig. 1.16 Five-percent damping deformation response spectrum of horizontal ground motion
shown in Fig. 1.1
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PSE ¼ 1
2
m ∙ 2π

T
∙PD

� �2

ð1:13Þ

The term in parentheses in the above expression has the units of velocity, but it is
not the true velocity of the mass [7, 8, 10]. Therefore, it is simply called the peak
pseudo-velocity PPV, defined as:

PPV ¼ 2π
T

∙PD ð1:14Þ

The expression for the peak strain energy (Eq. 1.13) can be rewritten as:

PSE ¼ 1
2
m ∙PPV2 ð1:15Þ

Note that the “true” strain energy in the spring is obtained by multiplying half the
mass by the square of the “pseudo-velocity.”

A plot of PPV versus T is known as the pseudo-velocity response spectrum. A
pseudo-velocity response spectrum can be generated from a deformation response

Fig. 1.17 Five-percent damping pseudo-acceleration response spectrum of horizontal ground
motion shown in Fig. 1.1

16 1 Ground Motions from Past Earthquakes



spectrum simply by using Eq. 1.14. For example, PD(1 s) ¼ 24.7 cm. Therefore,
PPV(1 s) ¼ (2π/1) � 24.7 ¼ 155 cm/s. PPV values can be similarly calculated for
other periods. Figure 1.18 shows a 5% damping pseudo-velocity response spectrum
of ground motion shown in Fig. 1.1. Note that PPV ¼ 0 for T ¼ 0 as well as for
T ¼1. A zero-period system is so stiff that it does not deform hence does not store
any strain energy. An infinite-period system is so flexible that its spring lacks any
stiffness to store strain energy.

1.8 Tripartite Response Spectrum

PD, PPA, and PPV are related to each other as follows:

PPA ∙ T
2π

¼ PPV ¼ 2π
T

∙PD ð1:16Þ

Therefore, it is possible to display all three response spectra (deformation,
pseudo-acceleration, and pseudo-velocity) by a single curve in a tripartite format.

Fig. 1.18 Five-percent damping pseudo-velocity response spectrum of horizontal ground motion
shown in Fig. 1.1
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Figure 1.19 displays the 5% damping tripartite response spectrum of horizontal
ground motion shown in Fig. 1.1. In this plot, PPV is read along the vertical axis
and period T is read along the horizontal axis. The peak pseudo-acceleration PPA is
read along the�45� (counterclockwise) axis, and peak deformation PD is read along
the +45� (clockwise) axis. For reference, PGA, PGV, and PGD are shown by three
straight lines. Tripartite plot clearly shows that PPA approaches PGA at very short
periods and PD approaches PGD at very long periods. The tripartite plot is a very
concise and elegant way of displaying the response spectrum of a ground motion.

1.9 Central Period and Normalized Velocity

Ground motions are composed of many different frequencies. The central period of a
ground motion is defined as follows [11]:

Fig. 1.19 Tripartite plot of 5% damping response spectrum of horizontal ground motion shown in
Fig. 1.1
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Tc ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
PGD
PGA

r
ð1:17Þ

The central period is not the dominant period of a ground motion; it is simply the
“centroid” of all frequencies present in the ground motion. If the ground motion was
composed of a single frequency, that frequency would be 2π/Tc. In Fig. 1.19, if PGA
and PGD lines were extended, they will intersect at period Tc. Central period Tc can
be used to classify a ground motion as low-, medium-, or high frequency, as per
Table 1.1.

If a ground motion was composed of a single frequency, its peak velocity PGV
will be equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
. Since a ground motion is usually composed of many

different frequencies, the actual peak velocity is less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
. The

normalized-velocity PGVn is the ratio between the actual peak ground velocity
PGV and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
, i.e.,

PGVn ¼ PGVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p ð1:18Þ

Normalized-velocity PGVn is an indicator of the frequency band of a ground
motion [11]. High value of PGVn implies a narrow-banded ground motion, and a low
value of PGVn implies a broad-banded ground motion. Table 1.2 classifies ground
motions based on PGVn.

It will become clear in Sect. 2.10 that the strength of a structure is most
effective in resisting low-frequency ground motions, deformability of a structure
is most effective in resisting high-frequency ground motions, and damping of a
structure is most effective in resisting narrow-banded ground motions. Therefore,
Tc and PGVn of future ground motions are helpful in selecting the type of structure
for a site.

Table 1.1 Frequency classi-
fication of a ground motion
based on its central period Tc

Tc Frequency classification

<0.5 s High frequency

0.5 s to 2 s Medium frequency

>2 s Low frequency

Table 1.2 Frequency band of
a ground motion based on its
normalized-velocity PGVn

PGVn Frequency band

<0.45 Broad

0.45–0.75 Medium

>0.75 s Narrow
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1.10 Response Spectrum of Incompatible Acceleration,
Velocity, and Displacement Histories

Processed histories of ground acceleration, velocity, and displacement are some-
times not fully compatible with each other [12]. Meaning that the integration and
double integration of the acceleration history do not produce the processed velocity
and displacement histories. In such cases, the response spectrum is generated from
the acceleration history at short periods and velocity and displacement histories at
long periods. The response spectrum generated in this manner shows the correct
asymptotic behavior at both short and long periods [12].

1.11 Smooth Response Spectrum of Ground Motion

The response spectra discussed so far are generated from ground motion histories.
However, for future earthquakes, ground motion histories cannot be directly
predicted. Only parameters such as PGA, PGV, and PGD can be predicted, as will
be seen in the next chapter. Therefore, it is desirable to generate the response
spectrum from predicted values of PGA, PGV, and PGD.

Spectral values (PPA, PPV, and PD) for short periods are controlled by high
frequencies in ground motion. High frequencies also determine the value of PGA.
Therefore, short-period spectral values correlate with PGA [5, 11]. Similarly, long-
period spectral values correlate with PGD and intermediate-period spectral values
correlate with PGV [5, 11]. Therefore, it is possible to construct a smooth response
spectrum from predicted values of PGA, PGV, and PGD.

The response spectrum relative to PGA, PGV, and PGD is known as the normal-
ized response spectrum (NRS) [11]. The shape of the NRS was established using
thousands of records from past earthquakes. It was found that the shape of the NRS
depends only on the normalized velocity PGVn, it does not depend on any other
parameters such as the magnitude of the earthquake, distance of the earthquake, or
the local soil conditions. Most importantly, the shape of the NRS does not depend on
the direction of ground motion; it is same for both horizontal and vertical ground
motions. Figures 1.20 and 1.21 show NRS for PGVn ¼ 0.3 (broad-banded ground
motion) and PGVn¼ 0.9 (narrow-banded ground motion). In Figs. 1.20 and 1.21, the
horizontal axis is the normalized period T/Tc and the vertical axis is the normalized
peak pseudo-velocity PPV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
. In Table 1.3, the normalized periods T/Tc

are listed in the first column and normalized peak pseudo-velocities
PPV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
are listed in columns 2–8 for various values of normalized-

velocity PGVn.
The following example illustrates the generation of a smooth response spectrum

from given values of PGA, PGV, and PGD.
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1.12 Example: Smooth Response Spectrum from PGA,
PGV, and PGD

For a specific site, the predicted values of PGA, PGV, and PGD are 0.3 g (294 cm/
s2), 50 cm/s, and 30 cm, respectively. It is of interest to develop a 5% damping
response spectrum for the site. The following steps are taken to generate the site
response spectrum:

1. The central period of the ground motion is calculated from Eq. 1.17:

Tc ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGD=PGA

p
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30=294

p
¼ 2 s:

According to Table 1.1, the ground motion is medium frequency.
2. The normalized velocity is calculated from Eq. 1.18:

PGVn ¼ PGV=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA� PGD

p
¼ 50=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
294� 30

p
¼ 0:53:

According to Table 1.2, the ground motion is medium banded.

Fig. 1.20 Normalized response spectrum for PGVn ¼ 0.3 (broad-banded ground motion)

1.12 Example: Smooth Response Spectrum from PGA, PGV, and PGD 21



3. The normalized periods are read from the first column of Table 1.3. These are
multiplied by the central period Tc ¼ 2 s to obtain the natural periods T.

4. The normalized pseudo-velocities PPV=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
are read from the fourth

column of Table 1.3 corresponding to PGVn ¼ 0.5. These are multiplied byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p ¼ 94 cm/s to obtain the peak pseudo-velocities PPV.

Figure 1.22 shows a plot PPV versus T. This is the 5% damping smooth response
spectrum generated from PGA, PGV, and PGD. Next, PPA and PD are determined
from PPV and T by using Eq. 1.16. Figure 1.23 shows pseudo-acceleration and
deformation response spectra for the site. Note that the peak in the pseudo-
acceleration response spectrum occurs at T ¼ 0.55 s, while the peak in the defor-
mation response spectrum occurs at T¼ 6 s. None of these peaks occur at the central
period of the ground motion. This is expected of a medium-banded ground motion.
Only for a narrow-banded ground motion, the peaks in the pseudo-acceleration and
the deformation response spectra occur at the central period of the ground motion. It
is incorrect to call 0.55 s or 6 s as the “site period.”

Fig. 1.21 Normalized response spectrum for PGVn ¼ 0.9 (narrow-banded ground motion)

22 1 Ground Motions from Past Earthquakes



1.13 Comparison with Newmark–Hall Response Spectrum

The idea of generating a smooth response spectrum from PGA, PGV, and PGD was
first proposed by Newmark and Hall [8]. The Newmark–Hall spectrum was based on
a limited number of records available up to the 1970s. The main shortcoming of the
Newmark–Hall spectrum is that its shape does not depend on the normalized
velocity. The Newmark–Hall spectrum has the same shape for both narrow-banded
and board-banded ground motions. Figure 1.24 shows a comparison of the smooth
spectrum generated in previous example with the Newmark–Hall response spectrum.
In this case, the two spectra agree well because the ground motion is medium
banded. For a broad-banded or a narrow-banded ground motion, the Newmark–
Hall spectrum will be significantly different from the smooth spectrum presented in
this chapter.

Table 1.3 Peak normalized pseudo-velocities PPV=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA� PGD

p
for 5% damping [11]

T
Tc

PGVn

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.0147 0.0157 0.0153 0.0149 0.0149 0.0147 0.0147 0.0147

0.0215 0.0247 0.0233 0.0221 0.0221 0.0218 0.0217 0.0216

0.0316 0.0428 0.0384 0.0346 0.0338 0.0332 0.0324 0.0322

0.0464 0.077 0.0669 0.0584 0.054 0.0525 0.0506 0.0483

0.0681 0.141 0.119 0.104 0.09 0.0889 0.0795 0.0753

0.1 0.245 0.214 0.182 0.16 0.154 0.13 0.123

0.147 0.369 0.351 0.325 0.289 0.277 0.235 0.212

0.215 0.478 0.542 0.532 0.506 0.486 0.426 0.381

0.316 0.532 0.691 0.782 0.821 0.8 0.759 0.7

0.464 0.517 0.753 0.962 1.1 1.22 1.21 1.17

0.681 0.472 0.724 1.01 1.32 1.48 1.77 1.85

1 0.449 0.68 0.974 1.34 1.56 2.11 2.36

1.47 0.443 0.668 0.975 1.32 1.57 1.8 1.87

2.15 0.475 0.705 0.898 1.1 1.15 1.15 1.11

3.16 0.496 0.661 0.752 0.752 0.726 0.675 0.583

4.64 0.452 0.47 0.479 0.426 0.387 0.361 0.314

6.81 0.304 0.283 0.252 0.227 0.208 0.195 0.179

10 0.175 0.156 0.137 0.125 0.119 0.115 0.112

14.7 0.0959 0.0894 0.0787 0.078 0.0729 0.0728 0.0712

21.5 0.0547 0.0531 0.0497 0.0494 0.0481 0.0477 0.0474

31.6 0.0341 0.0335 0.0326 0.0327 0.0323 0.0320 0.032

46.4 0.0224 0.0222 0.0219 0.0219 0.0217 0.0217 0.0216

68.1 0.015 0.0149 0.0148 0.0148 0.0147 0.0147 0.0147

100 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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1.14 Building Code Response Spectra

The design response spectra in building codes [13] are based on the Newmark–Hall
spectrum irrespective of the bandwidth of ground motion. Instead of PGA and PGV,
code spectra utilize pseudo-accelerations at 0.2 s and 1 s period. Instead of PGD,
code spectra utilize the long-period transition TL. The current codes are beginning to
recognize the limitation of the Newmark–Hall spectrum to capture the true shape of
the response spectrum. For certain soil types, building codes [13] now require that a
multi-period response spectrum be generated to capture the deviation from the
Newmark–Hall spectrum. A multi-period response spectrum will require pseudo-
accelerations at numerous periods. Therefore, the smooth spectrum discussed in this
chapter is superior because it can be generated from just three parameters: PGA,
PGV, and PGD. It is sometimes argued that PGD cannot be reliably predicted for
future earthquakes, but the same argument can be applied to long-period transition
TL because PGD and TL are related to each other.

Fig. 1.22 Tripartite plot of 5% damping smooth response spectrum generated from PGA, PGV, and
PGD
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1.15 Acceleration–Deformation Response Spectrum

For engineering applications, PPA and PD are much more useful than PPV. There-
fore, it is desirable to show PPA and PD along the two principal axes (vertical and
horizontal). This is achieved by rotating the tripartite response spectrum (Fig-
ure 1.22) clockwise by 45�. The resulting plot is shown in Figure 1.25; it has PPA
along the vertical axis and PD along the horizontal axis. The period is indicated by
parallel diagonal lines. Next, the scale on the plot is changed from logarithmic to
linear, as shown in Figure 1.26. This causes the parallel period lines to meet at the
origin. For the sake of clarity, the period lines are replaced by radial tick marks in
Figure 1.26. The plots in Figures 1.25 and 1.26 are known as the acceleration–
deformation response spectrum or simply ADRS. Such plots of the response spectra
are very useful in “performance-based” seismic design. They will be extensively
used in the remainder of this book.

Figure 1.27 illustrates how the response of a 1.5 s period system is read from the
ADRS. A radial line is drawn from the origin to the tick mark corresponding to 1.5 s
period. From the intersection of the radial line with the 5% damped ADRS, PPA ¼
0.44 g is read along the vertical axis and PD ¼ 25 cm is read along the horizontal
axis.

Fig. 1.23 Five-percent damping pseudo-acceleration and deformation response spectra generated
from PGA, PGV, and PGD
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1.16 Strength and Deformation Demands

The pseudo-acceleration in g’s multiplied by the weight of the structure gives the
lateral force induced in the structure. This is also the strength demand imposed by the
ground motion. The other demand imposed by the ground motion is deformation. In
Figure 1.28, the response spectrum of Figure 1.27 is redrawn by labeling the vertical
and horizontal axes as “normalized strength” and “deformation demand.” The plot in
Figure 1.28 provides a useful insight into the seismic performance of structures. A
structure with a lateral strength of 10% its weight needs to be able to deform 72 cm,
while a structure with a lateral strength of 20% its weight needs to be able to deform
only 54 cm. The strength and deformation demands are reciprocal to each other. A
structure with high deformability need not be very strong, while a structure with low
deformability needs to be very strong. The deformability is the ability of a structure
to deform without getting collapsed. The most economical seismic design is
achieved by relying partly on strength and partly on deformability. A purely
strength-based seismic design is usually uneconomical. In high seismic regions,
engineers usually trade strength for deformability.

Fig. 1.24 Comparison of smooth response spectrum with the Newmark–Hall spectrum
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1.17 Unique Nature of Seismic Loads

Seismic loads are different from wind and gravity loads. Wind and gravity loads are
monotonic; they continue to act in the same direction for a long time. Seismic loads
are cyclic; they change direction very rapidly. Because of this difference, the
resistance to wind and gravity loads can only be increased by increasing a structure’s
strength. The resistance to seismic load can be increased by increasing a structure’s
strength, deformability or damping. The role of damping will become clear in the
next chapter.

1.18 Energy Demand ED

There is no single parameter which completely defines the seismic demand imposed
by a ground motion, but the area enclosed within the 5% damping ADRS comes
close to defining the seismic demand for a broad range of structures. For the response
spectrum shown in Figure 1.28, ED¼ 2.59 (m/s)2. ED has the units of energy/mass.

Fig. 1.25 Acceleration–deformation plot of response spectrum (ADRS) on a logarithmic scale

1.18 Energy Demand ED 27



1.19 Summary

1. The amplitude of a ground motion is not defined by PGA alone; it is defined by
three parameters PGA, PGV, and PGD. PGA controls the response (deforma-
tion) of stiff structures, PGD controls the response of flexible structures, and
PGV controls the response of structures that are neither stiff nor flexible.

2. The response spectrum provides a more complete description of the amplitude
of ground motion than PGA, PGV, and PGD.

3. The exact response spectrum of a ground motion can be generated from the
numerical solution of the EOM. A smooth response spectrum of ground motion
can be generated from PGA, PGV, and PGD; it cannot be generated from PGA
alone.

4. The response spectrum relative to PGA, PGV, and PGD is known as the
normalized response spectrum (NRS). The shape of the NRS depends only on
the normalized velocity PGVn ¼ PGV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGA ∙PGD

p
.

5. The histories of future ground motions cannot be predicted directly, but PGA,
PGV, and PGD of future ground motions can be predicted, as will be seen in the

Fig. 1.26 Acceleration–deformation plot of response spectrum (ADRS) on a linear scale

28 1 Ground Motions from Past Earthquakes



next chapter. Therefore, the NRS is useful in generating the response spectra of
future ground motions.

6. An acceleration–deformation plot of the response spectrum clarifies the strength
and deformation demands imposed by the ground motion.

7. Response spectrum is a property of the ground motion; it is not a property of the
structure.

8. The strength and deformation demands are reciprocal to each other. Deformable
structures need not be as strong as less deformable (brittle) structures.

9. Seismic loads are different from wind and gravity loads. The resistance to wind
and gravity loads can only be increased by increasing a structure’s strength.
Seismic performance of a structure can be increased by increasing its strength,
deformability or damping.

10. Strength of a structure is most effective in resisting low-frequency ground
motions; and deformability of a structure is most effective in resisting high-
frequency ground motions. Characteristics of future ground motions are helpful
in selecting the type of structure for a site.

Fig. 1.27 Response of 1.5 s period SDOF system read from the ADRS
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Chapter 2
Ground Motions for Future Earthquakes

Nomenclature

λ Rate of exceedance
ζ Viscous damping ratio
2D Two dimensional
3D Three dimensional
ADRS Acceleration–deformation response spectrum
ED Energy demand (area within the ADRS)
EOM Equation(s) of motion
g 9.81 m/s2 ¼ acceleration due to gravity
GMPM Ground motion prediction model
M Moment magnitude of earthquake
MRI Mean recurrence interval
MRP Mean return period
PD Peak deformation
PGA Peak ground acceleration
PGAV Peak ground acceleration of vertical motion
PGD Peak ground displacement
PGDV Peak ground displacement of vertical motion
PGV Peak ground velocity
PGVV Peak ground velocity of vertical motion
PPA Peak pseudo-acceleration
PPV Peak pseudo-velocity
PSHA Probabilistic seismic hazard analysis
SDOF Single-degree-of-freedom system
SFBA San Francisco Bay Area
T Natural period of structure
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2.1 Introduction

In Chap. 1, the response spectrum was shown to define the strength and deformation
demands imposed by the ground motion. The response spectrum can be exactly
computed from ground motion histories or it can be approximately generated from
the peak values of ground acceleration, ground velocity, and ground displacement
PGA, PGV, and PGD. Engineers need response spectra of ground motions produced
by future earthquakes. For future earthquakes, ground motion histories cannot be
directly predicted, but PGA, PGV, and PGD can be predicted although with high
uncertainty. This chapter discusses the prediction of PGA, PGV, and PGD and
generation of site-specific response spectra and ground motion histories for future
earthquakes.

2.2 Prediction of PGA, PGV, and PGD at a Site

Three types of information are needed to predict PGA, PGV, and PGD at a site due to
future earthquakes:

1. Geological information regarding the size (magnitude), location, and occurrence
rate of future earthquakes in the region.

2. Seismological information regarding PGA, PGV, and PGD at a site due to
earthquakes of known magnitude occurring at known distance from the site.

3. Geotechnical information regarding the type and depth of soil at the site.

The uncertainties in geological and seismological models are so high that the
predictions of PGA, PGV, and PGD can only be made probabilistically. The analysis
that combines the uncertainties in geological and seismological models is known as
the probabilistic seismic hazard analysis (PSHA) [1–5]. Next, the PSHA of a site is
illustrated with the help of an example.

2.2.1 Example: PSHA of a Site

The local soil conditions are approximately defined by the average shear-wave
velocity in the top 30 m (~100 ft) VS30. Geotechnical investigation of the site
shows that VS30 ¼ 275 m/s. The site is classified as “stiff soil” (Site Class D) [6]
by the geotechnical engineer.

Geological investigation has identified two principal sources of earthquakes in the
region. These are fault lines where the rock has broken in the past and is expected to
break again in the future. Fault 1 is 50 km long and its minimum distance from the
site is 15 km. Based on its length, Fault 1 is estimated to produce earthquakes of
magnitude M 6. Based on the rate of strain accumulation around Fault 1, the
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occurrence rate of M 6 earthquakes is estimated to be 0.004/year or the mean
recurrence interval is MRI ¼ 1/0.004 ¼ 250 years. Fault 2 is 250 km long and its
minimum distance from the site is 60 km. Based on its length, Fault 2 is estimated to
produce earthquakes of magnitude M 7.5. Based on the rate of strain accumulation
around Fault 2, the occurrence rate of M 7.5 earthquakes is 0.002/year or the mean
recurrence interval is MRI ¼ 1/0.002 ¼ 500 years. Table 2.1 summarizes the
geological data. Figure 2.1 shows the seismic sources (faults) relative to the site.

Based on the seismological model (also known as the ground motion prediction
model GMPM), the expected (mean) values of PGA, PGV, PGD at the site due to
earthquakes on Fault 1 and Fault 2 are listed in column 3 of Table 2.2; the
corresponding standard deviations are listed in column 4 of Table 2.2. The values
are resultant of two horizontal directions, as discussed in Chap. 1. The predicted
values are highly uncertain because the standard deviations are nearly as high as the
mean values. Unfortunately, the uncertainty in GMPMs has increased over the years
[7]. The latest models are less certain and more complex than the older models. It is
not reasonable for models to become less certain and more complex at the same
time [7].

Table 2.1 Geological information about seismic sources (faults) in the region

Seismic sources Magnitude Distance Occurrence rate MRI

Fault 1 M 6 15 km 0.004/year 250 years

Fault 2 M 7.5 60 km 0.002/year 500 years

Fig. 2.1 Seismic sources (faults) that can produce earthquakes in the region surrounding the site

Table 2.2 Seismological information about ground motions produced by earthquakes

Earthquakes Ground motion parameter Mean Standard deviation

M 6 at 15 km
(Fault 1)

PGA (g) 0.168 0.126

PGV (cm/s) 10.5 7.31

PGD (cm) 1.65 1.64

M 7.5 at 60 km
(Fault 2)

PGA (g) 0.103 0.0685

PGV (cm/s) 10.3 6.91

PGD (cm) 4.58 4.55
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For an earthquake on Fault 1, the PGA at the site cannot be predicted precisely.
Only a probability distribution of PGA can be generated. According to GMPM, the
PGA due to an earthquake on Fault 1 follows a lognormal distribution [1, 2] with a
mean value of 0.168 g and a standard deviation of 0.126 g (Table 2.2). The
probability density function [8, 9] of PGA, generated from the mean and standard
deviation of a lognormal distribution [8, 9], is shown in Fig. 2.2a. The exceedance
probability function is one minus the cumulative distribution function [8, 9]; it is
shown in Fig. 2.2b. According to GMPM, any value of PGA is possible if an
earthquake occurs on Fault 1. Higher values of PGA have lower probabilities of
exceedance and lower values of PGA have higher probabilities of exceedance.
Naturally, the probability of PGA � 0 is 1 (100%).

Since earthquakes on Fault 1 occur at a rate of 0.004/year, the exceedance
probabilities in Fig. 2.2b are multiplied by 0.004 to obtain the exceedance rates for
different values of PGA. These are shown in Fig. 2.2c. The plot in Figure 2.2c is
known as the PGA hazard curve for the site due to Fault 1. The PGA hazard curve for
the site due to Fault 2 is similarly generated, as shown in Fig. 2.3. Next, it is assumed

Fig. 2.2 Steps used to generate the PGA hazard curve for the site due to Fault 1
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that: (1) earthquakes on Fault 1 and Fault 2 occur independently of each other and
(2) occurrence of an earthquake does not affect the chances of future earthquakes.
Therefore, the hazard curves due to Fault 1 and Fault 2 (Figs. 2.2c and 2.3c) can be
added along the vertical axis to obtain the overall PGA hazard curve for the site; it is
shown in Fig. 2.4. Note that the vertical scale in Fig. 2.4 is logarithmic while it was
linear in Figs. 2.2c and 2.3c.

The hazard curves for PGV and PGD are similarly generated; they are shown in
Figs. 2.5 and 2.6, respectively. For a time-independent process, the mean return
period (MRP) of exceedance is reciprocal of the rate of exceedance λ [8, 9]:

MRP ¼ 1=λ ð2:1Þ

In Figs. 2.4, 2.5, and 2.6, the MRP of exceedance is shown on the right side. Note
that there is no upper limit on the values of PGA, PGV, and PGD. They increase with
increase in the MRP. Note also that Fault 1 controls the PGA at the site (Fig. 2.4) and
Fault 2 controls the PGD at the site (Fig. 2.6). Recall from Chap. 1 that PGA is a

Fig. 2.3 Steps used to generate the PGA hazard curve for the site due to Fault 2
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Fig. 2.4 Generation of PGA hazard curve for the site by adding Fault 1 and Fault 2 hazard curves
along the vertical axis

Fig. 2.5 Generation of PGV hazard curve for the site by adding Fault 1 and Fault 2 hazard curves
along the vertical axis
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measure of high frequencies in the ground motion and PGD is a measure of low
frequencies in the ground motion. High frequencies cannot travel very far because of
their short wavelengths, but low frequencies can travel far because of their long
wavelengths. In general, closer seismic sources control PGA at the site even when
they produce small earthquakes, and bigger seismic sources control PGD at the site
even when they are far from the site. The PSHA is complete with the generation of
PGA, PGV, and PGD hazard curves for the site.

2.2.2 Probability of Exceedance

For a time-independent process, the probability of exceedance within a given span τ
is given by the following expression [8, 9]:

P ¼ 1� exp �λτð Þ ð2:2aÞ

or

P ¼ 1� exp � τ
MRP

� �
ð2:2bÞ

For 10% chance in 50 years, P ¼ 0.1 (10%), and τ ¼ 50 years. Substituting these
into Eq. 2.2b, the mean return period can be calculated as MRP ¼ 475 years.
Therefore, 10% chance of exceedance in 50 years is same as 475 years MRP.
Table 2.3 presents MRP for some commonly used probabilities of exceedance.

2.2.3 Example: PSHA of a Real Site

For real sites, hundreds of seismic sources are used to perform PSHA. Some of these
seismic sources are “faults” where earthquakes are known to have occurred in the
past and can occur again in the future. Most of the seismic sources are polygons
(areas) on the surface of the earth within which earthquakes may or may not have
occurred in the known past. Within an area source, the chance of occurrence of an
earthquake is considered uniform throughout. The site itself belongs to one of the
area sources. The occurrence rate of an earthquake at a specific location within an
area source is very small, but collectively area sources can have a significant
influence on the seismic hazard at a site.

A site is selected in the San Francisco Bay Area (SFBA). Hundreds of hazard
curves (corresponding to hundreds of seismic sources) are added together to obtain
the overall hazard curves for the site. The PGA, PGV, and PGD values for various
MRP are read from the hazard curves. They are listed in Table 2.4. Each set of PGA,
PGV, and PGD values is used to generate a smooth response spectrum as described
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in Sects. 1.11 and 1.12. Figure 2.7 shows the 5% damping response spectra for the
site for various MRPs.

2.3 Response Spectra of Vertical Ground Motion

Although vertical ground motion is not as important as the horizontal ground
motion, it is still used in the analysis of some structures. The amplitudes of vertical
ground motion are usually determined from those of the horizontal ground motion.

Fig. 2.6 Generation of PGD hazard curve for the site by adding Fault 1 and Fault 2 hazard curves
along the vertical axis

Table 2.3 MRP for different
probabilities of exceedance

50-year probability (%) MRP (years)

50 72

20 224

10 475

5 975

2 2475

1 4975

0.5 9975
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The vertical to horizontal ratio V/H is most affected by the local soil conditions,
because the soils are much more flexible in the horizontal direction than in the
vertical direction. Figures 2.8, 2.9, and 2.10 show the ratios between the vertical and
horizontal amplitudes for thousands of ground motions on different soil types. The
median values are indicated by the red lines. The vertical to horizontal V/H ratios
tend to be smaller for softer soils, because softer soils amplify horizontal motion
more than vertical motion. The V/H ratio is smallest for PGV because horizontal
PGV is most amplified by soils. Table 2.5 lists the median ratios between vertical and
horizontal amplitudes for different soil types. These ratios are used to calculate the
amplitudes of vertical ground motion from those of horizontal ground motion.

Table 2.4 PGA, PGV, and
PGD for various MRP for the
site in the SFBA

MRP (years) PGA (g) PGV (cm/s) PGD (cm)

250 0.605 84.5 53.9

500 0.772 115 76.6

1000 0.915 139 103

2500 1.2 195 143

10,000 1.62 282 219

Fig. 2.7 Five-percent damping response spectra of horizontal ground motion for MRP of 250, 500,
1000, 2500 and 10,000 years for the SFBA site
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Since the soil type for the SFBA site is Class D (stiff soil), the horizontal
amplitudes (PGA, PGV, and PGD) are multiplied by 0.41, 0.35, and 0.35, respec-
tively, to obtain the vertical amplitudes PGAV, PGVV, and PGDV. The vertical
amplitudes for the SFBA site are listed in Table 2.6, these are used to generate the
response spectra as described in Sects. 1.11 and 1.12. Figure 2.11 shows the 5%
damping response spectra of vertical ground motion for various MRP.

2.4 Building Code Response Spectra and Expected
Performance

The design response spectra in building codes [10] are not purely probabilistic; they
are adjusted by various factors (such as the “risk coefficients”, “deterministic limit”
and “2/3” factor in ASCE 7) to achieve consensus among various stakeholders in
code committees. As a result of these artificial adjustments, the risk to code-designed
structures is not the same everywhere [11, 12]. Building code response spectra are
generated from three parameters Ss, S1, and TL [10], which are related to PGA, PGV,
and PGD. It is not enough to select a response spectrum for design, it is equally

Fig. 2.8 Ratios between vertical and horizontal PGA for different soil types
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important to select the desired performance objective. For example, a structure may
be designed to remain operational (undamaged) during the 500-year MRP ground
motion and to remain standing (without collapse) during the 2500-year MRP ground
motion.

Structures cannot be made earthquake-proof because geoscientists are not able to
provide an upper limit on the amplitude of ground motion that is possible at a site
during the life of a structure. Even if such a limit existed, it will be prohibitively
expensive to build earthquake-proof structures. In other words, the seismic risk to
structures cannot be eliminated; it can only be reduced to an acceptable level. The
MRP of design ground motion depends on the consequence of failure of the
structure. For major dams and nuclear power plants, the consequence of failure is
high. Therefore, the MRP of design ground motions is long. The consequence of
collapse is much higher than the consequence of business interruption. Therefore,
the MRP of collapse is much longer than the MRP of business interruption. Table 2.7
lists the approximate MRP of design ground motions for certain types of structures in
the United States. Codes and regulations do not clearly define the MRP of opera-
tional performance and collapse prevention. They tend to be vague about the
tolerable level of risk [11]. This is a shortcoming of codes and standards because
the acceptable level of risk should be clearly communicated.

Fig. 2.9 Ratios between vertical and horizontal PGV for different soil types
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Fig. 2.10 Ratios between vertical and horizontal PGD for different soil types

Table 2.5 Median ratios
between vertical and horizon-
tal amplitudes for different
soil types

Site class PGAV/PGA PGVV/PGV PGDV/PGD

A and B 0.46 0.44 0.53

C 0.45 0.43 0.46

D 0.41 0.35 0.35

E 0.31 0.29 0.29

Table 2.6 PGAV, PGVV, and
PGDV for various MRP for the
site in the SFBA

MRP (years) PGAV (g) PGVV (cm/s) PGDV (cm)

250 0.248 29.6 18.9

500 0.316 40.2 26.8

1000 0.375 48.7 35.9

2500 0.491 68.1 50.2

10,000 0.662 98.8 76.6
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2.5 Ground Motion Histories for Dynamic Analyses

It is usually possible to model a structure by one or more SDOF systems, whose
responses can be read directly from the response spectra of ground motions. Such
types of analyses are called static analyses because they do not require a numerical
solution of the EOM. Sometimes, it is not possible to reliably model a structure by

Fig. 2.11 Five-percent damping response spectra of vertical ground motion for MRP of 250, 500,
1000, 2500, 5000 and 10,000 years for the SFBA site

Table 2.7 Approximate MRP of design ground motions for different structures

MRP
(years) Immediate operational Collapse/breach prevention

100 Nuclear power plants

500 LNG facilities, existing hospitals, and
schools

1000 Major bridges, dams, hospitals, and schools Existing hospitals, and schools

2500 Ordinary structures, LNG facilities

5000 Bridges, new hospitals, and
schools

10,000 Major dams, nuclear power plants
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one or more SDOF systems. Therefore, response spectra cannot be used to complete
the analysis. Ground motion histories are needed to compute the forces and defor-
mations induced in the structure. Such types of analyses are called the dynamic
analyses because they require numerical solution of the EOM.

