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Preface

Plated structures are important in a variety of marine- and land-based applications,
including ships, offshore platforms, box girder bridges, power/chemical plants, and
box girder cranes. The basic strength members in plated structures include support
members (such as stiffeners and plate girders), plates, stiffened panels, grillages, box col-
umns, and box girders. During their lifetimes, the structures constructed with these
members are subjected to various types of actions and action effects that are usually nor-
mal but sometimes extreme or even accidental.
In the past, criteria and procedures for designing plated structures were primarily

based on allowable working stresses and simplified buckling checks for structural com-
ponents. However, it is now well recognized that the limit state approach is a better basis
for design because it is difficult to determine the real safety margin of any structure using
linear elastic methods alone. It also readily follows that it is of crucial importance to
determine the true limit state if one is to obtain consistent measures of safety that
can then form a fairer basis for comparison of structures of different sizes, types, and
characteristics. An ability to better assess the true margin of safety would also inevitably
lead to improvements in related regulations and design requirements.
Today, the preliminary design of ships including naval and merchant vessels, offshore

structures such as ship-shaped offshore installations, mobile offshore drilling units,
fixed-type offshore platforms and tension leg platforms, and land-based structures such
as bridges and box girder cranes tends to be based on limit state considerations, includ-
ing the ultimate limit state.
To obtain a safe and economic structure, the limit state-based capacity and structural

behavior under known loads must be assessed accurately. The structural designer can
perform such a relatively refined structural safety assessment even at the preliminary
design stage if simple expressions are available for accurate prediction of the limit state
behavior. A designer may even desire to do this for not only the intact structure but also
structures with premised damage to assess their damage tolerance and survivability.
Although most structural engineers in the industry are very skilled and well experi-

enced in the practical structural design aspects based on the traditional criteria, they
may need a better background in the concept of limit state design and related engineer-
ing tools and data. Hence, there is a need for a relevant engineering book on the subject
that provides an exposition of basic knowledge and concepts. Many structural specialists
in research institutes continue to develop more advanced methods for the limit state
design of plated structures, but they sometimes lack the useful engineering data to val-
idate them. Students in universities want to learn more about the fundamentals and
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practical procedures regarding the limit state analysis and design and thus need a book
that provides useful insights into the related disciplines.
This book reviews and describes both the fundamentals and practical procedures for

the ultimate limit state analysis and design of ductile steel-plated and aluminum-plated
structures. Structural fracture mechanics and structural impact mechanics are also
described. This book is an extensive update of my previous book Ultimate Limit State
Design of Steel-Plated Structures (with Dr. A.K. Thayamballi), published in 2003. In con-
trast to the previous book, this update covers both steel- and aluminum-plated structures
together with the latest advances and many newly added materials not included in the
2003 version. The book is basically designed as a textbook. The derivation of the basic
mathematical expressions is presented together with a thorough discussion of the
assumptions and the validity of the underlying expressions and solution methods.
I believe that the reader should be able to obtain insight into a wider spectrum of ulti-

mate limit state analysis and design considerations in both an academic and a practical
sense. In part, this book is an easily accessible analysis and design toolbox that facilitates
learning by applying the concepts of the ultimate limit state for practice.
This book is primarily based on my own insights and developments obtained from

more than 35 years of professional experience, as well as information and findings pro-
vided by numerous other researchers and limit state design practitioners. Wherever pos-
sible, I have tried my best to acknowledge the invaluable efforts of other investigators
and practitioners, and, if I have failed anywhere in this regard, I did so inadvertently.
I gratefully acknowledge all those individuals who helped make this book possible.

Most of all, Dr. A.K. Thayamballi, who was the coauthor of the previous book, provided
valuable and comprehensive comments to improve this book. Finally, I take this oppor-
tunity to thank my wife Yun Hee Kim, my son Myung Hook Paik and my daughter Yun
Jung Paik for their unfailing patience and support while this book was being written.

October 2017 Prof. Jeom Kee Paik, Dr. Eng., CEng, DHC (ULieg),
FRINA, LFSNAME

Pusan National University
and University College London
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How to Use This Book

Written to develop a textbook and handy source for the principles behind the ultimate
limit state analysis and design of steel- and aluminum-plated structures, this book is
designed to be well suited for university students approaching the related technologies.
In terms of the more advanced and sophisticated analysis and design methodologies
presented, this book should also meet the needs of structural analysts, designers, or
researchers involved in the field of naval architecture and offshore, civil, architectural,
aerospace, and mechanical engineering.
Hence, apart from its value as a ready reference and an aid to continuing education

for established practitioners, this book can be used as a textbook for teaching courses
on ultimate limit state analysis and design of plated structures at the university level,
as it covers a wide enough range of topics that may be considered for more than one
semester course.
A teaching course of 45 h for undergraduate students in structural mechanics or thin-

walled structures may cover Chapter 1, “Principles of Limit State Design”; Chapter 2,
“Buckling and Ultimate Strength of Plate–Stiffener Combinations: Beams, Columns,
and Beam–Columns”; Chapter 3, “Elastic and Inelastic Buckling Strength of Plates
Under Complex Circumstances”; Chapter 5, “Elastic and Inelastic Buckling Strength
of Stiffened Panels and Grillages”; Chapter 7, “Buckling and Ultimate Strength of Plate
Assemblies: Corrugated Panels, Plate Girders, Box Columns, and Box Girders”; and
Chapter 8, “Ultimate Strength of Ship Hull Structures.”
For postgraduate students who pass the teaching course for the undergraduate stu-

dents noted previously, a more advanced course of 45 h may cover Chapter 1, “Principles
of Limit State Design” (repeated); Chapter 2, “Buckling and Ultimate Strength of Plate–
Stiffener Combinations: Beams, Columns, and Beam–Columns” (repeated); Chapter 4,
“Large Deflection and Ultimate Strength Behavior of Plates”; and Chapter 6, “Large
Deflection and Ultimate Strength Behavior of Stiffened Panels and Grillages.”
In teaching courses, lecturers are advised to guide students to practice the derivations

of important formulations described in each chapter together with practical problems
for analysis and design of steel- and aluminum-plated structures. Students may submit
homework reports to the lecturers, an exercise that would be helpful for students to
better understand the fundamentals and practical applications.
Chapter 9, “Structural Fracture Mechanics,” and Chapter 10, “Structural Impact

Mechanics,” should also be useful in association with fatigue limit state design and
accidental limit state design, respectively. These two chapters are supplementary for
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the ultimate limit state analysis and design, as they describe the fundamentals and prac-
tices of fatigue and accidental limit states. Chapter 11, “The Incremental Galerkin
Method”; Chapter 12, “The Nonlinear Finite Element Method”; and Chapter 13, “The
Intelligent Supersize Finite Element Method,” should be useful for postgraduate stu-
dents, researchers, and practicing engineers given their more refined and sophisticated
analyses of the ultimate strength behavior of plated structures.
The author has attempted to fulfill these many lofty aims in developing this book. He

sincerely hopes his efforts prove successful, however modestly.
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1

Principles of Limit State Design

1.1 Structural Design Philosophies

While in service, structures are likely to be subjected to various types of loads (or actions)
and load effects (or action effects) due to operational and environmental conditions that
are usually normal but are sometimes extreme or even accidental. The mission of the
structural designer is to design a structure that can withstand the operational and envi-
ronmental requirements designated throughout its expected lifetime.
The load effects or maximum load-carrying capacities or limit states of a structure are

affected by a variety of factors that essentially involve a great deal of uncertainty, which
include the following:

• Geometric factors associated with structural characteristics, buckling, large deforma-
tion, crushing, or folding

•Material factors associated with chemical composition, mechanical properties, yield-
ing or plasticity, or fracture

• Fabrication related initial imperfections, such as initial distortion, welding induced
residual stress, or softening

• Temperature factors, such as low temperatures associated with operation in cold
waters or low-temperature cargo and high temperatures due to fire and explosions

• Dynamic or impact factors (e.g., strain rate sensitivity or inertia effect) associated with
freak waves and impact pressure actions that arise from sloshing, slamming, or green
water; overpressure actions that arise from explosion; and impact from collisions,
grounding, or dropped objects

• Age related degradation factors, such as corrosion or fatigue cracking

• Accident induced damage factors, such as local denting, collision damage, grounding
damage, fire damage, or explosion damage

• Human factors related to unusual operations (e.g., ship’s operational speed compared
with maximum permitted speed or acceleration, ship’s heading, or loading or unload-
ing conditions)

Uncertainties can comprise two groups: inherent uncertainties and modeling uncer-
tainties. Inherent uncertainties are caused by natural variabilities in environmental
actions and material properties, and modeling uncertainties arise from inaccuracy in
engineering modeling associated with the evaluation and control of loads, load effects
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(e.g., stress, deformation), load-carrying capacities, or limit states and from variations in
building and operational procedures. In design, a structure is thus required to have an
adequate margin of safety against service requirements because of such inherent and
modeling uncertainties.
A “demand” is analogous to load, and a “capacity” is analogous to the strength neces-

sary to resist that load, both measured consistently (e.g., as stress, deformation, resistive
or applied load or moment, or energy either lost or absorbed). In this regard, a perfor-
mance function G of a structure can be given as follows:

G =Cd−Dd 1 1a

where Cd represents the “design” capacity and Dd represents the “design” demand. The
terminology “design” implies that both demand and capacity are determined by account-
ing for the inherent and modeling uncertainties.
Because both Cd and Dd in Equation (1.1a) are a function of the basic variables,

X = x1,x2,…,xi,…,xn , the performance function G can be rewritten as follows:

G =G X =G x1,x2,…,xi,…,xn 1 1b

WhenG X > 0, the structure is in the desired state. WhenG X ≤ 0, the structure is in
the undesired state. In industry practice, the performance function of a structure is some-
times defined in an opposite manner to Equation (1.1a) as follows:

G∗ =Dd−Cd 1 2

where G∗ is the performance function of a structure. In this case, the structure is in
the desired state when G∗ < 0, and it is in the undesired state when G∗ ≥ 0. Figure 1.1
illustrates the two performance functions associated with the desired and undesired
states.

Cd

Dd

G = 0

G > 0

Desired state

G < 0

Undesired state

O

Cd

Dd

G* > 0

Undesired state

G* = 0

G* < 0

Desired state

O

(a) (b)

Figure 1.1 The performance functions associated with the desired and undesired states: (a) a
performance function G, Equation (1.1a); (b) a performance function G∗, Equation (1.2).
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1.1.1 Reliability-Based Design Format

The reliability-based design format usually involves the following tasks:

1) Definition of a target reliability
2) Identification of all unfavorable failure modes of the structure
3) Formulation of the limit state (performance) function for each failure mode identified

in item (2)
4) Identification of the probabilistic characteristics (mean, variance, probability density

distribution) of the random variables in the limit state function
5) Calculation of the reliability against the limit state with respect to each failure mode of

the structure
6) Evaluation of the predicted reliability whether or not it is greater than the target

reliability
7) Redesign of the structure otherwise
8) Evaluation of the reliability analysis results with respect to a parametric sensitivity

consideration

Each of the basic variables in the reliability-based design format is dealt with in a prob-
abilistic manner as a random parameter, where each random variable must be charac-
terized by the corresponding probability density function that has a mean value and
standard deviation. If the first-order approximation is adopted, the performance function
G(X) can be rewritten by the Taylor series expansion as follows:

G X G μx1,μx2,…,μxi,…,μxn +
n

i= 1

∂G
∂xi x

xi−μxi 1 3

where μxi is the mean value of the variable xi, x is the mean value of the basic variables =
(μx1, μx2,…, μxi,…, μxn), and ∂G ∂xi x is the partial differentiation of G(X) with respect
to xi at xi = μxi.
The mean value of the performance function G(X) is then given by

μG =G μx1,μx2,…,μxi,…,μxn 1 4

where μG represents the mean value of the performance function G(X).
The standard deviation of the performance function G(X) is calculated by

σG =
n

i= 1

∂G
∂xi

2

x

σ2xi + 2
i > j

∂G
∂xi x

∂G
∂xj x

covar xi,xj

1 2

1 5a

where σG is the standard deviation ofG(X), σxi is the standard deviation of the variable xi,

covar xi,xj = E xi−μxi xj−μxj is the covariation of xi and xj, and E[] is the mean

value of [ ].
When the basic variables X = x1,x2,…,xi,…,xn are independent of each other,

covar(xi, xj) = 0. In this case, Equation (1.5a) is simplified to

σG =
n

i= 1

∂G
∂xi

2

x

σ2xi

1 2

1 5b
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If the so-called first-order second-moment method (Benjamin & Cornell 1970) is
adopted, the reliability index for this case can be determined as follows:

β =
μG
σG

1 6

where β represents the reliability index.
For a simpler case with a performance function G(X) of two parameters, for example,

capacity C and demand D, that are considered to be statistically independent, the reli-
ability index β can be calculated as follows:

μG = μC−μD 1 7a

σG = σC
2 + σD

2 1 7b

β =
μC−μD

σC
2 + σD

2
=

μC μD−1

μC μD
2 ηC

2 + ηD
2

1 7c

where μC or μD are themean values ofC orD, σC or σD are the standard deviations ofC or
D, and ηC or ηD are the coefficients of variation (i.e., the standard deviation divided by the
mean value) of C or D.
To achieve a successful design, the reliability index should be greater than a target reli-

ability index:

β ≥ βT 1 8

where βT is the target reliability.
The target reliability or the required level of structural reliability may vary from one

industry to another depending on various factors such as the type of failure, the serious-
ness of its consequence, or public andmedia sensitivity. Appropriate values of target reli-
ability are not readily available and are usually determined by surveys or by examinations
of the statistics on failures although the fundamental difference between a risk assess-
ment and a reliability analysis needs to be acknowledged when interpreting such results.
The methods to select the target safeties and reliabilities may be categorized into the fol-
lowing three groups (Paik & Frieze 2001):

• “Guesstimation”: A “reasonable” value as recommended by a regulatory body or
professionals on the basis of successful prior experience. This method may be
employed for the new types of structure for which statistical database on failures does
not exist.

• Calibration of design rules: The level of reliability is estimated by calibrating a new
design rule to an existing successful one. This method is normally used for the revi-
sions of existing design rules.

• Economic value analysis: The target reliability is selected to minimize total expected
costs during the service life of the structure.

For elaborate descriptions in reliability analysis, interested readersmay refer to Benjamin
and Cornell (1970), Nowak and Collins (2000), Melchers (1999a), and Modarres et al.
(2016), among others.
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1.1.2 Partial Safety Factor-Based Design Format

In the partial safety factor-based design format, the design capacity or demand is defined
by considering the corresponding partial safety factors that are associated with the inher-
ent and modeling uncertainties. A characteristic or nominal value of capacity Ck or
demand Dk is determined as the mean value of the corresponding random variable.
A design capacity Cd or demand Dd is, however, defined to suit a specified percentage
of the area below the probability curve for the corresponding random variable. For
instance, a design strength or capacity Cd can be defined for a lower bound or 95%
exceedance value, whereas a design load or demand Dd can be defined for an upper
bound or a 5% exceedance value, as shown in Figure 1.2. In this regard, the design capac-
ity or demand is defined as follows:

Cd =
Ck

γC
1 9a

Dd = γDDk 1 9b

whereCk is the characteristic (or nominal) value of capacity or μC in Equation (1.7a),Dk is
the characteristic (or nominal) value of demand or μD in Equation (1.7a), γC is the partial
safety factor associated with capacity, and γD is the partial safety factor associated with
demand. Because the partial safety factors must be greater than 1.0, it is obvious that the
characteristic value of capacity Ck is reduced and the characteristic value of demandDk is
amplified to determine their design values, Cd or Dd.
The measure of structural adequacy η can be determined as follows:

η=
Cd

Dd
=

1
γCγD

Ck

Dk
1 10

To achieve a successful design, the measure of structural adequacy η must be greater
than 1.0 by a sufficient margin as follows:

η=
Cd

Dd
=

1
γCγD

Ck

Dk
> 1 1 11
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Figure 1.2 Probability density distributions of capacity and demand.
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1.1.3 Failure Probability-Based Design Format

Whatever the level of uncertainty, every structure may have some probability of failure,
which is the possibility of a load or demand exceeding its limit value or capacity. The
probability of failure Pf for a particular type of failure in association with the performance
function G, Equation (1.1), or G∗, Equation (1.2), is defined as follows:

Probability of failure Pf = prob G ≤ 0 = prob G∗ ≥ 0 = prob Cd ≤Dd 1 12a

The safety of a structure is the converse, which is the probability that it will not fail,
namely,

Safety = prob G > 0 = prob G∗ < 0 = prob Cd >Dd = 1−Pf 1 12b

The probability of failure can generally be calculated as follows:

Pf =
G ≤ 0

px X dx=
G∗ ≥ 0

p∗x X dx 1 13

where px(X) and p∗x X are the joint probability density functions of the random variables,
X = x1,x2,…,xi,…,xn , associated with demand and capacity, and G(X) or G∗(X) is the
limit state (performance) function defined such that negative or positive values imply
failure, respectively.
Since G(X) or G∗(X) is usually a complicated nonlinear function, it is not straightfor-

ward to perform the direct integration of Equation (1.13) associated with the joint prob-
ability density function, px(X) or p∗x X . Therefore, Equation (1.13) is often solved with
approximate procedures, where the limit state (performance) function G(X) or G∗(X) is
approximated at the design point by either a tangent hyperplane or hyperparabola, which
simplifies the mathematics related to the calculation of failure probability. The first type
of approximation with the tangent hyperplane is called the first-order reliability method
(FORM), and the second type with the hyperparabola is called the second-order reliabil-
ity method (SORM). Such methods facilitate the rapid calculation of the probability of
failure by widely available standard software packages. In addition to the individual prob-
ability distributions of the random variables involved, the correlation between the “A”
and “B” parameters can also be readily accounted for in such calculations.
Considering the probability density distributions of capacity and demand, as illustrated

in Figure 1.2, the probability of a particular type of failure can be calculated as follows:

Pf =
∞

0

y

0
pC x dx pD y dy 1 14

where pC(x) is the probability density function of capacity associated with a variable x and
pD(y) is the probability density function of demand associated with a variable y.
Although the mean value of capacity Ck is much greater than the mean value of

demand Dk, there is still some possibility that the capacity is less than the demand. It
is usually challenging to compute Equation (1.14), but it is interesting to note that the
shaded area of the overlap in Figure 1.2 indicates an approximation of the probability
of failure Pf. To achieve a successful design, the probability of failure should be mini-
mized to a sufficiently low value.
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1.1.4 Risk-Based Design Format

The risk-based design format usually involves the following five tasks: (i) hazard identi-
fication, (ii) risk calculation, (iii) establishment of a set of potential risk control options,
(iv) cost–benefit analysis for the risk control options, and (v) decision making. In engi-
neering community, risk is defined as a product of the frequency of the hazard and the
level of consequence as follows:

R= F ×C 1 15

where R is the risk, F is the frequency of the hazard, and C is the level of consequence.
The frequency of the hazard represents the likelihood that the hazard will occur, and

the level of consequence represents the impact or severity of consequence, indicating
how bad the consequences would be if the hazard did occur in terms of casualties, prop-
erty damage, and environmental pollution. The frequency of a hazard is usually meas-
ured by the number of occurrences per unit time (e.g., per year). The level of
consequence is sometimes measured on amonetary basis (e.g., repair costs for accidental
damage or insurance costs for pollution).
The characterization of the frequency and the consequences is required for risk assess-

ment. Qualitative risk assessment techniques use simple methods that do not require
numerical computations, but quantitative risk assessment requires more refined meth-
ods associated with numerical and experimental investigations. It is of course much
more desirable to apply the quantitative risk assessment methods for more precise cal-
culations of the risks in association with casualties, property damage, and environmental
pollution.
According to Equation (1.15), it is obvious that one may need to reduce F or C or both

to reduce risks. To achieve a successful design, fabrication, or operation, the risk should
be minimized to an “as low as reasonably practicable (ALARP)” level. Undertaking activ-
ities to control risks is risk management, which involves risk control options. Cost–
benefit analysis is undertaken to make a ranking between a set of potential risk control
options, and a single or multiple options should be applied to best control the risks to
meet the ALARP level. Risk assessment andmanagement are recognized as the best tools
for decision making in association with robust design, building, operation, or decommis-
sioning of structures.