Site-specific ground motion histories for dynamic analyses cannot be predicted
directly. They need to be generated from the site-specific response spectra. Dynamic
analyses can be two dimensional (2D) or three dimensional (3D). Ground motion
histories for 2D dynamic analyses have one horizontal and one vertical components.
Ground motion histories for 3D dynamic analyses have two horizontal and one
vertical components. The following examples illustrate the generation of site-spe-
cific ground motion histories.

2.5.1 Example: Ground Motion Histories for 2D Analyses

It is of interest to generate 500-year MRP ground motion histories for 2D dynamic
analyses of structures at the SFBA site. The following steps are taken to generate a
set of ground motion histories for 2D analyses:

1. Select one component of horizontal ground motion of appropriate duration from
a past earthquake. Select vertical component from the same ground motion. This
is the “seed” ground motion. Figure 2.12 shows the horizontal component of the
seed ground motion.

2. Generate the 5% damping response spectrum of the seed ground motion
(Fig. 2.12) and compare it with the target (500-year MRP) response spectrum.
The comparison is shown in Fig. 2.13.

3. Calculate ratios between the target response spectrum and the response spectrum
of the seed ground motion for various periods. The ratios are shown in Fig. 2.14.

4. Generate Fourier amplitude and phase spectra of the seed ground motion using
the fft routine in MATLAB [13]. The Fourier amplitude spectrum is shown by
the blue curve in Fig. 2.15.

5. Multiply the Fourier amplitudes by the spectral ratios computed in Step 3. The
modified Fourier amplitude spectrum of the seed ground motion is shown by the
red curve in Fig. 2.15. The phase spectrum is not modified.

Fig. 2.12 Seed ground motion
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6. Combine the modified Fourier amplitude spectrum and the original phase
spectrum to generate the modified seed ground motion using the inverse-Fourier
ifft routine in MATLAB [13]. It is shown in Fig. 2.16.

7. Compute the response spectrum of the modified seed ground motion and
compare it with the target response spectrum. The comparison is shown in
Fig. 2.17.

8. Go to Step 9 if the spectrum of the modified seed ground motion satisfactorily
matches the target response spectrum. Otherwise, replace the seed ground
motion with the modified seed ground motion and repeat steps 2–7.

9. Repeat steps 2–8 to generate a site-specific vertical ground motion. Figure 2.18
shows a set of site-specific horizontal and vertical ground motion histories for
2D analyses.

10. Repeat steps 1–9 to generate seven sets of site-specific ground motion histories.
Figure 2.19 compares the response spectra of seven site-specific horizontal
ground motion histories with the target response spectrum of horizontal motion.
The median of these seven spectra matches the target spectrum almost perfectly.
Figure 2.20 compares the response spectra of seven site-specific vertical ground
motion histories with the target response spectrum of vertical motion. Again, the
median of these seven spectra matches the target spectrum almost perfectly.

Fig. 2.13 Five-percent damping response spectrum of “seed” horizontal ground motion compared
with the target (500-year MRP) response spectrum of horizontal motion

2.5 Ground Motion Histories for Dynamic Analyses 47



2.5.2 Example: Ground Motion Histories for 3D Analyses

3D analyses are carried out with two horizontal and one vertical ground motion
histories. The following steps are taken to generate a set of ground motion histories
for 3D analyses:

1. Select all three components of a “seed” ground motion of appropriate duration
from a past earthquake.

2. Compute the resultant response spectrum of two horizontal components and
compare it with target response spectrum of horizontal ground motion.

3. Compute the ratios between the target response spectrum and the resultant
horizontal response spectrum of seed ground motion.

4. Generate Fourier amplitude and phase spectra of the seed ground motion
components.

5. Multiply the Fourier amplitude spectra of both horizontal components with the
spectral ratios computed in Step 3 to compute the modified Fourier amplitude
spectra. The phase spectra of both horizontal components are not modified.

Fig. 2.14 Ratio between the target response spectrum and the spectrum of seed horizontal ground
motion shown in Fig. 2.13
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6. Combine the modified Fourier amplitude spectra with the original phase spectra
of seed ground motion components to compute the modified ground motion
components.

7. Compute the resultant response spectrum of modified ground motion compo-
nents and compare it with the target response spectrum.

8. Go to Step 9 if the spectrum of modified ground motion components satisfac-
torily matches the target response spectrum. Otherwise, replace the seed ground
motion components with the modified seed ground motion components and
repeat steps 2–7.

Fig. 2.15 Fourier amplitude spectra of seed horizontal ground motion and modified seed horizontal
ground motion

Fig. 2.16 Modified seed ground motion
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9. Generate vertical ground motion history similar to that for the 2D analyses.
10. Repeat steps 1–9 to generate seven sets of site-specific ground motions for 3D

analyses. Figure 2.21 shows one set of ground motions for 3D analyses.

Fig. 2.17 Response spectrum of modified seed horizontal ground motion compared with the target
response spectrum of horizontal motion

Fig. 2.18 One set of horizontal and vertical ground motions for 2D analyses
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2.5.3 Unequal Ground Motions in Two Horizontal Directions

Seismic hazard at a site is usually determined by numerous seismic sources which
are at various distances from the site and various orientations with respect to the site.
Therefore, it is not possible to say in which horizontal direction the shaking will be
stronger. However, in rare cases, the hazard may be controlled by a single seismic
source close to the site and it may be possible to predict the horizontal direction of
stronger shaking. If that is the case, the seed ground motions with significantly
different horizontal components can be selected, but the resultant of those two
components should still be matched with the site-specific response spectrum.

2.6 Response Spectra for Various Values of Damping

For many applications, response spectra are needed for damping other than 5% of
critical. Once spectrum-compatible ground motion histories have been generated,
response spectra for many different values of damping can be generated. Figure 2.22

Fig. 2.19 Response spectra of seven site-specific horizontal ground motions compared with the
target spectrum of horizontal motion
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Fig. 2.20 Response spectra of seven site-specific vertical ground motions compared with the target
spectrum of vertical motion

Fig. 2.21 One set of horizontal and vertical ground motion histories for 3D analyses
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shows a set of 500-year MRP response spectra for different values of damping.
These are calculated directly from the seven sets of site-specific ground motion
histories. For each damping, seven different response spectra were obtained. These
were averaged and smoothed to generate the plots in Fig. 2.22. Figure 2.23 shows the
500-year MRP ADRS for the SFBA site for various values of damping. Figure 2.24
shows linear plots of the 500-year MRP ADRS for various values of damping.

The ADRS plots show the strength- and deformation demands imposed by the
500-year MRP ground motion on structures of various values of damping. There are
different ways to interpret the ADRS; one useful way is to read the deformation
demands for various values of strength and damping. Table 2.8 lists the deformation
demands for selected values of strength and damping. For the same damping, the
deformation demand reduces with increase in strength. For the same strength, the
deformation demand reduces with increase in damping. A structure with high
deformability and/or high damping need not be very strong to resist seismic ground
shaking. The deformability and damping of a structure can be increased by thought-
ful detailing.

Important sources of deformability are:

1. Elastic deformation
2. Plastic deformation (yielding)

Fig. 2.22 500-year MRP response spectra for the SFBA site for different values of damping
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3. Sliding at the base
4. Rocking (uplifting) at the base
5. Deformation of soil below the foundation

Important sources of damping are:

1. Material damping during elastic deformation
2. Hysteretic damping due to plastic yielding
3. Sliding at the base
4. Base impacts during rocking
5. Soil damping
6. Radiation of waves away from the foundation

In a good seismic analysis, all sources of deformability and damping are explic-
itly considered.

Fig. 2.23 ADRS plots of 500-year MRP response spectra for the SFBA site for different values of
damping
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2.7 Demand Surface

ADRS for various values of damping (Fig. 2.24) can be stacked on top of each other
to generate a three-dimensional surface, as shown in Fig. 2.25. This is a complete
description of strength and deformation demands on structures of various damping.
This plot will be helpful in later chapters to visualize the seismic response of
structures whose strength and damping depend on deformation.

Fig. 2.24 Linear plots of 500-year MRP ADRS for the SFBA site for different values of damping

Table 2.8 Deformation demands on structures of various strength and damping

Lateral strength (% weight) Deformation demand (cm)

ζ ¼ 5% ζ ¼ 10% ζ ¼ 20% ζ ¼ 30%

20 178 127 68 45

30 150 95 45 30

40 122 67 35 23

50 94 55 27 18

60 79 46 23 13
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2.8 Energy Demand for SFBA Site

As discussed in the previous chapter, there is no single parameter which completely
defines the seismic demand imposed by the ground motion, but the area enclosed
within the 5% damping ADRS comes close to defining the seismic demand for a
broad range of structures. As shown in Fig. 2.26, ED ¼ 13.4 (m/s)2 for the 500-year
MRP ground motion at the SFBA site. ED has the units of energy/mass. ED can also
be computed for different MRP and different damping. Table 2.9 lists ED values for
different damping and different MRP. With tenfold increase in damping from 5 to
50%, ED reduces to one-eighths. With tenfold increase in MRP from 500- to 5000-
year, ED increases to four times.

2.9 Structure Types for Different Sites

Certain types of structures are better suited for a specific site. On a rock site, high-
frequency groundmotions are expected during closer–small earthquakes. Figure 2.27
shows ADRS of a high-frequency ground motion. Notice that the strength demand is

Fig. 2.25 A three-dimensional plot of the response spectrum
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high, but the deformation demand is low. Therefore, deformable structures, such as
mid- to high-rise buildings, are better suited for this site.

On soil sites, low-frequency ground motions are expected during distant–larger
earthquakes. Figure 2.28 shows ADRS of a low-frequency ground motion. Notice
that the deformation demand is high, but the strength demand is low. Therefore, stiff
and strong structures, such as low-rise buildings, are better suited for this site.

On “soft-soil” sites with well-defined natural frequency, narrow-banded ground
motions are expected. Figure 2.29 shows ADRS of a narrow-banded ground motion.
Notice the effect of damping on strength and deformation demands. Heavily damped
structures are most suited for this site.

Fig. 2.26 Five-percent damping 500-year MRP ADRS for the SFBA site

Table 2.9 ED for SFBA site for different damping and different MRP

MRP

Energy demand ED (m/s)2

ζ ¼ 5% ζ ¼ 10% ζ ¼ 20% ζ ¼ 30% ζ ¼ 50% ζ ¼ 64%

250 7.3 4.2 2.2 1.5 0.9 0.7

500 13.4 7.6 4 2.7 1.7 1.2

1000 19.7 11.2 5.9 4 2.5 1.8

2500 38.4 21.9 11.5 7.7 4.9 3.4

5000 53.6 30.6 16 10.8 6.8 4.8

10,000 80.8 46.1 24 16.3 10.3 7.2
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2.10 Summary

1. Due to high uncertainty in geological and seismological models, probabilistic
analyses are needed to predict future ground motions.

2. There is no upper limit on the intensity of ground shaking that is possible at a
site. Therefore, the design ground motions have a certain chance of being
exceeded during the life of a structure.

3. Closer seismic sources control PGA at the site even when they produce small
earthquakes. Bigger seismic sources control PGD at the site even when they are
far from the site.

4. Site-specific design ground motions are expressed in two different ways: (1) a
set of response spectra for various values of damping and (2) a set of spectrum-
compatible ground motion histories.

5. Response spectra are used in static analyses. Ground motion histories are used in
dynamic analyses.

6. Structures with high consequence of failure are designed to less likely (or longer
MRP) ground motions. Structures with low consequence of failure are designed
to more likely (or shorter MRP) ground motions.

Fig. 2.27 ADRS of high-frequency ground motion expected on a rock site during closer–small
earthquakes
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7. For the same structure, the consequence of collapse is much higher than the
consequence of business interruption. Therefore, the design ground motions for
collapse prevention have longer MRP than design ground motions for business
continuity.

8. Cities, states, and federal governments are more focused on collapse prevention.
Owners, operators, and insurance companies are also interested in business
continuity.

9. For the same damping, increase in deformability reduces the strength demand on
structures.

10. For the same deformability, increase in damping reduces the strength demand on
structures.

11. Deformability and damping can be increased by thoughtful detailing of the
structure.

12. Deformable structures are most effective against high-frequency ground
motions; strong structures are most effective against low-frequency ground
motions; and damped structures are most effective against narrow-banded
ground motions.

Fig. 2.28 ADRS of low-frequency ground motion expected on a soil site during distant–large
earthquakes
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Chapter 3
Seismic Response of One-Story Buildings

Nomenclature

ζ Viscous damping ratio
2D Two dimensional
ADRS Acceleration–deformation response spectrum
EBF Eccentric braced frame
EOM Equation(s) of motion
g 9.81 m/s2 ¼ acceleration due to gravity
MF Moment frame(s)
MRP Mean return period
PD Peak deformation
PPA Peak pseudo-acceleration
SDOF Single degree of freedom system
SFBA San Francisco Bay Area
ST Seismic toughness (area below the capacity curve)
T Natural period of structure

3.1 Introduction

In Chap. 2, ground motions for future earthquakes were generated for a site in the
San Francisco Bay Area (SFBA). Ground motions were expressed in two different
ways: (1) a set of response spectra for various values of damping and (2) a set of
spectrum-compatible ground motion histories. Key characteristics of a structure are
its mass (weight), lateral strength, deformability, and damping. Lateral strength is
structure’s ability to resist horizontal load. Deformability is its ability to deform
laterally. Damping is structure’s ability to quickly dissipate vibration energy. For a
specific damping, a more deformable structure needs smaller strength to withstand
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ground shaking. For a specific deformability, a more damped structure needs smaller
strength to withstand ground shaking. The lateral strength of a structure depends on:
(1) the size, configuration, and material of structural elements (beams, columns,
braces, etc.), (2) the strength of connections, and (3) the strength of the foundation.
The deformability and damping of a structure can be enhanced by proper detailing—
by encouraging ductile modes of failure (such as flexural yielding in beams), and
suppressing brittle modes of failure (such as shear failure in concrete beams and
columns, buckling in steel columns and braces, and failure of connections).

There are different ways of analyzing the response of a structure to ground
motions. The analyses can be static or dynamic. Static analyses do not require the
solution of the equations of (EOM); they use the response spectra for various values
of damping. Dynamic analyses require the solution of the EOM; they use ground
motion histories. The analyses can be linear or nonlinear. Linear analyses assume
that the force induced in a structure is linearly proportional to its deformation—
doubling the deformation doubles the force. Nonlinear analyses assume a more
realistic relationship between the force and deformation. There are four basic types
of analyses: (1) linear-static, (2) linear-dynamic, (3) nonlinear-static, and
(4) nonlinear-dynamic. In this chapter, pros and cons of different types of analyses
are discussed for a one-story moment-frame (MF) building. The effect of braces is
discussed near the end of the chapter.

3.2 One-Story Moment Frame

Figure 3.1 shows the sketch of a one-story steel MF fabricated from W14 � 109
columns and W14 � 99 beams. The steel type is ASTM A36 with an expected yield
strength of 250 MPa. Column-foundation and column-beam connections are rigid
(fully restrained). During horizontal shaking of the ground, columns and beam
deform due to bending, as shown in Fig. 3.1. Rigid connections ensure that the
angles between the columns and foundations and between columns and beam remain
90� even after the MF has deformed. If the connections are stronger than the
connected members, plastic yielding will occur in the members before brittle failure
of the connections. This is a highly desirable characteristic of a moment frame
because it results in a ductile system which can deform and dissipate energy. Specific

Fig. 3.1 Sketch of a one-story moment frame (MF)

64 3 Seismic Response of One-Story Buildings



guidelines need to be followed to ensure ductile behavior of steel MF [1–3]. Some-
times, members are intentionally weakened to ensure that plastic hinges will form in
the members before failure of the connections [4]. After yielding, plastic hinges
appear at the base of columns and at the ends of beam where the moments are
maximum. Due to plastic hinge rotations, the angles between the columns and
foundations and between beam and columns are no longer 90�. They are greater
than or smaller than 90� depending on the direction of plastic rotation. The maxi-
mum allowable plastic hinge rotation in column depends on the “compactness” of
the cross section, slenderness ratio of the column in the weak direction, and the axial
load [5, 6]. The maximum allowable plastic hinge rotation in beam depends on the
“compactness” of the cross section and the length of beam [6].

Table 3.1 lists the important structural properties of the MF shown in Fig. 3.1.
The mass of the structure lumped with the MF is m ¼ 78.4 � 103 kg. The mass is
lumped at the beam level, and the beam is assumed axially rigid. Therefore, the MF
can be treated as a single-degree-of-freedom (SDOF) system.

3.3 Ground Motion

In this chapter, the response of the MF is computed during the 500-year MRP ground
motion at a site in the San Francisco Bay Area (SFBA). The 500-year MRP ground
motion for the SFBA site was generated in Chap. 2. Figure 3.2 shows the 500-year
MRP response spectra for various values of damping. The response spectra are
shown in the acceleration–deformation format. These are known as the demand
curves for the site. The peak pseudo-acceleration PPA is read along the vertical axis
and the peak deformation PD is read along the horizontal axis. The natural period
T is shown by the parallel diagonal lines. The PPA, PD, and T are related to each
other by the expression: PD ¼ PPA � (T/2π)2. Figure 3.3 shows one of the seven
spectrum-compatible ground motion histories for 2D analyses; these were also
generated in Chap. 2. Different types of analysis are discussed next.

Table 3.1 Important structural properties of the MF shown in Fig. 3.1

Length of beam (distance between column centerlines) 7.32 m

Height of column 3.66 m

Lumped mass 78.4 � 103 kg

Moment of inertia of column cross section 51,694 cm4

Moment of inertia of beam cross section 46,274 cm4

Plastic moment capacity of columns 781 kNm

Plastic moment capacity of beam 704 kNm

Maximum allowable plastic hinge rotation in columns 0.0568 radian [6]

Maximum allowable plastic hinge rotation in beam 0.0783 radian [6]
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Fig. 3.2 500-year MRP ADRS for various values of damping for the SFBA site

Fig. 3.3 One of seven 500-year MRP spectrum-compatible ground motion history
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3.4 Linear-Static Analysis

The linear analysis is applicable as long as the MF does not yield or break anywhere.
The lateral stiffness of the MF can be determined with the help of a structural
analysis program such as SAP 2000 [7]; it is k¼ 24.1 � 106 N/m. Therefore, the
natural period of the system is T ¼ 2π

ffiffiffiffiffiffiffiffiffi
m=k

p ¼ 0.358 s. In a linear system, some
sources of damping are air resistance, internal friction, damage to nonstructural
systems such as walls and ceilings, and radiation of energy through the foundation.
The first two sources of damping are usually small. For the MF, the radiation
damping is also expected to be small because less deformation occurs in the
foundation relative to the structure. Therefore, a nominal damping of 0.05 (5% of
critical) is assumed for the linear analysis.

Figure 3.4 shows the pseudo-acceleration plot of the 5% damping 500-year MRP
response spectrum for the SFBA site. The peak pseudo-acceleration for T¼ 0.358 s is
PPA ¼ 1.83 g. Thus, the peak deformation is PD ¼ PPA � (T/2π)2 ¼ 5.85 cm.
Alternatively, both PPA and PD can be simultaneously read from the 500-year MRP
ADRS shown in Fig. 3.5. The induced base shear (horizontal force) is Q ¼ m ∙ PPA
¼ 78.4 � 103 � 1.83 � 9.81 ¼ 1.41 MN. The same value of the base shear can be

Fig. 3.4 Pseudo-acceleration plot of the 5% damping 500-year MRP response spectrum
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obtained by multiplying the peak deformation with the stiffness of the MF, i.e.,
Q ¼ k ∙ PD ¼ 24.1 � 106 � 5.85/100 ¼ 1.41 MN.

When pushed by a force of 1.41 MN, the MF deforms 5.85 cm. From static
analysis, the induced moment at the base of columns is 1653 kNm. This is 2.1 times
the plastic moment capacity of the columns (Table 3.1). The induced moment at the
ends of beam is 916 kNm. This is 1.3 times the plastic moment capacity of the beam
(Table 3.1).

3.5 Linear-Dynamic Analysis

For a linear, viscously damped SDOF system, dynamic analysis is unnecessary
because the response spectrum itself is generated from the dynamic analysis of
linear, viscously damped SDOF systems, as discussed in Chap. 1. Therefore, the
results of linear-dynamic analysis can be assumed to be same as the results of linear-
static analysis.

Fig. 3.5 500-year MRP ADRS for 5% damping
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3.6 Need for Nonlinear Analysis

According to the linear analysis, the moments in beam and columns exceed their
plastic moment capacities. In other words, the MF lacks the strength to remain fully
elastic during the 500-year MRP ground motion. If the connections are weaker than
the connected elements, the connections will break in a brittle fashion and the MF
could collapse during the 500-year MRP ground motion. If, on the other hand, the
connections are stronger than the connected elements, the beam and columns will
yield during the 500-year MRP ground motion. The linear analysis cannot predict
the extent of plastic yielding. The plastic yielding in the MF is measured in terms of
the plastic-hinge rotation. Strictly speaking, any plastic rotation will cause some
structural damage to the MF and reduce its resistance to subsequent earthquakes.
However, small plastic rotations (<0.01 radian) do negligible damage [6], hence
they can be tolerated. Plastic rotations between 0.02 and 0.04 radian do nontrivial
damage, hence they may require some repairs after the earthquake. Plastic rotations,
approaching the maximum allowable values (Table 3.1), can cause breaks at the
hinges, resulting in partial collapse of the MF. A nonlinear analysis is needed to
determine the condition of the MF following the 500-year MRP ground motion at the
site. Two methods of nonlinear analysis are discussed next.

3.7 Nonlinear-Static Analysis

The basis of nonlinear-static analysis is to determine the strength, deformability, and
damping of the MF and compute its response without performing a dynamic
analysis. The lateral strength and deformability of a system are expressed by its
pushover curve. The damping of a nonlinear system is not fixed; it depends on
deformation. A plot of damping versus deformation is known as the damping curve.
The pushover and the damping curves for the MF are generated next.

3.7.1 Pushover Curve

The pushover curve is a plot between the lateral force and the lateral deformation of
the system. The lumped mass, at the beam level, is gradually pushed in the horizontal
direction, causing the bending moments to rise in the beam and the columns. At
some point, plastic hinges appear at the base of columns. At some later point, plastic
hinges also appear at the ends of beam. Figure 3.6 shows the forces and moments
acting on columns after all the plastic hinges have formed in the MF. Disregarding
the effect of gravity, the lateral force after the formation of all plastic hinges is given
by the following expression:
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Fp ¼
2 Mpb þMpc

� �
H

ð3:1Þ

in which Mpb ¼ plastic moment capacity of the beam cross section; Mpc ¼ plastic
moment capacity of the column cross section; and H ¼ height of the MF. Upon
substituting Mpb, Mpc, and H from Table 3.1, Fp ¼ 811 kN.

The elastic stiffness, before the formation of any plastic hinges, is given by the
following expression:

k ¼ m
2π
T

� �2

ð3:2Þ

Substituting, m ¼ 78.4 � 103 kg and T ¼ 0.358 s into Eq. 3.2 gives k ¼ 24.1
MN/m. The maximum elastic deformation is:

De ¼ Fp

k
ð3:3Þ

Substituting Fp ¼ 811 kN and k ¼ 24.1 MN/m into Eq. 3.3 gives De ¼ 3.37 cm.
The elastic portion of the pushover curve (D � De) is generated by using the
following relationship:

F ¼ k ∙D ð3:4Þ

For deformation D � De, the force increases linearly with D, but the plastic
rotation θ remains zero. ForD>De, the force remains fixed at F¼ Fp, but the plastic
rotation θ increases with deformation. θ is the same for both beam and columns. The
relationship between D and θ is as follows:

Fig. 3.6 Forces and moments on columns after the formation of all plastic hinges
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D ¼ De þ θ ∙H ð3:5Þ

The maximum allowable plastic hinge rotation is 0.0568 radian for columns and
0.0783 radian for beam (Table 3.1). Since columns and beam experience the same
plastic rotation, the allowable rotation in columns controls the deformation of the
MF at collapse, i.e., 3.37 + 0.0568 � H ¼ 24.2 cm. Figure 3.7 shows a simplified
version of the pushover curve obtained from Eqs. 3.1–3.5. In a more accurate
pushover curve, the transition from elastic to plastic is more gradual as plastic hinges
appear one by one. The pushover curve of Fig. 3.7 ignores any increase in plastic
moment with increase in rotation, due to strain hardening. Finally, the pushover
curve ignores the effect of gravity, known as the P–Δ effect [8]. The pushover curve
is refined as follows:

Strain hardening. ASCE 41 [6] recommends that the post-yield stiffness can be
assumed equal to 3% of the elastic stiffness. This is somewhat arbitrary because
strain hardening in hinges should not depend on the elastic deformation of the
MF. But due to lack of better information, ASCE 41 [6] recommendation is
followed. Figure 3.8 shows the pushover curve with strain hardening. The lateral
strength of the MF increases from 811 to 960 kN. This is an 18% increase in lateral

Fig. 3.7 Simplified pushover curve for the MF
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strength while the plastic rotation increases from 0 to 0.0568 radian. The ultimate
moment capacity of columns is 18% higher than the value listed in Table 3.1. The
ultimate moment capacity of beam is 18/0.0568 � 0.0783 ¼ 24.8% higher than the
value listed in Table 3.1. Therefore, the ultimate moment capacities of columns and
beam are 922 and 879 kNm, respectively.

The ultimate strength of 910 kN is 13% higher than the yield strength of 804 kN.
This increase occurs while the deformation D increases from 3.37 cm to 24.2 cm or
the plastic rotation increases from 0 to 0.0568 radian. Therefore, the net increase in
strength is 13/0.0568 ¼ 230% per radian.

P–Δ effect. Referring to Fig. 3.6, note that the weight of the structure applies an
additional moment which is in the same direction as the moment applied by the
lateral force F. Both these moments are resisted by the MF. The weight of the
structure reduces the lateral force F for a given deflectionD. P–Δ effect is considered
as follows: (1) for a given value of D, F is read from Fig. 3.8 and (2) F is reduced by
an amount DW/H, where W ¼ the weight of the structure. Figure 3.9 shows the
refined pushover curve after considering both strain hardening and P–Δ effect. Due
to P–Δ, the yield strength of the MF reduces from 811 kN to 804 kN, and the
ultimate strength of the MF reduces from 960 kN to 910 kN.

Fig. 3.8 Pushover curve with strain hardening
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3.7.2 Capacity Curve

The pushover curve of Fig. 3.9 is converted into the capacity curve by dividing the
force along the vertical axis of Fig. 3.9 by the mass m ¼ 78.4 � 103 kg. Figure 3.10
shows a plot of the capacity curve. The vertical axis in Fig. 3.10 is the pseudo-
acceleration PA. Recall from Chap. 1 that the natural period depends on the ratio
between the deformation and the pseudo-acceleration, i.e.,

T ¼ 2π

ffiffiffiffiffiffi
D
PA

r
ð3:6Þ

For a nonlinear system, it is more appropriate to refer to T as the “effective
period.”

With the help of Eq. 3.6, radial tick marks corresponding to various periods are
drawn in Fig. 3.10. Note that the period of the MF remains fixed at 0.358 s up to the
formation of plastic hinges at 3.37 cm deformation. After that, the period increases
with increase in deformation. The capacity curve ends at 24.2 cm when the plastic
rotation in columns reaches its maximum allowable value of 0.0568 radian. The area
below the capacity curve (Fig. 3.11) is called the seismic toughness ST. In general,

Fig. 3.9 Pushover curve with strain hardening and P–Δ effect
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structures with greater toughness perform better during earthquakes. For the MF
discussed here, ST ¼ 2.45 (m/s)2. ST has the units of energy/mass.

In Fig. 3.12, the capacity curve of Fig. 3.10 is redrawn on a logarithmic scale. The
radial tick marks in Fig. 3.10 are replaced by parallel diagonal lines in Fig. 3.12.
Both linear and logarithmic plots of the capacity curve (Figs. 3.10 and 3.12) will be
used in the nonlinear-static analysis.

3.7.3 Damping Curve

During earthquake, the structure deforms back and forth in a cyclicmanner. Figure 3.13
shows the cyclic force–deformation relationship for the MF subjected to deformation
cycles of various amplitudes. It is assumed that there is no degradation in strength,
stiffness, and damping under repeated cycles up to the limiting plastic rotations
recommended in ASCE 41 [6]. The force–deformation relationship is hysteretic—
meaning that some energy is lost during each cycle. The energy loss occurs due to
plastic-hinge rotations and it equals the area enclosed within the force–deformation
loop. This is the primary source of damping in a moment frame. The damping depends
on deformation. The damping for various values of deformation is determined next.

Fig. 3.10 Capacity curve for the MF
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Fig. 3.11 Seismic toughness of the MF

Fig. 3.12 Logarithmic plot of the capacity curve for the MF



Figure 3.14a shows the force–deformation relationship for a hypothetical cycle of
10-cm amplitude. The energy loss Eh is the shaded area enclosed within the
hysteresis loop. The “strain” energy Es is one-half the product of peak force and
peak deformation; it is the area of the shaded triangle in Figure 3.14b. The equiv-
alent-viscous hysteretic damping is given by the following expression [9, 10]:

Fig. 3.14 Hysteretic and “strain” energies for 10-cm amplitude cycle

Fig. 3.13 Cyclic force–deformation relationship for the MF
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ζh ¼ Eh

4πEs
ð3:7Þ

For a 10-cm deformation cycle, Eh ¼ 213 kNm and Es ¼ 43.1 kNm. Therefore,
ζh ¼ 213/(4π ∙ 43.1) ¼ 0.39 (or 39% of critical). Hysteretic damping is similarly
computed for cycles of other amplitudes. Figure 3.15 shows a plot of hysteretic
damping for various values of deformation. The hysteretic damping is zero for
deformations smaller than 3.37 cm because the MF has not yet yielded.

The damping curve of Fig. 3.15 needs some adjustments before it can be used in
the nonlinear-static analysis. These adjustments are discussed next. During seismic
response, the peak deformation occurs only once; rest of the times the deformation is
less than the peak. Since the damping for smaller amplitude cycles is less, the
damping is adjusted as follows. For D ¼ 10 cm, the damping is 0.39 according to
Fig. 3.15. The average damping for deformations between 0 and 10 cm is calculated
by taking the area under the damping curve up to 10 cm and dividing that area by
10 cm (Fig. 3.16). This gives the average damping of 1.76/10 ¼ 0.176 (18% of
critical). The average damping is similarly computed for other values of D. Finally,
the damping is not allowed to drop below 5% of critical to account for additional
sources of energy dissipation besides plastic yielding. Figure 3.17 shows the

Fig. 3.15 Equivalent-viscous damping due to plastic yielding for various values of deformation
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Fig. 3.16 Computing average hysteretic damping

Fig. 3.17 Adjusted damping curve for the MF



adjusted damping curve for the system. This will be used to complete the nonlinear-
static analysis.

3.7.4 Deformation-Versus-Damping Curve

In Fig. 3.18, the capacity curve of Fig. 3.12 is superimposed on the 500-year MRP
response spectra (demand curves) for various values of damping. The response
spectra (demand curves) in Fig. 3.18 are same as those in Fig. 3.2. The intersections
of the capacity curve with the demand curves provide peak deformations for various
assumed values of damping; these are shown in Fig. 3.19. In Fig. 3.18, the capacity
curve stops short of the demand curve for 5% damping. This implies that the MF will
collapse during the 500-year MRP ground motion if the damping of the MF were
only 5% of critical. The plot in Fig. 3.19 is known as the deformation-versus-
damping curve even though the deformations are shown along the horizontal axis.
This curve represents the deformations of the MF for various assumed values of
damping.

Fig. 3.18 Capacity curve superimposed on demand curves (response spectra) for 5%, 10%, 20%,
30%, and 50% damping
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3.7.5 Responses at Equilibrium

Figure 3.19 is a plot of deformations for various assumed values of damping.
Figure 3.17 is a plot of damping for various assumed values of deformation. The
equilibrium point has to be on both these curves. Figure 3.20 shows the intersection
of deformation-versus-damping curve with the damping curve. The deformation at
equilibrium is 8.75 cm and the damping at equilibrium is 0.15 (15% of critical);
8.75 cm is the peak deformation experienced by the structure during the 500-year
MRP ground motion. From the capacity curve of Fig. 3.10, the peak pseudo-
acceleration corresponding to the deformation of 8.75 cm is 1.08 g (Fig. 3.21).
The effective period of the system at equilibrium is T ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:75= 1:08� 981ð Þp ¼

0.57 s. This is 59% longer than the linear-elastic period of 0.358 s, implying that the
response is significantly nonlinear. Multiplying the peak pseudo-acceleration by the
mass gives the peak value of the base shear Q¼ 1.08� 9.81� 78.4¼ 833 kN. As a
comparison, the base shear from linear analysis was 1.41 MN.