1.2 Allowable Stress Design Versus Limit State Design

Limit state design differs from the traditional allowable stress design. In the allowable
stress design, the focus is on keeping the stresses from the design loads under a certain
working stress level, which is usually based on successful similar experience. In industry
practice, regulatory bodies or classification societies usually specify the value of the
allowable stress as some fraction of the mechanical properties of materials (e.g., yield
strength). The criterion of the allowable stress design is typically given by

σ < σa 1 16

where σ is the working stress and σa is the allowable stress.
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In contrast to the allowable stress design, the limit state design is based on explicit con-
sideration of the various conditions under which the structure may cease to fulfill its
intended function. For these conditions, the applicable capacity or strength is estimated
and used during design as a limit for such behavior.
For this purpose, a structure’s load-carrying capacity is normally evaluated with sim-

plified design formulations or more refined computations such as nonlinear elastic–
plastic large-deformation finite element analyses with appropriate modeling related to
geometric or material properties, initial imperfections, boundary conditions, load appli-
cation, and finite element mesh sizes, as appropriate.
During the past several decades, the emphasis on structural design has moved from the

allowable stress design to the limit state design because the latter approach makes pos-
sible a rigorously designed, yet economical, structure that directly takes into consider-
ation the various relevant modes of failure.
A limit state is formally defined by the description of a condition for which a particular

structural member or an entire structure would fail to perform the function designated
beforehand. From the viewpoint of structural design, four types of limit states are rele-
vant for structures:

• The serviceability limit state (SLS)

• The ultimate limit state (ULS)

• The fatigue limit state (FLS)

• The accidental limit state (ALS)

The SLS represents failure states for normal operations due to deterioration from rou-
tine functioning. SLS considerations in design may address the following:

• Local damage that reduces the structure’s durability or affects the efficiency of struc-
tural elements

• Unacceptable deformations that affect the efficient use of structural elements or the
functioning of equipment that relies on them

• Excessive vibration or noise that can cause discomfort to people or affect the proper
functioning of equipment

• Deformations and deflections that may spoil the structure’s aesthetic appearance

TheULS (also called ultimate strength) represents the collapse of the structure due to a
loss of structural stiffness and strength. Such loss of capacity may be related to:

• A loss of equilibrium, of a part or of the entire structure, which is often considered as a
rigid body (e.g., overturning or capsizing)

• Attainment of the maximum resistance of structural regions, members, or connections
by gross yielding or fracture

• Instability, of a part or of the entire structure, from buckling and plastic collapse of
plating, stiffened panels, and support members

The FLS represents the occurrence of fatigue cracking of structural details due to stress
concentration and damage accumulation or crack growth under repeated loading.
The ALS represents excessive structural damage from accidents, such as collisions,

grounding, explosion, and fire, that affect the safety of the structure, the environment,
and personnel.
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The partial safety factor-based criterion of the limit state design for a particular type of
limit state is typically given from Equation (1.11) as follows:

Cd >Dd or
Ck

γC
> γDDk 1 17

It is important to emphasize that in the limit state design, these various types of limit
states may be designed against different safety levels, with the actual safety level to be
attained for a particular type of limit state being an indirect and implicit function of
its perceived consequences and the ease of recovery from that state to be incorporated
in design. Within the context of Equation (1.17), useful guidelines for determination of
the partial safety factors related to a structure’s limit state design may be found in ECCS
(1982), BS 5950 (1985), ENV 1993-1 (1992a, 1992b), ISO 2394 (1998), and NORSOK
(2004), among others.

1.2.1 Serviceability Limit State Design

The structural design criteria used for the SLS design of structures are normally based on
the limits of deflections or vibration for normal use. In reality, the excessive deformation
of a structure may also be associated with excessive vibration or noise, and thus certain
interrelationships may exist among the design criteria being defined and used separately
for convenience.
The SLS criteria are normally defined by the operator of a structure or by established

practice, with the primary aim being efficient and economical in-service performance
without excessive routine maintenance or downtime. The acceptable limits necessarily
depend on the type, mission, and arrangement of structures. Furthermore, in defining
such limits, experts in other disciplines, such as machinery design, must also be con-
sulted. As an example, the limiting values of vertical deflections for beams in structures
as shown in Figure 1.3 are indicated in Table 1.1.
In Table 1.1, L is the span of the beam between supports. For cantilever beams, Lmay

be taken as twice the projecting length of the cantilever. δmax is the maximum deflection,
which is given by δmax = δ1 + δ2−δ0, where δ0 is the pre-camber, δ1 is the variation of the
deflection of the beam due to permanent loads immediately after loading, and δ2 is the
variation of the deflection of the beam due to variable loading plus any subsequent var-
iant deflections due to permanent loads.
For plate elements, criteria based on elastic buckling control are often used for SLS

design, in some cases to prevent such an occurrence entirely and in other cases to allow

δ1

δ0

δ2

L

δmax

Figure 1.3 Nomenclature: lateral deflections of a beam.
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elastic buckling to a known and controlled degree. Elastic plate buckling and its related
effects, such as relatively large lateral deflections, must be prevented if such effects are
likely to be detrimental. However, because a plate may have some reserve strength
beyond elastic buckling until its ultimate strength is reached, allowing elastic buckling
in a controlled manner can in some cases lead to a more economical structure. In
Chapters 3 and 5 of this book, the use of such elastic buckling strength-based SLS design
methods for plates and stiffened panels is described.

1.2.2 Ultimate Limit State Design

The structural design criteria to prevent the ULS are based on plastic collapse or ultimate
strength. The simplified ULS design of many types of structures has tended to rely on
estimates of the buckling strength of the components, usually from their elastic buckling
strength adjusted by a simple plasticity correction, which is represented by point A in
Figure 1.4. In such a design scheme based on the strength at point A, the structural
designer does not use detailed information on the post-buckling behavior of the compo-
nent members and their interactions. The true ultimate strength represented by point
B in Figure 1.4 may be higher, although one can never be sure of this because the actual
ultimate strength is not being directly evaluated.

Table 1.1 Serviceability limit values for vertical deflections of beams.

Condition Limit for δmax Limit for δ2

Deck beams L/200 L/300

Deck beams that support plaster or other
brittle finish or non-flexible partitions

L/250 L/350

Linear elastic

response Ultimate strength

A

B

Buckling strength

Design load level

L
o
ad

Displacement

Figure 1.4 Structural design considerations
based on the ultimate limit state.
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In any event, as long as the strength level associated with point B remains unknown (as
it is with traditional allowable stress design or linear elastic design methods), it is difficult
to determine the real safety margin. Hence, more recently, the design of structures such
as those of ships, offshore platforms, box girder bridges, and box girder cranes has tended
to be based on the ultimate strength.
The safety margin of a structure can be evaluated by comparison of its ultimate

strength with the extreme applied loads (or load effects, such as stress) as depicted
in Figure 1.4. To obtain an economic yet safe structure, the ultimate strength and
the design load must be assessed accurately. The structural designer may even desire
to estimate the ultimate strength for not only the intact structure but also the struc-
tures with existing or in-service damage (e.g., corrosion wastage, fatigue cracking,
or local denting damage) or even accident induced damage (e.g., due to collision,
grounding, dropped object, fire, or explosion) to assess their damage tolerance and
survivability.
The ULS design criterion can also be expressed by Equation (1.17). The characteristic

measure of design capacity Cd in Equation (1.17) is in this case the ultimate strength,
whereasDd is the related load or demandmeasure. For ULS design, the partial safety factor
γC is sometimes taken as γC = 1 15 for ships and offshore structures (NORSOK 2004).
It is important to note that any failure in a structure must ideally occur in a ductile

manner rather than a brittle manner; the avoidance of brittle failure will lead to a struc-
ture that does not collapse suddenly, because ductility allows the structure to redistribute
internal stresses and thus absorb greater amounts of energy before global failure. Ade-
quate ductility in the design of a structure is facilitated by:

•Meeting the requisite material toughness requirements

• Avoiding failure initiation situations with a combination of high stress concentration
and undetected weld defects in the structural details

• Designing structural details and connections to allow a certain amount of plastic defor-
mation, that is, avoiding “hot spots”

• Arranging the members in such a manner that a sudden decrease in the structural
capacity would not occur as a result of abrupt transitions or member failure

This book is primarily concerned with ULS design methods for structural members
and systems composed of such ductile members, although other types of limit states
are also described to some extent.

1.2.3 Fatigue Limit State Design

The FLS design is carried out to ensure that the structure has an adequate fatigue life.
The predicted fatigue life can also be a basis for planning efficient inspection programs
during the structure’s operation. The design fatigue life for structural components is nor-
mally based on the structure service life required by the operator or by other responsible
body such as a class society. For ship structures, the fatigue life is often considered to be
25 years or longer. The shorter the design fatigue life, or the greater the required relia-
bility, the smaller the inspection intervals should be to assure an operation free from
crack problems.
The FLS design and analysis should in principle be undertaken for every suspected loca-

tion of fatigue cracking, which includes welded joints and local areas of stress concentration.
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The structural design criteria for the FLS are usually based on the structure’s cumulative
fatigue damage under repeated fluctuation of loading, as measured by the Palmgren–Miner
cumulative damage rule. A particular value of theMiner sum (e.g., unity) is taken to be syn-
onymous with the formation or initiation of a crack. The structure is designed so that when
it is analyzed for fatigue, a reduced target Miner sum results, implying that cracks will not
form with a given degree of certainty.
The fatigue damage at a crack initiation site is affected by many factors, such as the

stress ranges experienced during load cycles, the local stress concentration characteris-
tics, and the number of stress range cycles. Two types of the FLS design approach are
typically considered for structures:

• The S–N curve approach (S = fluctuating stress, N = associated number of cycles)

• The fracture mechanics approach

In the S–N curve approach, the Palmgren–Miner cumulative damage rule is applied
together with the relevant S–N curve. This application normally follows three steps:
(i) definition of the histogram of cyclic stress ranges, (ii) selection of the relevant S–N
curve, and (iii) calculation of the cumulative fatigue damage.
One of the most important factors in fatigue design is the characteristic stress to be

used both in defining the S–N curve (the capacity) and in the stress analysis (with the
fluctuating local fatigue stresses being the demand on the structure). Four types of meth-
ods have been suggested on this basis:

• The nominal stress method

• The hot spot stress method

• The notch stress method

• The notch strain method

The nominal stress method uses the nominal stresses in the field far from the stress
concentration area, together with S–N curves that must include implicitly the effects
of both structural geometry and the weld. In the nominal stress method, therefore,
the S–N curve should be selected for structural details depending on the detail type
and weld geometry involved. Many S–N curves for various types of weld and geometry
are generally needed and are available. When a limited number of standard S–N curves
are used, any structural detail considered must be assigned to one of those categories,
which requires a certain amount of judgment.
The hot spot stress method uses a well-defined hot spot stress in the stress concentra-

tion area to account for the effect of structural geometry alone, and the weld effect is
incorporated into the S–N curve. This is currently a very popular approach, but certain
practical difficulties must be conceded. Themost basic of these pertains to the concept of
hot spot stress itself, which is more appropriate for surface cracks than for imbedded
cracks. Difficulties can also arise in the consistent definition of hot spot stresses across
a range of weld and structural geometries and in the estimation of the hot spot structural
stress needed for application of the technology in regions of stress concentration. For
instance, attention should be paid to extrapolation of the stress to the weld toe for cal-
culation of the stress concentration factor, and the need for appropriate selection of a
relevant S–N curve from those for different weld types is still significant.
The notch stress method uses the stresses at the notch calculated by accounting for the

effects of both structural geometry and the weld, whereas the S–N curve is developed to
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represent the fatigue properties of either the base material, the material in the heat-
affected zone (HAZ), or the weld material, as appropriate. A significant advantage of
the notch stress method is that it can address the specific weld toe geometry in the cal-
culation of fatigue damage. A related difficulty is that the relevant parameters (e.g., the
weld toe angle) in the case of the actual structure must be known with some confidence.
The notch strain method uses the strains at the notch when the low-cycle fatigue is

predominant, because the working stresses in this case sometimes likely approach the
material yield stress, and thus the stress-based approaches are less appropriate.
The fracture mechanics approach considers that one or more premised cracks of a

small dimension exist in the structure and predicts the fatigue damage during the process
of crack propagation, including any coalescence and breakthrough, and the subsequent
fracture. In this approach to design, a major task is to preestablish the relevant crack
growth equations or “laws.” The crack growth rate is often expressed as a function of
only the stress intensity factor range at the crack tip, on the assumption that the yielded
area around the crack tip is relatively small. In reality, the crack propagation behavior is
affected by many other parameters (e.g., mean stresses, load sequence, crack retardation,
crack closure, crack growth threshold, and stress intensity range) in addition to the stress
intensity factor range.
The structural fracture mechanics is dealt with in Chapter 9, and the S–N curve

approach using nominal stresses is herein briefly described under the assumption of
the linear cumulative damage rule, that is, the Palmgren–Miner rule. In the fatigue dam-
age assessment of welded structural details, of primary concern are the ranges of the
cyclic maximum and minimum stresses rather than the mean stresses, as shown in
Figure 1.5, because of the usual presence of residual mean stresses near the yield mag-
nitude. This tends tomake the entire stress range damaging. The situation in non-welded
cases is, of course, different, and, in such cases, the mean stresses can be important.
For practical FLS design using the nominal stress-based approach, the relevant S–N

curves must be developed for various types of weld joints. To do this, fatigue tests are
carried out for various types of specimens that are subjected to cyclic stress ranges of
a uniform amplitude. As indicated in Figure 1.5, the maximum and minimum stresses

Δσ = Stress rangeσmax

σmean

σmin

0

σa

σa

Δσ = 2σa

Time

Figure 1.5 Cyclic stress range versus time.
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are denoted by σmax and σmin, respectively. In such tests, the effect of the mean stress,
σmean = (σmax + σmin)/2, on fatigue damage can be quantified, which is necessary for
non-welded cases. For convenience, the fatigue tests for specimens that incorporate
non-welded geometries are usually carried out at either σmin = 0 or σmax = −σmin with
a constant stress range, that is, Δσ = σmax − σmin = 2σa, where σa is the stress amplitude.
The number of stress cycles,NI orNF, with the former representing the crack initiation

life, that is, until a crack initiates, and the latter representing the fracture life, such as until
a small-scale test specimen is separated into two pieces, is obtained on the basis of the
fatigue test results. With a series of such tests for a variety of stress ranges, Δσ, the S–N
curves for the particular structural details may typically be plotted as shown in Figure 1.6.
The curves for design are usually expressible by curve fitting the test results plotted on a
log–log scale, namely,

logN = loga−2s−m logΔσ 1 18a

N Δσ m =A 1 18b

where Δσ is the stress range, N is the number of stress cycles with constant stress range,
Δσ, until failure, m is the negative inverse slope of the S–N curve, log A = log a − 2s, a is
the life intercept of the mean S–N curve, and s is the standard deviation of log N.
For the FLS design criterion based on the S–N curve approach, Equation (1.17) may be

rewritten in the nondimensional form when the distribution of a long-term stress range
is given by a relevant stress histogram in terms of a number of constant amplitude stress
range blocks, Δσi, each with a number of stress fluctuations, ni, as follows:

D=
B

i= 1

ni
Ni

=
1
A

B

i= 1

ni Δσi m ≤Dcr 1 19

where D is the accumulated fatigue damage, B is the number of stress blocks, ni is the
number of stress cycles in stress block i, Ni is the number of cycles until failure at the
ith constant amplitude stress range block, Δσi, and Dcr is the target cumulative fatigue
damage for design.

Crack propagation

Ultimate tensile stress range

NF

L
o
g
 Δ

σ

NI

Endurance limit

Log NI or log NF

Figure 1.6 Typical S–N curves from constant amplitude tests.
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To achieve greater fatigue durability in a structure, it is important to minimize stress
concentrations, potential flaws (e.g., misalignment, poor materials), and structural deg-
radation, including corrosion and fatigue effects. Fatigue design is interrelated with the
maintenance regime to be used. In some cases, it may be more economical in design to
allow the possibility of a certain level of fatigue damage, as long as the structure can con-
tinue to function after the fatigue symptoms are detected until repairs can be made. In
other cases, fatigue damage may not be allowed to occur, if it is inconvenient to inspect
the structure or interrupt production. The former approach may thus be applied as long
as regular inspections and related maintenance are possible, whereas the latter concept is
obviously more relevant if there are likely to be difficulties associated with inspections
and thus a high likelihood of undetected fatigue damage.
Fatigue is sometimes classified into high-cycle fatigue and low-cycle fatigue. High-

cycle fatigue indicates that a structure has a long fatigue life due to a small stress range,
whereas low-cycle fatigue indicates that a structure has a short fatigue life due to a large
stress range. The two are sometimes distinguished by the fatigue cycle of 104.
In Chapter 9, structural fracture mechanics and the ultimate strength of plate panels

associated with fatigue cracking damage are described. For elaborate descriptions in
fatigue damage analysis methods, interested readers may refer to Schijve (2009), Nuss-
baumer et al. (2011), and Lotsberg (2016), among others.

1.2.4 Accidental Limit State Design

The primary aim of the ALS design for structures may be characterized by the following
three broad objectives:

• To avoid loss of life in the structure or the surrounding area

• To avoid pollution of the environment

• To minimize loss of property or financial exposure

In the ALS design, it is necessary to achieve a design in which the structure’s main
safety functions are not impaired during any accidental event or within a certain time
after the accident. The structural design criteria for the ALS are based on limiting acci-
dental consequences such as structural damage and environmental pollution.
Because the structural damage characteristics and behavior of damaged structures

depend on the type of accidents, it is not straightforward to establish universally appli-
cable structural design criteria for the ALS. Typically, for a given type of structure, the
design of accidental scenarios and associated performance criteria must be decided on
the basis of risk assessment.
In the case of ships or offshore platforms, possible accidental events that may need to

be considered for the ALS include collisions, grounding, dropped objects, significant
hydrodynamic impact (e.g., sloshing, slamming, or green water) that leads to buckling
or structural damage, excessive loads from human error, berthing or dry docking, fires
or internal gas explosions in oil tanks or machinery spaces, and underwater or atmos-
pheric explosions. In land-based structures, the accidental scenarios may include fire,
explosion, foundation movements, or related structural damage from earthquakes.
In selecting the design target ALS performance levels for such events, the approach is

normally to tolerate a certain level of damage consistent with a greater aim such as
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survivability or minimized consequences; to do otherwise would result in an uneconom-
ical structure.
The main safety functions of a structure that should not be compromised during any

accident event or within a certain time after the accident include:

• Usability of escape ways

• Integrity of shelter areas and control spaces

• Global load-bearing capacity

• Integrity of the environment

Therefore, the ALS design criteria should be formulated so that the main safety func-
tions mentioned previously will work successfully and the following points are consid-
ered to adequate levels:

• Energy dissipation related to structural crashworthiness

• Capacity of local strength members or structures

• Capacity of the global structure

• Allowable tensile strains to avoid tearing or rupture

• Endurance of fire protection

For the ALS design, the structure’s integrity will typically be checked in two steps. In
the first step, the structural performance will be assessed against design accident events,
and post-accident effects such as damage to the environment are evaluated in the sec-
ond step.
In the case of accidents to ships, for instance, the primary concern of the ALS design

is to maintain the watertightness of the ship’s compartments, the containment of dan-
gerous or pollutant cargoes (e.g., chemicals, bulk oil, liquefied gas), and the integrity of
the reactor compartments of nuclear-powered ships. To continue normal operations
for the structure’s mission, it is also important to maintain the integrity and residual
strength of damaged structures at a certain level immediately after the accident
occurs.
The different types of accident events normally require different methods to analyze

the structure’s resistance. For the ALS design criteria under predominantly impact-
oriented loading, Equation (1.17) may typically be rewritten using energy dissipation-
related criteria adopted with the view that the safety of the structure or the environment
is not lost:

Ekγk <
Ea
γa

1 20

where Ek is the kinetic energy lost during the accident, Ea is the available energy absorp-
tion capability until critical damage occurs, and γk and γa are partial safety factors related
to kinetic energy loss and energy absorption capability, respectively.
The structure’s dissipated energy during the accident may usually be calculated by

integrating the area below the load–displacement curve of the structure under accidental
loading, as shown in Figure 1.7. In Chapter 10, an elaborate description for the structural
impact mechanics and the residual ultimate strength of plate panels with accident
induced damage such as local denting is presented.
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1.3 Mechanical Properties of Structural Materials

For materials of plated structures, steels or aluminum alloys are typically used. The spe-
cific gravity of aluminum alloys is about one-third that of steels, and thus aluminum
alloys are primarily used in weight-critical structures. Aluminum alloys also have merits
with their good resistance to corrosion by seawater and with an easier processing of
extrusion, leading to the availability in a wide variety of section forms. However, the elas-
tic modulus of aluminum alloys is only one-third that of steels, which is an apparent dis-
advantage of aluminum alloys.
In structural analysis and design, it is essential to define the material properties asso-

ciated with the targeted structural systems. In industry practice, nominal values of mate-
rial properties are often used in the analysis and design of a structure. When harsh
environmental or operational conditions are of primary concern, however, the mechan-
ical properties of the materials must be accurately quantified by considering the effects of
such conditions. Because testing is only a method to quantify material properties,
numerous test databases have been developed in the literature (e.g., Callister 1997); some
are limited to specific conditions, and others are based on oldmaterials that are no longer
in use.
Modern material-manufacturing technologies have greatly advanced the material

properties featured in old test databases, and today’s structural systems are often exposed
to the harsher environmental and operational conditions associated with their functional
requirements. Thus, test databases for these volatile material properties should be con-
tinuously developed to meet such requirements (Paik et al. 2017).

1.3.1 Characterization of Material Properties

The mechanical properties of structural materials are characterized by testing predesig-
nated specimens under monotonic tensile loading. Figure 1.8 shows an idealized
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Figure 1.7 Energy absorption of the structure under accidental loading.
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engineering stress–engineering strain curve for structural metals. The material proper-
ties can be characterized using the following parameters:

• Young’s modulus (or modulus of elasticity), E

• Poisson’s ratio, ν

• Proportional limit, σP

(a)

(b)
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Figure 1.8 Schematic of engineering stress–engineering strain relationship for (a) ductile materials and
(b) specially treated ductile materials.
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• Upper yield point, σYU

• Lower yield point, σYL (≈σY)

• Yield strength, σY

• Yield strain, εY

• Strain-hardening strain, εh

• Strain-hardening tangent modulus, Eh

• Ultimate tensile strength, σT

• Ultimate tensile strain, εT

• Necking tangent modulus, En

• Necking stress at fracture (total breaking), σF

• Fracture (total breaking) strain, εF

1.3.1.1 Young’s Modulus, E
The initial relationship between stress and strain is linear elastic, wherein the material
recovers perfectly upon unloading. The slope of the linear portion of the stress–strain
relationship in the elastic regime is defined as the modulus of elasticity, E (also called
Young’s modulus). Table 1.2 indicates typical values of Young’s moduli for selected
metals and metal alloys at room temperature. Young’s modulus of aluminum alloys is
about one-third that of steel.

1.3.1.2 Poisson’s Ratio, v
Poisson’s ratio is defined as the ratio of the transverse strain to the longitudinal strain of a
material under tensile load in the elastic regime. Table 1.2 indicates typical values of Pois-
son’s ratio for selected metals and metal alloys at room temperature.

1.3.1.3 Elastic Shear Modulus, G
The mechanical properties of materials under shear are usually defined using principles
of structural mechanics rather than by testing. The elastic shear modulus is expressed by
a function of Young’s modulus, E, and Poisson’s ratio, v, as follows:

G =
E

2 1 + v
1 21

Table 1.2 Typical values of Young’s moduli and Poisson’s ratios
for selected metals and metal alloys at room temperature.

Material E (GPa) v

Aluminum alloy 70 0.33

Copper 110 0.34

Steel 205.8 0.3

Titanium 104–116 0.34
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1.3.1.4 Proportional Limit, σP
The maximum stress in the elastic regime, that is, immediately before initial yielding, is
termed the proportional limit, σP.

1.3.1.5 Yield Strength, σY, and Yield Strain, εY
Strictly speaking, structural materials without special treatment (e.g., quenching, tem-
pering) may have upper and lower yield points, as illustrated in Figure 1.8a. The lower
yield point typically has an extended plateau in the stress–strain curve, which is approxi-
mated by the yield strength σY and the corresponding yield strain, εY = σY E.
The mechanical properties of structural materials vary with the amount of work and

heat treatment applied during the rolling process. Typically, plates that receive more
work have a higher yield strength than plates that do not. The yield strength of metals
is usually increased by special treatment.
Figure 1.8b illustrates an idealized engineering stress–engineering strain curve of spe-

cially treated metals or metal alloys in which neither upper nor lower yield points appear
until the ultimate tensile strength is reached. In this case, the yield strength is commonly
defined as the stress at the intersection of the stress–strain curve and a straight line
through an offset point strain, σ,ε = 0, 0 002 , that is, the proof stress at 0.2% strain,
that is, with ε= 0 002, which is parallel to the linear portion of the stress–strain curve in
the elastic regime.
It is important to realize that a material’s yield strength is significantly affected by oper-

ational and environmental conditions, such as temperatures and loading speed (or strain
rates), among others. For structural design purposes, regulatory bodies or classification
societies identify the “minimum” requirements for the mechanical properties and the
chemical composition of materials. For example, the International Association of
Classification Societies (IACS) specify the minimum requirements of the yield strength,
ultimate tensile strength, and fracture strain (elongation) of rolled or extruded aluminum
alloys for marine applications, as indicated in Tables 1.3 and 1.4 (IACS 2014). Interested
readers may also refer to Sielski (2007, 2008).

1.3.1.6 Strain-Hardening Tangent Modulus, Eh, and Strain-Hardening Strain, εh
Beyond the yield stress or strain, the metal flows plastically without appreciable changes
in stress until the strain-hardening strain εh is reached. The slope of the stress–strain
curve in the strain-hardening regime is defined as the strain-hardening tangent modulus
Eh, which may not be constant, but rather dependent on different conditions.
Strain hardening may also be characterized as the ratio of the ultimate tensile stress σT

to the yield stress σY or as the ratio of the ultimate tensile stress εT to the yield strain εY.
The stress σ beyond the yield strength of the elastic–plastic material with strain hard-
ening is often expressed at a certain level of plastic strain as follows:

σ = σY +
EEh
E−Eh

εp 1 22

where εp is the effective plastic strain.

1.3.1.7 Ultimate Tensile Strength, σT
When strain exceeds the strain-hardening strain, εh, the stress increases above the yield
stress, σY, because of strain hardening, and this behavior can continue until the ultimate
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Table 1.3 Minimum requirements of the mechanical properties for rolled aluminum alloys (IACS 2014).

Grade Temper Thickness t (mm) σY (MPa) σT (MPa)

εF (%)

t ≤ 12 5mm t > 12 5mm

5083 O 3 ≤ t ≤ 50 125 275–350 16 14

H111 3 ≤ t ≤ 50 125 275–350 16 14

H112 3 ≤ t ≤ 50 125 275 12 10

H116 3 ≤ t ≤ 50 215 305 10 10

H321 3 ≤ t ≤ 50 215–295 305–385 12 10

5383 O 3 ≤ t ≤ 50 145 290 – 17

H111 3 ≤ t ≤ 50 145 290 – 17

H116 3 ≤ t ≤ 50 220 305 10 10

H321 3 ≤ t ≤ 50 220 305 10 10

5059 O 3 ≤ t ≤ 50 160 330 24 24

H111 3 ≤ t ≤ 50 160 330 24 24

H116 3 ≤ t ≤ 20 270 370 10 10

20 < t ≤ 50 260 360 – 10

H321 3 ≤ t ≤ 20 270 370 10 10

20 < t ≤ 50 260 360 – 10

5086 O 3 ≤ t ≤ 50 95 240–305 16 14

H111 3 ≤ t ≤ 50 95 240–305 16 14

H112 3 ≤ t ≤ 12 5 125 250 8 –

12 5 < t ≤ 50 105 240 – 9

H116 3 ≤ t ≤ 50 195 275 101) 9

5754 O 3 ≤ t ≤ 50 80 190–240 18 17

H111 3 ≤ t ≤ 50 80 190–240 18 17

5456 O 3 ≤ t ≤ 6 3 130–205 290–365 16 –

6 3 < t ≤ 50 125–205 285–360 16 14

H116 3 ≤ t ≤ 30 230 315 10 10

30 < t ≤ 40 215 305 – 10

40 < t ≤ 50 200 285 – 10

H321 3 ≤ t ≤ 12 5 230–315 315–405 12 –

12 5 < t ≤ 40 215–305 305–385 – 10

40 < t ≤ 50 200–295 285–370 – 10

Notes:
a) 8% for t ≤ 6 3mm.
b) The mechanical properties for the O and H111 tempers are the same, but they are separated to encourage

dual certification as these tempers represent different processing.
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tensile strength (also simply termed tensile strength), σT, is reached. The value of σT is
obtained by themaximum axial tensile load divided by the original cross-sectional area of
the test specimen. Tables 1.3 and 1.4 indicate the minimum requirements of the ultimate
tensile strength for rolled or extruded aluminum alloys.

1.3.1.8 Necking Tangent Modulus, En
With further increase in strain, a large local reduction of the cross section occurs, which
is termed necking or strain softening. The internal engineering stress decreases in the
necking regime. The slope of the engineering stress–engineering strain curve in the
necking regime is sometimes defined as the necking tangent modulus, En. Necking
may also be characterized as the ratio of the fracture stress σF to the ultimate tensile stress
σT or as the ratio of the fracture strain εF to the ultimate tensile strain εT.

1.3.1.9 Fracture Strain, εF, and Fracture Stress, σF
Fracture takes place when the strain reaches the fracture strain (elongation or total
breaking strain), εF. The fracture stress σF is defined as the stress at fracture in the neck-
ing regime. Fracture strain is also significantly affected by operational and environmental
conditions, such as temperatures and loading speed (or strain rates), among other factors.

Table 1.4 Minimum requirements of the mechanical properties for extruded aluminum alloys
(IACS 2014).

Grade Temper Thickness t (mm) σY (MPa) σT (MPa)

εF (%)

t ≤ 12 5mm t > 12 5mm

5083 O 3 ≤ t ≤ 50 110 270–350 14 12

H111 3 ≤ t ≤ 50 165 275 12 10

H112 3 ≤ t ≤ 50 110 270 12 10

5383 O 3 ≤ t ≤ 50 145 290 17 17

H111 3 ≤ t ≤ 50 145 290 17 17

H112 3 ≤ t ≤ 50 190 310 – 13

5059 H112 3 ≤ t ≤ 50 200 330 – 10

5086 O 3 ≤ t ≤ 50 95 240–315 14 12

H111 3 ≤ t ≤ 50 145 250 12 10

H112 3 ≤ t ≤ 50 95 240 12 10

6005A T5 3 ≤ t ≤ 50 215 260 9 8

T6 3 ≤ t ≤ 10 215 260 8 6

10 < t ≤ 50 200 250 8 6

6061 T6 3 ≤ t ≤ 50 240 260 10 8

6082 T5 3 ≤ t ≤ 50 230 270 8 6

T6 3 ≤ t ≤ 5 250 290 6 –

5 < t ≤ 50 260 310 10 –
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Tables 1.3 and 1.4 indicate the minimum requirements of the fracture strain for rolled or
extruded aluminum alloys.

1.3.2 Elastic–Perfectly Plastic Material Model

Figure 1.9 shows the illustrative effects of strain hardening on the elastic–plastic large-
deflection behavior (i.e., average stress–average strain curve) of a steel rectangular plate
under uniaxial compressive loads in the longitudinal direction, as obtained by the non-
linear finite element analysis. The characteristics of the strain hardening are varied as
shown in Figure 1.9a in the analysis. The plate is simply supported at all four edges, keep-
ing them straight. It is evident that the strain-hardening effect can cause the plate ulti-
mate strength to be greater than that obtained by neglecting it.
For the ULS assessment of structures made of ductile materials, an elastic–perfectly

plastic material model, as shown in Figure 1.10, that is, one without strain hardening
or necking, is often applied because strains are usually not significant. This material
model may lead to a pessimistic estimation of the characteristic value of capacity. For
the ALS assessment, however, the true stress–true strain relation with strain-hardening
and necking effects should be considered because large plastic strains are usually
involved.