Fig. 3.19 Deformation-versus-damping curve
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3.7.6 Expected Performance

Out of the total deformation of 8.75 cm, 3.37 cm deformation is elastic (Fig. 3.21)
and the rest 5.38 cm is due to plastic yielding. From simple mechanics, the plastic
hinge rotation is θ¼ 5.38/H¼ 0.0147 radian. The limiting value of plastic rotation at
which the columns collapse is 0.0568 radian (Table 3.1). The low-cycle fatigue
damage is roughly proportional to the square of plastic deformation [11]. Since the
limiting plastic rotation is 0.0568 radian (Table 3.1), the damage done by 0.0147
radian plastic rotation is (0.0147/0.0568)2 � 100 ¼ 7%. Therefore, the MF is
practically undamaged by the 500-year MRP ground motion. It has ample fatigue
life left to resist aftershocks. If nonstructural systems such as pipes and finishes can
be shown to deform 8.75 cm without damage, the building can be considered to
remain operational after the 500-year MRP ground motion.

Fig. 3.20 Intersection of deformation-versus-damping curve (Fig. 3.19) with the damping curve
(Fig. 3.17) to obtain damping and deformation at equilibrium
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3.7.7 3D Visualization of Nonlinear-Static Analysis

It can be helpful to visualize the nonlinear-static analysis in three dimensions. The
acceleration–deformation response spectra for various damping are stacked verti-
cally to generate a demand surface. In Fig. 3.22, the demand surface is shown in
colors ranging from blue to yellow. The capacity curve of Fig. 3.10 and the damping
curve of Fig. 3.17 are combined to generate a 3D plot between deformation, pseudo-
acceleration, and damping, known as the capacity-damping curve. It is the red curve
in Fig. 3.22. The intersection of capacity-damping curve with the demand surface
represents the equilibrium condition.

Fig. 3.21 Pseudo-acceleration at equilibrium read from the capacity curve
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3.8 Nonlinear-Dynamic Analysis

The dynamic analysis of a nonlinear system is performed by solving the nonlinear
equations of motion (EOM). Computer programs such as SAP 2000 [7] numerically
solve the EOM in the background. However, the solution of nonlinear EOM can be
easily corrupted by numerical errors. Therefore, a nonlinear-static analysis should
always be carried out before a nonlinear-dynamic analysis. A computer model of the
MF was generated in SAP 2000 [7]. Plastic hinges were assumed to form at the base
of columns and the ends of beam. The moment–rotation relationships for plastic
hinges were chosen to capture the net effect of strain hardening and P–Δ. According
to Fig. 3.9, the ultimate strength of the MF increases 13% while the deformation
D increases from 3.37 to 24.2 cm (or the plastic rotation increases from 0 to 0.0568
radian). Therefore, the moment capacity of the plastic hinges was assumed to
increase 13% during a rotation increase from 0 to 0.0568 radian. Figure 3.23
shows the backbone stiffnesses of column and beam plastic hinges for dynamic
analysis.

In Chap. 2, seven ground motion histories were generated to simulate the
500-year MRP ground motion at the SFBA site. Nonlinear-dynamic analysis was

Fig. 3.22 Intersection of capacity-damping curve with the demand surface to obtain equilibrium
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performed seven times, for each of the simulated ground motions. Figure 3.24
shows the deformation responses to seven simulations of 500-year MRP ground
motion. The peak deformation ranges from 4.67 cm (Simulation 6) to 5.87 cm
(Simulation 4). The median value of peak deformations is 5.24 cm. Table 3.2 lists
the peak responses of the MF to 500-year MRP ground motions. The median values
in the last row of the table should be considered as the responses to the 500-year
MRP ground motion. The base shear from nonlinear dynamic analysis is 836 kip.
The pseudo-acceleration corresponding to base shear of 836 kip is 836/78.4/
g ¼ 1.09 g.

A point corresponding to peak deformation of 5.87 cm and pseudo-acceleration
of 1.09 g is drawn on the 500-year MRP ADRS in Fig. 3.25. The point is between
10% and 20% ADRS; it lies on the 18% damping ADRS. Therefore, the implicit
damping in the nonlinear-dynamic analysis is 18% of critical. Based on Fig. 3.17,
18% damping seems too high for a deformation of 5.87 cm. It is difficult to know the
source of high damping in the nonlinear-dynamic analysis without fully understand-
ing the inner workings of the computer program used to perform nonlinear-dynamic
analysis. It could be due to: (1) the manner in which various sources of damping are
combined, (2) the shapes of hysteresis loops used in the analysis, or (3) numerically
induced artificial damping to achieve stable solutions. The results of nonlinear-
dynamic analysis should always be viewed with skepticism.

Fig. 3.23 Backbone stiffnesses of plastic hinges for dynamic analysis
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Fig. 3.24 Deformation responses to seven simulations of 500-year MRP ground motion at the
SFBA site
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3.9 Design of Connections

To ensure ductile performance of the MF, all connections should be strong enough to
allow the structural elements to yield to their maximum extent. In Sect. 3.7.1
(subsection “strain hardening”), it was established that the ultimate moment capac-
ities of columns and beam are 922 and 879 kNm, respectively. Therefore, the

Table 3.2 Peak responses from nonlinear-dynamic analyses

Simulation Deformation (cm) Base shear (kN)

Plastic rotation (radian)

Column Beam

1 4.98 818 0.00673 0

2 5.15 831 0.00727 0

3 5.55 844 0.00834 0.00070

4 5.87 848 0.00917 0.00155

5 5.37 842 0.00789 0.00025

6 4.67 797 0.00580 0

7 5.24 836 0.00752 0

Median 5.24 836 0.00752 0

Fig. 3.25 Equilibrium point from nonlinear-dynamic analysis on 500-year MRP ADRS
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connections of columns to the foundation should be designed for >922 kNm
moment, and the connections of beam to the columns should be designed for
>879 kNm moment.

3.10 Uncertainty in Strength of Structural Elements

There is usually some uncertainty in the plastic moment capacity of beam and
columns. If that is the case, lower and upper bound values of plastic moment
capacity should be established based on material test reports or recommendations
in ASCE 41 [6]. Lower bound estimates of plastic moment capacity should be used
to calculate the deflections and plastic rotations. Upper bound estimates of plastic
moment capacity should be used to calculate the base shear, overturning moment,
and the connection moments.

3.11 Pros and Cons of Different Types of Analysis

Table 3.3 compares the results from different types of analysis. Linear analyses are
applicable as long as the MF does not yield. In this particular case, the MF has
clearly yielded; therefore, the results of linear analyses are not strictly applicable. For
a nonlinear system, linear analyses overpredict the forces and underpredict the
deformations. Building codes [12] prescribe R factors to reduce the forces obtained
from the linear analyses. Although such analyses meet code requirements, they do
not inform the true condition of the structure after the design ground motion. A
nonlinear analysis is needed to assess the damage to the structure during the design
ground motion.

Nonlinear analysis can be static or dynamic. A properly conducted, static analysis
can predict the nonlinear response of a structure quite well. Static analysis is
approximate but it is free of any hidden numerical errors. Dynamic analysis can
predict the nonlinear responses more accurately if: (1) the analysis is not corrupted
by numerical errors; (2) all sources of damping are adequately modeled; and (3) the
ground motions used in the analysis match the response spectrum quite well. It is
desirable to perform a static analysis before a dynamic analysis.

Table 3.3 Comparison of results from different methods of analysis

Method of analysis Deformation (cm) Base shear (kN)

Plastic rotation (radian)

Column Beam

Linear static 5.85 1410 – –

Linear dynamic 5.85 1410 – –

Nonlinear static 8.75 833 0.0147 0.0147

Nonlinear dynamic 5.24 836 0.0075 0
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3.12 Knee-Braced Frame

So far, the plastic hinges in beam are assumed to form at the centerlines of columns.
Due to finite width of columns, the beam plastic hinges are shifted to the faces of
columns. This is also known as the rigid-end offset. If the beam is provided with
haunches or knee braces, the plastic hinges are shifted farther from the column
centerlines, as shown in Fig. 3.26. The shift in the plastic hinges changes the
pushover curve for the frame. If L¼ horizontal distance between column centerlines,
and a ¼ distance of plastic hinges from column centerlines, the lateral force at yield
is:

Fp ¼
2 Mpb � L= L� 2að Þ þMpc

� �
H

ð3:8Þ

For a¼ 0, Eq. 3.8 reduces to Eq. 3.1. Eq. 3.5 is still valid except that θ is now the
column plastic rotation θc ¼ θ. The beam plastic rotation is as follows:

θb ¼ θc ∙
L

L� 2a
ð3:9Þ

For a knee-braced frame, the plastic-hinge rotation in the beam is greater than that
in the columns. Since the limiting plastic rotation for the beam is also greater than the
columns, a can be selected such that the beam and columns reach their limiting
plastic rotations at the same deflection. This occurs when L/(L � 2a) ¼ 0.0783/
0.0568 ¼ 0.725 or when a ¼ 1 m. Figure 3.27 compares the capacity curve for an
optimally designed knee-braced frame with the capacity curve for the MF. The knee-
braced frame has higher strength but same deformability as the MF. The knee-braced
frame has a seismic toughness of ST¼ 2.83 (m/s)2 compared to ST¼ 2.45 (m/s)2 for
the MF.

Fig. 3.26 Location of plastic hinges in a knee-braced frame
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3.13 Eccentric Braced Frame

The portion of beam between the two braces has a length of L � 2a (Fig. 3.16). This
is called the link beam. As a increases, the shear in the link beam increases. For a
certain value of a, the link beam yields in shear rather than flexure. The shear
yielding in steel beams is quite ductile as long as localized buckling can be
prevented. An eccentric braced frame (EBF), shown in Fig. 3.28, utilizes shear
yielding in the link beam to increase its deformability and damping. Figure 3.29
compares the capacity curve for an EBF with that for an MF. The EBF has seismic
toughness of ST ¼ 3.53 (m/s)2 compared to ST ¼ 2.45 (m/s)2 for the MF.

Fig. 3.27 Comparison between capacity curves of knee-braced frame and MF
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3.14 Tension-Only Braced Frame

The brace elements in the knee-braced frame and the EBF were assumed to neither
yield nor buckle; yielding was assumed to occur only in the beam and columns.
Many times, the brace elements are designed for tension only; they buckle under
compression (Fig. 3.30). Buckling of brace elements causes plastic hinges to form in

Fig. 3.29 Comparison between capacity curves for EBF and MF

Fig. 3.28 Shear yielding of link beam in an eccentric brace frame
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the beam and columns, as shown in Fig. 3.30. For the brace configuration shown in
Fig. 3.30, the plastic rotation in the beam is twice the plastic rotation in the columns;
therefore, the deformability of the system is controlled by the maximum allowable
plastic rotation in the beam. Figure 3.31 compares the capacity curve for the tension-
only braced frame with the capacity curve for the MF. The tension-only braced frame
has seismic toughness of ST ¼ 1.6 (m/s)2 compared to ST ¼ 2.45 (m/s)2 for the MF.

Fig. 3.31 Comparison between capacity curves for tension-only braced frame and MF

Fig. 3.30 Plastic hinges in a braced frame after buckling of compression member
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3.15 Effect of Torsional Eccentricity

Figure 3.32 shows the plan and elevation of a building with multiple MF. The MF
are symmetrically arranged with respect to the center of gravity (CG) of the building.
The building has a “rigid” diaphragm (concrete roof slab). When the CG is pushed,
all the MF deform equally. Therefore, the capacity curve for the building is the same
as the capacity curve for each MF. Figure 3.33 shows the plan and elevation of
another building for which the CG is shifted to the left due to the presence of a heavy
rooftop equipment. When the CG is pushed, different MF move by different
amounts; the leftmost MF (Frame 1) moves the maximum. When Frame 1 reaches
its limiting deflection, the building collapses. Figure 3.34 compares the capacity

Fig. 3.32 Plan (top) and elevation (bottom) of a building with no torsional eccentricity

Fig. 3.33 Plan (top) and elevation (bottom) of a building with torsional eccentricity
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curves for the symmetric and un-symmetric buildings. Torsional eccentricity reduces
the deformability of the building from 24.2 cm to 17.2 cm and it reduces the seismic
toughness ST of the building from 2.45 to 1.65 (m/s)2. Torsional eccentricity always
reduces the seismic performance of a building.

3.16 Seismic Design Steps

Seismic design based on linear analysis is arbitrary because structures other than
nuclear power plants and major dams are not expected to remain linear during rare
ground motions with MRP of about 2500 years. Even during 500-year MRP ground
motions, limited amounts of nonlinearity can be tolerated as long as the desired
performance goal is met. Nonlinear analysis can be static or dynamic. Nonlinear-
dynamic analysis is not always practical because it can be corrupted by numerical
errors. Therefore, the best choice of analysis for seismic design is a nonlinear-static
analysis. Figure 3.35 presents a flowchart of seismic design steps based on
nonlinear-static analysis.

Fig. 3.34 Effect of torsional eccentricity on the capacity curve
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3.17 Summary

1. Plastic yielding in building frames can be a significant source of deformability
and damping.

2. Plastic yielding does some damage to a building frame, but small amounts of
plastic yielding can be accepted in operational performance and significant
amounts of plastic yielding can be accepted in collapse prevention.

Fig. 3.35 Flowchart of seismic design steps based on nonlinear-static analysis
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3. Connections in building frames should be strong enough to allow the structural
members to yield to their maximum capacity. The design strength of connec-
tions should account for strain hardening of structural members.

4. There is some uncertainty in the strength of structural members. Lower esti-
mates of strength should be used to calculate the deflections and plastic rota-
tions. Upper estimates of strength should be used to calculate the base shear,
overturning moment, and connection forces.

5. To achieve a ductile system, brittle failures should be avoided. Some sources of
brittle failures are: (1) breakage of connections, (2) shear and axial failure of
concrete elements, and (3) buckling of steel elements.

6. A well-engineered structure should be strong enough to avoid damage during
frequent ground motions, and it should be ductile enough to avoid collapse
during rare ground motions. The definitions of frequent and rare ground motions
can vary from structure to structure, but usually frequent ground motion is
exceeded with an MRP of 500 years and rare ground motion is exceeded with
an MRP of 2500 years.

7. For a brittle structure, linear analysis is sufficient. For a ductile structure,
nonlinear analysis is needed to assess the full seismic resistance of the structure.

8. Nonlinear analysis can be static or dynamic. Static analysis makes use of the
response spectra of ground motion. Dynamic analysis makes use of the ground
motion histories.

9. Nonlinear-dynamic analysis can be more accurate than the nonlinear-static
analysis, if: (1) the ground motion histories used in the dynamic analysis
match the site-specific response spectra well; (2) the solution of nonlinear
EOM is not corrupted by numerical errors; and (3) all sources of damping are
adequately considered.

10. The results of nonlinear-dynamic analysis should not be blindly trusted. Sanity
checks, including the test of implicit damping, should be performed to assess the
accuracy of nonlinear-dynamic analysis. A nonlinear-dynamic analysis should
always be preceded with a nonlinear-static analysis.

11. Seismic toughness ST is a measure of structure’s strength and deformability. It is
an important indicator of structure’s performance during earthquakes. Structures
should be designed to maximize their seismic toughness and damping.

12. Optimally designed knee braces and eccentric braces can increase the seismic
toughness of a building frame.

13. Torsional irregularity reduces the seismic toughness of a building. Therefore, it
always reduces the seismic performance of a building.
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Chapter 4
Seismic Response of Multistory Buildings

Nomenclature

ζ Viscous damping ratio
2D Two dimensional
ADRS Acceleration–deformation response spectrum
CG Center of gravity
EOM Equation(s) of motion
g 9.81 m/s2 ¼ acceleration due to gravity
H Height of CG
MF Moment frame(s)
MRP Mean return period
OTM Overturning moment
PD Peak deformation
PPA Peak pseudo-acceleration
Q Base shear
SDOF Single degree of freedom system
SFBA San Francisco Bay Area
SRSS Square root of sum of squares
ST Seismic toughness (area below the capacity curve)
T Natural period of structure

4.1 Introduction

Figure 4.1 shows a five-story moment frame (MF) with rigid (fully restrained) beam-
column moment connections. The MF could be part of a multistory building or some
other industrial structure. Horizontal motion of the ground generates moments in
beams and columns, causing them to bend and sway (Fig. 4.1). As discussed in
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Chap. 3, it is highly desirable that the connections be stronger than the connected
members so that plastic hinges can form in beams and columns before brittle failure
of connections. It is also desirable that the columns be stronger than the beams so
that a “soft story” is not created by yielding at both ends of columns in a story
[1, 2]. When created, a “soft story” tends to deform more than other stories, thus
increasing its chance of collapse by the P–Δ effect [1–3]. Beams are sometimes
intentionally weakened to ensure that yielding occurs in beams before failure of
connections or yielding of columns [2]. A properly designed MF experiences
flexural yielding in beams before any brittle failures. In steel MF, brittle failures
occur in connections. In concrete MF, brittle failures also include shear and axial
failures of structural members. Specific guidelines should be followed to ensure
ductile response of MF [1, 2, 4, 5].

4.2 Properties of MF

TheMF, shown in Fig. 4.1, is fabricated fromW24� 162 columns in the lower three
stories, W21� 147 columns in the upper two stories, W21� 147 beams at the lower
three levels, and W18 � 97 beams at the upper two levels. The steel type is ASTM
A36 with an expected yield strength of 250 MPa. Table 4.1 lists the important
structural properties of the MF. The lumped mass at each level is 78.4 � 103 kg.
Therefore, the total lumped mass is 78.4 � 103 � 5 ¼ 392 � 103 kg. It is assumed
that the MF is ductile, i.e., the connections are strong enough to allow the steel
members to yield to their maximum capacity.

Fig. 4.1 Sketch of a five-
story building frame
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4.3 Ground Motion

In this chapter, the response of the MF is computed during the 500-year MRP ground
motion at a site in the San Francisco Bay Area (SFBA). The 500-year MRP ground
motion for the SFBA site was determined in Chap. 2. Figure 4.2 shows the 500-year
MRP response spectra for various values of damping. The response spectra are
shown in the acceleration–deformation format. These are the demand curves for the
site. The peak pseudo-acceleration PPA is read along the vertical axis and peak
deformation PD is read along the horizontal axis. The natural period T is shown by
parallel diagonal lines. The PPA, PD, and T are related to each other by the
expression: PD ¼ PPA � (T/2π)2. Figure 4.3 shows one of the seven spectrum-
compatible ground motion history for 2D analyses; this was also generated in
Chap. 2. Different types of analysis are discussed next.

4.4 Linear-Static Analysis

The MF has five lumped masses which can move relative to each other. Therefore, it
is a multi-degree-of-freedom (MDOF) system. The basis of linear-static analysis is
that the MDOF system can be represented by a set of linear, viscously damped
single-degree-of-freedom (SDOF) systems, which can be analyzed by using the
response spectrum of ground motion. The MF is linear before any yielding occurs
in beams and columns. For a linear system, eigen-value analysis [7, 8] can be
performed to generate a set of SDOF systems representing the various modes of
vibration of the MDOF system. Each mode is characterized by its: (1) natural period,

Table 4.1 Properties of the MF shown in Fig. 4.1

Length of beam 7.32 m (each level)

Height of column 3.66 m (each story)

Lumped mass 78.4 � 103 kg (each level)

Moment of inertia of column cross section 215,530 cm4 (first, second, and third
story)

151,330 cm4 (fourth and fifth story)

Moment of inertia of beam cross section 151,330 cm4 (first, second, and third
level)

72,955 cm4 (fourth and fifth level)

Plastic moment capacity of column 1904 kNm (first, second, and third story)

1517 kNm (fourth and fifth story)

Plastic moment capacity of beam 1517 kNm (first, second, and third level)

858 kNm (fourth and fifth level)

Maximum allowable plastic hinge rotation in
columns

0.0568 radian [6]

Maximum allowable plastic hinge rotation in beams 0.0783 radian [6]

4.4 Linear-Static Analysis 99



Fig. 4.2 500-year MRP ADRS for various values of damping for the SFBA site

Fig. 4.3 One of seven 500-year MRP spectrum-compatible ground motion history
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(2) mass, (3) height, (4) damping, and (5) normalized mode shape. The generation of
modal properties is discussed next.

4.4.1 Modal Properties

A modal (eigen-value) analysis of the MF is performed by using SAP 2000 [9]. Fig-
ure 4.4 displays the mode shapes obtained from the modal analysis. Table 4.2 lists
the mode-shape values. Each mode shape is associated with a natural period listed in
the second row of Table 4.3. The natural frequency of each mode is reciprocal of its
period; it is listed in the third row of Table 4.3. One way to understand the meaning
of mode shapes is to imagine that the ground is shaken by purely sinusoidal motion
of a specific frequency. If the frequency of the ground motion matches the natural
frequency of a specific mode, then only that mode is excited, and the deformed shape
of the structure matches the shape of that mode. For example, if the ground is shaken
by 2.8 Hz frequency, then the deformed shape of the MF matches the second mode

Fig. 4.4 Mode shapes of the MF shown in Fig. 4.1

Table 4.2 Mode shapes of the five-story MF shown in Fig. 4.1

Level, j Mode, i 1 2 3 4 5

1 ϕi1 0.1334 �0.4069 0.7580 �0.8947 0.8222

2 ϕi2 0.3613 �0.8325 0.7089 0.1716 �0.9374

3 ϕi3 0.5954 �0.7838 �0.4429 0.7368 0.7256

4 ϕi4 0.8301 �0.0789 �0.8035 �0.8670 �0.3764

5 ϕi5 1.021 0.8689 0.5617 0.3314 0.1072

Table 4.3 Modal periods and frequencies

Mode, i 1 2 3 4 5

Natural period, Ti (s) 1.086 0.357 0.175 0.112 0.0825

Natural frequency, fi (Hz) 0.921 2.8 5.71 8.93 12.12
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shape displayed in Fig. 4.4. Real ground motions are composed of many different
frequencies. Therefore, all modes are excited, but some modes are excited more than
others, as will be seen later in this chapter.

Some additional properties (including mass and height of each mode) are deter-
mined next. The second column of Table 4.4 lists the shape of Mode 1 copied from
Table 4.2. The third column lists the lumped masses at each level. The fourth column
lists the height of each lumped mass. The fifth column is a product of second and
third columns. The sixth column is a product of the square of second column and the
third column. The last column is a product of second, third, and fourth columns. The
summed values of fifth, sixth, and seventh columns are listed in the bottom row of
Table 4.4.

The mass of the first mode M1 is given by the following expression [7, 8]:

M1 ¼
P5

j¼1m jϕ1j

� �2

P5
j¼1m jϕ

2
1j

¼ 230, 4522

175, 067
¼ 303, 500 kg

The height of the first mode H1 is given by the following expression:

H1 ¼
P5

j¼1m jh jϕ1jP5
j¼1m jϕ1j

¼ 3, 173, 100
230, 452

¼ 13:8 m

The normalizing factor for the first mode P1 is given by the following expression:

P1 ¼
P5

j¼1m jϕ1jP5
j¼1m jϕ

2
1j

¼ 230, 452
175, 067

¼ 1:32

P1 is multiplied by the first mode shape, listed in the third column of Table 4.2, to
obtain the normalized mode shape. The normalized mode shape relates the modal
responses to the responses of the MF. The use of the normalized mode shapes will
become clearer later. The modal properties were similarly computed for all five
modes. Table 4.5 provides a complete list of modal properties. Table 4.6 provides
the normalized mode shapes.

Table 4.4 Mode 1 factors

Level, j ϕ1j mj (kg) hj (m) mjϕ1j m jϕ
2
1j mjhjϕ1j

1 0.1334 78,400 3.66 10,454 1395 38,300

2 0.3613 78,400 7.32 28,307 10,227 207,200

3 0.5954 78,400 11 46,649 27,773 512,100

4 0.8301 78,400 14.6 65,042 53,992 952,000

5 1.021 78,400 18.3 80,000 81.681 1,463,000

Σ = 230,452 175,067 3,173,100
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The first mode has the longest period of T1 ¼ 1.086 s. The mass of the first mode
isM1 ¼ 303,500 kg which is 77% of the total mass. The masses of all modes add up
to the total mass of the structure. The modal masses are used to calculate the
horizontal force (base shear). The first modal height is H1 ¼ 13.8 m, which is 75%
of the total height of the moment frame. The modal heights are used in the
calculation of the overturning moment. As is typical, modal damping for linear
analysis is assumed to be 5% of critical. The normalized mode shapes in Table 4.6
relate the modal deformations to the deflections of the MF. For example, 1 cm
deformation of the first mode corresponds to 0.176 cm deflection at the first level and
1.34 cm deflection at the fifth level of the MF. Similarly, 1 cm deformation of the
second mode corresponds to 0.225 cm deflection at the first level and �0.48 cm
deflection at the fifth level of the MF. Note that positive modal deformation can
result in negative deflections at some levels.

Figure 4.5 shows the five-story MF modeled by five SDOF systems. If the five
SDOF systems are shaken by the same ground motion as the MF, then the total shear
and overturning moment at the base of five SDOF systems will be same as those at
the base of the MF. The modal masses and heights are drawn to scale to visualize the
relative contributions of various modes. The CG of the building is at the same height
as the CG of five modal masses.

4.4.2 Modal Responses

Table 4.7 lists the modal responses from the linear-static analysis. The second and
third rows list the modal masses and heights from Table 4.5. Corresponding to the
modal periods in the second row of Table 4.5, the peak pseudo-accelerations PPAi

are read from the 5% damping pseudo-acceleration response spectrum (Fig. 4.6);

Table 4.5 Modal properties

Mode, i 1 2 3 4 5

Period, Ti (s) 1.086 0.357 0.175 0.112 0.0825

Mass, Mi (kg) 303,500 (77%) 53,500 (14%) 21,500 (5.5%) 9500 (2.5%) 4000 (1%)

Height, Hi (m) 13.8 1.17 2.06 1.06 1.66

Damping, ζi 0.05 0.05 0.05 0.05 0.05

Table 4.6 Normalized mode shapes of the moment frame shown in Fig. 4.1

Level, j Mode 1, ϕ1j Mode 2, ϕ2j Mode 3, ϕ3j Mode 4, ϕ4j Mode 5, ϕ5j

1 0.176 0.225 0.265 0.209 0.126

2 0.476 0.459 0.248 �0.040 �0.143

3 0.784 0.433 �0.155 �0.172 0.111

4 1.093 0.044 �0.281 0.202 �0.057

5 1.344 �0.480 0.197 �0.077 0.016
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they are listed in the fourth row of Table 4.7. The modal deformations are obtained
from the expression: PDi ¼ PPAi � (Ti/2π)

2; they are listed in the fifth row of
Table 4.7. Alternatively, modal accelerations and deformations can be simulta-
neously read from the 5% damping ADRS (Fig. 4.7). Modal base shears Qi are
obtained by multiplying the modal accelerations with the modal masses; they are
listed in the sixth row of Table 4.7. Modal overturning moments OTMi are obtained
by multiplying the modal base shears with the modal heights; they are listed in the
seventh row of Table 4.7. The deflections at various levels of the MF are obtained by
multiplying modal deformations with the normalized mode shapes (Table 4.6); the
modal deflections at the fifth level Di5 are listed in the last row of Table 4.7.

The peak modal responses in various columns of Table 4.7 do not occur at the
same time since modes have different natural periods. In a static analysis, the modal
responses are combined by the SRSS (square-root-of-sum-of-squares) or other
similar methods. The combined responses are listed in the last column of
Table 4.7. This concludes the linear-static analysis.

The first mode base shear of 3.96 MN is 97% of the combined base shear of
4.1 MN. The first mode overturning moment of 54.5 MNm is 99% of the combined
overturning moment of 55 MNm. The first mode deflection at the fifth level is

Table 4.7 Peak modal responses

Mode, i 1 2 3 4 5 SRSS

Mass, Mi (kg) 303,500 53,500 21,500 9500 4000 –

Height, Hi (m) 13.8 1.17 2.06 1.06 1.66 –

PPAi (g) 1.33 1.83 1.38 1.1 0.949 –

PDi (cm) 39 5.78 1.05 0.34 0.16 –

Qi ¼ Mi ∙ PPAi (MN) 3.96 0.96 0.29 0.103 0.038 4.1
OTMi ¼ Qi ∙ Hi (kNm) 54.5 1.12 0.6 0.11 0.063 55
Di5 ¼ ϕi5 ∙ PDi (cm) 52.4 2.8 0.21 0.03 0.02 52.4

Fig. 4.5 Five-story MF modeled by 5 SDOF systems
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Fig. 4.7 Modal accelerations and deformations from the 5% damping ADRS

Fig. 4.6 Peak pseudo-accelerations for various modes of the MF



practically same as the overall deflection at the fifth level. In summary, the first mode
dominates the responses of this MF.

4.5 Linear-Dynamic Analysis

Linear-dynamic analysis eliminates the need for approximately combining the peak
modal responses by the SRSS or any other method. In a linear-dynamic analysis,
modal responses are computed at numerous instances from the solution of the
equations of motion (EOM). Modal responses are algebraically added at each
instance. The analysis requires more computation and it generates more data, but it
combines the modal responses exactly. For this example, the contribution of higher
modes is not significant, therefore, the need for a dynamic analysis is not compelling.
For the sake of completeness, dynamic analysis was performed seven times using
seven different histories of the 500-year MRP ground motion generated in Chap. 2.
Different rows of Table 4.8 list the responses for seven different ground motion
histories. The medians of these seven responses are listed in the last row of Table 4.8.
These are the responses to the 500-year MRP ground motion from linear-dynamic
analysis. D1 and D5 are the deflections of 1st and 5th (roof) levels, respectively.

4.6 Comments on Linear Analyses

There are three sources of difference between the results of linear-static and linear-
dynamic analyses:

1. Linear-dynamic analysis combines the modal responses accurately, while linear-
static analysis combines the modal responses approximately by the SRSS or
similar methods.

2. Site-specific ground motions should match the site-specific response spectrum.
Any discrepancy in spectral matching will make the results of dynamic analysis
less accurate.

Table 4.8 Responses of the MF to seven different histories of the 500-year MRP ground motion

Ground motion Q (MN) OTM (MNm) D1 (cm) D5 (cm)

1 4.14 55.5 7.16 53.2

2 4.22 56.4 7.33 53.5

3 3.96 52 6.75 49.2

4 3.77 50.5 6.41 48.7

5 3.66 52.8 6.43 51.3

6 4.14 56.9 7.18 54.6

7 3.78 52.6 6.47 51.8

Median 3.96 52.8 6.75 51.8
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3. Results of dynamic analysis can be corrupted by numerical errors. However,
linear analyses are less prone to numerical errors than nonlinear analyses
discussed later.

The results of linear-dynamic analysis are within 5% of those of linear-static
analysis. For all practical purposes, the results of both analyses are identical in this
case. The results of linear analyses are valid as long as no yielding occurs in the
MF. Based on linear analyses, the maximum moment at the base of columns is
5.87 MNm; this is more than three times the plastic moment capacity of columns.
The maximum moment in the lower story beams is 5.63 MNm; this is nearly four
times the plastic moment capacity of beams. There are two options for the designer:
(1) increase the capacities of columns and beams to exceed the demands imposed by
the 500-year MRP ground motion or (2) allow beams and columns to yield and
demonstrate that yielding does not preclude the MF from meeting its seismic
performance objective. The first option relies purely on strength; it can result in a
very expensive design. The second option relies on the deformability and damping
of the MF to reduce the strength demand. However, a nonlinear analysis is needed to
demonstrate that yielding is below the acceptable level. Two types of nonlinear
analyses are discussed next.

4.7 Nonlinear-Static Analysis

The basis of nonlinear-static analysis is to generate an equivalent-viscous nonlinear
SDOF model of the MF and to calculate its response from the response spectra of
ground motion. As discussed in Chap. 3, nonlinear-static analysis requires the
generation of pushover and damping curves. The pushover curve defines the strength
and deformability of the structure; the damping curve defines its ability to dissipate
energy.

4.7.1 Pushover Curve

The pushover curve is a plot between the lateral force and the lateral deformation of
the system. The lateral force does not act at a single point; it acts on, and is
proportional to, lumped masses at various levels of the MF. The centroid of the
total lateral force F is at the center of gravity (CG) of the system, as shown in
Fig. 4.8. The lateral deformation D is also measured at the CG of the system. As the
MF is gradually pushed in the horizontal direction, the moments increase in the
beams and columns. At some point, plastic hinges form at the base of columns. At
some later points, plastic hinges also form at the ends of beams at various levels.
Figure 4.8 shows the forces and moments applied on the columns after all plastic
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hinges have formed. Disregarding the effect of gravity, the lateral force after the
formation of all plastic hinges is given by the following expression:

Fp ¼
2

P
jM

j
pb þMpc

� �
H

ð4:1Þ

in which M j
pb ¼ plastic moment capacity of the beam cross section at the jth level;

Mpc ¼ plastic moment capacity of the column cross section at the base; and H ¼
height of the CG. Upon substituting M1

pb ¼ M2
pb ¼ M3

pb ¼ 1517 kNm,M4
pb ¼M5

pb ¼
858 kNm, Mpc ¼ 1904 kNm, and H ¼ 3 � 3.66 ¼ 10.98 m from Table 4.1, Fp ¼
1490 kN.