1.3.3 Characterization of the Engineering Stress–Engineering Strain
Relationship

When the details of the relationship between engineering stress σ versus engineering
strain ε are unavailable, but such fundamental parameters as the elastic modulus E
and the yield strength σY are known, the relationship between engineering stress and
engineering strain can often be approximated using the Ramberg–Osgood equation,
which was originally proposed for aluminum alloys (Ramberg & Osgood 1943), as
follows:

ε=
σ

E
+

σ

B

n
1 23

where E is the elastic modulus at the origin of the stress versus strain curve, ε is the engi-
neering strain, σ is the engineering stress, and B and n are constants to be determined by
experiments.
Equation (1.23) is often simplified as follows (Mazzolani 1985):

ε=
σ

E
+ 0 002

σ

σ0 2

n

1 24a

where σ0.2 is the proof stress at 0.2% strain, that is, with ε= 0 002, which is usually taken
as material yield stress σY, that is, σ0 2 = σY, as shown in Figure 1.11. Exponent n is given
as a function of σ0.2 and σ0.1 as follows:

n=
ln2

ln σ0 2 σ0 1
1 24b

where σ0.1 is the proof stress at 0.1% strain, with ε= 0 001.
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Figure 1.9 The effect of strain hardening on the ultimate strength of a steel plate under
axial compression: (a) the engineering stress–engineering strain curves varying the
strain-hardening characteristics; (b) a thin plate; (c) a thick plate (w0pl, buckling mode initial
deflection of the plate).
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When the Ramberg–Osgood law is used, one prac-
tical difficulty is the determination of σ0.1, in addition
toE and σ0.2 (≈σY). Without considering the strain-
hardening effect, if the ratio σ0.2/σ0.1 approaches 1
(or σ0 1 = σ0 2), the exponent becomes infinity, that
is, n= ∞ . This behavior corresponds to the elastic–
perfectly plastic model of material, as illustrated in
Figure 1.10, which can be expressed by

ε=
σ

E
+ 0 002

σ

σ0 2

∞

1 25

For aluminum alloys, Steinhardt (1971) proposed
an approximate method for determining exponent
n without the value of σ0.1 being known as follows:

0 1n= σ0 2 N mm2 or n= 10σ0 2 1 26

1.3.4 Characterization of the True
Stress–True Strain Relationship

For structural materials, the engineering stress–engineering strain relationship can be
converted to the true stress–true strain relationship as follows:

σtrue = σ 1 + ε , εtrue = ln 1 + ε 1 27

where σtrue is the true stress, εtrue is the true strain, σ is the engineering stress, and ε is the
engineering strain.
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Figure 1.9 (Continued )
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Figure 1.10 The elastic–perfectly
plastic model of material.
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Figure 1.12 shows the engineering stress–engineering strain curve versus the true
stress–true strain curve for mild steel and the aluminum alloy 5383-H116. It is recog-
nized that Equation (1.27) tends to overestimate the strain-hardening and necking
(strain-softening) effects. To resolve this issue, Paik (2007a, 2007b) suggested that
Equation (1.27) be modified by the introduction of a knockdown factor that is a function
of the engineering strain as follows:

σtrue = f ε σ 1 + ε , εtrue = ln 1 + ε 1 28a

f ε =

C1−1
ln 1 + εT

ln 1 + ε + 1 for 0 < ε ≤ εT

C2−C1

ln 1 + εF − ln 1 + εT
ln 1 + ε +C1−

C2−C1 ln 1 + εT
ln 1 + εF − ln 1 + εT

for εT < ε ≤ εF

1 28b

where f(ε) is the knockdown factor as a function of the engineering strain, εF is the mate-
rial’s fracture strain (elongation), εT is the strain at the ultimate tensile stress, and C1 and
C2 are the test constants affected by material type and plate thickness, among other
factors.
Although the knockdown factor is governed by the characteristics of the material type

and plate thickness, the test constants may be given asC1 = 0 9 andC2 = 0 85 formild and
high-tensile steel (Paik 2007a, 2007b). Figure 1.13 compares the original true stress–true
strain curve versus the modified (knocked-down) true stress–true strain curve of mild
steel and the aluminum alloy 5383-H116, where the constants C1 = 0 9 and C2 = 0 85
are applied for both mild steel and the aluminum alloy.

σ0.2

E E

0.0020 ε(σ0.2)

σ

ε

+ 0.002 σ0.2

σ
∞

E
ε =

σ

Figure 1.11 The Ramberg–Osgood law with the elastic–perfectly plastic model of material.
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Figure 1.12 Engineering stress–engineering strain curve versus true stress–true strain curve for
materials: (a) mild steel; (b) aluminum alloy 5383-H116.
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Figure 1.13 The original true stress–true strain curve versus the modified true stress–true strain curve
for materials: (a) mild steel; (b) aluminum alloy 5383-H116.

Ultimate Limit State Analysis and Design of Plated Structures28



1.3.5 Effect of Strain Rates

A material’s mechanical properties are significantly affected by loading speed or strain
rates ε, which can be determined in an approximate fashion by assuming that the initial
speedV0 of the dynamic loads is linearly reduced to zero until the loading is finished, with
average displacement δ, namely,

ε=
V0

2δ
1 29

In structural crashworthiness and/or impact response analysis, strain rate sensitivity
plays an important role. Therefore, material modeling in terms of the dynamic yield
strength and dynamic fracture strain must be considered. Figure 1.14 shows the engi-
neering stress–engineering strain curves with varying strain rates obtained from experi-
ments with mild steel (Grade A) and aluminum alloy 5083-O at room temperature,
respectively (Paik et al. 2017).
As described in Section 10.3.2, the dynamic yield strength is often determined from the

following Cowper–Symonds equation (Cowper & Symonds 1957):

σYd = 1 +
ε

C

1 q

σY 1 30a

where σY is the static yield stress, σYd is the dynamic yield stress, ε is the strain rate (1/s),
and C and q are test constants, which may be taken as C = 40 4 s, q = 5 for mild steel,
C = 3200 s, q = 5 for high-tensile steel, and C = 6500 s, q = 4 for aluminum alloys
(Paik & Thayamballi 2007, Jones 2012, Paik et al. 2017).
The dynamic fracture strain is taken as the inverse of the Cowper–Symonds equation

for the dynamic yield strength as follows:

εFd = 1 +
ε

C

1 q −1

εF 1 30b

where εF is the static fracture strain and εFd is the dynamic fracture strain. It is noted that
the test constants C and q for the dynamic fracture strain are different from those for the
dynamic yield strength as described in Section 10.3.3.
Figures 1.15 and 1.16 show the effects of strain rates combined with cold temperatures

on the yield strength or fracture strain obtained from experiments for mild steel, high-
tensile steel, and aluminum alloy 5083-O, obtained from the experiments by Paik
et al. (2017).

1.3.6 Effect of Elevated Temperatures

A material’s mechanical properties are significantly decreased with elevated tempera-
tures from operational and environmental conditions or accidents such as fires because
the material’s properties are associated with its thermal characteristics. Figure 1.17a
shows the specific heat of steel, which varies with elevated temperature. The reduction
factors of the proportional limit, Young’s modulus, and yield strength for steel are indicated
in Table 1.5 according to the ECCS Eurocode design manuals (Franssen & Real 2010).
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Figure 1.17b plots Table 1.5, showing that the mechanical properties of steel significantly
decrease at temperatures above 400 C.

1.3.7 Effect of Cold Temperatures

The mechanical properties of materials are significantly affected by cold temperatures,
which may be caused by operational conditions due to liquefied petroleum or natural gas

(a)

(b)

0.05 mm/s (ε = 0.001/s) 0.05 mm/s

(ε = 1.8/s)

4.5 mm/s

(ε = 0.09/s)
850 mm/s

(ε = 34/s)

Strain (m/m)

0

100

200

300

400

500

S
tr

es
s 

(M
P

a)

Al5083 at RT

0.0 0.1 0.2 0.3

0.0

Strain (m/m)

0

200

400

600

800

S
tr

es
s 

(M
P

a)

Mild steel

Grade A at RT

90 mm / s (ε =1.8/s)

0.05 mm / s (ε = 0.001/s)

4.5 mm/s (ε = 0.09 / s)

0.1 0.2 0.3 0.4 0.5

850 mm / s (ε = 34/s)

Figure 1.14 Engineering stress–engineering strain curves with different strain rates at room
temperature (RT): (a) for mild steel (Grade A); (b) aluminum alloy 5083-O (Paik et al. 2017).
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Figure 1.15 Effect of strain rates and cold temperatures on yield strength ofmaterials: (a) mild steel and
high-tensile steel; (b) aluminum alloy 5083-O. (Cited references are from Paik et al. 2017.)
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cargoes and by environmental conditions due to Arctic operations. Figures 1.18 and 1.19
show the combined effects of cold temperatures and strain rates on the yield strength or
fracture strain of mild steel (Grade A) and aluminum alloy 5083-O, obtained from the
experiments by Paik et al. (2017).
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Figure 1.16 Effect of strain rates and cold temperatures on fracture strain ofmaterials: (a) mild steel and
high-tensile steel; (b) aluminum alloy 5083-O. (Cited references are from Paik et al. 2017.)
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Figure 1.17 Effects of elevated temperature on properties of steel: (a) specific heat (ECCS 1982);
(b) mechanical properties.
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1.3.8 Yield Condition Under Multiple Stress Components

For a one-dimensional strength member under uniaxial tensile or compressive loading,
the yield strength determined from a uniaxial tension test can be used to check the state
of yielding, with the essential question to be answered being simply whether the axial
stress reaches the yield strength.
A plate element that is the principal strength member of a steel- or aluminum-plated

structure is likely to be subjected to a combination of biaxial tension/compression and
shear stress, which can usually be considered to be in a plane stress state (as contrasted to
a state of plane strain).
For an isotropic two-dimensional structural member for which the dimension in one

direction is much smaller than those in the other two directions, and with three in-plane
stress components (i.e., two normal stresses, σx, σy, and shear stress, τxy) or, equivalently,
two principal stress components (i.e., σ1, σ2), three types of yield criteria are usually
adopted as follows:

1) Maximum principal stress-based criterion: The material yields if the maximum abso-
lute value of the two principal stresses reaches a critical value, namely,

max σ1 , σ2 = σY 1 31a

2) Maximum shear stress-based criterion (also called the Tresca criterion): The material
yields if the maximum shear stress, τmax, reaches a critical value, namely,

τmax =
σ1−σ2

2
=
σY
2

1 31b

Table 1.5 Reduction factors of mechanical properties for carbon steels at elevated temperatures.

Steel temperature ( C)

Reduction factors at temperature relative to value of σY, σP, or E at 20 C

σY σP E

20 1.000 1.0000 1.0000

100 1.000 1.0000 1.0000

200 1.000 0.8070 0.9000

300 1.000 0.6130 0.8000

400 1.000 0.4200 0.7000

500 0.780 0.3600 0.6000

600 0.470 0.1800 0.3100

700 0.230 0.0750 0.1300

800 0.110 0.0505 0.0900

900 0.060 0.0375 0.0675

1000 0.040 0.0250 0.0450

1100 0.020 0.0125 0.0225

1200 0.000 0.0000 0.0000

Note: For intermediate values of the steel temperature, a linear interpolation may be used.
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Figure 1.18 Effect of cold temperatures and strain rates on yield strength of materials: (a) mild steel
(Grade A); (b) aluminum alloy 5083-O (Paik et al. 2017).
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Figure 1.19 Effect of cold temperatures and strain rates on fracture strain of materials: (a) mild steel
(Grade A); (b) aluminum alloy 5083-O (Paik et al. 2017).
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3) Strain energy-based criterion (also called the Mises–Hencky or Huber–Hencky–
Mises or von Mises criterion): The material yields if the strain energy due to geomet-
ric changes reaches a critical value, which corresponds to that at which the equivalent
stress, σeq, reaches the yield strength, σY, as determined from the uniaxial tension test
as follows:

σeq = σ2x−σxσy + σ
2
y + 3τ

2
xy = σY 1 31c

where σY is the yield strength of material.
It is recognized that the first yield condition, Equation (1.31a), is relevant for a brittle

material and that the last two conditions, Equations (1.31b) and (1.31c), are more appro-
priate for a ductile material, although the von Mises condition, Equation (1.31c), is more
popular for the analysis of plated structures. Figure 1.20 illustrates the von Mises and
Tresca yield surfaces associated with two normal stress components, σx and σy. The shear
yield stress, τY, under pure shear can be determined by solving the von Mises condition,
Equation (1.31c), with regard to τxy when σx = σy = 0, with the result as follows:

τY =
σY
3

1 31d

1.3.9 The Bauschinger Effect: Cyclic Loading

During operation, structural members are likely to be subjected to load cyclic effects, as
shown in Figure 1.21. If a material that has been plastically strained in tension is unloaded
and then strained in compression, the stress–strain curve for the compression loading

σx/σY

σy/σY

1.0

–1.0

–1.0

1.0
Tresca yield surface

von Mises yield surface

Unyield state

Yield state

0

Figure 1.20 The von Mises and Tresca yield surfaces associated with two normal stress components.
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deviates from a linear relationship at stresses well below the yielding point of the virgin
material, but it returns to the point of maximum stress and strain for the first tension
loading cycle. The same effect is observed for the opposite loading cycle, that is, com-
pression before tension. In this case, the modulus of elasticity is reduced, as shown by
the shape of the stress–strain curve in Figure 1.21. This phenomenon is typically termed
the Bauschinger effect (Brockenbrough & Johnston 1981). When stiffness is of primary
concern, for example, in the evaluation of buckling or deflection, the Bauschinger effect
may be of interest.
Within an acceptable level of accuracy, however, the mechanical properties of a par-

ticular type of steel or aluminum alloy as determined by uniaxial tension testing are also
approximately accepted as being valid for the same type of the material under uniaxial
compression.

1.3.10 Limits of Cold Forming

Cold forming is an efficient technique to form structural shapes, for example, a curved
plate. However, it is important to realize that excessive strain during cold forming can
exhaust ductility and cause cracking. Hence the strain in cold forming the structural
shapesmust be limited, not only to prevent cracking but also to prevent buckling collapse
of structural elements subject to compressive loads. The cold-forming-induced strain is
usually controlled by requiring the ratio of the bending radius to the plate thickness to be
large, in the range of 5–10.
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Figure 1.21 The Bauschinger effect in metals.
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1.3.11 Lamellar Tearing

In most cases of plated structures, the behavior in the length and breadth of the plates
related to load effects is of primary concern. The behavior in the wall thickness direction
is normally not of interest. In heavy, welded structures, particularly in joints or connec-
tions with thick plates and heavy structural shapes, however, crack-type separation or
delamination can take place in the wall thickness direction beneath the surface of plates
or at weld toes. This failure is typically caused by large through-thickness strain, which is
sometimes associated with weld metal shrinkage in highly restrained joints. This phe-
nomenon is termed lamellar tearing. Careful selection of weld details, filler metal, and
welding procedure and the use of steels with controlled through-thickness properties
(e.g., the so-called Z grade steels) can be effective to control this failure mode.

1.4 Strength Member Types for Plated Structures

The geometric configuration of a steel- or aluminum-plated structure is determined pri-
marily on the basis of the function of the particular structure. Figure 1.22 shows a basic
part of a typical plated structure. A major difference between plated and framed struc-
tures is that the principal strength members of the former type of structure are plate
panels together with support members, whereas those of the latter typically consist of
truss or beam members for which the dimension in the axial direction is usually much
greater than those in the other two directions.
Typical examples of plated structures are ships, ship-shaped offshore platforms, box

girder bridges, and box girder cranes. Basic types of structural members that usually
make up plated structures are as follows:

• Plate panels: Plating, stiffened panel, corrugated panel

• Small support members: Stiffener, beam, column, beam–column

• Strong main support members: Plate girder, frame, floor, bulkhead, box girder

Longitudinal griders

Stiffened panels
Plating

Transverse frames

Stiffeners

Figure 1.22 Typical plated structure.
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To improve the stiffness and strength of plate panels, increasing the stiffener dimen-
sions is usually more efficient than simply increasing the plate thickness, and thus the
plate panel is usually reinforced by beam members (stiffeners) in the longitudinal or
transverse direction. Figure 1.23a shows typical beam members used to stiffen the plat-
ing. A self-stiffened plate, such as the corrugated panel shown in Figure 1.23b, may also
be used in some cases.
When the stiffened panels are likely to be subjected to lateral loads or out-of-plane

bending or just require lateral support, they are supported by stronger beam members.
Figure 1.23c shows typical strong main support members used to build plated structures.
For ships and offshore structures, plate girders composed of deep webs and wide flanges
are typically used for main support members. The deep web of a plate girder is often
stiffened vertically and/or horizontally. Box-type support members that consist of plate
panels are used for construction of land-based steel bridges or cranes. Diaphragms or
transverse floors or transverse bulkheads are arranged at relevant spaces in the box
girder.
Although plating primarily sustains in-plane loads, support members resist out-of-

plane (lateral) loads and bending. A plate panel between stiffeners is called “plating,”
and plating with stiffeners is termed a “stiffened panel.”A cross-stiffened panel is termed
a “grillage,” which in concept is essentially a set of intersecting beam members. When a
one-dimensional strength member is predominantly subjected to axial compression, it is
called a “column,” whereas it is termed a “beam” when subjected to lateral loads or

Flat

(a)

(b)

(c)

Bulb Angle Tee

Plate girder Rectangular box girder Trapezoidal box girder

Figure 1.23 (a) Various types of beam members (stiffeners); (b) a self-stiffened plate-corrugated panel;
(c) various types of strong main support members.
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bending. A one-dimensional strength member under combined axial compression and
bending is called a “beam–column.” When the strength member is subjected to com-
bined bending and axial tension, it is called a “tension-beam.”
Strong main support members are normally called “(longitudinal) girders” when

they are located in the primary loading direction (i.e., the longitudinal direction in
a box girder or a ship hull girder), whereas they are sometimes called “(transverse)
frames” or main support members when they are located in a direction orthogonal
to the primary load direction (i.e., in the transverse direction in a box girder or a ship
hull girder).
For strength analysis of plated structures, stiffeners or some supportmembers together

with their associated plating are often modeled as beams, columns, or beam–columns, as
described in Chapter 2.

1.5 Types of Loads

The terminology related to the classification of applied loads for ships and offshore struc-
tures is similar to that used for land-based structures. The types of loads to which plated
structures or strength members are likely to be subjected may be categorized into the
following four groups:

• Dead loads

• Operational or service (live) loads

• Environmental loads

• Accidental loads

Dead loads (also called permanent loads) are time-independent, gravity-dominated
service loads. Examples of dead loads are the weight of structures or permanent items
that remain in place throughout the life of the structure. Dead loads are typically static
and can usually be determined accurately even if the weight of some of the items may in
some cases be unknown until the structural design has been completed.
Operational or service loads are typically live loads by nature with gravity and/or ther-

mal loads that vary in magnitude and location during the normal operation of the struc-
ture. Operational loads can be quasistatic, dynamic, or even impulsive in loading speed.
Examples of operational loads are the weight of people, furniture, movable equipment,
wheel loads from vehicles or cargoes, and stored consumable goods. In marine struc-
tures, pressure loads due to water and cargoes and thermal loads due to cargoes (e.g.,
liquefied petroleum gas, liquefied natural gas) are also examples of operational loads.
In the design of land-based box girder bridges, highway vehicle loading is usually sepa-
rately classified under highway live loads. Although some live loads (e.g., persons and
furniture) are practically permanent and static, others (e.g., box girder cranes and various
types of machinery) are highly time dependent and dynamic. Because the magnitude,
location, and density of live load items are generally unknown in a particular case, the
determination of operational loads for design purposes is not straightforward. For this
reason, regulatory bodies sometimes prescribe design service loads based on experience
and proven practice.
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Environmental loads are actions related to wind, current, waves, snow, and earthquake.
Most environmental loads are time dependent and repeated in some fashion, that is,
cyclic. Environmental loads can thus be quasistatic, dynamic, or even impulsive in load-
ing speed. The determination of design environmental loads is often specified by regu-
latory bodies or classification society rules, typically using the concept of a mean return
period. The design loads of snow or wind, for instance, may be specified based on a return
period of 100 years or longer, indicating that extreme snowfall or wind velocity that is
expected to occur once in 100 years is used in the design.
Accidental loads are actions that arise from accidents such as collision, grounding, fire,

explosion, or dropped objects. Accidental loads typically have a dynamic or impact effect
on structural behavior with large strains. Guidelines to predict and account for accidental
loads are more meager because of the unknown nature of accidents. However, it is
important to treat such loads in design, particularly when novel types of structures
are involved, about which experience may be lacking. This often happens in the offshore
field, where several new types of structures have been introduced in recent decades.
Experimental databases in a full-scale prototype or at least large-scale models are highly
required to characterize and quantify the nonlinear mechanics of structures exposed to
accidental conditions, as scaling laws to convert small-scale model test results to the
actual full-scale structure are not always available.
The maxima of the various types of loads mentioned previously are not always applied

simultaneously, but more than one type of load normally may coexist and interact.
Therefore, the structural design must account for the effects of phasing for definition
of the combined loads. Usually, this involves the consideration of multiple load combi-
nations for design, each representing a load at its extreme value together with the accom-
panying values of other loads. The guidelines for relevant combinations of loads to be
considered in design are usually specified by regulatory bodies or classification societies
for particular types of structures.

1.6 Basic Types of Structural Failure

This book is concerned with the fundamentals and practical procedures for the ULS
analysis and design of steel- and aluminum-plated structures. One primary task in
ULS design is to determine the level of imposed loads that cause the structural failure
of individual members and the overall structure. Therefore, it is crucial to better under-
stand what types of structural failure can primarily occur. The failure of plated structures
made of ductile materials is normally related to one or both of the following nonlinear
types of behavior:

• Geometric nonlinearity associated with buckling or large deflection

•Material nonlinearity due to yielding or plastic deformation

For structural members, many basic types of failure are considered, the more impor-
tant of which include:

• Buckling or instability

• Plasticity in local regions

• Fatigue cracking related to cyclic loading
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• Ductile or brittle fracture, given fatigue cracking or preexisting defects

• Excessive deformations

The basic failure types mentioned previously do not always occur simultaneously, but
more than one phenomenon may in principle be involved until the structure reaches the
ULS. For convenience, the basic types of structural failure noted previously are some-
times described and treated separately.
As the external loads increase, the most highly stressed region inside a structural mem-

ber will yield first, resulting in local plastic deformation, which decreases the member
stiffness. With a further increase in the load, local plastic deformation will increase
and/or occur at several different regions. The stiffness of the member with large local
plastic regions becomes quite low, and the displacements increase rapidly, eventually
becoming so large that the member is considered to have failed.
Buckling or instability can occur in any structural member that is predominantly sub-

jected to load sets that result in compressive effects in the structure. In buckling-related
design, two types of buckling are considered, bifurcation and non-bifurcation. The
former type is seen for an ideal perfect member without initial imperfections, and the
latter typically occurs in an actual member with some initial imperfections. For instance,
a straight elastic column has an alternative equilibrium position at a critical axial com-
pressive load that causes a bent shape to suddenly occur at a certain value of the applied
load. This threshold load, which separates into two different equilibrium conditions, is
called a bifurcation load.
An initially deflected column or beam–column induces bending from the beginning of

the loading contrary to the straight column, and the lateral deflection increases progres-
sively. Themember stiffness is reduced by considerable deflection and local yielding, and it
eventually becomes zero at a peak load. The deflection of thememberwith very low or zero
stiffness becomes so great that the member is considered to have collapsed. In this case, an
obvious sudden buckling point does not appear until the member collapses; this type of
failure is called non-bifurcation instability or limit-load buckling (Galambos 1988).
Due to repeated fluctuation of loading, fatigue cracking can initiate and propagate in

the structure’s stress concentration areas. Fracture is a type of structural failure caused by
the rapid extension of cracks. Three types of fracture are relevant, brittle fracture, rup-
ture, and ductile fracture. Brittle fracture normally takes place at a very small strain in
materials with a low toughness or below a certain temperature, when the material’s ulti-
mate tensile strength diminishes sharply. For materials with a very high toughness, rup-
ture occurs at a very large strain by necking of themember, typically at room temperature
or higher. Ductile fracture is an intermediate fracture mode between brittle fracture and
rupture. In steels or aluminum alloys, the tendency to fracture is related not only to the
temperature but also to the rate at which loading is applied. The higher the loading rate,
the greater the tendency toward brittle fracture.

1.7 Fabrication Related Initial Imperfections

Welded metal structures always have initial imperfections in the form of initial
distortions, residual stresses, or softening in the weld fusion zone or HAZ. Because such
fabrication related initial imperfections may affect the structural properties and
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load-carrying capacities of structures, they must be dealt with as parameters of influence
in structural analysis and design.

1.7.1 Mechanism of Initial Imperfections

When local heating is input to structural material, the heated part will expand, but
because of adjacent cold parts, it will be subjected to compressive stress and distortion.
When the heated part cools, it will locally shrink rather than revert to its initial shape and
will thus be subjected to tensile stress. The strength of welded aluminum alloys in the
HAZ is reduced by softening phenomenon in that melting temperature is reduced by
improving fluidity, while it is recognized that the material strength in the softened zone
is recovered by natural aging over a period of time (Lancaster 2003).
Experimental studies to examine the mechanism of initial imperfections have been

undertaken in the literature with direct measurements of welding induced initial imper-
fections: Masubuchi (1980), Smith et al. (1988), Ueda (1999), and Paik and Yi (2016) for
initial distortions of steel-plated structures; Paik et al. (2006), Paik (2007c, 2008), and
Paik et al. (2008, 2012) for initial distortions of aluminum-plated structures; Masubuchi
(1980), Smith et al. (1988), Cheng et al. (1996), Ueda (1999), Kenno et al. (2010, 2017),
and Paik and Yi (2016) for residual stresses of steel-plated structures; and Paik et al.
(2006), Paik (2008), and Paik et al. (2008, 2012) for residual stresses and softening of alu-
minum-plated structures, among others.
Based on the insights available in the literature, it is recognized that various types of

welding induced distortions are relevant, as shown in Figure 1.24. In practice for the
evaluation of structural capacity, both angular change and longitudinal bending
distortion are of greater concern, as shown in Figure 1.24e, whereas the shrinkage
in the longitudinal or transverse directions may often be neglected. Also, residual
stress distributions in welded structural members represent the tensile residual
stresses that develop in the HAZ and the compressive residual stresses that must then
also exist to achieve self-equilibrium in the plane of the structural member, as shown
in Figure 1.25. In welded aluminum structures with extruded stiffeners, residual
stresses are developed as those shown in Figure 1.26. The breadth of the softened zone
in welded aluminum structures almost equals that of the HAZ, as shown in
Figure 1.27.
Figure 1.28 shows experimental and finite element method investigations of

welding induced initial distortions and residual stresses in full-scale welded
steel-stiffened plate structure models, obtained by Paik and Yi (2016) using modern
technologies of the fabrication and measurements. Figure 1.29 shows experimental
investigations of welding induced initial distortions and residual stresses in
full-scale fusion-welded aluminum-stiffened plate structure models, obtained by
Paik (2008).

1.7.2 Initial Distortion Modeling

Figure 1.30 shows some typical initial deflection shapes of welded one-dimensional
members and their possible idealizations. For practical design purposes, the initial
deflection shape of a welded one-dimensional member may be idealized as the dotted
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line in Figure 1.30, which can be expressed approximately in mathematical form as
follows:

w0 = δ0 sin
πx
L

1 32

where w0 is the initial deflection function; δ0 is the initial deflection amplitude, which is
often taken as 0.0015L for a practical strength calculation at an “average” level of imper-
fections; and L is the member length between supports.
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Figure 1.24 Types of welding induced initial distortions in a stiffened plate structure: (a) transverse
shrinkage; (b) longitudinal shrinkage; (c) angular change; (d) longitudinal bending distortion; (e) three
typical distortions.
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For welded stiffened plate structures, three types of initial distortions are relevant to
welded metal-stiffened plate structures, as illustrated in Figure 1.31:

• The initial deflection w0pl of the plating between the support members

• The column-type initial deflection w0c of the support members

• The sideways initial deflection w0s of the support members
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Figure 1.25 Distribution of the welding induced residual stresses in a stiffened plate structure: (a) butt-
welded plate; (b) welded stiffened panel; (c) welded plate girder; (d) welded box section.
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Themagnitude and shape of each type of initial distortion play important roles in buck-
ling collapse behavior, and thus a better understanding of the actual imperfection config-
urations in the target structures is necessary (Paik et al. 2004). In fact, it is desirable to
obtain precise information about the initial distortionsof the target structure before struc-
turalmodeling even begins. Considering the significant amount of uncertainty involved in
fabrication related initial imperfections, existingmeasurements of the initial distortions in
welded metal structures are often useful for the development of representative models.

1.7.2.1 Plate Initial Deflection
The shape of welding induced initial deflections for thin plates after support members
are attached by welding is quite complex. The initial deflection of plating between stiffen-
ers can be expressed as a Fourier series function as follows:

w0

w0pl
=

M

i=1

N

j= 1

B0ijsin
iπx
a

sin
jπy
b

1 33
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Figure 1.26 Distribution of the welding induced residual stresses in an aluminum plate welded at
two edges and a stiffener web welded at one edge (+, tension, −, compression; left, plating, right,
extruded stiffener web) (Paik et al. 2012, Hughes & Paik 2013).
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Figure 1.27 Breadths of the softening zones inside an aluminum plate welded at four edges and
its counterpart in the extruded stiffener attachment to the plating (Hughes & Paik 2013).
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Figure 1.28 (a) Full-scale testing of initial imperfections in steel-stiffened plate structuremodels: (a) left:
fabrication by auto flux-cored arc welding; right: three-dimensional scanning measurement of initial
distortions; below: nondestructive measuring technique of welding induced residual stresses;
(b) measurement of the welding induced initial distortions; (c) measurement and finite element
method prediction of the welding induced residual stresses in the longitudinal stiffener direction;
(d) measurement and finite element method prediction of the welding induced residual stresses in the
transverse frame direction (Paik & Yi 2016).
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where a is the plate length and b is the plate breadth. B0ij indicates the welding induced
initial deflection amplitude normalized by the maximum initial deflection, w0pl, which
can be determined on the basis of the initial deflection measurements. The subscripts
i and j denote the corresponding half-wave numbers in the x and y directions,
respectively.
If measured databases for the initial deflection for plating are available, the initial deflec-

tion amplitudes of Equation (1.33) can be determined by expanding Equation (1.33) appro-
priately using a selected number of terms, M and N, depending on the complexity of the
initial deflection shape.
For practical design purposes, further idealization may sometimes be necessary. The

measurements of the initial deflection for plate elements in plated structures show that a
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Figure 1.28 (Continued)
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Figure 1.29 The welding induced initial distortions (amplified by 30 times) in a welded aluminum-
stiffened plate structure: (a) shape of initial distortions (amplified by 30 times); (b) measurement
of initial distortions (w0pl = plate initial deflection; w0c = column-type initial distortion of stiffener;
w0s = sideways initial distortion of stiffener); (c) measurement of residual stresses (Paik 2008).
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multiple-wave shape is predominant in the long direction, as shown in Figure 1.32,
whereas one half wave is found in the short direction, as shown in Figure 1.31.
For a nearly square plate element, therefore, Equation (1.33) may be simplified by tak-

ingM =N = 1. For a long plate element with a multiple-wave shape in the x direction and
one half wave in the y direction, Equation (1.33) becomes

w0

w0pl
=

M

i= 1

B0isin
iπx
a

sin
πy
b

1 34

In practice,M in Equation (1.34) may be taken as an integer that corresponds to about
three or more times the a/b ratio greater than 1 (Paik & Pedersen 1996). On this basis, B0i

in Equation (1.34) can be determined for the assumedM if the initial deflection measure-
ments are available. The values of coefficients, B0i, for the initial deflection shapes shown
in Figure 1.32 are given in Table 1.6, by taking M = 11.
In current industry practice with regard to practical structural design and strength

assessment, an averagemagnitude is assumed for these initial distortions, and their shape
is assumed to be the buckling mode, because this shape usually has the most unfavorable
consequences for the structure until and after the ULS is reached. The amplitude or
maximum magnitude w0pl of plate initial deflection wp

0 is often assumed to be the
following:

wp
0 =w0pl sin

mπx
a

sin
πy
b

1 35a

w0pl =C1b 1 35b

w0pl =C2β
2t 1 35c

wherewp
0 is the plate’s initial deflection function,w0pl is themaximummagnitude of plate

initial deflection, b is the plate breadth along the short edge or the spacing between the
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Figure 1.31 Three types of the welding induced initial distortions and residual stresses in a stiffened
plate structure.
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longitudinal stiffeners, t is the plate thickness, β = b t σY E is the plate slenderness
ratio, E is the material’s elastic modulus, σY is the yield strength, C1 and C2 are constants,
and m is the buckling half-wave number of the plate.
It is interesting to note that the two alternative formulations, that is, Equations (1.35b)

and (1.35c), have different usage backgrounds. Equation (1.35b), supported by some clas-
sification societies, states that w0pl is a function only of the plate breadth, whereas Smith
et al. (1988) suggested that Equation (1.35c) gives a more precise representation of the
plate characteristics because it is a function of the plate slenderness ratio.
In addition, the use of Equation (1.35b) may result in too small initial deflection for

very thin plates and too large initial deflection for very thick plates. Equation (1.35c),
in contrast, is suitable for both very thin and very thick plates. Nevertheless, the use
of Equation (1.35b) remainsmore popular today in the construction of ships and offshore
structures, as long as a moderate plate thickness is considered. This is partly because
Equation (1.35b) is more suitable to specify construction tolerances regardless of the
slenderness ratio-related characteristics of the plating.
The constants in Equations (1.35b) and (1.35c) may be determined on the basis of sta-

tistical analyses of the initial deflection measurements of the welded steel or aluminum
plates. The following provides some additional guidance:

C1 = 0 005 for an average level in steel plates

C1 =

0 0032 for a slight level

0 0127 for an average level

0 0290 for a severe level

in aluminum plates (Paik 2007c)
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Figure 1.32 Some typical initial deflection patterns in welded plating between stiffeners in the long
(plate length) direction (Paik & Pedersen 1996): initial deflection shape (a) 1; (b) 2; (c) 3 and (d) 4.
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Table 1.6 Initial deflection amplitudes of Equation (1.35a) for various initial deflection shapes indicated in Figure 1.32.

Initial
deflection
shape B01 B02 B03 B04 B05 B06 B07 B08 B09 B010 B011

1 1.0 −0.0235 0.3837 −0.0259 0.2127 −0.0371 0.0478 −0.0201 0.0010 −0.0090 0.0005

2 0.8807 0.0643 0.0344 −0.1056 0.0183 0.0480 0.0150 −0.0101 0.0082 0.0001 −0.0103

3 0.5500 −0.4966 0.0021 0.0213 −0.0600 −0.0403 0.0228 −0.0089 −0.0010 −0.0057 −0.0007

4 0.0 −0.4966 0.0021 0.0213 −0.0600 −0.0403 0.0228 −0.0089 −0.0010 −0.0057 −0.0007



C2 =

0 025 for a slight level

0 1 for an average level

0 3 for a severe level

in steel plates (Smith et al. 1988)

C2 =

0 018 for a slight level

0 096 for an average level

0 252 for a severe level

in aluminum plates (Paik et al. 2006)

To determine the shape of the bucklingmode initial distortions, eigenvalue computations
are required. Based on these eigenvalue computations, the buckling modes of the stiffened
plate structures can then be decomposed into the three types of initial distortions men-
tioned previously. Each type of initial distortion should be amplified up to the maximum
target value, and the three resulting patterns should then be superimposed to provide a
complete picture of the initial distortions. It is worthwhile to discuss here the classical the-
ory of structural mechanics, which gives the buckling half-wave number of a simply sup-
ported plate element under longitudinal compression alone. This number is predicted as
the minimum integer that satisfies the following condition, as described in Chapter 3 or 4:

a
b
≤ m m+ 1 1 36a

where m is the number of buckling half waves of the plate in the longitudinal direction,
whereas the number in the transverse direction is assumed to be unity.
The plate buckling half-wave number can then be determined under any combination

of longitudinal compression σx and transverse compression σy, again as a minimum inte-
ger, but satisfying the following condition as described in Chapter 3 or 4:

m2 a2 + 1 b2 2

m2 a2 + c b2
≤

m+ 1 2 a2 + 1 b2
2

m+ 1 2 a2 + c b2
1 36b

where c= σy σx is the loading ratio. When c= 0, that is, under longitudinal compression
alone, Equation (1.36b) simplifies to Equation (1.36a).
Classification societies or other regulatory bodies specify construction tolerances for

strength members as related to the maximum initial deflection with the intention that the
initial distortions in the fabricated structure must be less than the corresponding specified
values. Some examples of the limit for the maximum plate initial deflection are as follows:

• NORSOK (2004):

w0pl

b
≤ 0 01

• Japanese shipbuilding quality standards (JSQS 1985):

w0pl ≤ 7mmforbottom plate

w0pl ≤ 6mmfordeck plate

• Steel box girder bridge quality standards (ECCS 1982):

w0pl ≤min
t
6
+ 2,

t
3

, t inmm
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Related to this, it is of interest to note that quite often, specifications of quality to be
achieved are developed (and used) without specific reference to the loads and load effects
at a particular location. In that case, the corresponding specifications suggest what can be
generally achieved in an economical way rather than what should be achieved in the con-
text of a particular situation.