The elastic stiffness, before the formation of any plastic hinges, is given by the
following expression:

k ¼ M
2π
T1

� �2

ð4:2Þ

Fig. 4.8 Forces and
moment acting on the
columns of the MF after the
formation of all plastic
hinges
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Substituting T1 ¼ 1.09 s ¼ first mode period of the MF and M ¼
392 � 103 kg ¼ total lumped mass, Eq. 4.2 gives k ¼ 13.1 MN/m. The maximum
elastic deformation is:

De ¼ Fp

k
ð4:3Þ

Substituting Fp ¼ 1490 kN and k¼ 13.1 MN/m, Eq. 4.3 gives De¼ 11.3 cm. The
elastic portion of the pushover curve (D � De) is generated by using the following
relationship

F ¼ k ∙D ð4:4Þ

For deformation D � De, the force increases linearly with D, but the plastic
rotation θ remains zero. ForD>De, the force remains fixed at F¼ Fp, but the plastic
rotation θ increases with deformation. θ is the same for all beams and columns. The
relationship between D and θ is as follows:

D ¼ De þ θ ∙H ð4:5Þ

The maximum allowable plastic hinge rotation is 0.0568 radian for columns and
0.0783 radian for beams (Table 4.1). Since columns and beams experience the same
plastic rotation, the allowable rotation in columns controls the deflection at collapse,
i.e., 11.3 + 0.0568 � H ¼ 73.7 cm. Figure 4.9 shows the simplified pushover curve
for the MF from Eqs. 4.1–4.5. In a more accurate pushover curve, the transition from
elastic to plastic is more gradual as plastic hinges in columns and beams do not
appear at the same time.

The pushover curve of Fig. 4.9 ignores any increase in plastic moment with
rotation due to strain hardening. The pushover curve also ignores the effect of
gravity, aka the P–Δ effect [3]. The pushover curve is refined as follows:

Strain hardening. ASCE 41 [6] recommends that the post-yield stiffness be
assumed equal to 3% of the elastic stiffness. This is arbitrary because strain harden-
ing should not depend on the elastic stiffness. For lack of better information, ASCE
7-41 [6] recommendation is followed. Figure 4.10 shows the pushover curve with
strain hardening. Strain hardening causes the ultimate lateral strength of the MF to
increase from 1490 to 1730 kN. This is a 16% increase in lateral strength, while the
plastic rotation increases from 0 to 0.0568 radian. Therefore, the ultimate moment
capacity of columns is 1904 � 1.16 ¼ 2209 kNm. The allowable plastic rotation in
beams is higher; therefore, the increase in moment capacity in beams is
16/0.0568 � 0.0783 ¼ 22%. The ultimate moment capacity of beams at first three
levels is 1517 � 1.22 ¼ 1850 kNm and at upper two levels is
858 � 1.22 ¼ 1050 kNm.

P–Δ effect. Referring to Fig. 4.8, note that the weight of the structure applies an
additional moment which is in the same direction as the moment applied by the
lateral force F. Both moments are resisted by the MF. The weight of the structure
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Fig. 4.9 Simplified pushover curve for the MF shown in Fig. 4.8

Fig. 4.10 Pushover curve with strain hardening



reduces the lateral force F for a given deflection D. P–Δ effect is considered as
follows: (1) for a given value ofD, F is read from Fig. 4.10 and (2) F is reduced by an
amount DW/H, where W ¼ the weight of the structure and H ¼ the height of the
CG. Figure 4.11 shows the refined pushover curve after considering strain hardening
and P–Δ effect. Due to P–Δ, the yield strength of the MF reduces from 1490 to
1450 kN, and the ultimate strength of the MF reduces from 1730 to 1480 kN. The
ultimate strength of 1480 kN is only 2.1% higher than the yield strength of 1450 kN.
This increase occurs while the deformation D increases from 11.3 to 73.7 cm or the
plastic rotation increases from 0 to 0.0568 radian. Therefore, the increase in strength
is 2.1/0.0568 ¼ 36% per radian.

The P–Δ effect is much more pronounced for the five-story MF than for the
one-story MF discussed in Chap. 3. This is because the 5-story MF deforms much
more than the one-story MF.

Fig. 4.11 Pushover curve with strain hardening and P–Δ effect
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4.7.2 Capacity Curve

The pushover curve of Fig. 4.11 is converted into the capacity curve by dividing the
force along the vertical axis by the total lumped massM. Figure 4.12 shows a plot of
the capacity curve. The vertical axis in Fig. 4.12 is the pseudo-acceleration PA.
Recall from Chap. 1 that the natural period depends on the ratio between the
deformation and the pseudo-acceleration, i.e.,

T ¼ 2π

ffiffiffiffiffiffi
D
PA

r
ð4:6Þ

With the help of Eq. 4.6, radial tick marks corresponding various periods are
drawn in Fig. 4.12. Note that the period of the MF remains fixed at 1.09 s up to the
formation of plastic hinges at 11.3 cm deformation. After that, the period increases
with increase in deformation. The capacity curve ends at 73.7 cm deformation when
the plastic rotation in columns reaches its limiting value of 0.0568 radian. The area
below the capacity curve (Fig. 4.13) is called the seismic toughness ST. In general,

Fig. 4.12 Capacity curve for the MF shown in Fig. 4.1

112 4 Seismic Response of Multistory Buildings



tougher structures perform better during earthquakes. For the MF discussed here,
ST ¼ 2.54 (m/s)2. ST has the units of energy/mass.

The capacity curve of Fig. 4.12 is redrawn on a logarithmic scale in Fig. 4.14. The
radial tick marks in Fig. 4.12 are replaced by parallel diagonal lines in Fig. 4.14.
Both linear and logarithmic plots of the capacity curve (Figs. 4.12 and 4.14) will be
used in the analysis.

4.7.3 Damping Curve

During earthquakes, the MF deforms back and forth in a cyclic manner. Figure 4.15
shows the cyclic force–deformation relationship for the MF subjected to deformation
cycles of various amplitudes. The force–deformation relationship is hysteretic—
meaning that some energy is lost during each complete cycle. The energy loss occurs
due to plastic hinge rotations and it equals the area enclosed within the force–
deformation loop. This is the source of damping for the MF after yielding has
occurred. The damping for various values of deformation is determined next.

Fig. 4.13 Seismic toughness of five-story MF

4.7 Nonlinear-Static Analysis 113



Fig. 4.14 Logarithmic plot of capacity curve shown in Fig. 4.12

Fig. 4.15 Cyclic force–deformation relationship for the MF



Figure 4.16a shows the force–deformation relationship for a hypothetical cycle of
40-cm amplitude. The energy loss Eh is the shaded area enclosed within the
hysteresis loop. The “strain” energy Es is one-half the product of the peak force
and peak deformation; it is the area of the shaded triangle in Fig. 4.16b. The
equivalent-viscous hysteretic damping is given by the following expression [8]:

ζh ¼ Eh

4πEs
ð4:7Þ

For a 40-cm deformation cycle, Eh ¼ 1764 kNm and Es ¼ 309 kNm. Therefore,
ζh ¼ 1764/(4π ∙ 309) ¼ 0.45 (or 45% of critical). Hysteretic damping is similarly
computed for cycles of other amplitudes. Figure 4.17 shows a plot of the hysteretic
damping for various values of deformation. The hysteretic damping is zero for
deformations smaller than 11.3 cm because the MF has not yet yielded.

The damping curve of Fig. 4.17 needs some adjustments before it can be used in
nonlinear-static analysis. The purpose of nonlinear-static analysis is to predict the
peak deformation. During seismic response, the peak deformation occurs only once;
rest of the times the deformation is less than the peak. Since the damping for smaller
amplitude cycles is less, the damping is adjusted as follows. For D ¼ 40 cm, the
damping is 0.45 according to Fig. 4.17. The average (adjusted) damping for defor-
mations between 0 and 40 cm is calculated by taking the area under the damping
curve up to 40 cm and dividing that area by 40 cm (Fig. 4.18). This gives the average
(adjusted) damping of 9.04/40 ¼ 0.23 (23% of critical). The adjusted damping is
similarly computed for other values ofD. Finally, the damping is not allowed to drop
below 5% of critical because there are some other sources of energy dissipation
besides plastic yielding. Figure 4.19 shows the adjusted damping curve for the MF;
this will be used to complete the nonlinear-static analysis.

Fig. 4.16 Hysteretic and “strain” energies for 40-cm amplitude cycle
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Fig. 4.17 Equivalent-viscous hysteretic damping for various values of deformation

Fig. 4.18 Adjustment of equivalent-viscous damping
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4.7.4 Deformation-Versus-Damping Curve

In Fig. 4.20, the capacity curve of Fig. 4.14 is superimposed on the 500-year MRP
response spectra (demand curves) of Fig. 4.2. The intersections of the capacity curve
with the demand curves provide peak deformations for various assumed values of
damping; they are shown in Fig. 4.21. In Fig. 4.20, the capacity curve stops short of
the 5% damping demand curve. This implies that the MF would collapse if its
damping were only 5% of critical. The plot in Fig. 4.21 is known as the deformation-
versus-damping curve even though the deformations are shown along the horizontal
axis. This curve represents the deformations of the MF for various assumed values of
damping.

4.7.5 Responses at Equilibrium

The intersection of the deformation-versus-damping curve of Fig. 4.21 with the
adjusted damping curve of Fig. 4.19 provides damping and deformation at equilib-
rium (Fig. 4.22). The deformation at equilibrium is 36 cm and the damping at
equilibrium is 0.21 (21% of critical); 36 cm is the deflection of the CG (Fig. 4.8).

Fig. 4.19 Adjusted damping curve for the MF
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Fig. 4.21 Deformation-versus-damping curve for MF’s response to 500-year MRP ground motion

Fig. 4.20 Capacity curve superimposed on demand curves (response spectra) for 5, 10, 20, 30, and
50% damping



The roof deflection is 36/H� h5¼ 55 cm, whereH¼ height of CG and h5¼ the roof
height.

From the capacity curve of Fig. 4.12, the peak pseudo-acceleration corresponding
to 36 cm deformation is 0.38 g (Fig. 4.23). The effective period of the system at
equilibrium is T ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36= 0:38� 981ð Þp ¼ 1.97 s. This is 80% longer than the

linear-elastic period of 1.09 s, implying that the response is significantly nonlinear.
Multiplying the peak pseudo-acceleration by the mass gives the peak value of base
shear Q ¼ 0.38 � 9.81 � 392 � 103 ¼ 1.46 MN. The overturning moment is
OM ¼ Q � H ¼ 1.46 � H ¼ 16 MNm.

4.7.6 Expected Performance

Out of the total deformation of 36 cm, 11 cm deformation is elastic (Fig. 4.23) and
25 cm is due to plastic yielding. From simple geometry, the plastic-hinge rotation is
25/H ¼ 25/1100 ¼ 0.023 radian. The low-cycle fatigue damage is roughly propor-
tional to the square of the plastic rotation [10]. Since the limiting plastic rotation is
0.0568 radian (Table 4.1), the damage done by 0.023 radian is (0.023/

Fig. 4.22 Intersection of deformation-versus-damping curve (Fig. 4.21) with the adjusted damping
curve (Fig. 4.19) to obtain damping and deformation at equilibrium
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0.0568)2 � 100 ¼ 16%. Therefore, the MF is likely to need minimal repairs
following the earthquake. In order for the building to remain operational following
the 500-year MRP ground shaking, the MF will require slightly larger column and
beam sections to bring the plastic rotation to<0.01 radian. In addition, nonstructural
systems such as vertical pipe runs and wall finishes should be designed to absorb
expected deflections without damage for the building to remain operational follow-
ing the 500-year MRP ground motion.

4.7.7 3D Visualization of Nonlinear-Static Analysis

It can be helpful to visualize the nonlinear-static analysis in three dimensions. The
acceleration–deformation response spectra for various damping are stacked verti-
cally to generate a demand surface. In Fig. 4.24, the demand surface is shown in
colors ranging from blue to yellow. The capacity curve of Fig. 4.12 and the damping
curve of Fig. 4.19 are combined to generate a 3D plot between deformation, pseudo-
acceleration, and damping, called the capacity–damping curve. It is the red curve in
Fig. 4.24. The intersection of capacity–damping curve with the demand surface
represents the equilibrium condition.

Fig. 4.23 Pseudo-acceleration at equilibrium read from the capacity curve
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4.8 Nonlinear-Dynamic Analysis

The dynamic analysis of a nonlinear system is performed by solving a set of
nonlinear equations of motion (EOM). Computer programs such as SAP 2000 [9]
numerically solve the EOM in the background. However, the solution of nonlinear
EOM can be easily corrupted by numerical errors. Therefore, a nonlinear-static
analysis should always be carried out before a nonlinear-dynamic analysis. A
computer model of the MF was generated in SAP 2000 [9]. Plastic hinges were
assumed to form at the base of columns and the ends of beams. According to
Fig. 4.11, the ultimate strength of the MF increases 2.07%, while the deformation
D increases from 11.3 to 73.7 cm (or the plastic rotation increases from 0 to 0.0568
radian). This increase is the net result of strain hardening and P–Δ effect. Therefore,
the moment capacity of the plastic hinges was assumed to increase 2.07% during a
rotation increase from 0 to 0.0568 radian. Figure 4.25 shows the backbone stiff-
nesses of column and beam plastic hinges for dynamic analysis.

The dynamic analysis was performed seven times using seven simulations of the
500-year MRP ground motion for the SFBA site. Figure 4.26 shows the histories of
roof deflections D5 during seven simulations of 500-year MRP ground motion. The

Fig. 4.24 Intersection of capacity–damping curve (red) with the demand surface (blue to yellow) to
obtain equilibrium
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peak roof deflections D5 ranges from 33.4 cm (Simulation 4) to 67.5 cm (Simulation
3). The median value of roof deflection is 44.7 cm. Table 4.9 presents the results of
the seven analyses. The median values in the last row of Table 4.9 are the responses
to the 500-year MRP ground motion from dynamic analysis.

The deflection of the CG from nonlinear-dynamic analysis is 28 cm. The base
shear from nonlinear-dynamic analysis is 1.49 MN; this corresponds to a pseudo-
acceleration of 1490/392/g ¼ 0.388 g. As a sanity check, the equilibrium point
corresponding to peak deformation of 28 cm and peak pseudo-acceleration of
0.388 g is shown by a red dot on the 500-year MRP ADRS in Fig. 4.27. This
point corresponds to a damping of 26% of critical. According to Fig. 4.19, 26%
damping for 28 cm deformation seems too high. It is difficult to know the cause of
higher than expected damping in the nonlinear-dynamic analysis without fully
understanding the inner workings of the computer program used to perform
nonlinear-dynamic analysis. It could be due to: (1) the manner in which various
sources of damping are combined, (2) the shapes of hysteresis loops used in the
analysis, or (3) numerically induced artificial damping to achieve stable solutions.

Fig. 4.25 Backbone stiffnesses of plastic hinges for dynamic analysis
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Fig. 4.26 Histories of roof deflection during seven simulations of 500-year MRP ground motion at
the SFBA site
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4.9 Pros and Cons of Different Methods of Analysis

Linear-static and linear-dynamic analyses are applicable as long as the MF does not
yield. Linear-static analysis is generally more conservative because it combines the
modal contributions approximately by using the SRSS or similar rules. Linear-
dynamic analysis is more accurate only if the ground motions used in analysis
match the site-specific response spectrum quite well.

Table 4.9 Responses from nonlinear-dynamic analyses

Ground motion Q (MN) OTM (MNm) D5 (cm)

Plastic rotation (radian)

Column Beam

1 1.49 17.5 52.7 0.0216 0.0246

2 1.44 17.0 45.1 0.0201 0.0195

3 1.57 17.1 67.5 0.0296 0.0315

4 1.41 16.6 33.4 0.0165 0.0153

5 1.43 17.1 43.1 0.0208 0.0196

6 1.53 16.8 37.5 0.0128 0.0149

7 1.64 17.0 44.7 0.0181 0.0192

Median 1.49 17.0 44.7 0.0201 0.0195

Fig. 4.27 Equilibrium point from nonlinear-dynamic analysis on 500-year MRP ADRS
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Most structures continue to perform well into the nonlinear range. A nonlinear
analysis is needed to assess the extent of plastic yielding hence damage to the
structure. Nonlinear-static analysis is approximate but it is free of numerical errors
and provides greater insight into the behavior of a structure.

Dynamic analysis can predict the nonlinear responses more accurately if: (1) the
analysis is not corrupted by numerical errors; (2) all sources of damping are
adequately modeled; and (3) the ground motions used in the analysis match the
response spectrum quite well. It is desirable to perform a static analysis before a
dynamic analysis.

Table 4.10 compares the responses from four different methods of analysis. Static
and dynamic analyses provide similar results. Linear analyses overpredict forces and
underpredict deformations. Linear analyses cannot predict plastic rotations.

4.10 Design of Connections

To ensure ductile performance of the MF, all connections should be strong enough to
allow the structural elements to yield to their maximum extent. In Sect. 4.7.1
(subsection “strain hardening”), it was established that the ultimate moment capacity
of columns is 2209 kNm. Therefore, the connections of columns to the foundation
should be designed for 2209 kNm moment. It was also established that the ultimate
moment capacity of beam at levels 1–3 is 1850 kNm and of beams at levels 4 and 5 is
1050 kNm. Therefore, the connections of beams to columns should be designed for
1850 kNm moment at levels 1–3 and for 1050 kNm moment at levels 4 and 5.

4.11 Uncertainty in the Strength of Structural Elements

There is some uncertainty in the moment capacity of beams and columns. Lower
bound estimates of moment capacity should be used to calculate the deflections and
plastic rotations. Upper bound estimates of moment capacity should be used to
calculate the base shear, overturning moment, and connection forces.

Table 4.10 Comparison of results from different methods of analysis

Method of analysis Q (MN) OTM (MNm) D5 (cm)

Plastic rotation (radian)

Column Beam

Linear static 4.09 54.5 52.4 – –

Linear dynamic 3.96 52.8 51.8 – –

Nonlinear static 1.46 16 55 0.023 0.023

Nonlinear dynamic 1.49 17 45 0.020 0.020
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4.12 Effect of Height on Building Vulnerability

Figure 4.28 compares the capacity curve of one-story building analyzed in Chap. 3
with the capacity curve of five-story building analyzed in this chapter. The pseudo-
acceleration is the normalized strength (lateral strength divided by the weight) of the
building. Due to its much higher weight, the five-story building has smaller normal-
ized strength than the one-story building. However, the five-story building is much
more deformable than the one-story building because deformations in various stories
of the building are cumulative. The seismic toughness ST is the area below the
capacity curve. The seismic toughness of the five-story building is nearly same as
that for the one-story building. What a five-story building lacks in strength, it gains
in deformability. Therefore, the height of a building alone does not make it more
vulnerable to ground shaking. Low-rise buildings are better suited against low-
frequency ground motions on soft soil sites due to distant-large earthquakes. High-
rise buildings are better suited against high-frequency ground motions on rock sites
due to closer-small earthquakes.

Fig. 4.28 Capacity curves for one- and five-story buildings
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4.13 Effect of Soft-Story on Building Vulnerability

Figure 4.29 shows the sketch of a “soft-story” building. The MFs are infilled with
masonry except at the lowest level which is used for parking or commercial
purposes. Infills do not allow the upper story moment frames to deform freely. As
a result, most of the deformation takes place in the first story. Figure 4.30 compares
the capacity curve of a soft-story building with that of a regular MF building. Both
buildings have similar normalized strength, but the soft-story building has much
smaller deformability. The seismic toughness ST of the soft-story building is about
half of that of the regular building. Therefore, a soft-story building is always more
vulnerable to seismic shaking than a regular building.

Fig. 4.29 Deformation of a soft-story building

4.13 Effect of Soft-Story on Building Vulnerability 127



4.14 Effect of Braces

In a braced frame, the primary “forces” in structural members are axial rather than
flexural. Therefore, the initial elastic stiffness of a brace frame is significantly higher
than that of a moment frame. With increase in lateral load, the compression braces
buckle before yielding axially. This causes bending moments to develop in the
beams. With further increase in the lateral load, plastic hinges develop at the base
of columns and near the centers of beams (Figure 4.31). As discussed in Chap. 3,
plastic rotations in beams are twice the plastic rotations in columns. The post-yield
strength of a braced-frame building is similar to that of a moment-frame building, but
the deformability of a braced-frame building is less due to large plastic rotations in
the beams.

Fig. 4.30 Capacity curves for regular and soft-story buildings
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4.15 Summary

1. In general, a multistory MF has smaller normalized strength but more
deformability than a one-story MF.

2. A multistory MF is ideal to resist high-frequency ground motions, such as those
on rock sites due to closer-small earthquakes.

3. A single-story MF is ideal to resist low-frequency ground motions, such as those
on soft-soil sites due to distant-large earthquakes.

4. Plastic yielding in beams can be a significant source of deformability and
damping for a multistory MF.

5. Plastic yielding in columns can result in a “soft story,” whereby deformations
are concentrated in a single story. Soft story can be avoided by using strong
columns and weak beams and by avoiding infills that restrict deformations in
certain stories.

6. Plastic yielding does some damage to a moment frame, but limited plastic
yielding can be tolerated as long as the structure meets its desired performance
objective.

7. Plastic yielding in beams will occur only if the connections are stronger than the
beams. Weak connections will fail before beams can yield, thus resulting in a
brittle system. It is possible to have a brittle system made of ductile elements.
The design strength of connections should account for strain hardening of
structural members.

8. There is some uncertainty in the strength of structural members. Lower esti-
mates of strength should be used to calculate the deflections and plastic rota-
tions. Upper estimates of strength should be used to calculate the base shear,
overturning moment, and connection forces.

Fig. 4.31 Plastic hinges in
a braced frame after
buckling of compression
braces
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9. A well-engineered structure should be strong enough to avoid damage during
frequent ground motions, and it should be ductile enough to avoid collapse
during rare ground motions. The definitions of frequent and rare ground motions
can vary from structure to structure, but usually frequent ground motions are
those with an MRP of 500 years and rare ground motions are those with an MRP
of 2500 years.

10. For a brittle MF, linear analysis is sufficient. For a ductile MF, nonlinear
analysis is needed to assess the full seismic resistance of the structure.

11. Nonlinear analysis can be static or dynamic. Static analysis makes use of the
response spectra of ground motion. Dynamic analysis makes use of the ground
motion histories.

12. Nonlinear-dynamic analysis can be more accurate than the nonlinear-static
analysis, if: (1) the ground motion histories used in the dynamic analysis
match the site-specific response spectra well; (2) the solution of nonlinear
EOM is not corrupted by numerical errors; and (3) all sources of damping are
adequately considered.

13. The results of nonlinear-dynamic analysis should not be blindly trusted because
the analysis is prone to numerical errors. The results of nonlinear-dynamic
analysis can also be corrupted by numerical damping used to obtain stable
solutions. Implied damping in nonlinear-dynamic analysis should be checked.
A nonlinear-dynamic analysis should always be preceded with a nonlinear-static
analysis.
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Chapter 5
Sliding of Objects During Earthquakes

Nomenclature

ζ Equivalent viscous damping
μ Coefficient of dynamic (kinematic) friction
μs Coefficient of static friction
a1(t), a2(t) Accelerations of ground at time t in two orthogonal horizontal

directions
av(t) Vertical acceleration of ground at time t
cm Centimeter
EOM Equation(s) of motion
g Acceleration due to gravity ¼ 9.81 m/s2

m Mass of object
PGA Peak horizontal ground acceleration
PGAV Peak vertical ground acceleration
PPA Peak pseudo-acceleration (also known as spectral acceleration)
PD Peak deformation (sometimes called spectral displacement)
PPV Peak pseudo-velocity (also known as spectral velocity)
s Second
t Time
T Undamped natural period
u Sliding displacement

5.1 Introduction

Traditional seismic design relies on anchorage to resist seismic sliding. However,
anchorage may not always be the best solution. For example, consider a broad piece
of equipment resting on a concrete slab at a facility. The equipment is not anchored
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to its foundation, either because: (1) there was no awareness of seismic risk when the
facility was originally built or (2) the equipment is frequently moved within the
facility to meet operational demands. The owner of the facility wants to reduce the
seismic risk. There are two options: (1) anchor the equipment to its foundation or
(2) let the equipment slide during earthquakes and provide flexibility in attached
pipes, conduits, and ducts to accommodate sliding displacement.

If the first option is selected, the equipment will move with the ground during
earthquakes; it will experience the same or higher acceleration than ground. The
foundation will experience the inertial force (mass� acceleration) transmitted by the
equipment. If the second option is selected, the equipment will slide when the inertial
force approaches the frictional resistance between the equipment and the foundation.
Therefore, the inertial force experienced by the equipment and the foundation is
limited by the frictional resistance. However, any attachments to the equipment will
have to absorb the sliding displacements. Whether the first or the second option is
economical will depend on the following factors:

• Vulnerability of the equipment to accelerations
• Ability of attachments (pipes, conduits, and ducts) to absorb sliding displace-

ments and/or the cost of retrofitting attachments to absorb sliding displacements
• Cost of anchoring the equipment and any business interruptions associated with

installing anchors and
• Ability of the foundation to resist the seismic forces or the cost of strengthening

the foundation to resist inertial forces transmitted by the equipment

To evaluate the above factors, the sliding response of the equipment needs to be
computed efficiently and reliably. Seismic sliding has been the subject of several
past studies [1–5]. Numerical solution of seismic sliding is well developed and
understood [6, 7]. Sliding response of unanchored objects is of significant interest
in the nuclear industry. ASCE 43-05 [8] standard for nuclear facilities includes a
method for estimating the sliding response without performing a dynamic analysis,
but the method is somewhat arbitrary and overly conservative.

The objectives of this chapter are to:

• Discuss nonlinear-dynamic analysis of sliding response
• Present nonlinear-static analysis of sliding response, and compare it with: (a) the

nonlinear-dynamic analysis, and (b) the ASCE 43-05 [8] analysis and
• Present seismic sliding as an alternative design option

5.2 Sliding or Rocking

Some unanchored objects are prone to sliding while others are prone to rocking at
their base. Figure 5.1 shows an unanchored object of mass m resting on its founda-
tion. The center of gravity (CG) of the object is at height h from the base and distance
b from the edge of the object. In Fig. 5.2, the foundation is shaken by time-varying,
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uniaxial, horizontal ground acceleration a1(t). The coefficient of static friction
between the object and the foundation is μs. The maximum horizontal force that
can be transmitted to the object is μsmg, where g ¼ acceleration due to grav-
ity ¼ 9.81 m/s2. This force can be assumed to act at the CG of the object at height
h. Hence, the moment trying to overturn the object is μsmgh. The restoring moment
due to the weight of the object is mgb. If mgb is greater than μsmgh (or b/h> μs), the
object will slide without rocking. If b/h < μs, the object will rock without sliding.
Slender objects are prone to rocking; broad objects are prone to sliding. Objects on
smooth surfaces are prone to sliding; objects on rough surfaces are prone to rocking.
This chapter is devoted only to sliding objects, for which b/h > μs. Rocking objects
are discussed in Chap. 6.

Fig. 5.1 An unanchored broad object resting on its foundation

Fig. 5.2 Sliding of unanchored broad object due to horizontal shaking of its foundation
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5.3 Equation of Motion

For low values of horizontal acceleration a1, the object moves with the foundation
and the inertial force on the foundation is ma1. With increase in a1, the inertial force
increases. When the inertial force approaches μsmg (or a1 approaches μsg), the object
starts to slide and the inertial force drops to μmg, where μ ¼ coefficient of dynamic
friction. Therefore, the acceleration of the sliding object remains fixed at μg. Since
the frictional force opposes sliding, the equation of motion (EOM) of the sliding
object can be written by equating the total acceleration to the acceleration delivered
by the frictional force:

€uþ a1 tð Þ ¼ �μg sgn _uð Þ ð5:1Þ

where u ¼ sliding displacement (relative to the foundation); the over dots denote
differentiation with respect to time t; and sgn ¼ the “sign” function. Equation 5.1 is
simply an expression for the total acceleration of the sliding object. Equation 5.1 is
nonlinear due to the presence of “sign” function on the right-hand side. Equation 5.1
is a second-order, nonlinear EOM of the sliding object under uniaxial horizontal
ground shaking.

If the foundation is also shaken vertically, the apparent weight of the object
(hence the frictional resistance) changes. Denoting the upward vertical acceleration
by av(t), the EOM of the sliding object takes the following form:

€uþ a1 tð Þ ¼ �μ gþ av tð Þ½ � sgn _uð Þ ð5:2Þ

In a more general case, the foundation is simultaneously shaken in both horizontal
and vertical directions. The EOM for the object subjected to triaxial foundation
motion may be found elsewhere [6, 7]. The numerical solution of the sliding
response is quite well developed and understood.

5.4 Ground Motion

In this chapter, the sliding response of an unanchored object is calculated during the
500-year MRP ground motion at a site in the San Francisco Bay Area (SFBA). The
500-year MRP ground motion for the SFBA site was determined in Chap. 2.
Figure 5.3 shows the 500-year MRP response spectra for various values of damping.
The response spectra are shown in the acceleration–deformation format. These are
the demand curves for the site. The peak pseudo-acceleration PPA is read along the
vertical axis and peak deformation PD is read along the horizontal axis. The natural
period T is shown by the parallel diagonal lines. The PPA, PD, and T are related to
each other by the expression: PD ¼ PPA � (T/2π)2. Figure 5.4 shows one of the
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Fig. 5.3 500-year MRP ADRS for various values of damping for the SFBA site

Fig. 5.4 One of seven 500-year MRP spectrum-compatible ground motion history for 3D analyses
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seven spectrum-compatible ground motion history for 3D analyses; this was also
generated in Chap. 2. Different types of analysis are discussed next.

5.5 Nonlinear-Dynamic Analysis

The dynamic analysis of the sliding object is performed by using the frictional-link
element in SAP 2000 [9] which is based on Refs. [6, 7].

First, the object is assumed rigidly anchored to its foundation which is shaken by
the two horizontal components of motion shown in Fig. 5.4. The foundation is not
shaken in the vertical direction yet. Since the object is not allowed to slide, it
experiences the same acceleration as the foundation. Figure 5.5 shows the resultant
horizontal accelerations experienced by the object at various times. The maximum
resultant acceleration experienced by the fully anchored object is 0.803 g.

Fig. 5.5 Resultant horizontal accelerations experienced by a rigidly anchored object subjected to
the two horizontal components of motion shown in Fig. 5.4

136 5 Sliding of Objects During Earthquakes



5.5.1 Response to Horizontal Shaking

Next, the object is assumed to simply rest on the foundation without any anchorage.
Both the static and the dynamic coefficients of friction between the object and the
foundation are assumed to be μ ¼ 0.462. This is 80% of the expected static
coefficient of the friction between steel and concrete [10]. Since the maximum
frictional resistance is μmg, the object slides as soon as the resultant horizontal
ground acceleration reaches μg ¼ 0.462 g. Figure 5.6 shows the resultant horizontal
accelerations experienced by the object at various times. As expected, the acceler-
ation never exceeds 0.462 g in any horizontal direction.

Figure 5.7 shows the sliding displacements of the object at various times. The
maximum displacement is 4.97 cm and the residual displacement (at the end of
ground shaking) is 4.96 cm. The sliding response of the object is computed for all
seven simulations of the 500-year MRP ground motion. The second, third, and
fourth columns in Table 5.1 list the peak values of acceleration, displacement, and
residual displacement experienced by the object subjected to seven ground motions.
The median values in the last row of Table 5.1 are the responses to the 500-year

Fig. 5.6 Resultant horizontal accelerations experienced by an unanchored object subjected to the
first set of 500-year MRP horizontal ground motions for the SFBA site
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Fig. 5.7 Sliding displacements of an unanchored object subjected to the first set of 500-year MRP
horizontal ground motions for the SFBA site

Table 5.1 Response accelerations and sliding displacements experienced by an object subjected to
seven sets of simulated horizontal ground motions

Ground
motion

Response
acceleration (g)

Maximum sliding
displacement (cm)

Residual displacement
(cm)

1 0.462 4.97 4.96

2 0.462 1.91 1.54

3 0.462 2.96 2.76

4 0.462 7.66 7

5 0.462 5.26 5.22

6 0.462 2.75 1.1

7 0.462 1.88 1.87

Median 0.462 2.96 2.76
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MRP ground motion at the SFBA site. The peak values of acceleration and displace-
ment from dynamic analysis are 0.462 g and 2.96 cm, respectively. These are shown
by a red dot on the response spectra plots in Fig. 5.8. Notice that the red dot is within
the 64% damping response spectrum. Therefore, the implicit damping in dynamic
analysis is greater than 64% of critical. From extrapolation, the damping is estimated
at 92% of critical from dynamic analysis. So far, the effect of vertical ground motion
has not been considered.

5.5.2 Effects of Vertical Ground Motion

The vertical ground motion affects the frictional resistance between the object and
the foundation. The upward acceleration of the foundation increases the frictional
resistance by increasing the “apparent weight” of the object. The downward accel-
eration decreases the frictional resistance by decreasing the “apparent weight” of the
object.

Figure 5.9 shows horizontal accelerations experienced by the object when it is
subjected to both horizontal and vertical ground motions. Note that the maximum
acceleration experienced by the object is greater than 0.462 g. To understand this

Fig. 5.8 Equilibrium point from dynamic analysis on the 500-year MRP response spectra for
various values of damping
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increase, recall that Eq. 5.2 is an expression for the total horizontal acceleration
experienced by the object during sliding. In the absence of vertical motion, the
maximum value of the right-hand side of Eq. 5.2 is μg. In the presence of vertical
motion, the maximum value of the right-hand side is μ|g + av(t)|max, which is greater
than μg. A conservative estimate of the maximum horizontal acceleration experi-
enced by the object is μ(g + PGAV), where PGAV ¼ peak ground acceleration in the
vertical direction.