1.7.2.2 Column-Type Initial Deflection of a Stiffener
The column-type initial distortion of stiffeners is assumed as follows:

wc
0 =w0c sin

πx
a

1 37a

w0c =C3a 1 37b

where wc
0 is the column-type initial distortion of the support members, a is the length of

the small stiffeners between two adjacent strong support members, and C3 is a constant.
The constant in Equation (1.37b) may be taken as follows:

C3 = 0 0015 for an average level in steel plates

C3 =

0 00016 for a slight level

0 0018 for an average level

0 0056 for a severe level

in aluminum plates (Paik et al. 2006)

1.7.2.3 Sideways Initial Distortion of a Stiffener
The sideways initial distortion of stiffeners is assumed as follows:

ws
0 =w0s

z
hw

sin
πx
a

1 38a

w0s =C4a 1 38b

where ws
0 is the sideways initial distortion of the support member, z is the coordinate in

the direction of stiffener web height, hw is the stiffener web height, a is the length of the
small stiffeners between two adjacent strong support members, and C4 is a constant. The
constant in Equation (1.38b) may be taken as follows:

C4 = 0 0015 for an average level in steel plates

C4 =

0 00019 for a slight level

0 001 for an average level

0 0024 for a severe level

in aluminum plates (Paik et al. 2006)

1.7.3 Welding Residual Stress Modeling

For practical design purposes, the welding residual stress distributions of a plate element
between support members for which welding has been carried out along all four edges
may be idealized to be composed of tensile and compressive stress blocks, such as those
shown in Figure 1.33. Among them, Figure 1.33c is a typical idealization of the welding
residual stress distribution in a plate element.
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Welding residual stresses develop in both longitudinal and transverse directions if the
support members are attached by welding in these two directions as shown in
Figure 1.34. The breadth of the HAZ is denoted by bt in the y direction or at in the x
direction in which the residual stress in the HAZ is approximately equal to the tensile
yield stress because themoltenmetal can expand freely, as a liquid, whereas after welding
it quickly reverts to a solid and the shrinkage that occurs during cooling involves
“plastic flow.”
Along the welding line, tensile residual stresses usually develop with magnitude σrtx in

the x direction and σrty in the y direction, with the welding being normally performed in

+ +

–

+ +

–

+ +

–

+ +

–

(a) (b)

(c) (d)

Figure 1.33 Idealized distributions of the welding induced residual stresses in a stiffened plate
structure.
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b−
2
b t
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Figure 1.34 Typical idealization of the welding induced residual stress distribution inside the metal
plate element in the x and y directions.
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both x and y directions. To obtain equilibrium, corresponding compressive residual
stresses with magnitude σrcx in the x direction and σrcy in the y direction develop in
the middle part of the plate element.
As the tensile residual stress blocks are equivalent to the HAZ, their breadths can be

estimated from the equilibrium between the tensile and compressive residual stresses as
follows:

2bt =
σrcx

σrcx−σrtx
b, 2at =

σrcy
σrcy−σrty

a 1 39

where bt and at are the breadths of the tensile residual stress block, σrcx and σrcy are the
compressive residual stresses in the x or y directions, and σrtx and σrty are the tensile
residual stresses in the x or y directions.
One can then define the residual stress distributions in the x and y directions as follows:

σrx =

σrtx for 0≤ y < bt

σrcx for bt ≤ y < b−bt

σrtx for b−bt ≤ y ≤ b

1 40a

σry =

σrty for 0 ≤ x < at

σrcy for at ≤ x < a−at

σrty for a−at ≤ x ≤ a

1 40b

Smith et al. (1988) suggested the following formula to define the compressive residual
stress σrcx in the x direction of a steel plate:

σrcx =

−0 05σY for a slight level

−0 15σY for an average level

−0 3σY for a severe level

1 41a

The counterpart of the compressive residual stress σrcy in the y direction may be
assumed to be as follows:

σrcy = k
b
a
σrcx 1 41b

where k is a correction factor, whichmay take a value smaller than 1.0.When the residual
stress is considered in the x direction alone, k = 0.
Paik and Yi (2016) suggested an advanced method to predict the welding induced

residual stresses in a steel plate element. Based on the experimental and numerical inves-
tigations for steel plates with a b ≥ 1, they proposed the empirical formulations to pre-
dict the breadths of the HAZ as functions of the plate’s slenderness ratio and the weld
bead length (leg length) as follows:

bt = c1Lw + c2 1 42a

at = d1Lw + d2 1 42b

where
c1 = −0 4562β2x + 4 1994βx + 2 6354, c2 = 1 1352β2x−4 3185βx−11 1750,
d1 = −0 0399β2y + 2 0087βy + 8 7880, d2 = 0 1042β2y −4 8575βy−17 7950,
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βx = b t σY E, βy = a t σY E, and Lw is the weld bead length (mm), which is
usually in the range 4–8mm (4–5mm for design requirement and 6mm in average)
for relatively thin plates in shipbuilding industry practice with one pass welding.
Once the breadths of the HAZ are determined from Equation (1.42), depending on the

welding conditions and the plate’s slenderness ratio, the welding induced compressive
residual stresses can then be predicted from Equation (1.39) as follows:

σrcx =
2bt

2bt−b
σrtx 1 43a

σrcy =
2at

2at−a
σrty 1 43b

where σrtx = σrty = σY can be taken for steel.

1.7.4 Modeling of Softening Phenomenon

As previously noted, it is recognized that the strength of aluminum alloys in the softened
zone may be recovered by natural aging over a period of time (Lancaster 2003). However,
the ultimate strength of welded aluminum alloy-plated structures may be reduced by
softening phenomenon as far as the material strength is not recovered.
The breadths of the softened zones approximately equal those of the HAZ in a welded

aluminum structure. Paik et al. (2006) proposed the breadths of the softened zones with
the nomenclature defined in Figure 1.27 as follows:

bp = bs =

11 3 mm for a slight level

23 1 mm for an average level

29 9 mm for a severe level

1 44

The yield strength in the HAZ may be obtained as follows, depending on the type of
aluminum alloy, following Paik et al. (2006):

a) Yield stress of the HAZ material for aluminum alloy 5083-H116

σYHAZ

σY
=

0 906 for a slight level

0 777 for an average level

0 437 for a severe level

with σY = 215 N mm2 1 45a

b) Yield stress of the HAZ material for aluminum alloy 5383-H116

σYHAZ

σY
=

0 820 for a slight level

0 774 for an average level

0 640 for a severe level

with σY = 220 N mm2 1 45b

c) Yield stress of the HAZ material for aluminum alloy 5383-H112

σYHAZ

σY
= 0 891 for an average level with σY = 190N mm2 1 45c
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d) Yield stress of the HAZ material for aluminum alloy 6082-T6

σYHAZ

σY
= 0 703 for an average level with σY = 240N mm2 1 45d

where σYHAZ is the yield strength in the softened zone and σY is the yield strength in
the base material.

The compressive residual stresses at the plate part and the stiffener web can then be
determined from Equation (1.43) using Equations (1.44) and (1.45). Empirical formula-
tions are also given regardless of the type of aluminum alloys as follows (Paik et al. 2006):

σrcx =

−0 110σYp for a slight level

−0 161σYp for an average level

−0 216σYp for a severe level

in the plate part 1 46a

σrcx =

−0 078σYs for a slight level

−0 137σYs for an average level

−0 195σYs for a severe level

in the stiffener web 1 46b

where σYp and σYs are the yield strengths of the plate part and the stiffener web,
respectively.

1.8 Age Related Structural Degradation

In aging structures, defects related to corrosion and fatigue cracks are significant,
especially in a marine environment (Paik & Thayamballi 2007, Rizzo et al. 2007, Paik &
Melchers 2008). In a number of damage cases for agingmarine and land-based structures
that have been reported, it is possible that corrosion damage and fatigue cracks may have
existed in the primary and other strength members. In any event, fatigue and corrosion
are the two most important factors that affect structural performance over time.
It is therefore important for the structural designer and operator to have a complete

understanding of the location and extent of structural damage formed during the struc-
ture’s operation and how it can affect the structural capacity. One reason is that this
knowledge is necessary to facilitate repair decisions, and another could be to support
a structural life extension decision later in the structure’s life. The structural capacity
associated with Equation (1.17) needs to be determined by dealing with the age related
degradation as a parameter of influence.

1.8.1 Corrosion Damage

Due to corrosion damage, the structural capacity can be decreased and/or leakages can
take place in oil/watertight boundaries, with the latter possibly leading to undesirable
pollution, cargo mixing, or gas accumulation in enclosed spaces. The corrosion process
varies over time, and the amount of corrosion damage is normally defined by a corrosion
rate with units of, say, millimeters per year, representing the depth of corrosion
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diminution per year. The corrosion rate itself can be a function of time in some cases, due
to effects such as increased structural flexibility as the corrosion process proceeds.
Figure 1.35 shows some of the more typical types of corrosion-related damage that

affect the strength of structures. “General” corrosion (also called “uniform” corrosion)
uniformly reduces the thickness of structural members, as shown in Figure 1.35a,
whereas localized corrosion (e.g., pitting or grooving) causes degradation in local regions,
as shown in Figure 1.35b. Fatigue cracks may sometimes arise from localized corrosion,
as shown in Figure 1.35c.
The corrosion damage to a structure is influenced by many factors, including the cor-

rosion protection system and various operational parameters (Afanasieff 1975, Schuma-
cher 1979, Melchers & Ahammed 1994, Paik & Thayamballi 2007). Generally used
corrosion protection systems include coatings (paint) and anodes. The operational para-
meters include maintenance, repair, the use of heating coils, humidity conditions, water
and sludge accumulation, microbial contamination, and the composition of inert gas. For
ships and offshore structures, the percentage of time in ballast, the frequency of tank
cleaning, and temperature profiles are also influential parameters. For the past several
decades, several studies have been undertaken to understand the effects of many of these
factors and their interactions.
To predict tolerance to likely corrosion damage, it is necessary to estimate the corro-

sion rates for various structural members grouped by type, location, and other para-
meters. To generalize this further, there are four aspects related to corrosion that one
must ideally define for structural members:

•Where is corrosion likely to occur?

•When does it start?

•What is its extent?

•What are the likely corrosion rates as a function of time?

The first question would normally be answered using historical databases of some
form, for example, the results of previous surveys. As to when corrosion starts, this again
is information that should come from prior surveys for the particular structure. Lacking
specific databases, assumptions for the time the corrosion will begin can of course be
made, depending on the use of a protection system, the characteristics of the coatings,
and the anode residence time.
For the residual strength and similar performance assessment of corroded structures,

one must clarify how corrosion develops and proceeds in structural members, the spatial
extents of member degradation, and the likely effects of such corrosion on structural per-
formance measures such as strength and leakage characteristics. These considerations
are complicated by the sheer number of factors that can potentially affect corrosion,

(a) (b) (c)

Figure 1.35 Typical types of corrosion damage: (a) general corrosion; (b) localized corrosion; (c) fatigue
cracks from localized corrosion.
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including the type of protection, the type of cargo, temperature, and humidity. In addi-
tion, a probabilistic treatment is essential to account for the various uncertainties asso-
ciated with corrosion.
The extent of corrosion presumably increases with time, but our ability to predict its

spatial progress remains meager. The only real alternative is then to pessimistically
assume an extent of corrosion than is actually likely, such as what one would do in
the case of nominal design corrosion values. To put this in another way, one can assess
the structural performance based on premised extents of corrosion when specific infor-
mation on the extent of corrosion is lacking or unavailable.
Where coatings are present, the progress of corrosion would normally depend greatly

on the degradation of such coatings. For this reason, most classification societies usually
recommendmaintenance of the corrosion protection system over time, andmost owners
carry out such maintenance, so the particular maintenance philosophy used also has a
significant effect on structural reliability considering corrosion effects in the long term.
Figure 1.36 represents a plausible schematic of the corrosion process for a coated area

in a structure. It is assumed in Figure 1.36 that there is no corrosion as long as the coating
is effective and also during a short transition time after the coating breaks down. There-
fore, the corrosionmodel accounts for three factors: (i) durability of coating (coating life),
(ii) transition, and (iii) progress of corrosion.
The curve that shows the corrosion progression, indicated by a solid line in Figure 1.36,

is a little convex, but it may in some cases be a concave curve in dynamically loaded struc-
tures, as indicated by the dotted line where flexing continually exposes additional fresh
surface area to the effects of corrosion. However, one may take a linear approximation
between them for practical assessment.
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Figure 1.36 A schematic of the corrosion process for structures.
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The life (or durability) of a coating essentially corresponds to the time when the cor-
rosion begins after the contribution of a structure, or the application of a coating in a
previously bare case, or the repair of a coating area to a good, intact standard. The life
of a coating typically depends on the type of coating system used and the relevant main-
tenance, among other factors (Melchers & Jiang 2006). The coating life to a predefined
state of breakdown is often assumed to follow a lognormal distribution, given by

f Tc =
1

2πσc
exp −

lnTc−μc
2

2 σ2c
1 47

where μc is the mean value of lnTc in years, σc is the standard deviation of lnTc, and Tc is
the coating life in years.
The coating systems are sometimes classified by their target life. For example, IMO

(1995) uses three groups (coating systems I, II, and III) for ships and offshore structures,
for which the corresponding target durability is 5, 10, and 15 years, respectively. How-
ever, this particular classification is by no means universal. TSCF (2000) defines the
requirements for 10-, 15-, and 25-year coating systems for ballast tanks in oil tankers.
Generally, however, a 5-year coating life may be considered to represent an undesirable
situation, whereas 10 years or longer would represent a relatively more desirable state of
affairs. The selection of a target life to be achieved is primarily economical. Any given
mean or median coating life is uncertain, and the coefficient of variation of the coating
life is sometimes taken as σc/μc = 0.4 for lnTc (ClassNK 1995).
After the effectiveness of a coating is lost, some transition time, that is, the duration

between the loss of coating effectiveness and the time the corrosion begins, is considered
to exist before the corrosion “initiates” over a sufficiently large and easily measured area.
The transition time is sometimes considered to be an exponentially distributed random
variable. As an example, the mean value of the transition time for transverse bulkhead
structures of bulk carriers was shown to be 3 years for deep-tank bulkheads, 2 years for
watertight bulkheads, and 1.5 years for stool regions (Yamamoto & Ikegami 1998).When
the transition time is assumed to be zero, that is, Tt = 0, it is implied that the corrosion
will begin immediately after the effectiveness of the coating is lost.
As illustrated in Figure 1.36, the wear of plate thickness due to corrosion may be gen-

erally expressed as a function of the time after the corrosion starts (years), namely,

dc =C1T
C2
e 1 48

wheredc is the corrosion depth (orwear of plate thickness due to corrosion;mm);Te is the
exposure time after breakdown of the coating (years), which is taken as Te = T − Tc − Tt;
T is the age of the structure (years);Tc is the life of the coating (years);Tt is the duration of
transition (years), which may be pessimistically taken as Tt = 0; and C1 and C2 are
coefficients.
The coefficient C2 in Equation (1.48) determines the trend of corrosion progress,

whereas the coefficient C1 is in part indicative of the annual corrosion rate that can be
obtained by differentiating Equation (1.48) with respect to time. As may be surmised from
Equation (1.48), the two coefficients closely interact, and they can be determined simul-
taneously based on the carefully collected statistical corrosion data of existing structures.
However, this approach is not straightforward to apply in most cases, mainly because of
differences in the database collection sites typically visited over the life of the structure.
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That is, it is normally difficult to track corrosion at a particular site based on the typically
available gauging data. This is part of the reason for the relatively large scatter of corrosion
data in many studies.
An easier alternative is to determine the coefficient C1 at a constant value of the coef-

ficientC2. This is mathematically a simpler model, but it does not negate any of the short-
comings due to the usual methods of data collection in surveys. It does, however, make
possible the postulation of different modes of corrosion behavior over time depending on
the value adopted for C2 in an easy-to-understand way.
For corrosion of ships and offshore structures, studies have indicated that the coeffi-

cient C2 can sometimes fall within the range of 0.3–1.5 (Yamamoto & Ikegami 1998,
Melchers 1999b). This implies a behavior wherein the corrosion rates apparently
decrease or stabilize over time. While such behavior is plausible for statically loaded
structures, for dynamically loaded structures in which the corrosion scale is continually
being lost and new material is being exposed to corrosion because of structural flexing,
such values of C2 may not always be appropriate or safe (Melchers & Paik 2009). For
practical design purposes, C2 = 1 is often adopted.
Figure 1.37 shows a schematic of the time-variant corrosion progress, which indicates

that the probabilistic characteristics of the corrosion progress differ over time.
Figure 1.38a shows evidence of this for time-variant corrosion progress in the ballast tank
structures of bulk carriers (Paik & Kim 2012).
Paik and Kim (2012) derived a mathematical model to predict the time-variant corro-

sion wastage of the ballast tank structures of bulk carriers by accounting for the effects of
the varying probabilistic characteristics with time, where the two-parameter Weibull
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Figure 1.37 A schematic of the probabilistic characteristics of corrosion wastage progress over time
(Paik & Kim 2012).
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function was realized by the goodness of fit tests to be the best suited to represent the
corrosion wastage progress:

dc =
α

β

Te

β

α−1

exp −
Te

β

α

1 49a
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Figure 1.38 Probabilistic characteristics of corrosion wastage progress over time in ballast tank
structures of bulk carriers: (a) measurement database; (b) comparison between measurement and
prediction (Paik & Kim 2012).
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where

α= 0 0020T 3
e −0 0994T2

e + 1 5604Te−6 0025 1 49b

β = 0 0004T 3
e −0 0248T2

e + 0 4793Te−2 3812 1 49c

Figure 1.38b confirms the applicability of the approximate formula of Equation (1.49)
by comparison with the original database of gathered corrosion measurements.
Hairil Mohd and Paik (2013) further applied this method to the time-variant corrosion

damage prediction of subsea well tubes, where the two-parameter Weibull function was
also found by the goodness of fit tests to be the best suited to represent the corrosion
wastage progress. In this case, the coefficients α and β in Equation (1.49a) are now given
as follows:

α = −0 02287T2
e + 0 61835Te−0 94398 1 50a

β = 0 001347T2
e + 0 004688Te + 0 292059 1 50b

Figure 1.39 confirms the validity of Equation (1.50) together with Equation (1.49a) for
the time-variant corrosion wastage of subsea well tubes. Hairil Mohd et al. (2014) further
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Figure 1.39 Probabilistic characteristics of corrosion wastage progress over time in subsea well tubes:
(a) measurement database; (b) comparison between measurement and prediction in mean value;
(c) comparison between measurement and prediction in probability (Hairil Mohd & Paik 2013).
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applied this approach to predict the time-variant corrosion wastage progress of subsea
gas pipelines as shown in Figure 1.40, where the three-parameter Weibull function was
found to be the best suited to represent the corrosion wastage progress as follows:

dc =
α

β

Te−γ

β

α−1

exp −
Te−γ

β

α−1

1 51a

where

α= 0 003337T2
e −0 130420Te + 2 4557 1 51b

β = −0 000997T 2
e + 0 013425Te + 1 58201 1 51c

γ = 0 0003455T 2
e + 0 062137Te−0 365129 1 51d

It is obvious that the characteristics of corrosion progress differ depending on the cor-
rosion environment, which can differ at different locations of a structural member, even
in the same structure. Paik et al. (2003a) divided the double-hulled oil tanker structures
into a total of 34 structural member groups according to the different locations of the
corrosion environment, as indicated in Figure 1.41 and Tables 1.7 and 1.8. Paik et al.
(2003b) also divided the bulk carrier structures into a total of 23 structural member
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Figure 1.40 Probabilistic characteristics of corrosion wastage progress over time in subsea gas
pipelines: (a) measurement database; (b) comparison between measurement and prediction in mean
value; (c) comparison between measurement and prediction in probability (Hairil Mohd et al. 2014).
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groups, as indicated in Figure 1.42 and Table 1.9. Each of the structural member groups
has different corrosion characteristics.