Figure 5.10 shows the sliding displacements of the object subjected to both
horizontal and vertical ground motions. Compare this with Fig. 5.7, which shows
sliding displacements due to horizontal shaking only. The sliding displacement of
the object has increased in this case. The effect of vertical motion on sliding
displacement was computed for all seven ground motions. Table 5.2 lists the
responses from seven dynamic analyses. Note that in most cases, vertical ground
motion increased the sliding displacement. This is probably because vertical ground
motion makes it more difficult for the object to remain “attached” to the foundation.

Fig. 5.9 Resultant horizontal accelerations experienced by an unanchored object subjected to the
first set of 500-year MRP horizontal and vertical ground motions for the SFBA site
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Fig. 5.10 Sliding displacements of an unanchored object subjected to the first set of 500-year MRP
horizontal and vertical ground motions for the SFBA site

Table 5.2 Response accelerations and sliding displacements experienced by an object subjected to
seven sets of simulated horizontal and vertical ground motions

Ground
motion

Response
acceleration (g)

Maximum sliding
displacement (cm)

Residual displacement
(cm)

1 0.605 7.31 7.3

2 0.573 2.72 2.01

3 0.586 2.5 0.392

4 0.544 8.84 8.45

5 0.533 7.83 7.78

6 0.538 3.27 1.01

7 0.591 4.4 4.38

Median 0.573 4.4 4.38
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5.5.3 Comments on Dynamic Analysis

The conclusions drawn from the nonlinear-dynamic analysis are as follows:

• Seismic sliding reduces the maximum acceleration experienced by an object and
the maximum inertial force transmitted to its foundation.

• Vertical motion increases the maximum horizontal acceleration experienced by a
sliding object.

• Vertical motion increases the sliding displacement.
• The implicit damping in dynamic analysis is quite high—at about 92% of critical.

The nonlinear-static analysis of sliding response is discussed next. The purpose of
nonlinear-static analysis is to obtain an approximate solution much more efficiently.

5.6 Nonlinear-Static Analysis

The nonlinear-dynamic analysis requires multiple runs using a set of carefully
generated ground motion histories. In this section, sliding response is computed by
using a nonlinear-static analysis. The analysis requires: (1) a demand curve
(response spectrum) for appropriate value of damping, and (2) a capacity curve.
The development of demand and capacity curves is discussed next.

5.6.1 Demand Curve

Figure 5.11a shows the cyclic force–displacement relationship for a sliding object.
As the lateral force F on the object is gradually increased from zero, the object
remains stationary until the force overcomes the maximum frictional resistance μmg
and the object starts to slide. During sliding, the lateral force F remains fixed but the
displacement increases. Upon reversing the direction of force, the object comes to
rest and it does not move until the force reaches the frictional resistance in the
opposite direction, i.e., F ¼ � μmg. Figure 5.11a shows a complete force–displace-
ment cycle consisting of loading, unloading, and reloading paths. The area enclosed
within the force–displacement cycle in Figure 5.11a is the energy loss per cycle due
to sliding. It is given by the following expression:

Eh ¼ 4μmgD ð5:3Þ

The “strain energy” equals the area of the triangle in Fig. 5.11b:
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Fig. 5.11 Cyclic force–displacement relationship of a sliding object: (a) hysteretic energy lost by
sliding; and (b) “potential energy” associated with sliding

Fig. 5.12 Demand curve: 64% damping ADRS on logarithmic scale
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Es ¼ 1
2
μmgD ð5:4Þ

The equivalent-viscous damping is given by the following expression [11]:

ζ ¼ 1
4π

Eh

ES
¼ 4μmgD

4π 1
2 μmgD
� � ¼ 2

π
¼ 0:64 64%ð Þ ð5:5Þ

Note that the damping for a rigid sliding object is 64% of critical, irrespective of
the coefficient of friction μ and the amount of sliding D. Figure 5.12 shows a
logarithmic plot of the ADRS for 64% damping; it is one of the curves shown in
Fig. 5.3. This is the demand curve.

Fig. 5.13 Pushover curve for the sliding object
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5.6.2 Capacity Curve

The capacity curve is generated from the pushover curve. The pushover curve is a
plot between the lateral force and displacement; it is shown in Fig. 5.13. The object is
assumed to have a mass of 1140 kg, the object remains at rest until the force reaches
the frictional resistance, at which point the object starts sliding. The capacity curve is
obtained by dividing the force along the vertical axis by the mass of the object. The
capacity curve is shown in Fig. 5.14. A logarithmic plot of the capacity curve is
shown in Fig. 5.15.

5.6.3 Sliding Response

The intersection between the demand curve and the capacity curve in Fig. 5.16
represents the equilibrium condition. According to the nonlinear-static analysis, the
object will slide 5.96 cm during the 500-year MRP ground motion. The amount of
sliding predicted by the nonlinear-static analysis is 35% higher than the value

Fig. 5.14 Capacity curve for the sliding object
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obtained from the nonlinear-dynamic analysis without vertical motion. This much
conservatism is considered appropriate for a much simpler approximate analysis
which is not prone to numerical errors.

5.7 ASCE 43-05 Method

ASCE 43-05 [8] includes an approximate method, based on the “reserve energy”
technique [12], for estimating the sliding displacement. The method consists of the
following four steps:

1. Compute the effective coefficient of friction:

μe ¼ μ 1� 0:4PGAV=gð Þ ð5:6Þ

where, PGAV ¼ peak ground acceleration in the vertical direction. From
Table 2.6, PGAV ¼ 0.316 g. Substituting, μ ¼ 0.462, and PGAV/g ¼ 0.316 into
Eq. 5.6, the effective coefficient of friction is μe ¼ 0.404.

2. Compute the sliding coefficient:

Fig. 5.15 Logarithmic plot of the capacity curve for the sliding object
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cS ¼ 2μeg ¼ 0:808 g ð5:7Þ

3. Compute the lowest natural frequency feS at which the peak pseudo-acceleration
PPA equals cS on the 10% damping response spectrum. Figure 5.17 shows 10%
damping response spectrum with natural frequency along the horizontal axis and
peak pseudo-acceleration along the vertical axis. The lowest natural frequency at
which PPA ¼ 0.808 g is feS ¼ 0.745 Hz.

4. Compute the sliding displacement as follows:

δS ¼ cS
2π f eSð Þ2 ¼

0:808� 981

2π � 0:745ð Þ2 ¼ 36:2 cm ð5:8Þ

The sliding displacement from ASCE 43-07 [8] method is eight times the value
from the dynamic analysis and six times the value from the nonlinear-static analysis.
Hence the ASCE 43-07 [8] method is overly conservative. The conservatism stems
from: (1) arbitrary reduction in friction coefficient due to vertical motion (Eq. 5.6)
and (2) arbitrary reduction in damping to 10% of critical.

Fig. 5.16 Nonlinear-static analysis: intersection between demand curve (Fig. 5.12) and capacity
curve (Fig. 5.15)
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5.8 Static and Dynamic Friction

The static coefficient of friction μs is about 25% higher than the dynamic (kinematic)
coefficient of friction. The object needs to overcome the static friction before it can
slide. The frictional resistance is also affected by the vertical ground shaking. The
acceleration experienced by the object can be conservatively estimated from the
following equation:

A ¼ μs gþ PGAVð Þ ð5:9Þ

The sliding displacements should be estimated from the dynamic (kinematic)
coefficient of friction.

Fig. 5.17 Pseudo-acceleration response spectrum for 10% damping
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5.9 Sliding Response of Flexible Object

So far, the object has been assumed to be rigid. Real objects (structures and
equipment) have some flexibility. Flexibility can significantly increase the acceler-
ation experienced by an anchored object. However, flexibility does not affect the
acceleration experienced by an unanchored object, because friction limits the force
that can be transmitted to the object, whether it is rigid or flexible. Flexibility affects
damping because not all the deformation is due to sliding; some deformation occurs
in the object itself. Therefore, effective damping is expected to be smaller than 2/π.
In this section, the sliding response of a flexible object is computed by the nonlinear-
static analysis. The capacity curve and the damping curve are generated as follows.

5.9.1 Capacity Curve

The object can be modeled as a lumped-mass system on a sliding base, as shown in
Fig. 5.18. The object has a mass m ¼ 1000 kg and a fixed-base period of T ¼ 0.5 s.
Therefore, the stiffness of the object is k ¼ m(2π/T )2 ¼ 1000(2π/0.5)2 ¼ 158 kN/m.
The coefficient of friction between the object and the foundation slab is assumed to
be μ ¼ 0.462.

The pushover curve for the object is generated by determining the force required
to deflect the mass by different amounts; it is shown in Fig. 5.19. For small
deflections, the object deforms without sliding and the force increases linearly
with deflection. When the force approaches the frictional resistance μmg, the object
starts sliding without further increase in force. Dividing the force by the mass of the
object gives the capacity curve. A linear plot of the capacity curve is shown in
Fig. 5.20. The radial tick marks indicate the effective period of the object. The initial

Fig. 5.18 Model of a flexible sliding object
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period (before sliding) is T ¼ 0.5 s. After sliding, the effective period continues to
increase. Figure 5.21 shows a logarithmic plot of the capacity curve. The radial tick
marks in Fig. 5.20 are replaced by parallel diagonal lines in Fig. 5.21.

5.9.2 Damping Curve

The damping of the system is computed for various values of deformation.
Figure 5.22a shows a force–deformation loop for a cycle of peak displacement PD
¼ 10 cm. The area enclosed within the loop is the hysteretic energy loss Eh ¼
1.29 kNm. The area of the triangle in Fig. 5.22b is the “strain energy” Es ¼
0.226 kNm. The equivalent-viscous damping for 10-cm amplitude cycle is:

ζ ¼ Eh

4πES
¼ 1:29

4π ∙ 0:226 ¼ 0:454 45:4%ð Þ:

The damping is similarly computed for cycles of various amplitudes. Figure 5.23
shows a plot between peak deformation and damping. This is known as the damping

Fig. 5.19 Pushover curve for the flexible sliding object
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Fig. 5.20 Capacity curve for the flexible sliding object

Fig. 5.21 Logarithmic plot of the capacity curve show in Fig. 5.20



Fig. 5.22 Hysteretic and “strain” energies for 10-cm amplitude cycle

Fig. 5.23 Equivalent-viscous damping due to sliding for various values of deformation
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curve for the system. The damping curve of Fig. 5.23 needs some adjustments before
it can be used in nonlinear-static analysis. Nonlinear-static analysis provides the
peak response. During seismic shaking, the peak deformation occurs only once; rest
of the times the deformation is less than the peak. Since the damping for smaller
amplitude cycles is less, the damping is adjusted as follows. For D ¼ 10 cm, the
damping is 0.454 according to Fig. 5.23. The average (adjusted) damping for
deformations between 0 and 10 cm is calculated by taking the area under the
damping curve up to 10 cm and dividing that area by 10 cm (Fig. 5.24). This
gives the average (adjusted) damping of 2.26/10 ¼ 0.226 (22.6%). The adjusted
damping is similarly computed for other values of D. Finally, the damping is not
allowed to drop below 2% of critical because there are some other sources of energy
dissipation besides sliding. Figure 5.25 shows the adjusted damping curve for the
object; this will be used to complete the nonlinear-static analysis.

Fig. 5.24 Adjustment of damping curve
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5.9.3 Sliding Response

In Fig. 5.26, the capacity curve of Fig, 5.21 is superimposed on demand curves for
various values of damping (Fig. 5.3). The intersections of capacity curve with
demand curves provide deformations for various assumed values of damping.
Figure 5.27 shows a plot of the deformation-versus-damping curve. Higher the
damping, smaller is the deformation. But damping also depends on deformation as
per the adjusted damping curve of Fig. 5.25. The intersection of deformation-versus-
damping curve of Fig. 5.27 with the adjusted damping curve of Fig. 5.25 provides
the damping and deformation at equilibrium (Fig. 5.28). The damping at equilibrium
is 34% of critical and the deformation at equilibrium is 17.2 cm. Out of 17.2 cm
deformation, 2.87 cm is elastic deformation of the object (Fig. 5.21) and the
remaining 14.3 cm is due to sliding. The damping of flexible object is less than
64% because damping associated with elastic deformation of 2.87 cm is only 2% of
critical.

Fig. 5.25 Adjusted damping curve
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Fig. 5.26 Capacity curve superimposed on demand curves (response spectra) for various values of
damping

Fig. 5.27 Deformation-versus-damping curve for the flexible sliding object subjected to 500-year
MRP ground shaking at the SFBA site



5.9.4 Anchored Versus Unanchored

The period of the anchored equipment is 0.5 s and its damping is 2% of critical. The
acceleration and deformation responses of anchored equipment are read from the 2%
damping response spectrum shown in Fig. 5.29. Anchored equipment experiences an
acceleration of 2.57 g and it deforms 16 cm. All the deformation is in the equipment
because there is no sliding.

The unanchored equipment experiences an acceleration of 0.462 g and it deforms
2.87 cm. Therefore, in this case, sliding reduces the force and deformation of the
equipment, or it has a beneficial effect on the seismic response of the equipment.

Fig. 5.28 Intersection of damping curve with the deformation-versus-damping curve to find
deformation and damping at equilibrium
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5.10 Effects of Foundation Tilt

The foundation may have some accidental tilt (slope). Tilt increases the tendency of
the object to slide in the downward sloping direction. To study the effect of tilt, the
foundation was assumed sloping by 2% (1.15�) in one direction and the sliding
analysis was repeated. The sliding displacements were found to increase by less than
20%. Therefore, the effect of accidental tilt on sliding displacement was not consid-
ered significant because tilt greater than 1% is usually not tolerated.

5.11 Summary

1. Seismic sliding at the base of an object is a significant source of deformability and
damping. Therefore, preventing seismic sliding is not always the best choice.

2. Seismic sliding limits the forces transmitted to the object and its foundation.

Fig. 5.29 Acceleration and deformation responses of anchored equipment
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3. Vertical motion increases the horizontal accelerations experienced by a sliding
object.

4. The vertical motion tends to increase the sliding displacement.
5. Accidental tilt in the foundation does not have a significant effect on sliding

displacements.
6. ASCE 43-05 method for estimating sliding is somewhat arbitrary and overly

conservative. Nonlinear-static analysis discussed in this chapter is simpler and
much less conservative.
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Chapter 6
Rocking of Objects During Earthquakes

Nomenclature

α Critical base rotation (Fig. 6.1)
θ Base rotation (Fig. 6.1)
_θ Angular velocity
€θ Angular acceleration
θmax Maximum base rotation
ζ Equivalent viscous damping (Eq. 6.11)
a Aspect ratio ¼ b/h
aH(t) Horizontal acceleration of ground at time t
aV(t) Vertical acceleration of ground at time t
b Half-width of rectangular block
CG Center of gravity
cm Centimeter
EOM Equation(s) of motion
g 9.81 m/s2 ¼ acceleration due to gravity
h Height of CG (Fig. 6.1)
I Moment of inertia (Eq. 6.4)
m Mass of block
MRP Mean return period
PGA Peak horizontal ground acceleration
PGD Peak horizontal ground displacement
PGV Peak horizontal ground velocity
PPA Peak pseudo-acceleration (also known as spectral acceleration)
PD Peak deformation
PPV Peak pseudo-velocity (also known as spectral velocity)
R Distance between the point of rotation and CG (Fig. 6.1)
s Second
t Time
T Undamped natural period
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6.1 Introduction

Rocking response of rigid rectangular objects was first studied by Housner [1]. He
showed that smaller objects are more easily toppled than larger objects of the same
aspect (width/height) ratio. Priestley et al. [2] emphasized the benefits of base
rocking in reducing the forces transmitted to a structure during ground shaking.
They used Housner’s [1] results to estimate the rocking response by a nonlinear-
static analysis. Yim et al. [3] performed a sensitivity study of rocking response using
simulated ground motions. Makris and Konstantinidis [4] argued that the base
rotations obtained from the analysis proposed by Priestly et al. [2] can be quite
conservative. They presented a simplified form of the damping equation.

Rocking response of unanchored objects is particularly important in the nuclear
industry. ASCE 43–05 [5] standard for nuclear facilities includes a method for
estimating the rocking response without performing a dynamic analysis. This
method is somewhat complex and has been shown to be unreliable by Dar et al.
[6]. In the absence of a reliable static analysis, the only option is a dynamic analysis
[4, 6]. Nonlinear-dynamic analyses are time-consuming because they require mul-
tiple runs using a suite of carefully selected ground motion histories. Also,
nonlinear-dynamic analyses can be easily corrupted by numerical errors.

The objectives of this chapter are to: (1) discuss the nonlinear-dynamic and
nonlinear-static analyses of rocking response and (2) present the concept of toppling
response spectrum.

Fig. 6.1 A rigid rectangular object rocking at its base
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6.2 Equation of Motion

Figure 6.1 shows a rigid rectangular object of width 2b and height 2h shaken by
horizontal ground acceleration aH(t) that is high enough to rock the object. The
center of gravity (CG) of the object is assumed at its geometric center. The aspect
ratio of the object is:

a ¼ b
h

ð6:1Þ

When the base rotation θ reaches α (Fig. 6.1), the object is on the verge of
toppling. Therefore, α is the critical base rotation; it is given by the following
expression:

α ¼ tan �1a ð6:2Þ

The radius of rotation (distance of CG from the point of rotation) is:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=að Þ2

q
ð6:3Þ

The mass of the object is m and the object’s mass moment of inertia about the
point of rotation is:

I ¼ 4
3
mR2 ð6:4Þ

From the equilibrium of moments about the point of rotation, the equation of
motion (EOM) of the object can be written as [4–6]:

I€θ þ mgR sin α sgn θð Þ � θð Þ ¼ �maH tð ÞR cos α sgn θð Þ � θð Þ ð6:5Þ

In Eq. 6.5, the double dot above rotation θ denotes double differentiation with
respect to time t; g ¼ acceleration due to gravity ¼ 9.81 m/s2; and “sgn” represents
the sign function. The first term on the left side of Eq. 6.5 is the inertial moment and
the second term is the restoring moment due to the weight of the object. The
maximum absolute value of the restoring moment is mgb at θ ¼ 0 and its minimum
value is zero at θ ¼ α. The object will topple at θ ¼ α unless the ground moves fast
enough to quickly reduce θ below α. Therefore, it is possible for the object to rotate
slightly more than α without toppling.

The term on the right-hand side of Eq. 6.5 is the forcing function due to the
horizontal acceleration of the ground. It is simply the mass of the object multiplied
by the ground acceleration multiplied by the instantaneous height of the CG. The
forcing function has some dependence on base rotation θ because the height of CG
depends on (Fig. 6.1).
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In Eq. 6.5, there is no separate term for damping (or energy dissipation). The
energy is dissipated by impacts between the object and the base. Whenever the
object strikes the base, its point of rotation changes from one corner to the other; the
angular velocity of the object is multiplied by the coefficient of restitution, given by
the following expression [1, 2]:

r ¼ 1� 3
2
sin 2 αð Þ ð6:6Þ

Housner [1] derived Eq. 6.6 by conserving the angular momentum when the point
of rotation changes during impacts. Since r < 1, the angular velocity is reduced
(or the energy is dissipated) by impacts. For slender objects, α is low; therefore, the
coefficient of restitution �1. For stocky objects, α is high; therefore r < 1.

Dividing each term in Eq. 6.5 by I and substituting I from Eq. 6.4, yields:

€θ þ 3g
4R

sin α sgn θð Þ � θð Þ ¼ �aH tð Þ 3
4R

cos α sgn θð Þ � θð Þ ð6:7Þ

Equation 6.7 is a nonlinear, second-order differential equation. The solution of
Eq. 6.7 depends on the ground acceleration history aH(t) and object’s geometric
characteristics α and R; α defines the shape (aspect ratio) of the object (Eqs. 6.1 and
6.2); and R defines the size of the object (Eq. 6.3).

6.3 Free-Vibration Response

The free-vibration response of the object is computed by ignoring the forcing
function on the right-hand side of Eq. 6.7. The object is given an initial peak rotation
PR and its response is computed at various times. There are two reasons to perform a
free-vibration analysis: (1) to gain insight into the period and damping of the system
and (2) to gain confidence in the numerical solution of the EOM.

The EOM of the object undergoing free vibration is:

€θ þ 3g
4R

sin α sgn θð Þ � θð Þ ¼ 0 ð6:8Þ

Apart from the initial value of peak base rotation PR, the solution of Eq. 6.8
depends only on α and R.

Equation 6.8 is solved numerically for α ¼ 0.3 radian, R ¼ 1 m, and PR ¼ 0.2
radian by using Matlab [7] routine ODE45. Although, the coefficient of restitution,
r is given by Eq. 6.6, its value is assumed equal to 1. In other words, the angular
velocity _θ is not reduced after base impacts. Figure 6.2 shows plot of θ versus time
t for α ¼ 0.3 radian, R ¼ 1 m, and peak rotation PR ¼ 0.2 radian. Note that the
amplitude of oscillation does not reduce from one cycle to the next because the

162 6 Rocking of Objects During Earthquakes



coefficient of restitution r has been assumed equal to 1. Since the system has no other
way of losing energy, the amplitude of oscillations remains fixed at PR¼ 0.2 radian.
The period obtained from the numerical analysis matches the period given by the
following equation proposed by Housner [1]:

T ¼ 8

ffiffiffiffiffi
R
3g

r
cosh �1 1

1� PR=α

� �
ð6:9Þ

Therefore, Eq. 6.9 [1] provides a good estimate of the undamped natural period of
the system. Also, the numerical solution of the equation of motion by the Matlab [7]
routine ODE45 can be trusted as long as the error tolerances during the solution are
kept sufficiently low. According to Eq. 6.9, the period of the rocking object is zero
when the amplitude of oscillation approaches zero (PR ¼ 0) and it is infinite when
the amplitude of oscillation approaches critical angle (PR ¼ α).

Next, the free-vibration analysis is performed by using the “actual” value of the
coefficient of restitution r given by Eq. 6.6. During the analysis, the base rotation θ
and the angular velocity _θ are closely monitored. Whenever the base rotation

Fig. 6.2 Undamped free-vibration response for α ¼ 0.3 radian, R ¼ 1 m, and PR ¼ 0.2 radian
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changes sign (or an impact occurs), the angular velocity is multiplied by r to account
for energy dissipation through impact. Figure 6.3 shows a plot of θ versus time t for α
¼ 0.3 radian, R ¼ 1 m, and initial peak base rotation PR ¼ 0.2 radian. As expected,
the amplitude of oscillation reduces after every half-cycle because the system loses
energy through base impacts. After the first cycle, the amplitude is 45.5% of the
original value. Although the system is not viscously damped, the equivalent-viscous
damping can be estimated from the rate of amplitude decay [8]:

ζ ¼ 1
2π

ln
PR
θ1

� �
ð6:10Þ

where θ1¼ amplitude after one cycle. As reported in past studies [2, 4, 6], the
equivalent-viscous damping is found to depend only on r, which depends on α
(Eq. 6.6). The following expression by Makris and Konstantinidis [4] provides a
good estimate of the equivalent-viscous damping:

Fig. 6.3 Damped free-vibration response for α ¼ 0.3 radian, R ¼ 1 m, and PR ¼ 0.2 radian
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ζ ¼ �0:68 ln 1� 3
2
sin 2α

� �
ð6:11Þ

The conclusions drawn from the free-vibration analyses are as follows:

• The undamped period of the system depends on R and the normalized amplitude
of oscillation PR/α. Equation 6.9 by Housner [1] provides a good estimate of the
period of the system.

• The equivalent-viscous damping of the system depends only on α. It does not
depend on R or the amplitude of oscillation PR. Equation 6.11 by Makris and
Konstantinidis [4] provides a good estimate of damping.

6.4 Ground Motion

In this chapter, the rocking response of the object is calculated during the 500-year
MRP ground motion at a site in the San Francisco Bay Area (SFBA). The 500-year
MRP ground motion for the SFBA site was determined in Chap. 2. Figure 6.4 shows
the 500-year MRP response spectra for various values of damping. The response

Fig. 6.4 500-year MRP ADRS for various values of damping for the SFBA site
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spectra are shown in the acceleration–deformation format. These are the demand
curves for the site. The peak pseudo-acceleration PPA is read along the vertical axis
and peak deformation PD is read along the horizontal axis. The natural period T is
shown by the parallel diagonal lines. The PPA, PD, and T are related to each other by
the expression: PD ¼ PPA � (T/2π)2. Figure 6.5 shows one set of spectrum-
compatible ground motion history for 2D analyses; this was also generated in
Chap. 2. Different types of analyses are discussed next.

6.5 Nonlinear-Dynamic Analysis

An object of width 2b ¼ 2 m and height 2h ¼ 6 m is subjected to the horizontal
ground motion displayed in the upper part of Fig. 6.5; the object is not subjected to
the vertical ground motion yet. From Eqs. 6.1 to 6.3, α ¼ 0.322 radian and R ¼
3.16 m. From Eq. 6.6, r ¼ 0.85. The response of the object is determined from the
numerical solution of Eq. 6.7. As in the case of free-vibration analysis, the base
rotation θ and the angular velocity _θ are closely monitored throughout the analysis.
Whenever the base rotation changes sign (or an impact occurs), the angular velocity
is multiplied by r to account for energy dissipation through impact. Figure 6.6 shows

Fig. 6.5 One set of 500-year MRP ground motion history for the SFBA site

Fig. 6.6 History of base rotation for an object with α¼ 0.322 radian, and R¼ 3.16 m, subjected to
the horizontal ground motion displayed in the upper part of Fig. 6.5
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a plot of base rotation versus time. As can be seen in Fig. 6.6, the object does not
topple; the base rotation returns to zero (or the object returns to its upright position)
after the earthquake.

The vertical motion of the ground affects the restoring moment about the point of
rotation. The restoring moment increases when the vertical acceleration is positive
(upward), and the restoring moment decreases when the vertical acceleration is
negative (downward). The EOM of the object under both horizontal and vertical
ground motions is as follows [5]:

€θ þ 3g
4R

1þ aV tð Þ
g

� �
sin α sgn θð Þ � θð Þ ¼ � 3

4R
aH tð Þ cos α sgn θð Þ � θð Þ ð6:13Þ

where aV(t)¼ upward acceleration at time t. Equation 6.13 is solved using both
horizontal and vertical components of the ground motion displayed in Fig. 6.5.
Figure 6.7 shows a plot of base rotation versus time. Compare this with the plot in
Fig. 6.6, which was generated without the vertical motion. The vertical motion has
slightly reduced the maximum base rotation. The effect of vertical motion was
considered for all seven simulated ground motions. In Table 6.1, the second column
lists the base rotations due to horizontal motion only and the third column lists the
base rotations due to both horizontal and vertical motions. Upon comparing the
values in the second and third columns, it is seen that vertical motion can increase or

Fig. 6.7 History of base rotation for an object with α¼ 0.322 radian, and R¼ 3.16 m, subjected to
both horizontal and vertical ground motions displayed in Fig. 6.5

Table 6.1 Maximum base rotations for an object with α¼ 0.322 radian, and R¼ 3.16 m, subjected
to seven sets of simulated ground motions

Ground motion

Peak base rotation PR (radian)

Horizontal shaking only Horizontal and vertical shaking

1 0.130 0.0914

2 0.196 0.146

3 0.197 0.216

4 0.0759 0.0788

5 0.198 0.153

6 0.151 0.157

7 0.276 0.242

Median 0.196 0.153
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decrease the base rotation. The median base rotation listed in the last row of
Table 6.1 is slightly reduced by the vertical motion of the ground. Since the vertical
motion changes direction much more rapidly than the rocking response, the net
effect of vertical motion on the rocking response can be ignored.

The conclusions drawn from the nonlinear-dynamic analysis are as follows:

• Dynamic analysis is time-consuming because it requires numerous runs using
several sets of simulated ground motions.

• Results of dynamic analysis can be easily corrupted by numerical errors. There-
fore, extra care is needed to minimize numerical errors during dynamic analysis.

• The effect of vertical motion on the rocking response can be neglected.

The nonlinear-static analysis is discussed next. The purpose of nonlinear-static
analysis is to obtain an efficient solution without numerical difficulties. The
improvements made to overcome the shortcomings of previous nonlinear-static
analyses [2] are identified.

6.6 Nonlinear-Static Analysis

Nonlinear-static analysis is an approximate solution of the EOM (Eq. 6.7). The right
side of Eq. 6.7 represents the demand imposed by the ground motion and the left side
represents the capacity of the system. The nonlinear-static analysis of the object of
width 2b¼ 2 m, and height 2h¼ 6 m, subjected to the 500-year MRP ground motion
at the SFBA site, is carried out as follows:

1. Compute a, α, and R from Eqs. 6.1, 6.2, and 6.3, respectively:

a ¼ 1
3
¼ 0:333

α ¼ tan �10:333 ¼ 0:322 radian

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 32

p
¼ 3:16 m

2. Substitute α into Eq. 6.11 to compute damping:
ζ ¼ �0:68 ln 1� 3

2 sin
20:322

� � ¼ 0.111 (11.1% of critical)
3. Generate 11.1% damping response spectrum of horizontal ground motion by

interpolating between the 10% and 15% damping response spectra shown in
Fig. 6.4. Figure 6.8 shows the 11.1% damping ADRS on a logarithmic scale. This
is not the demand curve yet, because the ground acceleration on the right side of
Eq. 6.7 is multiplied by a few factors.

4. Taking a cue from the right-hand side of Eq. 6.7, multiply PD by 3/(4R) to obtain
peak rotation PR and multiply PPA by 3/(4R) to obtain peak angular acceleration
PAA. Figure 6.9 shows the angular–acceleration–rotation plot of the response
spectrum.
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5. Once again, taking a cue from the right side of Eq. 6.7, multiply PR along the
horizontal axis of Fig. 6.9 by cos(α � PR) for all values of PR � α. This
correction accounts for the fact that the forcing function on the right side of
Eq. 6.7 depends on the base rotation. The resulting plot is shown in Fig. 6.10.
This is the demand curve for the site.

6. For different values of peak rotation PR between 0 and α, compute the natural
period T from Eq. 6.9. Figure 6.11 shows a plot between the peak rotation PR and
natural periodT. For each pair ofPR andTvalues, obtain peak angular–acceleration
PAA ¼ PR(2π/T )2. Figure 6.12 shows a plot between PAA and PR. This is the
capacity curve for the object.

7. Superimpose the capacity curve (Fig. 6.12) over the demand curve (Fig. 6.10).
The two curves intersect at a rotation of 0.31 radian (Fig. 6.13). Therefore, the
base rotation for the object during the 500-year MRP ground motion is 0.31
radian. Sometimes, the demand and capacity curves may intersect at more than
one point. Since the rotation starts from zero, the intersection corresponding to the
lowest value of rotation represents the true equilibrium condition, because the
object will arrive at that rotation first and get “locked.”

8. If the demand curve completely enveloped the capacity curve (without
intersecting it), the object would be toppled by the ground motion. If the capacity

Fig. 6.8 11.1% damping ADRS for 500-year MRP ground motion at SFBA site
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curve completely enveloped the demand curve (without intersecting it), the object
will not rock during the ground motion.
The results from the nonlinear-static analysis are somewhat conservative com-

pared to those from the nonlinear-dynamic analysis, but they are free of numerical
errors. Next, the improvements made in the proposed nonlinear-static analysis are
highlighted.

The nonlinear-static analysis described in this chapter differs from the analysis
proposed by Priestly et al. [2] in the following respects:

• In the Priestly et al. [2] analysis, the rotational spectrum is not computed. The
deformation read from the deformation spectrum of horizontal ground motion is
divided by h to compute rotation. In the method proposed in this chapter, the
rotational spectrum is computed by multiplying the deformation spectrum by
3/(4R). Since h < 4R/3, the results from the Priestly et al. [2] analysis are
conservative. Note that the 3/(4R) factor appears on the right-hand side of
Eq. 6.7 because the mass is “rotational” while the excitation is “translational.”
If the mass were translational, the 3/(4R) factor would not be necessary.

• The correction to the rotational spectrum by cos(α � PR) factor (Step 5) was
omitted in the analysis by Priestly et al. [2]. However, the influence of this

Fig. 6.9 Angular acceleration–rotation plot of response spectrum obtained by multiplying both PD
and PPA in Fig. 6.8 by 3/(4R)
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correction is not significant as can be seen from the comparison between Figs. 6.9
and 6.10.

• In the Priestly et al. [2] analysis, the equilibrium rotation was obtained iteratively
by assuming a value of base rotation and then correcting it in successive itera-
tions. As described under Step 7, multiple equilibrium conditions are possible but
the true equilibrium condition corresponds to the lowest rotation. However, the
Priestly et al. [2] solution could converge to any of the possible equilibrium
conditions thus adding significant conservatism and uncertainty to the predicted
response. The graphical solution presented in this chapter avoids this problem in
addition to being efficient and transparent.

6.7 Safety Margin against Toppling

In the previous example, the rotation of the object under 500-year MRP ground
shaking is 0.31 radian. Since critical rotation for the object is α ¼ 0.322 radian, it is
tempting to say that the safety margin against toppling is 0.322/0.31 ¼ 1.04. How-
ever, this can be misleading because rocking response is highly nonlinear and a
specific increase in the ground motion does not produce a proportional increase in

Fig. 6.10 Demand curve obtained by multiplying PR in Fig. 6.9 by cos(α � PR) for PR � α
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the response [4]. Figure 6.14 shows that a 70% increase in the demand curve
(response spectrum) is required for the demand curve to completely envelop the
capacity curve, thus causing the object to topple. Therefore, the safety margin
against collapse is 1.7 rather than 1.04. The 500-year MRP response spectrum
multiplied by 1.7 is roughly the 2200-year MRP response spectrum for the SFBA
site. It is most informative to say that the object is toppled by the 2200-year MRP
ground motion for the site. The safety margin is best expressed in terms of the MRP
of ground motion that will topple the object.

6.8 Toppling Response Spectrum

Between two objects of the same aspect ratio but different size, the smaller object is
more easily toppled by the ground motion than the larger object. That is because, for
toppling to occur, the CG of the larger object has to move more than that of the
smaller object. Among objects of same width but different heights, the taller object is
more easily toppled than the shorter object. The toppling heights were calculated for
objects of various widths. A plot of toppling height versus width is shown in

Fig. 6.11 Period T versus peak rotation PR for an object of width 2b ¼ 2 m and height 2h ¼ 6 m
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Fig. 6.15. This is the 500-year MRP toppling response spectrum for the SFBA site.
No matter how tall the object, if it is more than 1.2 m wide, it will not be toppled by
the 500-year MRP ground motion at SFBA site. This is because the 500-year MRP
ground motion at the SFBA site lacks the displacement necessary to move the CG
more than 0.6 m. Minimum acceleration is needed to rock the object, but minimum
displacement is needed to topple the object.

Toppling response spectrum provides a practical way of assessing the toppling
vulnerability of numerous objects at a site. For each object, based on its height and
width, a point is marked on the toppling response spectrum. If the point is in the
“toppled” zone, the object will be toppled by the 500-year MRP ground motion. The
toppling risk can be mitigated by augmenting the width of the object, anchoring the
object, or by providing lateral supports to the object. For objects at various floors of a
building, toppling response spectra can be generated from the estimates of motions at
various floors of a building. Toppling response spectra can of course be generated for
different MRPs.

When an object is on the verge of toppling, there may be some other forces (e.g.,
wind, traffic, etc.) which may cause it to topple prematurely. Therefore, it is
conservatively assumed that the object is toppled if during ground shaking the
effective period of rocking response exceeds 10 s. With this definition, the object
analyzed in Sect. 6.6 will be toppled because the period of rocking response at

Fig. 6.12 Capacity curve obtained from Fig. 6.11 by using the relation PAA ¼ PR(2π/T )2
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Fig. 6.13 Superposition of capacity curve (Fig. 6.12) over the demand curve (Fig. 6.10) to obtain
peak base rotation at equilibrium

Fig. 6.14 Effect of 70% increase in the demand curve (response spectrum) on the rocking response
of the object



equilibrium is slightly longer than 10 s, as seen in Fig. 6.13. Figure 6.16 shows a
conservative plot of the toppling response spectrum.

6.9 Summary

1. The effective period of oscillation of a rocking object depends on: (a) its size and
(b) the amplitude of rotation as a fraction of the critical rotation. The equation
proposed by Housner [1] provides an accurate estimate of the effective period.

2. The equivalent-viscous damping of a rocking object depends on its aspect ratio.
The equation proposed by Makris and Konstantinidis [4] provides a good esti-
mate of the equivalent-viscous damping.

3. Vertical motion of the ground does not have a significant effect on the rocking
response. Vertical motion changes direction much more rapidly compared to the
rocking response. Therefore, the net effect of vertical motion on the rocking
response can be neglected.

4. The response of a rocking object is highly nonlinear. An increase in the amplitude
of ground shaking disproportionately increases the rocking response. The safety

Fig. 6.15 Toppling response spectrum of the 500-year MRP ground motion at the SFBA site
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margin against toppling should not be expressed by the ratio between the critical
rotation and the computed rotation. It is more meaningful to express the safety
margin by the MRP of ground motion that will topple the object.

5. The nonlinear-static analysis presented in this study overcomes the shortcomings
of the previous nonlinear-static analyses. Therefore, the results are not overly
conservative compared to those from the nonlinear-dynamic analysis. In addition
to being highly efficient, the analysis is not prone to numerical errors that can
corrupt a nonlinear-dynamic analysis. Even when a nonlinear-dynamic analysis is
performed, a nonlinear-static analysis should be performed first.

6. The toppling response spectrum has a simple form. It presents the minimum
heights necessary to topple unanchored objects of various widths. Therefore, it is
a practical way of assessing and mitigating toppling risk at a facility. No matter
how high the PGA or how tall an object, it cannot be toppled unless its aspect ratio
b/h < 3/4(PGA/g), and its width 2b < 1.5PGD.

7. A minimum PGA is needed to rock an object, but a minimum PGD is necessary to
topple the object.

Fig. 6.16 Conservative plot of the toppling response spectrum of the 500-year MRP ground
motion at the SFBA site
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Chapter 7
Seismic Response of Storage Racks

Nomenclature

θ Joint rotation
ζ Equivalent viscous damping ratio
ζh Hysteretic damping
CA Cross-aisle
CG Center of gravity
DA Down-aisle
Eh Hysteretic energy lost per cycle
Es Strain energy
H Height of CG
m Total mass of rock and product
g 9.81 m/s2 ¼ acceleration due to gravity
M Joint moment
MF Moment frame(s)
MRP Mean return period
OTM Overturning base moment
PD Peak deformation
PPA Peak pseudo-acceleration
Q Base shear
RMI Rack Manufacturers Institute
SFBA San Francisco Bay Area
TCA Natural period of rack in cross-aisle direction (before sliding)
W Total weight of rack and product
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7.1 Introduction

Storage racks are essential part of industrial and commercial facilities. They are often
used to store high-value or hazardous products. During past earthquakes, products
have fallen from shelves or the racks have collapsed. Failure of racks poses signif-
icant risk to life and property. Storage racks are generally made of cold-formed steel
components. The columns (or uprights) are thin-walled open sections and beams are
open or boxed sections. Columns have holes at regular interval to enable connections
with beams at different heights (levels). The beams support the shelves.

In the cross-aisle (CA) direction, the lateral loads are resisted by trusses. In the
down-aisle (DA) direction, trusses cannot be used because clear openings are needed
to load and unload racks. Therefore, the lateral loads in the DA direction are resisted
by moment frames. The beam-column moment connections are proprietary bolted
(or pinned) connections which can be easily assembled or unassembled to achieve
desired configuration of racks. The column base plates may simply rest on the floor
slab or they may be anchored to the floor slab. Racks are often joined back-to-back
so they can be loaded and unloaded from aisles on both sides.

The stored products rest on pallets, which are supported by shelves. The most
common type of shelf is made from epoxy-coated stainless-steel wires; it is known as
the wire-mesh shelf. The coefficient of friction between the pallets and the wire-
mesh shelves is low—between 0.11 and 0.29. Therefore, the inertial forces trans-
mitted by the pallets to the rack are also low. In the CA direction, the rack is very stiff
due to the presence of trusses. Therefore, the rack deforms less but the pallets slide
more. Excessive sliding can cause the pallets to fall off the shelves. In the DA
direction, the rack is very flexible due to the presence of partially restrained moment
frames. Therefore, the rack deforms more but the pallets slide less. Excessive
swaying of rack in the DA direction can cause the beam–column moment connec-
tions to fail and the rack to collapse.

The seismic response of storage racks is quite nonlinear even at low levels of
ground shaking. The nonlinearities are due to: (1) sliding of pallets on shelves;
(2) large rotations in beam–column moment connections; and (3) moments induced
by the large deflections of the gravity loads (P–Δ effect). The seismic performance of
racks under design level ground shaking cannot be assessed without a nonlinear
analysis.

Only a handful of experimental and analytical studies [1–5] have been conducted
on the seismic response of storage racks. Focused mainly on the response of racks in
the DA direction, the past analytical studies did not model sliding of pallets on
shelves.

The objectives of this chapter are to:

• Present nonlinear-static and nonlinear-dynamic analyses of storage racks;
• Identify factors which control the seismic performance of racks; and
• Gain insight into the seismic response of racks so that sound decisions can be

made to improve their performance during future earthquakes.
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7.2 Structural System

Figure 7.1 shows the side and front views of a one-bay storage rack. The side view
(left side) shows the vertical truss which resists the lateral load in the CA direction.
The vertical truss occurs at the ends of each bay. A rack with n bays has n + 1 vertical
trusses. The front view (right side) shows the moment frame which resists the lateral
load in the DA direction. There are two moment frames (front and back) of each bay.

The rack analyzed in this chapter is a one-bay, stand-alone structure with two
brace frames in the CA direction and two moment frames in the DA direction. The
rack has four shelves at 0.24 m, 1.94 m, 3.56 m, and 5.08 m above the base slab.
Each shelf supports two loaded pallets weighing a total of 17.8 kN. The weight of the
rack itself is only 2 kN. The lower bound value of the dynamic (kinematic)
coefficient of friction between the pallets and the shelves is μ ¼ 0.11. The upper
bound value of the static coefficient of friction between the pallets and the shelves is
μ ¼ 0.29.

The proprietary beam–column moment connections can be described as partially
restrained connections. They differ from the fully restrained moment connections,
discussed in Chap. 3 and 4, in following ways:

• A partially restrained moment connection is weaker than the connecting mem-
bers. The plastic rotations occur within the connection itself. A fully restrained
moment connection is stronger than the connecting members. The plastic rota-
tions occur in the connecting members—usually beams.

Fig. 7.1 Lateral load resisting system of a storage rack in the CA direction (left) and DA direction
(right). For the sake of clarity, loaded pallets are only shown in the DA direction
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• In a partially restrained moment connection, the energy loss due to hysteresis is
quite small. In a fully restrained moment connection, plastic yielding in beam is a
major source of energy loss. This source of energy loss is absent from a partially
restrained moment connection.

• A partially restrained moment connection is much more flexible compared to a
fully restrained moment connection.

• Under cyclic loading, the strength and stiffness of a partially restrained moment
connection degrade much more rapidly compared to those for a fully restrained
moment connection.

• The stiffness and strength of a partially restrained moment connection cannot be
calculated easily; they have to be determined experimentally.

• A partially restrained moment connection is ductile but non-hysteretic. A fully
restrained moment connection is ductile and hysteretic.

There are several factors which influence the stiffness and strength of a beam–

column connection in storage racks, but the two most important factors are: (1) the
length (height) of the connector element attached to the beam and (2) the number of
bolts (or pins) in the connection. The Rack Manufacturers Institute (RMI) [6] has
standardized a test for determining the characteristics of a beam–column moment
connection. In this test, the rotation amplitudes are increased in steps until the
connection fails. In each step, six, four, or two cycles of constant amplitude rotations
are applied and the moments are measured using load cells. Therefore, the test is
performed in “displacement–control.” Strictly speaking, the number of cycles should
depend on the magnitude of the earthquake controlling the ground motion hazard at
the site, but the RMI test [6] lacks that level of sophistication.

Figure 7.2a shows a plot of the applied rotations and Fig. 7.2b shows a plot of the
measured moments. The rotations are applied in steps of increasing amplitude. In
smaller amplitude steps, the moment amplitude does not change from one cycle to
the next. This is an indication that the stiffness of the joint does not degrade from one
cycle to the next. In larger amplitude steps, the moment amplitude reduces

Fig. 7.2 Cyclic moment–rotation test: (a) applied rotations of various amplitudes and (b) moments
mobilized in the connection
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significantly from one cycle to the next. This is an indication that the stiffness of the
joint degrades from one cycle to the next. As the rotations become larger and larger,
the degradation in stiffness becomes more and more significant. In the last step, the
degradation is so significant that the joint breaks even before completing the desired
number of cycles for that step. The test is stopped at this stage.

From the results of the RMI test shown in Fig. 7.2, a cyclic moment–rotation
relationship for the connection is generated as follows. From Fig. 7.2a, the rotation
amplitude is read for each step. The corresponding moment amplitude is read from
Fig. 7.2b as the smallest amplitude for that step, which usually occurs in the last
cycle of the step. Figure 7.3 shows the resulting moment–rotation relationship for the
connection. Note the following:

• The slope of the line joining the origin with a point on the curve is known as the
secant stiffness. The secant stiffness reduces with increase in rotation. The
connection is nonlinear even at very small rotations.

• The connection fails at a rotation of 0.115 radian.
• The moment–rotation relationship is assumed nonlinear elastic. In other words,

the hysteretic energy loss in the connection is neglected.

Fig. 7.3 Moment–rotation relationship of the connection from the results of cyclic test shown in
Fig. 7.2
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The moment–rotation relationship shown in Fig. 7.3 is similar in both positive
and negative directions. For some connections, the moment–rotation relationship in
the positive and negative directions is different.

7.3 Ground Motion

In this chapter, the response of the storage rack is computed during the 500-year
MRP ground motion at a site in the San Francisco Bay Area (SFBA). The 500-year
MRP ground motion for the SFBA site was determined in Chap. 2. Figure 7.4 shows
the 500-year MRP response spectra for various values of damping. The response
spectra are shown in the acceleration–deformation format. These are the demand
curves for the site. The peak pseudo-acceleration PPA is read along the vertical axis
and peak deformation PD is read along the horizontal axis. The natural period T is
shown by the parallel diagonal lines. The PPA, PD, and T are related to each other by
the expression: PD ¼ PPA � (T/2π)2. Figure 7.5 shows one of the seven spectrum-
compatible ground motion history for 2D analyses; this was also generated in
Chap. 2. Different types of analyses are discussed next.

Fig. 7.4 500-year MRP ADRS for various values of damping for the SFBA site
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7.4 Cross-Aisle Responses

In the CA direction, the lateral loads are resisted by the vertical trusses (Fig. 7.1). For
low levels of shaking, the pallets remain bonded with the shelves and the system
behaves in a linear fashion with a natural period TCA and damping of about 2% of
critical. During linear response, each pallet experiences the same acceleration as the
supporting shelf. When the acceleration of the shelf exceeds μg, the pallet starts
sliding on the shelf. During sliding, the acceleration of the pallet remains fixed at μg
but the acceleration of the shelf is greater than μg. Since the coefficient of friction is
usually small, the frictional forces transmitted by the sliding pallets are not very high
hence the deformation of the truss is not significant. The most important response in
the CA direction is the amount of sliding. If sliding is too high, the pallets could fall
off the shelves. Two methods of calculating the sliding response are discussed:
(1) nonlinear static and (2) nonlinear dynamic.

7.4.1 Nonlinear-Static Analysis in CA Direction

The nonlinear-static analysis is carried out by generating a capacity curve and a
damping curve for the storage rack. It is assumed that: (1) the weight of the storage
rack is negligible compared with the weight of the pallets; (2) all pallets slide in
unison with each; and (3) the coefficient of friction between pallets and shelves is
μ ¼ 0.11 (lower bound estimate). With these assumptions, a pushover curve for the
storage rack is generated; it is shown in Fig. 7.6. Initially, the force increases linearly
with deformation. The slope of the force–deformation relationship is the lateral
stiffness of the storage rack in the CA direction:

kCA ¼ m
2π
TCA

� �2

ð7:1Þ

where m ¼ 907 � 8 ¼ 7260 kg ¼ total mass of the loaded pallets; TCA ¼
0.33 s ¼ natural period of the rack-pallet system before sliding. Sliding begins

Fig. 7.5 One of seven spectrum-compatible history of 500-year MRP horizontal ground motion for
the SFBA site
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when the lateral force reaches F ¼ μmg¼ 0.11 � 7260 � 9.81 ¼ 7.83 kN. During
sliding, the lateral force remains fixed at 7.83 kN.

The capacity curve is generated by dividing the lateral force F by the mass m ¼
7260 kg to obtain acceleration. Figure 7.7 shows a plot of the capacity curve.
Figure 7.8 shows the same capacity curve on a logarithmic scale. Note that: (1) the
period of the system before sliding is TCA ¼ 0.33 s, (2) the maximum acceleration
experienced by the pallets is 0.11 g, and (3) the rack deforms 0.29 cm before any
sliding occurs. During sliding, the pallet acceleration remains fixed at 0.11 g and the
rack deformation remains fixed at 0.29 cm.

The damping curve is generated from cyclic force deformation relationships of
various amplitudes. Figure 7.9 shows the cyclic force deformation relationship for
10-cm amplitude. The hysteretic energy per cycle Eh is the area of the loop on the left
side. The “strain energy” Es is the area of the triangle on the right side. For a
10-cm cycle, Eh¼3 kNm and Es¼ 0.39 kNm. The equivalent-viscous hysteretic
damping is given by the following expression [7]:

ζh ¼ Eh

4πEs
ð7:2Þ

Fig. 7.6 Pushover curve for the storage rack in the CA direction
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For a 10-cm cycle, the hysteretic ζh ¼ 0.61 (61% of critical). The hysteretic
damping is similarly computed for cycles of other amplitudes. Figure 7.10 shows a
plot of hysteretic damping versus amplitude. This is the raw damping curve, which
needs to be adjusted as follows:

1. During seismic shaking, the rack will experience cycles of many different
amplitudes. The smaller amplitude cycles will have lower damping than larger
amplitude cycles. Since hysteretic damping increases with an increase in ampli-
tude, the damping for the entire duration of shaking should be smaller than the
damping for the peak amplitude cycle. The average damping for 10-cm defor-
mation is computed as follows. The area under the raw damping curve up to
10-cm deformation is 5.51 cm (Fig. 7.11). Dividing this area by 10 cm gives an
average damping of 0.55 (55% of critical). The average damping is similarly
computed for other values of deformation.

2. Finally, the damping is not allowed to drop below 2% of critical to account for
other sources of damping besides pallet sliding.
The plot in Fig. 7.12 shows the adjusted damping curve which will be used in the

nonlinear-static analysis.
In Fig. 7.13, the capacity curve (Fig. 7.8) is superimposed on the 500-year MRP

response spectra (demand curves) for 2, 5, 10, 20, 30, 40, 50, and 64% damping. The

Fig. 7.7 Capacity curve generated from the pushover curve in Fig. 7.6
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Fig. 7.8 Logarithmic plot of the capacity curve shown in Fig. 7.7

Fig. 7.9 Hysteretic and “strain” energies for 10-cm amplitude cycle
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Fig. 7.10 Hysteretic damping for cycles of various amplitudes

Fig. 7.11 Computing adjusted hysteretic damping



Fig. 7.12 Adjusted damping-versus-deformation curve

Fig. 7.13 Capacity curve superimposed on demand curves for 2, 5, 10, 20, 30, 40, 50, and 64% of
critical damping



intersections of capacity curve with demand curves represent equilibrium points for
various assumed values of damping. Figure 7.14 shows deformations for various
assumed values of damping. If damping is high, the deformation is low. This is
known as the deformation-versus-damping curve, even though the deformation is
shown along the horizontal axis. The deformations are for various assumed values of
damping, but the actual value of damping is not known yet.

There are two relationships between damping and deformation. Figure 7.14
shows that the deformation reduces with increase is damping. Figure 7.12 shows
that the damping increases with increase in deformation. Both of these relationships
have to be satisfied. In Fig. 7.15, the deformation-versus-damping curve (Fig. 7.14)
is superimposed on the damping-versus-deformation curve (Fig. 7.12). These two
curves intersect at a damping of 0.61 (61% of critical) and deformation of 38 cm.
Subtracting elastic deformation of 0.29 cm from 38 cm gives sliding displacement of
37.7 cm. The shelves are 1.04 m wide. A 37.7 cm shift in the CG will not cause the
pallets to slide off the shelves, but they will be hanging precariously.

To estimate the lateral forces in the rack, an upper bound value of the coefficient
of friction is used, which, in this case, is μ ¼ 0.29. The frictional force on the rack is
0.29 � 17.8 ¼ 5.16 kN at each level. Although pallets cannot experience an
acceleration greater than 0.29 g, the rack itself, weighing 2 kN, can experience a

Fig. 7.14 Deformation-versus-damping curve for the rack in the CA direction
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higher acceleration. The highest pseudo-acceleration on a 2% damping response
spectrum is 2.65 g (Fig. 7.13). Multiplying this by the weight of the rack gives a base
shear due to the inertia of the rack itself. The total base shear for the rack is Q ¼
5.16 � 4 + 2 � 2.65 ¼ 26 kN and the total overturning moment for the rack is OTM
¼ 70 kNm; these are shared by the two vertical trusses.

The results are next confirmed by performing a nonlinear-dynamic analysis.

7.4.2 Nonlinear-Dynamic Analysis in CA Direction

Figure 7.16 shows a computer model of the rack created in SAP 2000 [8]. The
columns and braces are modeled by linear beams. The pallet masses are lumped at
each shelf level. Elastoplastic link elements [8] are introduced between the pallet
masses and beams to simulate friction. The hysteretic characteristics of the link
elements are based on Ref. [9]. The lateral strength of the link element is 0.11 times
the pallet weight, thus simulating a friction coefficient of μ ¼ 0.11. The deformation
of the link element represents sliding of pallet on shelf.

Fig. 7.15 Deformation-versus-damping curve superimposed on the damping curve
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The model of the rack in the CA direction is excited at its base by the first
simulation of the 500-year MRP ground motion shown in Fig. 7.5. As long as the
shelf acceleration is less than 0.11 g, the pallet moves with the shelf. When the shelf
acceleration exceeds 0.11 g, the pallet starts sliding on the shelf and its acceleration
remains fixed at 0.11 g. Figure 7.17 displays pallet sliding at each level. The
maximum sliding is 32 cm and it occurs at the first level. The sliding displacements
are approximately the same at every level. This implies that the rack is moving like a
“rigid” structure in the CA direction. Since the pallet forces cannot exceed frictional
resistance and the rack is quite stiff in the CA direction (due to the presence of
trusses), it does not deform much.

To estimate the forces in the rack, an upper bound estimate of the friction
coefficient is used, which in this case is μ ¼ 0.29. Figure 7.18 displays the lateral
forces in the link elements at various levels. These are the pallet forces (pallet mass�

Fig. 7.16 Computer model
of the rack [8] in CA
direction
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acceleration) exerted on the rack at various levels. The pallet forces cannot exceed
the maximum frictional resistance, which is 0.29 � 17.8 ¼ 5.16 kN. Therefore, the
pallet forces never exceed 5.16 kN and the pallet acceleration never exceeds 0.29 g.

Figure 7.19a shows a plot of the base shear, which controls the axial force in the
diagonal braces. The maximum base shear is 28.2 kN. This is 8% higher than the
value from the static analysis. The base shear due to pallet forces at all four levels is
5.16 � 4 ¼ 20.6 kN. The remaining 7.6 kN base shear is due to the acceleration of
the rack itself. Since the racks weigh 2 kN, the effective acceleration of the rack is
7.6/2 ¼ 3.8 g. Figure 7.19b shows a plot of the overturning base moment, which
controls the: (1) axial force in columns; (2) axial force in anchors; and (3) vertical
force on the base slab. The maximum overturning moment is 79 kNm. This is 13%
higher than the value from the static analysis. The overturning moment due to pallet
forces at four levels is 5.16 � (0.24 + 1.94 + 3.56 + 5.08) ¼ 55.8 kNm. The
remaining 23.2 kNm overturning moment is due to the acceleration of the rack itself.

The results of pallet sliding, base shear, and overturning moment were obtained
for seven simulated ground motions. A summary of results is presented in various
rows of Table 7.1. The median values in the last row of Table 7.1 are the responses to
the 500-year MRP ground motion at the site.

Fig. 7.17 Cross-aisle pallet sliding at various levels of the rack subjected to the first simulation of
500-year MRP ground motion generated in Chap. 2
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Fig. 7.18 Frictional forces applied on the rack by pallets at various levels during the first simulation
of 500-year MRP ground motion generated in Chap. 2

Fig. 7.19 CA base-shear and overturning base moment for rack subjected to the first simulation of
500-year MRP ground motion generated in Chap. 2
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During the 500-year MRP ground motion, the pallet is expected to slide 28 cm as
shown in Table 7.1. This is 25% less than the value from the static analysis. The
width of each shelf is 1.04 m. Since pallet sliding is less than half the width of shelf,
the pallets are not expected to fall off the shelves during the 500-year MRP ground
motion. Pallet sliding can be reduced by using high-friction shelves or by installing
restraining bars, but those measures will increase the inertial forces applied on the
rack. To clarify that, new results were generated by completely preventing pallets
from sliding. Figure 7.20a and b show the base shear and overturning moment with
and without pallet sliding. Completely eliminating pallet sliding increases the base
shear 4 times and it increases the overturning moment 5.5 times. Greater increase in
the overturning moment is due to greater increase in the accelerations at upper levels
when sliding is prevented. An alternative approach to reduce pallet sliding is by
making the rack more flexible in the transverse direction, say by eliminating some of
the diagonal braces. By letting some deformations to occur in the rack, the amount of
sliding can be reduced.

Table 7.1 CA responses of rack subjected to seven simulations of 500-year MRP horizontal
ground motions generated in Chap. 2

Ground Motion Pallet Slidinga (cm) Qb (kN) OTMb (kNm)

1 32 28.2 79

2 29 26.4 77.2

3 28 27.6 79.6

4 23 27.8 80.4

5 20 26.4 77.4

6 37 27.2 79.6

7 21 26.4 76.2

Median 28 27.2 79

aFrom lower bound estimate of friction coefficient μ ¼ 0.11
bFrom upper bound estimate of friction coefficient μ ¼ 0.29

Fig. 7.20 Effects of preventing sliding on: (a) base shear; and (b) overturning base moment
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In summary,

• Friction between pallets and shelves limits the inertial forces transmitted from
pallets to the rack.

• Increasing the friction between pallets and shelves reduces pallet sliding but it
increases the forces experienced by the rack and the base slab.

• Limited sliding of pallets is beneficial to the seismic performance of racks.
Sliding should be allowed as long as it does not pose a problem.

• Sliding displacement can be reduced by making the rack more flexible in the
cross-aisle direction.

7.5 Down-Aisle Responses

In the down-aisle (DA) direction, the storage rack is much more flexible, hence it is
not expected to experience high enough accelerations to induce sliding of pallets.
Even if the accelerations are high enough to induce sliding, there is not enough room
between the pallets and the columns to allow significant unobstructed sliding.
Therefore, in most cases, it is reasonable to assume that the pallets will not slide in
the DA direction. There are two important sources of nonlinearity that need to be
modeled in the DA direction—joint rotations and P–Δ effect. As already discussed,
the moment–rotation relationship for beam-column joints is nonlinear. Also, large
deflections increase the moments in the joints by offsetting the gravity loads. Once
again, the analysis is carried out in two different ways: (1) nonlinear static and
(2) nonlinear dynamic.

7.5.1 Nonlinear-Static Analysis in DA Direction

The hysteretic action in the partially restrained beam-column connections is small
but it is not negligible. Therefore, 5% of critical damping is considered reasonable in
the DA direction. There is no need to develop the damping curve, but the rest of the
analysis is similar to that for the multistory moment frame discussed in Chap. 4.

In generating the pushover curve, the columns and beams are assumed “rigid”
compared to the joints. The CG of all masses is at height H from the base. It is
deflected horizontally by an amount D. From geometry, the rotation in each of the
16 joints is:

θ ¼ D
H

ð7:3Þ

The momentM(θ) is read from Fig. 7.3 as a function of the joint rotation θ. From
static equilibrium, the lateral force F is given by the following expression:

7.5 Down-Aisle Responses 197



F ¼ 16M θð Þ
H

� D ∙W
H

ð7:4Þ

where W ¼ weight of the fully loaded rack. The second term on the right side of
Eq. 7.4 is due to the P–Δ effect. Figure 7.21 shows a plot of F versus D. This is the
pushover curve for the storage rack in the DA direction. Initially, the force
F increases with deflection D because the first term on the right-hand side of
Eq. 7.4 is more dominant. At larger deflections, the second term become dominant
and the force starts decreasing with increase in deflection. The pushover curve stops
at deflectionD¼ 31 cm when the rotation θ reaches the limiting value of 0.115 radian
for the joints.

The capacity curve is obtained by dividing the force F by the weight W.
Figure 7.22 shows the capacity curve for the rack in the DA direction. Capacity
curve is a plot of pseudo-acceleration versus deflection. The radial tick marks
indicate the effective period of the rack. The maximum value of pseudo-acceleration
is 0.14 g, which is insufficient to slide the pallets assuming an upper bound value of
the coefficient of friction μ ¼ 0.29. Figure 7.23 shows a logarithmic plot of the
capacity curve shown in Fig. 7.22. The radial tick marks in Fig. 7.22 are replaced by
parallel diagonal lines in Fig. 7.23.

Fig. 7.21 Pushover curve for the rack in the DA direction
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Fig. 7.23 Logarithmic plot of the capacity curve shown in Fig. 7.22

Fig. 7.22 Capacity curve for the rack in the DA direction



In Chap. 3, the area under the capacity curve was defined as the seismic toughness
ST. The seismic toughness of the storage rack in DA direction is ST ¼ 0.35 (m/s)2.
This is one-tenth the ST for the ductile fully restrained moment frames discussed in
Chaps. 3 and 4. Therefore, the partially restrained moment frames (MF) in the
storage racks are much more vulnerable to seismic shaking than the ductile fully
restrained MF in buildings.

In Fig. 7.24, the capacity curve is superimposed on the 5% damping demand
curve for 500-year MRP. The capacity curve is completely enveloped by the demand
curve, which implies that the rack will be collapsed by the 500-year MRP ground
motion at the site.

It is obvious that the rack is not able to support the desired load of 17.8 kN at each
level. Next, the rack is reanalyzed with reduced loads of 16 kN at first level, 5.3 kN at
second level, 0.9 kN at third level, and 0.9 kN at fourth level. Under the revised
loads,W ¼ 23.1 kN and H ¼ 94.7 cm. Figure 7.25 shows the revised capacity curve
superimposed on the demand curve. The two curves intersect at a peak deformation
of PD ¼ 8.3 cm. From Eq. 7.3, the joint rotation is 8.3/94.7 ¼ 0.088 radian. The
deflection of the top level is obtained by multiplying joint rotation by the total height
of the rack; i.e., 0.088 � 508 ¼ 44.6 cm. Next, a dynamic analysis is carried out in
the DA direction.

Fig. 7.24 DA capacity curve superimposed on demand curve for 5% of critical damping
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7.5.2 Nonlinear-Dynamic Analysis in DA Direction

As in the case of static analysis, two sources of nonlinearity need to be modeled in
the dynamic analysis. These are: (1) nonlinear rotations in the joints and (2) P–Δ
effect. The P–Δ effect induces additional moment in the joints; therefore, it effec-
tively softens the joints. To understand this, the Eq. 7.4 can be rewritten as follows:

F ¼ 16 M θð Þ � θHW=16ð Þ
H

ð7:5Þ

For each value of θ, θHW/16 is subtracted from the joint moment M(θ) to model
the softening of the joint due to P–Δ. Figure 7.26 shows the moment–rotation
relationship for the softened joint to account for P–Δ effect.

Figure 7.27 shows a computer model of the rack in the DA direction. The beams
and columns are modeled as linear beams in SAP 2000 [8]. The joints are modeled
as nonlinear rotational springs with the moment–rotation relationship shown by the

Fig. 7.25 DA capacity curve of lightly loaded rack superimposed on demand curve for 5% of
critical damping
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blue curve in Fig. 7.26. The model is subjected to the first simulation of 500-year
MRP ground motion shown in Fig. 7.5. Figure 7.28 shows histories of deflections at
various levels. The maximum deflection is 38 cm at the top level. Figure 7.29 shows
histories of joint rotations at various levels. The maximum rotation is 0.071 radian at
the third level. The rack was analyzed for all seven simulations of 500-year MRP
ground motion. The results are listed in Table 7.2. The median values, in the last row
of Table 7.2, are the responses to the 500-year MRP ground motion. The deflection
from dynamic analysis is 15% less than that from the static analysis. The rotation
from dynamic analysis is 26% less than that from the static analysis.

Large deflections of the rack can cause it to impact adjacent structures or walls.
Large deflections can also damage any brittle pipes attached with the rack. The rack
sway and joint rotations can be reduced by using stiffer and stronger beam–column
connections. As mentioned before, the stiffness and strength of beam–column
connections are most influenced by the length (height) of the beam-end connector
element and by the number of bolts (pins) in the connection.

Fig. 7.26 Softening of the joint due to P–Δ effect
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7.6 Summary

1. The mass of stored product on a rack is several times the mass of the rack itself.
But the product is not rigidly attached to the rack.

2. Sliding of the product on the shelves limits the inertial forces transmitted to
the rack.

3. In the CA direction, the rack is very stiff. Therefore, the rack sways less, but the
product slides more.

4. In the DA direction, the rack is very flexible. Therefore, the rack sways more,
but the product slides less.

5. The CA response of racks is controlled by the coefficient of friction between
pallets and shelves.

Fig. 7.27 Computer model
of the rack in down-aisle
direction
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Fig. 7.28 DA deflections at various levels of the rack subjected to first simulation of 500-year MRP
ground motion shown in Fig. 7.5

Fig. 7.29 Hinge rotations in beam-column moment connections at various levels of the rack
subjected to first simulation of 500-year MRP ground motion shown in Fig. 7.5



6. The DA response of racks is controlled by the strength and deformability of
beam–column moment connections.

7. Sliding in the CA direction can be reduced by replacing standard shelves with
high-friction shelves. However, increased friction between product and shelves
increases the forces applied to the rack.

8. As an alternative, the product sliding in the CA direction can be reduced by
making the rack more flexible by allowing some bending to occur in the
columns.

9. Sway and joint rotations in the DA direction can be reduced by increasing the
stiffness and strength of moment connections.