1.8.2 Fatigue Cracks

Under repeated loading, fatigue cracks may be initiated in the structure’s stress concen-
tration areas. Initial defects or cracks may also form in the structure due to the
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Figure 1.41 The 34 structural member groups (location and category groups) of double-hulled oil
tanker structures (Paik et al. 2003a).

Table 1.7 Identification of 14 member location/category groups for the
plating of tankers.

ID Member type

B/S-H Bottom shell plating (ballast tank)

A/B-H Deck plating (ballast tank)

A/B-V Side shell plating above draft line (ballast tank)

B/S-V Side shell plating below draft line (ballast tank)

BLGB Bilge plating (ballast tank)

O/B-V Longitudinal bulkhead plating (ballast tank)

B/B-H Stringer plating (ballast tank)

O/S-H Bottom shell plating (cargo oil tank)

A/O-H Deck plating (cargo oil tank)

A/O-V Side shell plating above draft line (cargo oil tank)

O/S-V Side shell plating below draft line (cargo oil tank)

BLGC Bilge plating (cargo oil tank)

O/O-V Longitudinal bulkhead plating (cargo oil tank)

O/O-H Stringer plating (cargo oil tank)
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Table 1.8 Identification of 20-member location/category groups for the stiffener webs and flanges of
tankers.

ID
(stiffener
web) Member types

ID
(stiffener
flange) Member types

BSLBW Bottom shell longitudinals in ballast
tank—web

BSLBF Bottom shell longitudinals in ballast
tank—flange

SSLBW Side shell longitudinals in ballast
tank—web

SSLBF Side shell longitudinals in ballast
tank—flange

LBLBW Longitudinal bulkhead longitudinals
in ballast tank—web

LBLBF Longitudinal bulkhead longitudinals
in ballast tank—flange

BSLCW Bottom shell longitudinals in cargo
oil tank—web

BSLCF Bottom shell longitudinals in cargo oil
tank—flange

DLCW Deck longitudinals in cargo oil
tank—web

DLCF Deck longitudinals in cargo oil
tank—flange

SSLCW Side shell longitudinals in cargo oil
tank—web

SSLCF Side shell longitudinals in cargo oil
tank—flange

LBLCW Longitudinal bulkhead longitudinals
in cargo oil tank—web

LBLCF Longitudinal bulkhead longitudinals
in cargo oil tank—flange

BGLCW Bottom girder longitudinals in cargo
oil tank—web

BGLCF Bottom girder longitudinals in cargo
oil tank—flange

DGLCW Deck girder longitudinals in cargo oil
tank—web

DGLCF Deck girder longitudinals in cargo oil
tank—flange

DLBW Deck longitudinals in ballast
tank—web

SSTLCW Side stringer longitudinals in cargo
oil tank—web
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Figure 1.42 The 23 structural member groups (location and category groups) of bulk carrier structures
(Paik et al. 2003b).
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fabrication procedures applied. In addition to their fatigue propagation under repeated
cyclic loading, cracks, as they grow, may also propagate under monotonically increasing
extreme loads, a circumstance that can eventually lead to the structure’s catastrophic
failure when given the possibility of rapid and uncontrolled crack extension without
arrest or if the crack attains a length that results in significant degradation of the struc-
tural capacity.
It is obvious that fatigue cracking damage also varies with time. Figure 1.43 shows a

schematic of fatigue-related cracking damage progress as a function of time (age) in
structures (Paik &Thayamballi 2007). The fatigue damage progress can be separated into
three stages: initiation (stage I), propagation (stage II), and failure (fracture) (stage III)
(ISO 2394 1998). For assessment of residual strength in aging structures under extreme
loads and under fluctuating loads, it is thus often necessary to account for an existing
crack as a parameter of influence (Paik & Melchers 2008).

Table 1.9 Identification of the 23-member groups for a bulk carrier
structure.

ID Member type

OBP Outer bottom plates

IBP Inner bottom plates

LSP Lower sloping plates

LWTSS Lower wing tank side shells

SS Side shells

UWTSS Upper wing tank side shells

USP Upper sloping plates

UDP Upper deck plates

BG Bilge girders

OBLW Outer bottom longitudinals—web

OBLF Outer bottom longitudinals—flange

IBLW Inner bottom longitudinals—web

IBLF Inner bottom longitudinals—flange

UWTSLW Upper wing tank side longitudinals—web

UWTSLF Upper wing tank side longitudinals—flange

USLW Upper sloping longitudinals—web

USLF Upper sloping longitudinals—flange

UDLW Upper deck longitudinals—web

UDLF Upper deck longitudinals—flange

LWTSLW Lower wing tank side longitudinals—web

LWTSLF Lower wing tank side longitudinals—flange

LSLW Lower sloping longitudinals—web

LSLF Lower sloping longitudinals—flange
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1.9 Accident Induced Damage

The ultimate strength of a structure can be reduced as a result of accident induced dam-
age. Potential accidents, such as collision, grounding, impact from dropped objects or
mishandled cargo loading/unloading, fire, and explosions, can result in structural dam-
age that reduces structural capacity (ultimate strength) or even leads to total loss of the
structure.
Collision and grounding accidents typically result in crushing (folding), yielding, and

tearing. Hydrodynamic impact can cause plastic deformation damage. Dropped objects
can cause local dents and/or global permanent deformation. Fire or explosions can
expose the structural material to elevated temperatures and explosions also being
accompanied by blast. Exposure to a fire at high temperatures can cause not only struc-
tural damage but also metallurgical changes. For fire safety and the resistance of struc-
tures, refer to Lawson (1992), Nethercot (2001), and Franssen and Real (2010).
Ultimate strength of a structure with accident induced damage is often termed residual

strength. The structural capacity associated with Equation (1.17) needs to be determined
by dealing with the accident induced damage as a parameter of influence.
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2

Buckling and Ultimate Strength of Plate–Stiffener Combinations

Beams, Columns, and Beam–Columns

2.1 Structural Idealizations of Plate–Stiffener Assemblies

A plated structure is composed of plate panels and rolled or built-up support members,
usually termed stiffeners, as shown in Figure 2.1. The overall failure of the structure is
affected by and can be governed by the buckling and plastic collapse of these individual
members. In the ultimate limit state (ULS) design, therefore, one primary task is to
accurately calculate the buckling and plastic collapse strength of such structural
members.
The structural elements that make up plated structures do not work separately, which

results in a high degree of redundancy and complexity, in contrast to those of framed
structures. To enable the behavior of such structures to be analyzed, simplifications
or idealizations must be made with consideration of the accuracy needed and the degree
of complexity of the analysis to be used. Generally, a more complex analysis produces a
greater degree of accuracy. However, the amount of structural simplification normally
depends on the situation surrounding the problem. For instance, for an initial estimate,
the ability to quickly provide a reasonable answer, with considerably less information, is
often more important than extreme accuracy, whereas a final check solution should, of
course, be as accurate as the circumstances allow.
A plated structure may be idealized into an assembly of many simpler “mechanical

structural element models” or “idealized elements” or “engineering models”; each type
displays similar behavior under a given load application, and the assembly behaves in
(nearly) the same way as the actual structure.
Typical examples of structural idealization to model a continuous stiffened panel

shown in Figure 2.1 are as follows:

• Plate–stiffener combination model (also called beam–column model)

• Plate–stiffener separation model

• Orthotropic plate model

• Pure plate element (segment) model

One of the most typical approaches is plate–stiffener (beam) combination idealization,
which models a continuous stiffened panel as an assembly of possibly asymmetric
I-beams together with their attached plating (i.e., flanges), assuming that the flanges
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support bending moments while the stiffener webs resist shear loads, as shown in
Figure 2.2a. The torsional rigidity of the stiffened panel, the Poisson ratio effect, and
the effect of the intersecting beams are all neglected in this modeling. The degree of
accuracy for this approach may therefore become critical when the flexural rigidity
of the stiffeners is lower than the plate stiffness, but the plate–stiffener combination
model may be relevant when the support members (i.e., stiffeners) are of a medium
or larger structural dimension so that they would behave as a beam–column together

Figure 2.1 A continuous stiffened plate structure.

(a)

(b)

(c)

(d)

(e)

Figure 2.2 Four types of structural idealizations possible for a plated structure: (a) Plate-stiffener (beam)
combinational model; (b) plate-stiffener (beam) separation model; (c) orthotropic plate model;
(d) supersize finite element model (pure plate element model); (e) finite element model (pure plate
element model).
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with their associated plating. The plate–stiffener combination approach may also be
applied to model a cross-stiffened panel as a system of discrete intersecting beams
(or grillage), with each beam composed of stiffeners and their associated effective plat-
ing. The primary concern of this chapter is to examine the behavior of the plate–
stiffener combinations.
Alternatively, a mechanical idealization may be feasible by separating the support

members from the plate panels at the plate–web junctions, as shown in Figure 2.2b.
The so-called plate–stiffener (beam) separation model is more appropriate when the
support members’ structural dimensions are relatively large, so that the stiffener web
and the plating between the stiffeners act as a plate panel. In this case, local buckling
of the stiffener web and the attached plating signals a primary failure mode because
the support members are sufficiently strong to remain straight well after plate failure.
Buckling and collapse of the plating between stiffeners are described in Chapters 3
and 4, respectively.
In contrast, if the support members are relatively weak, they deflect together with the

plate panels so that the behavior of the stiffened panel may in this case be idealized as
that of an “orthotropic plate” by smearing the stiffeners into the plating, as shown in
Figure 2.2c. The orthotropic plate approach is useful for computation of the panel ulti-
mate strength based on the overall grillage collapse mode. In this approach, the ortho-
tropic plate theory is used, which implies that the stiffeners are relatively numerous and
small (i.e., they deflect together with the plating) and that they remain stable through-
out the ranges of orthotropic plate behavior. The validity of representing the stiffened
panel with an equivalent orthotropic plate normally depends on the number of stiffen-
ers in each direction, their spacing, and whether their stiffness characteristics are
identical. It is recognized that application of the orthotropic plate theory to cross-
stiffened panels must be restricted to stiffened panels with more than three stiffeners
in each direction (Smith 1966, Troitsky 1976, Mansour 1977). In addition, the stiffeners
in each direction must be similar. The orthotropic plate approach is described in
Chapters 5 and 6.
In the pure plate element (segment) model, each partitioned element such as plating

between stiffeners, stiffener web, and one side of stiffener flange is idealized as one plate
element or segment, as shown in Figure 2.2d. This idealization is rather similar to the
finite element method modeling. The intelligent supersize finite element method
(ISFEM) applies the pure plate element models, as described in Chapter 13. This mod-
eling technique is also useful to automate the calculations of the cross-sectional proper-
ties for plate assemblies such as box girders or ship hull girders, where the stiffener flange
may be modeled as one plate element (segment), as described in Chapters 7 and 8. The
nonlinear finite element method idealizes the structures using finite element models
with fine meshes as shown in Figure 2.2e. Finer mesh modeling results in more accurate
solutions as described in Chapter 12.
It is therefore important to realize that different mechanical models for the same type

of structure may be required to analyze the actual behavior under different structural
dimensions or load applications. Clearly, in some cases it may be necessary to idealize
a structure by combining the modeling methods mentioned previously. For instance,
a longitudinally stiffened panel between strong transverse frames may be modeled with
either an assembly of the plate–stiffener combinations or an orthotropic plate, whereas
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heavy transverse frames or plate girders may be idealized with the plate–stiffener sepa-
ration model, where their webs are modeled as plate panels. Only plate elements can of
course be used for modeling the entire structure as applied in the ISFEM described in
Chapter 13.
In any event, the behavior of the idealized structure should be similar or nearly the

same as that of the actual structure. This chapter describes the ultimate strength formu-
lations of the plate–stiffener combination model under a variety of loading and end con-
ditions. It is noted that the theories and methodologies described in this chapter can be
commonly applied to both steel- and aluminum-plated structures.

2.2 Geometric Properties

In a continuous stiffened plate structure, a stiffener (support member) with attached plat-
ing is idealized by a plate–beam combination model whose span extends between two
adjacent major support members in the other direction. The attached plating takes the
“effective width” or “effective breadth” instead of the full width, as described in Section 2.6.
Figure 2.3 shows the geometric configurations of typical plate–stiffener combination

sections together with their attached effective plating. For convenience, the x axis is in
the longitudinal direction of the member, and the length (span) between supports is
denoted by L. The full and effective widths of the attached plating are denoted by b
and be, respectively.

2.3 Material Properties

Although the material of the stiffener’s web and flange is usually the same, it sometimes
differs from that of the attached plating (e.g., higher tensile steel used for the web and
flange and mild steel used for the plating). For general purposes, the yield strengths

be
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Figure 2.3 Typical types of plate–stiffener combination models composed of a stiffener and its
attached effective plating (N.A., neutral axis).
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of the stiffener web, flange, and attached plating are herein defined separately as σYw, σYf,
and σYp, respectively. The modulus of elasticity is E, and Poisson’s ratio is v. The shear
modulus is G = E 2 1 + ν . Some important properties of the plate–stiffener combina-
tion sections with the attached full or effective plating are given in Table 2.1.
It is noted that the expressions of Table 2.1 are of course valid for flat bars with bf = tf = 0

and for symmetric I-sections. The equivalent yield strength over the cross section and the
slenderness ratio of the attached plating between the stiffeners are calculated for the full
section, that is, with the full width of the attached plating.

2.4 Modeling of End Conditions

The end conditions (also called boundary conditions) of the support members in plated
structures are affected by the joining methods and rigidities of the support members in
the other direction. In welded plated structures, the ends of the support members typ-
ically have a certain degree of restraint to rotation and/or translation that sometimes is
not straightforward to model mathematically. For practical design purposes, however,

Table 2.1 Properties of a plate–stiffener combination section with full or effective plating.

Property Expression

Cross-sectional area A =Ap + Aw +Af, Ae =Ape +Aw +Af

where Ap = bt, Ape = bet, Aw = hwtw, Af = bftf
Equivalent yield strength
over the cross section

σYeq =
ApσYp +AwσYw +AfσYf

A

Distance from outer surface of attached
plating to elastic horizontal neutral axis z0 =

0 5bt2 +Aw t + 0 5hw +Af t + hw + 0 5tf
A

zp =
0 5bet2 +Aw t + 0 5hw +Af t + hw + 0 5tf

Ae

Moment of inertia
I =

bt3

12
+Ap z0−

t
2

2

+
h3wtw
12

+Aw z0− t−
hw
2

2

+
bf t3f
12

+Af t + hw +
tf
2
−z0

2

Ie =
bet3

12
+Ape zp−

t
2

2

+
h3wtw
12

+Aw zp− t−
hw
2

2

+
bf t3f
12

+Af t + hw +
tf
2
−zp

2

Radius of gyration
r =

I
A
, re =

Ie
A

Column slenderness ratio
λ=

L
πr

σYeq
E

, λe =
L
πre

σYeq
E

Plate slenderness ratio
β =

b
t

σYp
E

Note: Subscript “e” represents the effective cross section.