10. In general, the seismic toughness of storage racks is much less than that of
building frames. Therefore, racks are much more vulnerable to ground motions
than building frames.
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Chapter 8
Seismic Response of Liquid-Storage Tanks

Nomenclature

ζh Equivalent-viscous hysteretic damping
μ Coefficient of friction between steel base and foundation
g Acceleration due to gravity (9.81 m/s2)
hf Depth of foundation (distance between top of soil to bottom of tank)
hi Impulsive liquid height for moment due to pressures on tank wall
h0i Impulsive liquid height for moment due to pressures on tank wall and base
mc Convective liquid mass
mi Impulsive liquid mass
mt Mass of tank, roof, base, and anchorage
PPAc Convective response acceleration
PPAi Impulsive response acceleration
SSI Soil-structure interaction
T Natural period
Te Effective period

8.1 Introduction

Figure 8.1 shows the vertical section of a water storage steel tank resting on a
concrete mat foundation. During horizontal shaking of the ground, the liquid near the
bottom of the tank moves with the tank shell, while the liquid near the top of the tank
sloshes [1–6]. The former liquid is known as the “impulsive liquid” and the latter
liquid is known as the “convective liquid.” The aspect ratio (height/radius) of the
tank determines the relative proportions of impulsive and convective liquids. For
slender tanks, liquid is more constrained by the shell of the tank; therefore, the
impulsive liquid is more. For broad tanks, liquid is less constrained by the shell of
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the tank; therefore, the convective liquid is more. For fixed-roof tanks with insuffi-
cient freeboard, the convective liquid is not able to slosh freely. Therefore, some of
the convective liquid becomes impulsive [7].

The impulsive and convective liquids exert pressures on the tank shell and the
tank base. The net effect of shell pressures is a shear and an overturning moment at
the base of the tank shell. The shear is resisted by friction between the tank base and
the foundation. The overturning moment is resisted by anchors which tie the tank
shell to the foundation. The pressures on the tank base generate an additional
overturning moment which is transmitted directly to the foundation. Vertical shaking
of the ground generates axisymmetric pressures on the tank wall and the tank base
[5]. Pressures on the wall generate hoop stresses. Pressures on the tank base result in
a vertical force which is transmitted to the foundation.

The important sources of deformability and damping in a tank are:

1. Soil deformation. The flexibility of the soil below the foundation increases the
deformability of the system and allows some vibration energy to radiate away
from the tank.

2. Base sliding. Sliding of the tank on top of the foundation increases the
deformability of the system and allows a significant loss of energy through
friction.

3. Base uplifting. Overturning moment at the base of the tank shell can cause the
anchors to yield and a portion of the tank to uplift on one side. Limited base
uplifting can be a significant source of deformability for the tank. Uplifting is
accompanied by yielding at the plate–shell junction, which can be a slight source
of damping.

Fig. 8.1 Vertical section of
a ground-supported liquid-
storage tank
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4. Shell deformability. The flexibility of the tank shell is a source of some
deformability and small amount of damping.

The tank analyzed in this chapter is discussed next.

8.2 Example Tank

The tank in Fig. 8.1 is fabricated from stainless steel plates. It has a radius of R ¼
6.8 m and shell height of 15.6 m. It is filled with water to a height of H ¼ 14 m. The
freeboard in the tank is 15.6–14 ¼ 1.6 m. With a height-to-radius ratio of
14/6.8 ¼ 2.1, the tank is considered slender. The maximum height of fixed dome
roof on top of shell is 2.3 m. The tank shell is anchored to the concrete mat with
30 stainless steel straps, each of cross-sectional area 12.9 cm2. The thickness of the
mat foundation is hf ¼ 1.22 m and its radius is Rf ¼ 8.4 m. Table 8.1 lists the

Table 8.1 Tank data

Radius 6.8 m

Shell height 15.6 m

Water height 14 m

Freeboard 1.6 m

Roof dome height above shell 2.3 m

Tank material (shell, base plate, dome) A240–304 SS

Shell courses Course Width (m) Thickness (mm)

6 2.28 4.76

5 2.42 4.76

4 2.42 4.76

3 3.03 6.35

2 3.03 6.35

1 2.42 12.71

Base plate thickness 6.35 mm

Mass of tank (shell, base plate, and roof) 47,200 kg

Coefficient of friction at the base of tank 0.57

Anchor straps Number 30

Cross-sectional area 19.4 cm2

Length 171 cm

Material A240–304 SS

Foundation mat Radius 8.4 m

Thickness 1.22 m

Allowable soil bearing pressure 144 kN/m2

Ultimate soil bearing pressure 431 kN/m2

“Zero-strain” shear modulus of the soil, G0 144 MN/m2
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important properties of the tank and foundation. The mass of the tank is mt ¼
47.2 � 103 kg. The mass of liquid in the tank is ml ¼ 2.03 � 106 kg.

8.3 Ground Motion

In this chapter, the response of the storage tank is computed during the 500-year
MRP ground motion at a site in the San Francisco Bay Area (SFBA). The 500-year
MRP ground motion for the SFBA site was determined in Chap. 2. Figure 8.2 shows
the 500-year MRP response spectra for various values of damping. The response
spectra are shown in the acceleration–deformation format. These are the demand
curves for the site. The peak pseudo-acceleration PPA is read along the vertical axis
and peak deformation PD is read along the horizontal axis. The natural period T is
shown by the parallel diagonal lines. The PPA, PD, and T are related to each other by
the expression: PD ¼ PPA � (T/2π)2. Only static analyses are performed in this
chapter. Therefore, ground motion histories are not needed.

Fig. 8.2 500-year MRP ADRS for various values of damping for the SFBA site
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8.4 Linear Analysis of Fixed-Base Tank

First, a linear analysis of the tank is performed by ignoring the flexibility of the soil
below the foundation. This is the simplest and most common type of analysis for
tanks.

8.4.1 Model of Fixed-Base Tank

Figure 8.3 shows a linear model of the fixed-base tank as per Ref. [6]. The liquid
mass ml is divided into two parts: (a) the impulsive liquid mass of 1.56� 106 kg and
(b) the convective liquid mass ofmc¼ 0.47� 106 kg. The mass of the tank is lumped
with the impulsive mass to obtain the total impulsive mass of mi ¼
1.56 � 106 + 47.2 � 103 ¼ 1.61 � 106 kg. The impulsive period is Ti ¼ 0.177 s
and the convective period is Tc ¼ 3.86 s. The impulsive damping is ζi ¼ 0.02 (2% of
critical) and the convective damping is ζc ¼ 0.005 (0.5% of critical).

So far, it is assumed that the liquid in the tank can slosh freely without touching
the dome roof. In other words, the sloshing wave height is assumed to be less than
the freeboard of 1.6 m. The validity of this assumption is checked next.

8.4.2 Sloshing Wave Height

The convective peak pseudo-acceleration, read from the 0.5% damping response
spectrum in Fig. 8.4, is PPAc ¼ 0.556 g. The sloshing wave height is [6]:

d ¼ (PPAc/g) � R¼ 3.78 m.

Fig. 8.3 Linear model of
the fixed-base tank [6]
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But the freeboard in the tank is only 1.6 m (Table 8.1). Therefore, the sloshing
liquid will touch the dome roof. The constraining action of the dome roof will
transform some of the convective liquid to impulsive [7]. Also, the impulsive period
will elongate and the convective period will shorten [7].

8.4.3 Revised Model of Fixed-Base Tank

The lack of sufficient freeboard increases the impulsive mass from 1.61 � 106 to
1.78� 106 kg and reduces the convective mass from 0.47� 106 to 0.3� 106 kg. The
convective mass is less than 15% of the total mass. For the sake of simplicity, it is
conservatively assumed that the entire mass is impulsive for this tank, i.e., mi ¼
2.08 � 106 kg. The revised value of the impulsive period as per Ref. [7] is Ti ¼
0:177

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:08=1:56

p ¼ 0.205 s. Figure 8.5 shows the revised model of the fixed-base
tank. There are two heights associated with the impulsive mass: hi and h

0
i. Height hi is

used to calculate the shell overturning moment MS due to the pressures on the tank
shell. Height h0i is used to calculate the foundation overturning momentMF due to the
pressures on the tank shell as well as the pressures on the tank base. The shell

Fig. 8.4 Convective peak pseudo-acceleration read from the 0.5% damping response spectrum
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overturning momentMS is used to calculate the stresses in the tank shell and anchors.
The foundation overturning moment MF is used to calculate the soil pressures and
the stresses in the mat foundation. Some additional parameters, for use in later
analyses, are:

Impulsive spring stiffness:

ki ¼ mi
2π
Ti

� �2

¼ 1, 960 MN=m

and impulsive damping constant:

ci ¼ 2ζimi
2π
Ti

� �
¼ 2:55 MNs/m

Table 8.2 lists important parameters of the linear fixed-base model.

8.4.4 Responses of Fixed-Base Tank

In Fig. 8.6, the impulsive pseudo-acceleration is read from the 2% damping response
spectrum, corresponding to the impulsive period Ti ¼ 0.205 s; it is PPAi ¼ 2.02 g.
The base shear is obtained by multiplying the impulsive mass mi with the impulsive
pseudo-acceleration PPAi, i.e., Q¼ 2.08� 106� 2.02� 9.81¼ 41.2 MN. The shell
overturning moment is obtained by multiplying the base shear by height hi, i.e., MS

Fig. 8.5 Revised linear
model of the fixed-base tank

Table 8.2 Parameters of linear fixed-base model

Impulsive mass, mi 2.08 � 106 kg

Impulsive period, Ti 0.205 s

Impulsive spring stiffness, ki 1960 MN/m

Impulsive damping constant, ci 2.55 MNs/m

Height of impulsive mass for calculating shell moment, hi 6.28 m

Height of impulsive mass for calculating foundation moment, h0i 6.97 m
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¼ 41.2 � 6.28 ¼ 259 MNm. The foundation overturning moment is obtained by
multiplying the base shear by the height h0i þ h f

� �
, i.e. MF ¼ 41.2 � (6.97 +

1.22) ¼ 337 MNm. The peak deflection of the impulsive mass is PDi ¼ PPAi(Ti/
2π)2¼ 2.11 cm. The values of PPAi, PDi,Q,MS, andMF are listed in Table 8.3. This
concludes the linear-static analysis of the fixed-base tank.

The maximum frictional resistance at the base of the tank is
0.577 � (47.2 � 103 + 2.03 � 106) � 9.81/106 ¼ 11.8 MN. The base shear is 3.5
times the maximum frictional resistance. The maximum moment capacity of anchor
straps is 64.8 MNm. The shell overturning moment is four times the moment
capacity of anchor straps. The maximum overturning capacity of the foundation is
139 MNm. The foundation overturning moment is 2.4 times the moment capacity of
the foundation. In other words, the strength demand on the tank is very high based on

Fig. 8.6 Impulsive response acceleration for fixed-base tank

Table 8.3 Responses from
linear analyses

Rigidly supported Flexibly supported

PPAi 2.02 g 1.36 g

PDi 2.11 cm 4.15 cm

Q 41.2 MN 27.6 MN

MS 259 MNm 173 MNm

MF 337 MNm 226 MNm
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the linear analysis of fixed-base tank. Next, the linear model of the tank is refined to
include some additional sources of deformability and damping.

8.4.5 Linear Analysis of Flexibly Supported Tank

The flexibility of the soil below the foundation is an additional source of
deformability; it causes the impulsive period to elongate. Soil flexibility also allows
some vibration energy to radiate away from the tank. Therefore, in most cases, soil
flexibility increases the damping of the system. The effects of soil flexibility on the
impulsive period and damping are captured by the soil–structure interaction (SSI)
analysis discussed in this section.

8.4.5.1 Model of Flexibly Supported Tank

Figure 8.7 shows the model used in the SSI analysis. The horizontal and the
rotational soil springs in the SSI model (Fig. 8.7) simulate the lateral and rocking
flexibility of the foundation soil. The horizontal and rotational spring constants kx
and kθ depend on the size of the foundation and the shear modulus of soil; they are
determined as per Ref. [8] which is based on Refs. [9, 10]. kx and kθ are listed in
Table 8.4. The horizontal and the rotational dampers cx and cθ simulate the loss of
energy through radiation. For the sake of clarity, horizontal and rotational dampers
are not shown in Fig. 8.7, but they are in parallel with the horizontal and rotational

Fig. 8.7 Linear model of
flexibly supported tank
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springs. The damping constants also depend on the size of the foundation and the
shear modulus of soil; they are determined as per Ref [8] and are listed in Table 8.4.

Next, the period and damping of flexibly supported tank are calculated. A value
of PPAi is assumed and the deformation in each component (spring) of the model is
calculated. The component deformations are added to determine the total deforma-
tion of the system which is then used to calculate the period of the system. The
procedure is illustrated below:

1. Assume PPAi ¼ 1 g ¼ 9.81 m/s2. The base shear is:
Q ¼ miPPAi ¼ 2.08 � 106 � 9.81 ¼ 20.38 MN

2. The deformation of the impulsive spring is:
ui ¼ Q/ki ¼ 20.38/1960 ¼ 0.0104 m

3. The deformation of the horizontal soil spring is:
ux ¼ Q/kx ¼ 20.38/2390 ¼ 0.0085 m

4. The moment in the rotational soil spring is:
MF ¼ Q ∙ h0i þ h f

� � ¼ 20.38 � (6.97 + 1.22) ¼ 166.8 MNm
5. The rotation of the soil spring is:

θ ¼ MF/kθ ¼ 166.8/111,780 ¼ 0.00149 radian
6. The total deflection of the impulsive mass is:

ut ¼ ui + ux + θ(hi + hf) ¼ 0.0104 + 0.0085 + 0.00149 � (6.28 + 1.22)
¼ 0.0301 m

7. The effective impulsive period of the flexibly supported tank is:

Te ¼ 2π
ffiffiffiffiffiffiffi
ut

PPAi

q
¼ 0.351 s.

To calculate the effective damping of the flexibly supported tank, some additional
steps are needed. The energy loss in each component (damper) of the model is
determined. The component energy losses are added to obtain the total energy loss,
from which the damping of the system is calculated as follows:
8. The energy loss per cycle in the impulsive damper is:

EDi ¼ 2π2 Ci
Te
u2i ¼ 15.6 kNm

9. The energy loss per cycle in the horizontal soil damper is:
EDx ¼ 2π2 Cx

Te
u2x ¼ 272 kNm

10. The energy loss per cycle in the rotational soil damper is:
EDθ ¼ 2π2 Cθ

Te
θ2 ¼ 141 kNm

11. The total energy loss per cycle is:
ED ¼ EDi + EDx + EDθ ¼ 428 kNm

12. The “strain energy” is:
ES ¼ 1

2Q ∙ ut ¼ 312 kNm

Table 8.4 Soil springs and
dampers used in SSI analysis

Horizontal spring stiffness, kx 2390 MN/m

Rotational spring stiffness, kθ 111,780 MNm/radian

Horizontal damping constant, cx 66.5 MNs/m

Rotational damping constant, cθ 1080 MNms/radian
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13. The effective damping for the flexibly supported tank is:
ζe ¼ ED

4πES
¼ 0.11 (11% of critical).

Since the model is linear, the period and damping do not depend on the assumed
value of PPAi.

8.4.6 Responses of Flexibly Supported Tank

The impulsive period and damping of the flexibly supported tank are 0.351 s and
11% of critical, respectively. The 11% damping response spectrum is generated by
interpolating between the 10 and 20% damping response spectra for the site
(Fig. 8.2). The 11% damping response spectrum is shown in Fig. 8.8. The impulsive
pseudo-acceleration and deformation, read from the 11% damping response spec-
trum, are PPAi ¼ 1.36 g and PDi ¼ 4.15 cm (Fig. 8.8). Table 8.3 compares the
responses of the flexibly supported tank with those of the rigidly supported tank. The
strength demands on the flexibly supported tank are smaller than those on the rigidly
supported tank because the former has higher deformability and damping than the
latter.

Fig. 8.8 Impulsive response acceleration and deformation for flexibly supported tank
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Strength demands on the tank are still very high. The base shear of 27.6 MN is
still high enough to slide the tank. The shell overturning moment of 173 MNm is still
high enough to yield the anchors and uplift the tank on its foundation. The founda-
tion overturning moment of 226 MNm is still high enough to yield the soil on one
side and uplift the foundation on the other side. In Chaps. 3–7, yielding, sliding and
uplifting were shown to be important sources of deformability and damping which
can reduce the strength demands on a structure. Limited amounts of yielding,
sliding, and uplifting can be tolerated as long as they do not prevent the tank from
meeting its performance objectives. Next, a nonlinear analysis of the tank is
performed to consider these additional sources of deformability and damping.

8.5 Nonlinear Analysis of Tank

Nonlinear analysis makes it possible to consider all sources of deformability and
damping which can reduce the strength demand on the tank. In a nonlinear analysis,
the anchors can yield and the tank uplift on one side. The tank can also slide if the
horizontal shear overcomes friction between the tank base and the foundation. The
foundation of the tank can lift off the soil on one side, and the soil below the
foundation can yield on the opposite side. It is important to note that only those
nonlinearities which can be tolerated (or accepted) are modeled in a nonlinear
analysis. Nonlinearities such as shell-bucking cannot be tolerated in most cases
because a buckled tank is not likely to meet any performance goals. Therefore, it
is not worthwhile to analyze the post-bucking behavior of a tank in most cases.

8.5.1 Nonlinear Model

Figure 8.9 shows a nonlinear model of the tank. The model is described below.
The impulsive mass mi and impulsive spring ki are the same as before. The

impulsive damper Ci (not shown in Fig. 8.9) is also the same as before.
The rotational spring kϕ simulates partial uplifting of the tank on its foundation.

When the shell moment MS exceeds the ultimate capacity of the anchors Manc, the
anchors start yielding and the tank starts rotating (rocking) on its foundation. The
relationship between the shell moment and the base rotation is nonlinear; it is
obtained by performing a base-uplifting analysis of the tank [11]. Figure 8.10
shows the uplifting moment–rotation relationship for the tank without anchors.
The base moment MB along the vertical axis is the difference between the shell
moment and the anchors’ capacity,MB ¼MS �Manc. The area of the hysteresis loop
Eϕ represents the loss of energy through plastic yielding at the plate–shell junction
(Fig. 8.11). A plot of Eϕ versus base rotation ϕ is presented in Fig. 8.12; this is later
used in the generation of a damping curve for the tank.
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Fig. 8.9 Nonlinear model
of the tank

Fig. 8.10 Moment–rotation relationship at the base of unanchored tank
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The frictional interface at the bottom of the model (Fig. 8.9) simulates sliding of
the tank on its foundation. The frictional interface prevents the impulsive pseudo-
acceleration from exceeding a limiting value PPAslide which is determined by the
coefficient of friction between the tank and the foundation. Even though the fric-
tional interface is shown at the bottom of the model in Fig. 8.9, it simulates sliding of
the tank on top of the foundation.

Fig. 8.11 Plastic rotation at
plate–shell junction due to
base uplifting [11]

Fig. 8.12 Hysteretic energy
loss at the base plate–shell
junction
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The horizontal soil spring kx, the horizontal soil damper Cx and the rotational soil
damper Cθ (not shown in Fig. 8.9) are same as before. The rotational soil spring is no
longer linear. It is extended into the nonlinear range to simulate foundation lift off
and soil yielding. The following steps are taken to obtain the nonlinear soil spring:

1. The foundation is assumed to rest on a bed of compression-only springs of
collective vertical stiffness kθ � 4=R2

f , where kθ is the linear stiffness of the
rotational soil spring, and Rf ¼ the radius of the foundation.

2. The springs are modeled as elastic–plastic; they remain linear up to the bearing
strength of the soil and then yield without mobilizing any additional force.

3. The springs are pre-compressed by the total weight of the tank plus the
foundation.

4. The rotation of the foundation is increased in small steps and the corresponding
moment is calculated in each step from analysis.

Figure 8.13 shows a plot between the foundation rotation θ and the foundation
overturning moment MF. The red line in Figure 8.13 corresponds to the linear
stiffness kθ of the rotational soil spring. As the foundation uplifts and/or the soil
below the foundation starts yielding, the rotational soil spring becomes nonlinear.
The ultimate overturning strength of the foundation is Mult ¼ 139 MNm.

Fig. 8.13 Moment–rotation relationship for the mat foundation

8.5 Nonlinear Analysis of Tank 221



Although, there are many sources of nonlinearity in a tank, a stable analysis can
be performed by using the nonlinear-static procedure. The pushover and damping
curves for the tank are generated next.

8.5.2 Pushover and Damping Curves

A step-by-step procedure to generate the pushover and damping curves is described
here. First, the limiting value of the impulsive acceleration PPAi ¼ PPAlim is
calculated at which the tank slides or the foundation overturns. Note that sliding of
the tank is not necessarily a failure but overturning of the foundation is catastrophic
failure. The maximum frictional resistance between the tank and the foundation is
μ(mi + mc)g. Therefore, the impulsive acceleration at which the tank slides is:

PPAslide ¼ μ mi þ mcð Þg
mi

Since mc ¼ 0 for this tank, PPAslide ¼ μg. Since the ultimate moment capacity
of the foundation is Mult, the impulsive acceleration at which the foundation over-
turns is:

PPAoverturn ¼ Mult

mi h
0
i þ h f

� �

The limiting value of the peak pseudo-acceleration is smaller of PPAslide and
PPAoverturn:

PPAlimit ¼ min PPAslide,PPAoverturnð Þ

The impulsive pseudo-acceleration PPAi is increased in small steps from 0 to
PPAlim. For each value of PPAi, the base shear, deflection, and damping are
calculated as follows:

1. The base shear is:

Q ¼ miPPAi

2. The deformation of the impulsive spring is:

ui ¼ Q
ki

3. The shell overturning moment is:

222 8 Seismic Response of Liquid-Storage Tanks



MS ¼ Qhi

4. The shell overturning moment is compared with the ultimate capacity of the
anchorsManc. IfMS�Manc, the base rotation ϕ¼ 0. IfMS>Manc, base rotation
ϕ is read from Fig. 8.10 corresponding to the base momentMB¼MS�Manc.MB

is the moment in the rotational spring kϕ in Fig. 8.9. The hysteretic energy loss
per cycle Eϕ is read from Fig. 8.12.

5. The horizontal deflection of the foundation is:

ux ¼ Q
kx

6. The foundation overturning moment is:

MF ¼ Q h0i þ h f

� �

7. MF is the moment in rotational spring kθ in Fig. 8.9. From Fig. 8.13, the rotation
θ of the foundation is read against MF. The elastic value of the foundation
rotation, used later in damping calculation, is:

θel ¼ MF

kθ

8. The total deflection of the impulsive mass is:

ut ¼ ui þ ux þ ϕhi þ θ hi þ h f

� �

9. The effective impulsive period of the tank is:

Te ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
ut

PPAi

r

10. The energy dissipated per cycle is:

ED ¼ 2π2
ci
Te

u2i þ 2π2
cx
Te

u2x þ 2π2
cθ
Te

θ2el þ Eϕ

11. The “strain energy” is:

ES ¼ 1
2
Qiut

12. The effective damping ratio is:
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ζe ¼ ED

4πES

During sliding
The pushover and damping curves during sliding are computed by gradually

increasing the sliding displacement us while keeping the impulsive pseudo-
acceleration fixed at PPAi ¼ PPAslide. The ux, ui, θ, and ϕ are kept fixed at their
last computed values for PPAi ¼ PPAlimit. The following additional steps are needed
to continue the pushover and damping curves during sliding:

13. The total deflection of the impulsive mass is

ut ¼ ui þ ux þ ϕhi þ θ hi þ h f

� �þ us

14. The effective impulsive period during sliding is

Te ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ut

PPAslide

r

15. The overall energy dissipated per cycle is

ED ¼ 2π2
ci
Te

u2i þ 2π2
cx
Te

u2x þ 2π2
cθ
Te

θ2el þ Eϕ þ 4μðmi þ mcÞgus

The first 4 terms on the right-hand side of the above expression are the same
as those on the right-hand side of expression under Step 10. The last term is the
energy dissipated by friction.

16. The “strain energy” ES is computed from the expression under Step 11 and the
effective damping ratio ζe is computed from the expression under Step 12.

Figure 8.14 shows a plot between the total deflection ut and the base shear Q. This
is the pushover curve for the tank. It is insightful to look at Fig. 8.15 which provides
relative contributions of various sources of deformation. For very small amounts of
total deformation, nearly 65% of the deformation occurs in the foundation soil and
35% occurs in the tank shell. Therefore, it is obvious that the foundation flexibility is
important even at very low levels of shaking. At 1.6 cm deformation, the anchors
yield and the tank starts uplifting on one side. From that point onward, the contri-
butions of the foundation and shell deformations start reducing dramatically. At
7.88 cm deformation, the tank slides on its foundation and sliding becomes the main
source of deformation for the tank.

Figure 8.16 shows a plot between the total deflection ut and the impulsive peak
pseudo-acceleration PPAi. This is the capacity curve. Figure 8.17 shows the capacity
curve on a logarithmic scale.
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Fig. 8.14 Pushover curve for the tank

Fig. 8.15 Relative contributions of various sources of deformation



Fig. 8.16 Capacity curve for the tank

Fig. 8.17 Logarithmic plot of the capacity curve
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Figure 8.18 shows a plot between the total deflection ut and the effective damping
ζe. This is the “raw” damping curve for the tank. Two most important sources of
damping are: (1) radiation of vibration energy through the foundation soil and
(2) sliding of the tank. In the beginning, the damping is dominated by radiation.
The radiation damping is due to terms with cx and cθ in steps 10 and 15 in Section
8.5.2. Damping reduces when the tank starts uplifting because damping associated
with uplifting is small. Finally, when the tank starts sliding, damping increases
dramatically. Damping is lowest in the region where the dominant source of
deformation is base uplifting. The damping in this region can be increased by
anchoring the tank with energy-dissipating anchors [12].

The damping curve of Fig. 8.18 is not yet ready for nonlinear-static analysis
because during seismic response the peak deformation occurs only once; rest of the
times the deformation is less than the peak. Since the damping for smaller amplitude
cycles is different, the damping is adjusted as follows. For ut ¼ 25 cm, the damping
is 0.43 according to Fig. 8.18. The average (adjusted) damping for deformations
between 0 and 25 cm is calculated by taking the area under the curve in Fig. 8.19 up
to 25 cm and dividing that area by 25 cm. This gives the adjusted damping of 5.55/
25 ¼ 0.22 (22% of critical). The adjusted damping is similarly computed for other
values of total deformation. Figure 8.20 shows the adjusted damping curve for the
system; this will be used to complete the nonlinear-static analysis.

Fig. 8.18 Damping for various values of deformation
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8.5.3 Pushover Analysis

In Fig. 8.21, the capacity curve is superimposed on demand curves (response
spectra) for various values of damping. The intersections of the capacity and the
demand curves provide the deformations for various assumed values of damping.
These are shown in Fig. 8.22. Since deformation depends on damping according to
Fig. 8.22 and damping depends on deformation according to Fig. 8.20, an intersec-
tion between these two curves will provide the deformation and damping at equi-
librium. These two curves intersect at a deformation of 22.9 cm and damping of 20%
of critical, as shown in Fig. 8.23. These are the values of deformation and damping at
equilibrium. Figure 8.24 shows the equilibrium point on the capacity curve. Since
the equilibrium point is in the flat portion of the capacity curve, the tank slides at its
base. Total deflection is 22.9 cm, while sliding begins at 7.88 cm. Therefore, the
amount of sliding is 22.9–7.88¼ 15 cm. The impulsive acceleration at equilibrium is
0.577 g.

The last column of Table 8.5 provides a summary of responses from the nonlinear
analysis. The tank uplifts 13.7 cm. The anchor straps should be able to elongate
13.7 cm without breaking. Stainless steel straps can stretch 10% before any “neck-
ing” occurs. Therefore, the straps should be at least 1.37 m long to avoid breaking.

Fig. 8.19 Damping adjustment
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Fig. 8.20 Adjusted damping curve

Fig. 8.21 Capacity curve superimposed on demand curves
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Sliding is the most critical response for this tank. The straps should be sufficiently
away from the tank bottom to let the tank slide without touching the straps. All pipe
connections to the tank shell should have flexible details to allow 15 cm horizontal
movement. Alternatively, uplifting and sliding can be reduced by resizing the tank or
by increasing anchorage to the tank.

8.5.4 Effect of Increasing Anchorage

Normally, sliding would not be affected by increasing anchorage. For this tank,
however, by increasing the number of anchor straps from 30 to 36, base uplifting is
completely eliminated. Now the tank only slides. Sliding without uplifting increases
the damping of the tank from 20% to 36% of critical, which in turn reduces the total
displacement from 24.4 to 11.1 cm. Figure 8.25 displays the equilibrium point for
the tank with increased anchorage. Sliding starts at 1.95 cm deformation. The sliding
displacement in the tank with increased anchorage is 11.1–1.95 ¼ 9.2 cm.

Fig. 8.22 Deformations for various assumed values of damping
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Fig. 8.24 Equilibrium point on the capacity curve

Fig. 8.23 Intersection of deformation-versus-damping curve of Fig. 8.22 with damping-versus-
deformation curve of Fig. 8.20



8.6 Summary

1. Linear analysis predicts very high strength demands on liquid-storage tanks.
2. Typically, strength demands from linear analysis are reduced by empirical

strength reduction factors (R factors).
3. Seismic design based on linear analysis is very expensive (if R factors are not

used) or arbitrary (if R factors are used).

Table 8.5 Summary of responses from three analyses

Linear analyses

Nonlinear analysisRigidly supported Flexibly supported

PPAi 2.02 g 1.36 g 0.577 g

PDi 2.11 cm 4.15 cm 22.9 cm

Q 41.2 MN 27.6 MN 11.8 MN

MS 259 MNm 173 MNm 88.3 MNm

MF 337 MNm 226 MNm 96.7 MNm

Sliding – – 15 cm

Uplifting – – 13.7 cm

Fig. 8.25 Equilibrium point for the tank with increased anchorage
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4. There are some important sources of deformability and damping in tanks which
can be utilized to reduce the strength demand on tanks.

5. A nonlinear analysis is needed to consider all sources of deformability and
damping in tanks.
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Chapter 9
Seismic Response of Gantry Cranes

Nomenclature

ζ Damping ratio (fraction of critical)
ζh Hysteretic damping ratio (fraction of critical)
CP Collapse Prevention limit state
Eh Hysteretic energy loss per cycle
Es “Strain energy”
IO Immediate Occupancy limit state
MRP Mean return period
PD Peak deformation (also known as spectral deformation; sometimes called

spectral displacement)
PGA Peak ground acceleration
PPA Peak pseudo-acceleration (also known as spectral acceleration)
s Seconds
ST Seismic toughness (area under the capacity curve)
T Natural period of the structure (seconds)

9.1 Introduction

Gantry cranes are common in manufacturing facilities. Like most structures, they
should remain operational during frequent earthquakes and not collapse during rare
earthquakes. Figure 9.1 shows the sketch of a gantry crane. The gantry, weighing
587 kN (60,000 kg), moves on rails supported by runway beams on the north and
south sides. There are two wheels on each side of the gantry. Differential movement
between the north and south side wheels can cause the gantry crane to rotate about
the vertical (z) axis. This rotation can cause the wheels (on north and south sides) to
come closer and jam the gantry. To prevent jamming of the gantry due to rotation,
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the south side wheels are allowed to move out freely up to 7.62 cm. The gantry
beams are supported by 8 square-tube steel columns on each side (Fig. 9.1). The
weight of the support structure (beams, columns, and rails) is 1.11 MN (113,000
kg). The total weight of the gantry and the support structure is 1.70 MN.

At their base, the columns are anchored to a 2.44 m wide, 1.22 m thick continuous
concrete foundation. The center of gravity (CG) of the gantry is 5.08 m from the
base. There are 61-cm high vertical stiffeners at the base of square-tube steel
columns. Gantry is analyzed only in the transverse (north–south) direction. Under
seismic loading, there are two critical configurations of the gantry crane:

1. Configuration 1. Gantry crane is centered between two columns. This configu-
ration is critical for the runway beam.

2. Configuration 2. Gantry crane is centered over a column. This configuration is
critical for the column.

Figure 9.2 shows a sketch of the gantry in Configuration 1. The distance of gantry
wheel from the column is a ¼ 3.35 m, distance between wheels is b ¼ 5.5 m, and
distance between columns is L¼ 12.2 m. In Fig. 9.2, P1 and P2 mark the centerlines
of wheels, R1 and R2 mark the centerlines of columns.

Tables 9.1 and 9.2 list the important properties of the gantry columns and runway
beams. Since the rail is attached on the top flange of the runway beams, only the top
flange of the beams is assumed to resist the lateral seismic loads. The top flange of
the beam and the square tube steel column cross section are determined to be
“compact” according to AISC 360 [1]. Therefore, the entire sections can yield before
buckling.

Fig. 9.1 Sketch of a gantry crane at a manufacturing facility
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9.2 Lumped Masses

There are seven spans in the x-direction (Fig. 9.1). In Configuration 1, one complete
span and two half spans will participate during seismic shaking. Therefore,
two-seventh of the structural mass is lumped with the gantry mass. The lumped
mass in Configuration 1 is 113 � 2/7 + 60 ¼ 92.1 � 103 kg. In Configuration 2, two
half spans on either side of the column will participate during seismic shaking.
Therefore, one-seventh of the structural mass is lumped with the gantry mass. The
lumped mass in Configuration 2 is 113/7 + 60 ¼ 76.2 � 103 kg.

Fig. 9.2 Side view of the gantry in Configuration 1

Table 9.1 Important properties of the square tube steel columns

Form HSS 1800 � 1800 � 5/800

Material ASTM A500 GR B

Minimum yield strength, fy 317 MPa

Expected yield strength, 1.1fy 349 MPa

Width 45.7 cm

Depth 45.7 cm

Wall thickness 1.6 cm

Cross-section area 267 cm2

Moment of inertia about the x-axis, Ix 84,210 cm4

Height, H 5.08 m

Height of base stiffeners 61 cm

Young’s modulus of elasticity, E 200 GPa

Elastic stiffness of column along y-direction, 3EIx/H
3 3.85 MN/m

Plastic modulus, Sx 4330 cm3

Minimum plastic moment capacity 1.37 MNm

Expected plastic moment capacity 1.51 MNm
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9.3 Ground Motion

In this chapter, the seismic response of the gantry structure is computed during the
500-year MRP ground motion at a site in the San Francisco Bay Area (SFBA). The
500-year MRP ground motion for the SFBA site was determined in Chap. 2.
Figure 9.3 shows the 500-year MRP response spectra for various values of damping.
The response spectra are shown in the acceleration–deformation format. These are
the demand curves for the site. The peak pseudo-acceleration PPA is read along the
vertical axis and peak deformation PD is read along the horizontal axis. The natural
period T is shown by the parallel diagonal lines. The PPA, PD, and T are related to
each other by the expression: PD ¼ PPA � (T/2π)2. Only static analyses are
performed in this chapter. Therefore, ground motion histories are not needed.

9.4 Elastic Analyses

First, the gantry structure is analyzed by assuming that it remains elastic
(undamaged). No yielding or breaking is assumed to occur anywhere in the structure.
Elastic analyses are usually linear, but in this case, even the elastic analyses are
nonlinear because the stiffness of the structure changes with deformation due to the
following reasons:

1. The presence of axial release in the south side wheels of the gantry causes the
south side frame to engage only after the north side frame has deformed 7.62 cm.

Table 9.2 Important properties of the top flange of runway beams

Form W36 � 160 + top plate
1.2500 � 1400

Material ASTM A572 GR 50

Minimum yield strength, fy 345 MPa

Expected yield strength, 1.1fy 379 MPa

Moment of inertia of top flange about z-axis, Iz 15,540 cm4

Plastic modulus of top flange of beam, Zy 1311 cm3

Width of top flange 35.6 cm

Thickness of top flange 5.13 cm

Length of top flange, L 12.2 m

End condition Simply supported

Lateral stiffness of top flange in configuration 1 ¼ 12EIz/
(3La2 � 4a3)

1.43 MN/m

Minimum plastic moment capacity of top flange 451 kNm

Expected plastic moment capacity of top flange 496 kNm
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2. Slender nature of the structure causes additional moment due to the weight of the
gantry. This is known as the P–Δ effect.

The elastic analyses are performed for Configurations 1 and 2 by using the
nonlinear-static procedure. The damping is assumed to be 2% of critical.

9.4.1 Configuration 1

The demand curve for elastic analyses is the 2% damping response spectrum in
Fig. 9.3. The lumped mass for Configuration 1 is 92.1� 103 kg. The lumped mass is
slowly pushed in the north direction. This causes deflection of the beam and two
columns on the north side. The stiffness of beam is 1.43 MN/m (Table 9.2) and the
stiffness of two columns is 2 � 3.85 ¼ 7.7 MN/m (Table 9.1). Since the beam and
two columns are in series with each other in Configuration 1, the lateral stiffness of
the north side frame is 1.43 � 7.7/(1.43 + 7.7) ¼ 1.21 MN/m. When the deflection
reaches 7.62 cm, the south side frame is also engaged. This causes the stiffness to

Fig. 9.3 Acceleration–deformation plots of 500-year MRP response spectra for various values of
damping
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double to 2.42 MN/m. Figure 9.4 shows the pushover curve for the structure in
Configuration 1. The forces on the north and south side frames are separately shown
by the two dashed lines.

The gantry structure has a significant weight and it undergoes large deflections.
Therefore, the P-Δ effect should be considered for this structure. The P–Δ effect is
considered as follows: (1) for each value of deformation D, force F is read from
Fig. 9.4, and (2) force F is reduced by an amountW � D/H, where,W ¼ weight and
H¼ height of the lumped mass from the base. Figure 9.5 shows the revised pushover
curve after considering the P–Δ effect. Note a slight reduction in the stiffness.

The capacity curve is generated from the pushover curve by dividing the push-
over force by the lumped mass of 92.1 � 103 kg. The capacity curve is a plot of the
pseudo-acceleration versus deformation. Figure 9.6 shows the capacity curve on a
linear scale. The radial tick marks indicate the “effective” period of the structure.
Figure 9.7 shows the same capacity curve on a logarithmic scale. The radial tick
marks in Fig. 9.6 are replaced by parallel diagonal lines in Fig. 9.7.

The demand curve is an acceleration–deformation plot of the 2% damping
response spectrum. It is shown in Fig. 9.3. In Fig. 9.8, the capacity curve of
Fig. 9.7 is superimposed on the 2% damping demand curve in Fig. 9.3. These two
curves intersect at a deflection of 64.3 cm. This is the deflection of the gantry during

Fig. 9.4 Pushover curve for the gantry in Configuration 1 without P–Δ effect
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the 500-year MRP ground motion. The pseudo-acceleration of the gantry is 1.49 g.
The deflection of the north side frame is 64.3 cm, but the deflection of the south side
frame is 64.3–7.62 ¼ 56.7 cm.

For a deflection of 64.3 cm, the horizontal force on the north side frame is 716 kN
(Fig. 9.5). This is also the force on the north side beam. The bending moment in the
north side beam is 716 � 3.35/2 ¼ 1.2 MNm. The stress in the flange of the north
side beam is 1.2/15,540� 35.6/2� 106¼ 1.37 GPa. This is 3.6 times the yield stress
of 379 MPa for beam steel. The lateral force in the north side beam is transferred
equally to the two columns at the ends of the beam. Therefore, the force in the north
side column is 716/2 ¼ 358 kN. The bending moment at the base of the north side
column is 358� 5.08/103 + 92,080� 9.81/4� 0.643¼ 1.96 MNm. The stress in the
north side column is 1.96 � 106/(84,210 � 10�8) � 0.457/2/106 + 92,080 � 9.81/4/
0.0267/106 ¼ 540 MPa. This is 1.5 times the yield stress of 349 MPa for column
steel.

Fig. 9.5 Revised pushover curve for the gantry in Configuration 1 with P–Δ effect
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9.4.2 Configuration 2

Once again, the demand curve for elastic analysis is the 2% damping response
spectrum in Fig. 9.3. The lumped mass for Configuration 2 is 76.2 � 103 kg. The
lumped mass is slowly pushed in the north direction. This causes deflection of the
north side column. The stiffness of the column is 3.85 MN/m (Table 9.1). When the
deflection reaches 7.62 cm, the south side column is also engaged. This causes the
stiffness to double to 7.7 MN/m. Figure 9.9 shows the pushover curve for the
structure in Configuration 2. The forces on the north and south side columns are
separately shown by the two dashed lines in Fig. 9.9. Figure 9.10 shows the revised
pushover curve for Configuration 2 after considering the P–Δ effect.

The capacity curve is generated from the pushover curve by dividing the push-
over force by the lumped mass of 76.2 � 103 kg. Figure 9.11 shows the capacity
curve on a linear scale. The radial tick marks indicate the “effective” period of the
structure. Figure 9.12 shows the same capacity curve on a logarithmic scale. The
radial tick marks in Fig. 9.11 are replaced by parallel diagonal lines in Fig. 9.12.

A pushover analysis is performed in Fig. 9.13 by superimposing the capacity
curve of Fig. 9.12 over the 2% damping demand curve in Fig. 9.3. These two curves

Fig. 9.6 Configuration 1 capacity curve on a linear scale
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intersect at a deflection of 28.9 cm. This is the deflection of the gantry during the
500-year MRP ground motion. The pseudo-acceleration of the gantry is 2.54 g. The
deflection of the north side column is 28.9 cm, but the deflection of the south side
column is 28.9–7.62 ¼ 21.3 cm. Corresponding to a deflection of 28.9 cm, the force
in the north side column is read from Fig. 9.10; it is 1.09 MN. The bending moment
at the base of the north side column is 1.09 � 5.08 + 76.2 � 9.81/2 � 0.289/
103 ¼ 5.65 MNm. The stress in the north side column is 5.65 � 106/
(84,210 � 10�8) � 0.457/2/109 + 76.2 � 9.81/2/0.0267/106 ¼ 1.55 GPa. This is
4.4 times the yield stress of 349 MPa for column steel.

9.4.3 Conclusions from Elastic Analyses

The results of the elastic analyses show that yielding will occur in the structure
during the 500-year MRP ground motion. To determine the performance of the
structure during the 500-year MRP ground motion, the extent of yielding needs to be
calculated. The extent of yielding in frame elements (beams and columns) is
measured by the plastic hinge rotations. An inelastic analysis is needed to estimate
the plastic hinge rotations in beam and column elements.

Fig. 9.7 Configuration 1 capacity curve on a logarithmic scale
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9.5 Inelastic Analyses

The next set of analyses are inelastic. In these analyses, plastic hinges are allowed to
form in the structure and the rotations of plastic hinges are monitored. Plastic
rotations affect the stiffness of the structure and they also affect its damping because
energy is dissipated in the plastic hinges. Once again, the analyses are performed by
the nonlinear-static procedure.

9.5.1 Configuration 1

Figure 9.14 shows the inelastic pushover curve for the structure in Configuration
1. As the lumped mass is slowly pushed in the north direction, the entire load is first
resisted by the north side frame. This causes deflection of the north side beam and
two columns at the ends of beam. When the deflection reaches 7.61 cm, the south
side frame is also engaged and the stiffness of the system doubles. With additional
deflection, the bending moment in the north side beam continues to rise until it
reaches its plastic moment capacity. At that point, two plastic hinges appear in the

Fig. 9.8 Elastic pushover analysis of the gantry in Configuration 1
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north side beam at the wheel locations. This causes the stiffness of the system to
reduce. At a later point, plastic hinges also appear in the south side beam and the
stiffness drops once again. In this analysis, strain hardening is ignored. Negative
slope (stiffness) of the pushover curve after the formation of plastic hinges in the
south side beam is due to P–Δ effect. The gantry collapses at 79.7 cm deformation
when the plastic hinge rotation in the north beam reaches its limiting value of 0.179
radian (Section 9.5.2).

The capacity curve is obtained by dividing the pushover force by the lumped
mass of 92.1� 103 kg. A linear plot of the capacity curve is shown in Fig. 9.15. The
radial tick marks in Fig. 9.15 indicate the “effective” period of the structure.
Figure 9.16 shows the same capacity curve on a logarithmic scale. The radial tick
marks in Fig. 9.15 are replaced by diagonal parallel lines in Fig. 9.16.

In Chap. 3, the seismic toughness ST of a structure was defined as the area under
the linear plot of the capacity curve (Fig. 9.15). The seismic toughness of the gantry
in Configuration 1 is ST¼2.79 (m/s)2. This is 10 to 14% higher than the value for
ductile moment frames discussed in Chapters 3 and 4. Therefore, the seismic
toughness of the gantry in Configuration 1 is quite high.

Fig. 9.9 Pushover curve for the gantry in Configuration 2 without P–Δ
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A certain amount of energy is dissipated due to yielding. Figure 9.17 shows cyclic
force–deformation relationship for the structure undergoing a peak deformation of
50 cm. The area of the shaded loop on the left side is the energy dissipated in each
cycle. It is denoted as Eh. The area of the shaded triangle on the right side is the
“strain energy.” It is denoted as Es. The hysteretic damping of the system is obtained
from the relation [4]:

ζh ¼ Eh

4πEs

The hysteretic damping ζh can be calculated for cycles of various amplitudes.
Figure 9.18 shows a plot of hysteretic damping versus deformation. This is the “raw”
damping curve which needs some adjustments to account for the fact that a structure
experiences cycles of many different amplitudes during the ground shaking. Since
the damping for smaller amplitude cycles is less, the damping is adjusted as follows.
For D¼ 40 cm, the damping is 0.3 (30% of critical) according to the “raw” damping
curve (Fig. 9.18). The average (adjusted) damping for deformations between 0 and
40 cm is calculated by taking the area under the damping curve up to 40 cm and

Fig. 9.10 Revised pushover curve for the gantry in Configuration 2 with P–Δ
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dividing that area by 40 cm (Fig. 9.19). This gives the adjusted damping of 3.48/
40 ¼ 0.087 (8.7% of critical). The adjusted damping is similarly computed for other
values of D. Finally, the damping is not allowed to drop below 2% of critical to
account for other sources of energy dissipation besides plastic yielding. Figure 9.20
shows the adjusted damping curve for the system; this will be used to complete the
nonlinear-static analysis.

The damping of the system is not known prior to the analysis. In Fig. 9.21, the
capacity curve (Fig. 9.16) is superimposed on demand curves for 5, 10, 20, 30, and
50% of critical damping (Fig. 9.3). The intersections of capacity curve with demand
curves provide deformations for various assumed values of damping. Note that the
capacity curve stops short of the 5% damping demand curve. This implies that the
gantry structure would collapse under the 500-year MRP ground motion if the
damping were only 5% of critical. Figure 9.22 shows the deformations for various
assumed values of damping. This is the deformation-versus-damping curve even
though the deformation is shown along the horizontal axis. Higher the damping,
smaller is the deformation.

In Fig. 9.23, the deformation-versus-damping curve of Fig. 9.22 is superimposed
on the damping-versus-deformation curve of Fig. 9.20. These two curves intersect at

Fig. 9.11 Configuration 2 capacity curve on a linear scale
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a deformation of 49 cm. This is the deformation of the north side frame during the
500-year MRP ground motion. The elastic deformation of the north side frame is
19.7 cm (Fig. 9.14). Therefore, inelastic deformation of the north side frame is
49–19.7 ¼ 29 cm. The inelastic deformation occurs only in the beam at the wheel
locations. The total plastic rotation in the north side beam is 29/335 ¼ 0.087 radian.

9.5.2 Performance of Gantry in Configuration 1

According to Table 9.7.1 of ASCE 41 [3], the acceptable plastic rotation in a
compact beam cross section is 2.25θy for immediate occupancy (IO) and 11θy for
collapse prevention (CP) limit state. The chord rotation at yield, as per Fig. 9.3(a) in
ASCE 41 [3], is:

θy ¼ Mp ∙ l
3EI

ð9:1Þ

SubstitutingMp ¼ 451 kNm (Table 9.2); l ¼ a¼ 3.35 m (Fig. 9.2), E ¼ 200 GPa,
I ¼ Iz¼15,540 cm4 (Table 9.2), gives θy ¼ 451 � 3.35/(3 � 200 � 106 � 15,540 �

Fig. 9.12 Configuration 2 capacity curve on a logarithmic scale
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10�8)¼ 0.0163 radian. Therefore, the acceptable plastic rotation is 2.25� 0.0163¼
0.0367 radian for IO and 11 � 0.0163 ¼ 0.179 radian for CP. The calculated plastic
rotation of 0.087 radian is greater than the acceptable plastic rotation for IO but less
than the acceptable plastic rotation for CP. Therefore, the beam will suffer extensive
damage but not break during the 500-year MRP ground motion. The gantry will not
remain operational after the 500-year MRP ground motion at the site. The plastic
rotation can be reduced to the acceptable level by increasing the size of the top
flange.

9.5.3 Configuration 2

Figure 9.24 shows the pushover curve for the system in Configuration 2. As the
lumped mass is slowly pushed in the north direction, the entire load is first trans-
mitted to the north side column. When the deflection reaches 6.7 cm, a plastic hinge
is formed at the base of north side column. At a deflection of 7.62 cm, the south side
column is also engaged. At a deflection of 14.2 cm, a plastic hinge appears at the
base of south side column as well. Negative slope (stiffness) of the pushover curve
after the formation of hinge in the south side column is due to P–Δ effect.

Fig. 9.13 Elastic pushover analysis of the gantry in Configuration 2
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The capacity curve is obtained by dividing the pushover force by the lumped
mass of 76.2 � 103 kg for Configuration 2. A linear plot of the capacity curve is
shown in Fig. 9.25. The radial tick marks in Fig. 9.25 indicate the “effective” period
of the structure. Figure 9.26 shows a logarithmic plot of the same capacity curve. The
radial tick marks in Fig. 9.25 are replaced by diagonal parallel lines in Fig. 9.26.

The seismic toughness ST of a structure is the area under the linear plot of the
capacity curve (Fig. 9.25). The seismic toughness of the gantry in Configuration 2 is
ST¼7.86 (m/s)2. This is 2.8 times the ST in Configuration 1 and 3.1 to 3.2 times the
ST for ductile moment frames discussed in Chapters 3 and 4. Therefore, the seismic
toughness of the gantry in Configuration 2 is very high. This is due to high allowable
plastic rotation in the compact cross section of the column.

Figure 9.27 shows cyclic force–deformation relationship for the structure under-
going a peak deformation of 50 cm. The area of the shaded loop on the left side is the
energy dissipated in each cycle. It is denoted by Eh. The area of the shaded triangle
on the right side is the “strain energy.” The damping curve for the system is
generated by using the same procedure as for Configuration 1. Figure 9.28 shows
the adjusted damping curve for nonlinear-static analysis in Configuration 2.

In Fig. 9.29, the capacity curve (Fig. 9.26) is superimposed on demand curves for
various values of damping (Fig. 9.3). The intersections of capacity curve with

Fig. 9.14 Inelastic pushover curve for the gantry structure in Configuration 1
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demand curves provide deformations for various assumed values of damping.
Figure 9.30 shows the deformations for various assumed values of damping. This
is the deformation-versus-damping curve for Configuration 2. Higher the damping,
smaller is the deformation. To determine the equilibrium condition, the deformation-
versus-damping curve of Fig. 9.30 is superimposed on the damping-versus-defor-
mation curve of Fig. 9.28. These two curves intersect at a deformation of 24 cm
(Fig. 9.31). This is the deformation of the north side column during the 500-year
MRP ground motion. The elastic deformation of the north side column is 6.7 cm
(Fig. 9.24). Therefore, inelastic deformation of the north side column is
24–6.7 ¼ 17 cm. The plastic rotation in the north side column is 17/508 ¼ 0.034
radian (Fig. 9.32).

9.5.4 Performance of Gantry in Configuration 2

According to Table 9.7.1 of ASCE 41 [3], the acceptable plastic rotation for the
column is 0.0589 radian for immediate occupancy (IO) and 0.3 radian for collapse
prevention (CP).

Fig. 9.15 Linear plot of inelastic capacity curve for the gantry structure in Configuration 1
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Fig. 9.16 Logarithmic plot of the inelastic capacity curve for the gantry structure in
Configuration 1

Fig. 9.17 Hysteretic and strain energies for the system in Configuration 1 for a 50-cm deformation
cycle
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The calculated plastic rotation of 0.034 radian is less than the acceptable value for
IO but the gantry cannot be expected to remain operational if any yielding occurs in
the columns. Therefore, the gantry will not be collapsed by the 500-year MRP
ground motion, but it will not remain operational.

9.6 Design of Column Connection

The connection at the base of column should be strong enough to allow full plastic
rotation to occur in the column. At its base, each column is provided with 61 cm high
vertical stiffeners. To calculate the moment demand on the connection, the plastic
hinge can be assumed to form at 61 cm height, above the stiffeners. The moment in
the connection, at the base of column, will be greater than the plastic moment
capacity of the column.

Fig. 9.18 Hysteretic damping curve
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9.7 Summary

1. For unique structures such as a gantry, prescriptive approach cannot be justified
because there aren’t enough experience data to justify an empirical approach.

2. A pure analysis based on engineering mechanics principles is the best option.
3. To ensure ductile performance, all connections (including the base anchorage)

should be stronger than the connected members.
4. Plastic rotations in ductile elements provide a measure of damage.
5. Plastic rotations can be reduced by increasing the strength of ductile elements, but

brittle elements should always be stronger than ductile elements.
6. Plastic rotations should be calculated by using lower bound estimates of yield

strength. The moments in connections and foundations should be calculated by
using upper bound estimates of yield strength.

Fig. 9.19 Adjustment of damping curve
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Fig. 9.20 Adjusted damping curve for Configuration 1

Fig. 9.21 Capacity curve superimposed on demand curves for 5, 10, 20, 30, and 50% of critical
damping



Fig. 9.22 Deformations for various assumed values of damping

Fig. 9.23 Damping and deformation at equilibrium



Fig. 9.24 Inelastic pushover curve for Configuration 2

Fig. 9.25 Linear plot of inelastic capacity curve for Configuration 2



Fig. 9.26 Logarithmic plot of inelastic capacity curve for Configuration 2

Fig. 9.27 Hysteretic and strain energies for the system in Configuration 2 for a 50-cm deformation
cycle
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Fig. 9.28 Adjusted damping curve for Configuration 2

Fig. 9.29 Capacity curve for Configuration 2 superimposed on demand curves for 5, 10, 20, 30,
and 50% of critical damping



Fig. 9.30 Deformations for various values of damping in Configuration 2

Fig. 9.31 Deformation and damping at equilibrium in Configuration 2
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plastic yielding, 69
properties, 98, 99
rigid connections, 64
SDOF system, 65
seismic design, 93, 94
sketch, 64
structural properties, 65
and tension-only braced frame, 90, 91
and torsional eccentricity, 92, 93
types of analysis, 87
uncertainity, 125

Moment–rotation relationship, 83, 183, 219
Multi-degree-of-freedom (MDOF), 99

N
Narrow-banded ground motion, 20
Natural period, 7, 10–12, 22, 65
Newmark–Hall response spectrum, 23, 24, 26
Nonlinear analyses, 64
Nonlinear analysis, 130

anchors, 218
foundation, 218
increasing anchorage effect, 230, 232
nonlinear model, 218, 221, 222
nonlinearities, 218
post-bucking behavior, 218
pushover analysis, 228, 230
pushover and damping curves

capacity curve, 226
damping adjustment, 227–229
damping sources, 227
deformation sources, 224, 225

foundation flexibility, 224
impulsive acceleration, 222, 223
PPA, 222, 224
seismic response, 227
sliding, 224
values, deformation, 227, 230

Nonlinear-dynamic analysis, 83, 84
CA direction

CA base-shear/overturning base
moment, 194–196

computer model, rack, 192, 193
friction coefficient, 193
frictional forces, 195
levels, rack, 193, 194
link elements, 192, 193
MRP ground motion, 196
pallet sliding, 196
shelf acceleration, 193
sliding, 197

DA direction, 201, 202
Nonlinear-dynamic analysis of sliding

response
accelerations and sliding displacements,

138, 141
approximate solution, 142
frictional-link element, 136
horizontal accelerations, 136, 137
horizontal shaking, 137
MRP ADRS, 135
MRP spectra, 139
MRP spectrum-compatible ground motion,

135
seismic sliding, 142
vertical ground motion effects, 139–141

Nonlinear-dynamic analysis, rocking response
acceleration, 167
base rotation, 166, 167
ground motion, 167
horizontal ground motion, 166
numerical errors, 167, 168
purpose, 168
vertical motion, 167, 168

Nonlinearities, 218
Nonlinear model, 218, 221, 222
Nonlinear-static analysis, 77, 79, 94

adjusted damping curve, 187, 189
adjusted damping vs. deformation curve,

190, 191
capacity curve, 73–75, 185, 186, 188
DA direction, 197, 198, 200
damping curve, 185, 186 (see also Damping

curve)
damping vs. deformation, 69
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deformation-vs.-damping curve, 79–81,
191, 192

deformations, 191
equilibrium, 80
force–deformation relationship, 185
frictional force, 191
hysteretic damping, 186, 187, 189
MF, 81
plastic rotation, 81
pushover curve, 185 (see also Pushover

curve)
raw damping curve, 187
sliding, 185
strain energy, 186, 188
strength and deformability, 69
3D visualization, 82

Nonlinear-static analysis of sliding response
capacity curve, 145
conservatism, 146
demand curve, 142, 144
equilibrium condition, 145
ground motion histories, 142
pushover curve, 144, 145

Nonlinear-static analysis, rocking
response

angular acceleration–rotation, 168, 170
capacity curve, 169, 173, 174
damping response spectrum, 168
deformation spectrum, 170
demand curve, 169, 174
EOM, 168
equilibrium rotation, 171
forcing function, 169
MRP ground motion, 168
peak rotation, 169, 172
rotational spectrum, 170

Nonstructural systems, 81
Normalized mode shapes, 103
Normalized response spectrum (NRS), 20–22,

28
Normalized shape modes, 102
Normalized strength, 26
Normalized-velocity, 19
Nuclear power plants, 43

O
One-story, 64, 65
One-story moment-frame (MF)

sketch, 64
One-story, seismic

MF (see Moment frame (MF))
Overturning moment, 194, 208

P
Pallet sliding, 196
Partially restrained moment connection, 181,

182
Peak deformation (PD), 12, 13, 18, 65, 67
Peak force (PF), 13–15
Peak ground displacement (PGD), 12

low value, 6
smooth response spectrum, 21, 22, 26

Peak horizontal ground acceleration (PGA)
hazard curve, 36–38
probability distribution, 36
smooth response spectrum, 21, 22, 26

Peak horizontal ground displacement (PGD), 3
and ground motion, 39
hazard curve, 37, 40

Peak horizontal ground velocity (PGV), 3
hazard curve, 38
moderate value, 6
smooth response spectrum, 21, 22, 26

Peak pseudo-acceleration (PPA), 18, 65, 80, 99,
103, 184, 210, 212, 222, 238

definition, 13
Peak normalized pseudo-velocities (PPV), 20,

23
definition, 16

Peak strain energy (PSE), 15, 16
Plastic hinge rotation, 71, 81
Plastic hinges, 69, 70, 83
Plastic moment capacity, 68, 87
Plastic rotation, 91, 220, 244, 251, 253, 254
Plastic yielding, 64, 69, 77, 81, 94, 115, 119,

125, 129, 218
Probabilistic analysis

MRP, 39, 40
time-independent process, 39

Probabilistic seismic hazard analysis
(PSHA), 34

exceedance probabilities, 36
fault lines, 34
generation, 39
geological data, 35
geological investigation, 34
GMPM, 35, 36
local soil conditions, 34
MRP, 37
real sites, 39–41
seismic sources (faults), 35
seismological model, 35
stiff soil, 34
time-independent process, 37

Proprietary beam–column moment
connection, 181
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Pseudo-acceleration
and deformation response spectra, 22

Pseudo-acceleration plot, 67
Pseudo-acceleration response spectrum, 148

horizontal ground motion, 14, 16, 17
PD, 13
PF, 13, 14
PPA, 13
PPA vs. T, 14
spring stiffness, 13
zero-period system, 14
ZPA, 15

Pseudo-velocity response spectrum, 15–17
Pushover analysis, 228, 230, 242, 249
Pushover curve, 186, 187, 198, 225

beam and columns, 70
CG, 107
elastic deformation, 70, 109
elastic stiffness, 70
forces and moments, 69, 70, 107
lateral force, 107
lumped mass, 69
MF, 71
plastic hinge rotation, 71, 109
plastic hinges, 69
plastic moment capacity, 108
plastic rotation, 109
P–Δ effect, 71–73, 109, 111
refined, 109
strain hardening, 71–73, 109–111

P–Δ effect, 71, 73, 109, 111, 201, 202,
240–242, 245, 249

R
Rack Manufacturers Institute (RMI), 182, 183
Radial tick marks, 112, 198
Radiation damping, 227
Real sites, PSHA, 39–41
Response spectra

building code (see Building code response
spectra)

damping (see Damping)
three-dimensional surface, 55, 56
vertical ground motion (see Vertical ground

motion)
Response spectrum, 34

acceleration history, 20
building codes, 24
concept, 6
displacement history, 20
modified seed horizontal ground motion, 50
smooth (see Smooth response spectrum)
velocity history, 20

Resultant horizontal velocities, 3, 5
Revised linear model, 212, 213
Rigid-end offset, 88
Rocking objects, 133
Rocking response

angular momentum, 162
CG, 161
double differentiation, 161
EOM, 161
equivalent-viscous damping, 175
forcing function, 161
free-vibration (see Free-vibration response)
ground shaking, 160, 173
MRP ground motion, 165
nonlinear-dynamic analysis (see Nonlinear-

dynamic analysis, rocking response)
nonlinear-static analysis (see Nonlinear-

static analysis, rocking response)
reliable static analysis, 160
restitution coefficient, 162
rigid rectangular objects, 160
rotation amplitude, 175
safety margin against toppling, 171, 172
second-order differential equation, 162
SFBA, 165, 166
toppling response spectrum, 172, 173, 176
unanchored objects, 160
vertical motions, 175

Rotational soil damper, 216
Rotational soil spring, 216, 221

S
San Francisco Bay Area (SFBA), 39, 41, 42,

44–46, 53–55, 57, 63, 65, 85, 99,
134, 165, 184, 185, 210, 238

ED, 56
Secant stiffness, 183
Second-order linear differential equation, 11
Seed ground motion, 46, 47
Seismic

design, 25
performance of structures, 26
strength-based seismic design, 26
waves traveling, 2

Seismic analysis, 54
Seismic demand, 27
Seismic design

MF, 93, 94
Seismic hazard, 51
Seismic loads, 27, 29
Seismic shaking, 153
Seismic sliding, 132, 157
Seismic sources, 39
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Seismic toughness (ST), 73, 88, 89, 91, 93, 95,
126, 127, 250

MF, 75
Seismological information, 34
Seismological model, 35
SFBA site, 67

MRP ground motion, 65, 66
Shear-wave velocity, 34
Shell deformability, 209
Shell overturning moment, 212–214, 222, 223
Single-degree-of-freedom (SDOF), 45, 46, 99

damped linear system, 10
damping constant, 8
damping ratio, 9, 10
definition, 10
deformations, 11
deformed state, 7
energy loss, 8
EOM, 10
free-vibration response, 7, 8

damped and undamped, 8, 9
underdamped and critically damped, 9

MF, 65
natural period, 7
resultant horizontal deformations, 11–14
second-order linear differential equation, 11
structure, 7
viscously damped, 8

Site-specific ground motion histories, 47, 53
dynamic analyses, 46
generation, 46
3D analyses, 50

Site-specific response spectra, 34, 46, 51
2D (see 2D dynamic analyses)
3D (see 3D dynamic analyses)
structure types, 56–59

Site-specific vertical ground motions, 47, 52
Slender objects, 133
Slender tanks, 207
Sliding, 224, 228
Sliding displacements, 157
Sliding response

ASCE 43-05 (see ASCE 43-05 methods)
EOM, 134
flexible object (see Flexible object sliding

response)
MRP ground motion, 134
nonlinear-dynamic analysis (see Nonlinear-

dynamic analysis of sliding
response)

nonlinear-static analysis (see Nonlinear-
static analysis of sliding response)

static and dynamic friction, 148

Sloshing wave height, 211
Smooth response spectrum

earthquakes, 20
NRS, 20–22
PGA, 21, 22, 26
PGD, 21, 22, 26
PGV, 21, 22, 26
spectral values, 20
tripartite plot, 24

Soil deformation, 208
Soil flexibility, 215
Soil sites, 57
Soil springs, 216
Soil–structure interaction (SSI), 215
Spectrum-compatible ground motion history,

65, 66
Springs, 221
Square-root-of-sum-of-squares (SRSS), 104
Static analyses, 45
Steel beams, 89
Stiff soil, 34
Storage racks

CA direction (see Cross-aisle
(CA) direction)

cold-formed steel components, 180
columns, 180
DA direction (see Down-aisle

(DA) direction)
ground motion, 184
hazardous products, 180
industrial and commercial facilities, 180
seismic response, 180
seismic toughness, 205
shelves, 180
structural system, 181–184

Strain energy, 2, 216
Strain hardening, 71–73, 83, 86, 109
Strength-and deformation demands, 26, 30
Strength demands, 218
Strong motions, 2
Structural analysis program (SAP), 67

T
Tanks

base sliding, 208
base uplifting, 208
broad, 207
damping values, 210
data, 209
fixed-roof tanks, 208
freeboard, 209
ground motion, 210
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Tanks (cont.)
shear, 208
shell deformability, 209
slender, 207
soil deformation, 208

Target response spectrum
seed horizontal ground motion, 48

Tension-only braced frame
and MF, 90, 91

Torsional eccentricity
and MF, 92, 93

Total energy loss per cycle, 216
Traditional seismic design, 131
Triaxial foundation motion, 134
Tripartite response spectrum, 17, 18

U
Ultimate strength, 72, 83
Unanchored objects, 132, 133
Uplifting, 208

V
Vertical ground motion

amplitudes, 41
damping response spectra, 42, 45

horizontal ground motion, 41
median ratios, 41, 44
MRP, 44
response spectra, 42
soil types, 41, 42, 44

PGA, 42
PGD, 44
PGV, 43

structure analysis, 40
V/H ratio, 41

Vertical ground motion effects, 139, 140
Viscously damped SDOF system, 8

W
Wire-mesh shelf, 180

Y
Yield strength, 254
Yielding, 243

Z
Zero stiffness, 12
Zero-period acceleration (ZPA), 15
Zero-period system, 14, 17
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