Buckling and Ultimate Strength of Plate–Stiffener Combinations 83



the end condition of the plate–stiffener combination model is typically idealized by one
or more of the five types, as shown in Figure 2.4, while Chapter 4 describes more refined
treatments of the boundary conditions for plates surrounded by support members,
which are partially rotation restrained.
At a free end, no restraints are present. The simply supported end represents a con-

dition in which rotation freely takes place with zero bending moment, while the lateral
deflection (translation) is fixed. At the fixed or clamped end, neither rotation nor lateral
deflection is allowed. Depending on the possibility of axial movements, two different
situations may be relevant, namely, Figure 2.4b or c for the simply supported end and
Figure 2.4d or e for the fixed end. With axial restraints (this is termed fixed condition),
membrane axial tension may develop as the member deflects, whereas a free axial move-
ment can occur when axial restraints are not provided (this is termed clamped
condition).
The same end condition may sometimes be applied at each end, but the possibility of

different conditions must in general be considered in accordance with the dimensions
and the joining methods of the support members. However, at least one end should
accommodate the condition in which the translation is restrained to remove rigid-body
motion.
Although both the upper and lower flanges of the I-beams in typical framed structures

away from I-beam’s ends can normally move freely, it is important to realize that the
edges of the flanges (the attached plating) of the plate–stiffener combination models
in continuous plated structures may be restricted from deforming sideways, as may
be surmised from Figure 2.2a, because a symmetric condition is attained along the edges
of the plate–stiffener combination, that is, the center line between two adjacent support
members (stiffeners), even if the stiffener flanges are free to deflect vertically and rotate
sideways. This essentially causes a different type of failure mode behavior for plate–
stiffener combination models of plated structures than those for simple I-beams of
framed structures.

2.5 Loads and Load Effects

The plate–stiffener combination model for plated structures is likely to be subjected to
various types of loads, such as axial compression/tension, concentrated or distributed
lateral load, and end moment, as shown in Figure 2.5.
Lateral loads distributed over the attached plating may typically be idealized as a lateral

line load of q = pb (i.e., multiplied by uniform lateral pressure p and the full breadth of the

(a) (b) (c) (d) (e)

Figure 2.4 Typical idealized end conditions for plate–stiffener combination models: (a) free; (b) simply
supported or pinned but translationally restrained; (c) simply supported or pinned; (d) fixed; (e)
clamped.
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attached plating between the support members), assuming that the stiffener web resists
all shear forces caused by the distributed lateral loads.
A one-dimensional structural member such as the plate–stiffener combination model

is called a column under axial compression, whereas it is called a beam under lateral load
or end moment after the occurrence of bending from the beginning of loading. The
member is called a beam–column under combined axial compression and bending.
Although axial tension normally stabilizes the behavior of beams, a beam under com-
bined bending and axial tension is sometimes called a tension beam.
The load effects (e.g., stress, bending) of the plate–stiffener combination as an element

of a complex structure are normally computed by global analysis with the linear elastic
finite element method. They can also be analyzed with the classical theory of structural
mechanics as described in many textbooks (e.g., Timoshenko & Goodier 1970, Chen &
Atsuta 1976, 1977).

2.6 Effective Width Versus Effective Breadth
of Attached Plating

The attached plating of the plate–stiffener combination model does not work separately
from the adjacent members, and it is restricted from deforming sideways, whereas the
stiffener flange may be free to deflect vertically and sideways. When a stiffened plate
structure is idealized as an assembly of plate–stiffener combination models, therefore,
one of the primary questions is to what degree and extent the attached plating reinforces
the associated stiffener.
Related to this problem, two concepts, that is, effective “width” and effective “breadth,”

are relevant to characterize the ineffectiveness of the attached plating as a result of the
nonuniform stress distribution (Paik 2008a). The effective width concept is used to
model the effectiveness of plate elements that have buckled under predominantly axial
compression or have inherently initial deflections after the occurrence of nonuniform
stress distribution in the regime of post-buckling or large deflection. The effective
breadth concept is primarily due to the action of lateral loads or out-of-plane bending.
In a wide-flanged beam (i.e., plate–stiffener combination model) under out-of-plane
bending, the classical beam theory provides a uniform distribution of longitudinal stress
across the flange section. In reality, however, the nonuniform stress distribution can
occur because the longitudinal stress caused by bending is transmitted to the flange
in a nonuniform manner through shear at the junction between the flange and the web.
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Figure 2.5 Typical load applications on a plate–stiffener combination model.
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As a result, the distribution of the stress across the flange is not uniform, but greater at
the edges (i.e., at the intersections between the plating and stiffener web) than at the mid-
dle, showing a stress lag with increasing distance from the web, as shown in Figure 2.6.
The departure of the nonuniform stress from the uniform stress assumed by the classical
beam theory is termed “shear lag,” which essentially arises from the fact that the shear
modulus of the material takes a finite value.
In summary, the reduced effectiveness of the attached plating or the flange breadth of

the plate–stiffener combination model is called the “effective width” when it is due to
compressive buckling, and it is called the “effective breadth” or “effective flange width”
when it is due to shear lag arising from lateral loads or out-of-plane bending. In some
situations, a nonuniform stress distribution and subsequent ineffectiveness of the
attached plating in the plate–stiffener combination model are due to both compressive
buckling and lateral pressure loads, such as those in the bottom plate panels of a ship in
hogging condition.
The effective width and breadth concepts are useful for dealing with a plate that

involves a nonuniform normal stress distribution as described in Chapter 4 because
the plate with the effective width or breadth can be dealt with as a virtual plate with a
uniform stress distribution that becomes a linear structural mechanics problem. For a
plate involving a nonuniform shear stress distribution, the effective shear modulus con-
cept (Paik 1995) can be applied, as described in Chapter 4.
The problem of the effective width, such as that for steel plating under in-plane com-

pression, was initially raised by John (1877), a naval architect who investigated the
strength of a ship that had broken into two pieces during heavy weather, presumably
as a result of high stress induced by saggingmoment. He pointed out that the light plating
of the deck and topsides could not be considered fully effective under compression. To
account for this effect in the calculation of the section modulus of the ship, he reduced
the thickness of the plating and kept the stress (which could be calculated without con-
sidering buckling) unchanged.

P

P

Figure 2.6 Nonuniform stress distribution induced by shear lag phenomenon.
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A pioneer in the use of analytical approach for the plate effective width was Bortsch
(1921), who used an approximate analytical effective width formula for practical pro-
blems related to bridge engineering. The modern era in the effective width concept
was begun by von Karman (1924), who developed a general method to solve the problem
theoretically and introduced for the first time the term “effective width.” He calculated
the stress distribution of two-dimensional problems using the stress function approach
to evaluate the effective width. A remarkable advancement of the Karman method was
achieved by Metzer (1929), who studied the effective flange width of simple beams and
continuous beams.
In the 1930s, a large series of compression tests on steel plates was undertaken by

Schuman and Back (1930), who noted that the buckled steel plate may behave as if only
part of its width is effective in carrying loads. By applying the effective width concept, this
phenomenon was investigated theoretically by von Karman et al. (1932), who obtained
the first effective width expression of plating. Paik (2008a) reviewed some recent
advances in the concepts of plate-effectiveness evaluation.
Figure 2.7 shows a typical nonuniform stress distribution of plating between stiffeners.

The maximum membrane stress occurs at the intersection between the plate and the
stiffener web, whereas the stresses inside the plate are comparatively smaller, which
implies that the effectiveness of the plate in carrying the load through a uniform stress
may be idealized as being confined to only a part near the plate–web junctions (plate
edges). It is thus quite usual in such a situation that the total load would be carried
by two strips of combined width, be, situated near the plate edges, carrying the maximum
stress uniformly as a representative, instead of the actual stress distribution.
Regardless of the reason for the nonuniform stress distribution, the plate effectiveness

may typically be characterized by a parameter be, which is the width (or breadth) over
which the maximum membrane stress at the intersection of the flange and web is idea-
lized to occur uniformly, with the total force thus carried being the same as that supplied
by the (actual) nonuniform stress distribution across the flange (attached plating).

y
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b be

be

2 2

σx

σx max
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22
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Figure 2.7 Effective width of the attached plating in a stiffened panel.
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Following the coordinate system as shown in Figure 2.7, the effective width (or
breadth), be, can be evaluated by

be =

b 2

−b 2
σxdy

σxmax
= b

σxav
σxmax

2 1

where σx is the nonuniform normal stress, σxav is the average stress, and σxmax is the max-
imum normal stress at the plate–web junctions.

2.6.1 Shear Lag-Induced Ineffectiveness: Effective Breadth
of the Attached Plating

An analytical formulation of the effective breadth for a plate–stiffener combination
under predominantly shear lag or bending on a wide flange is now derived. For a review
of various methods to derive analytical formulations of the shear lag-oriented effective
breadth for wide-flanged beams in the plate–stiffener combination model, interested
readers may refer to Troitsky (1976).
It is evident from Equation (2.1) that the nonuniform normal stress distribution must

be known to calculate the effective breadth. To compute the stress distribution, the clas-
sical theory of elasticity (Timoshenko &Gere 1961) can be applied. For two-dimensional
problems, the relationship between strains and displacements is given by

εx =
∂u
∂x

, εy =
∂v
∂y

, γxy =
∂u
∂y

+
∂v
∂x

2 2

where εx and εy are the normal strains in the x or y direction, γxy is the shear strain, and u
and v are the displacements in the x or y direction.
The relationship between the stresses and strains for two-dimensional problems is

given by

εx =
1
E

σx−vσy , εy =
1
E

σy−vσx , γxy =
2 1 + v

E
τxy 2 3

where σx and σy are the normal stresses in the x or y direction, τxy is the shear stress, and v
is Poisson’s ratio.
The stress distribution for two-dimensional problems can be obtained by solving the

following compatibility equation:

∂4F
∂x4

+ 2
∂4F

∂x2∂y2
+
∂4F
∂y4

= 0 2 4

where F is Airy’s stress function, which satisfies the following condition:

σx =
∂2F
∂y2

, σy =
∂2F
∂x2

, τxy = −
∂2F
∂x∂y

2 5

To calculate the nonuniform normal stress distribution of the attached plating in the x
direction, it is assumed that the plate’s lateral deflection is proportional to sin(2πx/ω),
where ω is the deflection wavelength, depending on the rigidities of the stiffener and the
type of load application. For stiff transverse frames, one may approximately take ω = L.
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In this case, the axial displacement in the x direction, u, along the plate–web intersec-
tion, that is, at y = ±b/2, may be calculated as follows (Yamamoto et al. 1986):

u= −u0 cos
2πx
ω

2 6

where u0 is the amplitude of the axial displacement function.
The axial strain, εx, at y = ±b/2 can then be calculated by substituting Equation (2.6)

into Equation (2.2) as follows:

εx y= ± b 2 =
∂u
∂x y= ± b 2

= ε0 sin
2πx
ω

2 7

where ε0 = u0(2π/ω).
To satisfy Equation (2.4), the stress function, F, may be expressed as follows:

F = f y sin
2πx
ω

2 8

where

f y =C1
2πy
ω

sinh
2πy
ω

+C2 cosh
2πy
ω

where C1 and C2 are constants to be determined by the boundary conditions.
To determine the two unknowns, C1 and C2, of Equation (2.8), two boundary condi-

tions are applied. Although Equation (2.7) can be one boundary condition, the other one
is provided so that the symmetric condition must be attained along the center line of the
attached plating between two adjacent stiffeners, which is given by

∂v
∂x y=0

= 0 2 9

By substituting Equation (2.5) into Equation (2.3), the axial strain, εx, can be expressed
in terms of Airy’s stress function as follows:

εx =
1
E

∂2F
∂y2

−v
∂2F
∂x2

2 10

By substituting Equation (2.8) into Equation (2.10) and considering Equation (2.7), the
first boundary condition can be written as follows:

d2f y
dy2

+ v
2π
ω

2

f y =Eε0 at y= ±
b
2

2 11

The second boundary condition, Equation (2.9), can be rewritten using Equation (2.2)
as follows:

∂γxy
∂x

=
∂2u
∂x∂y

+
∂2v
∂x2

=
∂2u
∂x∂y

=
∂εx
∂y

at y= 0 2 12
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Substituting Equations (2.2), (2.3), (2.5), and (2.8) into Equation (2.12), the second
boundary condition becomes the following third-order differential equation:

d3f y
dy3

− 2 + v
2π
ω

2df y
dy

= 0 at y= 0 2 13

By substituting f(y) in Equation (2.8) into Equations (2.11) and (2.13) and solving the
set of the resulting two simultaneous equations with regard to C1 and C2, we get

C1 =C3 sinh
πb
ω
,

C2 =C3
1−v
1 + v

sinh
πb
ω

−
πb
ω
cosh

πb
ω

C3 =Eε0
ω

2π

2 3−v
2

sinh
2πb
ω

− 1 + v
πb
ω

−1

2 14

The normal stress, σx, can now be obtained by substituting Equations (2.8) and (2.14)
into Equation (2.5) as follows:

σx =
2π
ω

2

C1
2πy
ω

sinh
2πy
ω

+ 2C1 +C2 cosh
2πy
ω

sin
2πx
ω

2 15

By substituting Equations (2.14) and (2.15) into Equation (2.1), the effective breadth,
be, can be calculated as follows:

be =
4ωsinh2 πb ω

π 1 + v 3−v sinh 2πb ω −2 1 + v πb ω
2 16

The effective breadth normally varies along the span of the plate–stiffener combina-
tion model, but for practical design purposes, it may be taken to have the smallest value,
which occurs at the location at which the maximum longitudinal stress develops.
Because be must be smaller than b, Equation (2.16) may be approximated as

be
b
=

1 0 for b ω ≤ 0 18

0 18L b for b ω > 0 18
2 17

As previously noted, the wavelength,ω, in Equation (2.16) or (2.17) may approximately
be taken as ω = L for the attached plating between two stiff transverse frames. Figure 2.8
shows the variation of the effective breadth (or effective flange width) from
Equations (2.16) and (2.17) versus the ratio of the stiffener spacing to the span of the
plate–stiffener combination model when ω is equal to L. It can be seen from
Figure 2.8 that the normalized effective breadth significantly decreases as the breadth
of the attached plating or the span length increases.
Equation (2.16) or (2.17) can be used to evaluate the effective breadth for the attached

plating of a plate–stiffener combinationmodel under predominantly out-of-plane bending.
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2.6.2 Buckling-Induced Ineffectiveness: Effective Width
of the Attached Plating

Strictly speaking, three different aspects of the effective width concept have been applied
in the analysis of plate post-buckling behavior: the effective width for strength, the effec-
tive width for stiffness, and the reduced tangent-modulus width.
Immediately after buckling of a perfectly flat plate under axial compression, the max-

imum normal stress becomes greater than the average stress. It may be apparent in this
case that the ratio of the effective width to the full width is the same as the ratio of the
average stress to the maximum stress as defined in Equation (2.1). It has been shown that
the maximum load-carrying capacity of a plate is near the load at which the maximum
normal stress reaches the material yield stress. Because the effective width in terms of the
maximum normal stress is useful for prediction of a plate’s ultimate strength, it is termed
the effective width for strength.
The tendency of increasing the average strain with the average stress is of course

greater after buckling than before buckling. As long as the plate–web junction remains
straight, the average value of the maximum normal stress along the plate edges may be
obtained for a uniaxially compressed plate as follows:

σxmax =Eεxav =E
u
L

2 18

where εxav is the average axial strain of the attached plating, which may approximately
be taken as the average value of the axial strain along the plate–web junctions, that is,
εxav = εx at y = ±b/2, and u is the end displacement.
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Figure 2.8 Variation of the effective breadth versus the ratio of stiffener spacing to the span of the
plate–stiffener combination model when ω is equal to L.
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In this case, the effective width can also be evaluated from Equation (2.1) but replacing
σxmax with the axial strain of Equation (2.18). An effective width for stiffness, that is,
based on the average axial strain, may be used to characterize the overall stiffness of a
buckled plate under predominantly axial compression.
The plate stiffness against axial compression is reduced immediately after buckling.

Although this behavior may be characterized by the effective width for stiffness, it is
sometimes of interest to know the magnitude of the tangent stiffness or the slope of
the average stress–strain curve after buckling, which can be computed mathematically
as ∂σxav/∂εxav in the post-buckling regime. The tangent stiffness after buckling is termed
the “tangent effective width” or the “effective Young’s modulus,” E∗. Using this formu-
lation, the ratio of the compressive stiffness after buckling to that before buckling is given
by E∗/E. For a perfectly flat plate simply supported at four edges, it is known that E∗/E≈
0.5 after buckling. As long as the unloaded edges remain straight so that some transverse
stresses develop along the unloaded edges, it is recognized that E∗/E corresponds to
∂σxav/∂εxav, whereas the former is always greater than the latter when the unloaded edges
are free to move in plane with no stresses along them (Rhodes 1982). Chapter 4 describes
this in detail.
Extensive reviews of the derivation of the effective width formulas for plates were made

by Faulkner (1975) and Rhodes (1982). Ueda et al. (1986) derived the effective width for-
mula for a plate under combined biaxial compression and edge shear accounting for the
effects of initial deflections and welding induced residual stresses. Usami (1993) studied
the effective width of plates buckled in compression and in-plane bending.
Although the concept of effective width is aimed at the evaluation of in-plane stiffness

of plate elements buckled in compression, Paik (1995) suggested a new concept for the
effective shear modulus to evaluate the effectiveness of plate elements buckled in shear
stress. The effective shear modulus concept is useful to compute the post-buckling
behavior of plates under predominant shear stresses.
One of the most typical effective width expressions for the compressive strength of

long plates that are often used in industry is given in the following form:

be
b
=

1 0 for β < 1

C1 β−C2 β2 for β ≥ 1
2 19a

where C1 and C2 are constants that depend on the plate boundary conditions and β is the
plate slenderness ratio for the full section, as defined in Table 2.1. Based on the analysis of
available experimental data for steel plates with initial deflections at a moderate level but
without residual stresses, Faulkner (1975) proposed C1 = 2.0 and C2 = 1.0 for plates
simply supported at all (four) edges or C1 = 2.25 and C2 = 1.25 for plates clamped at
all edges.
Although the original von Karman effective width expression of plates, that is,

be/b = √(σcr/σY), where σcr is the critical stress and σY is the yield stress, is considered
to be reasonably accurate for relatively thin plates, it was found to be optimistic for rel-
atively thick plates with initial imperfections. In this regard, Winter (1947) modified the
von Karman equation as follows:

be
b
=

σcr
σmax

1−0 25
σcr
σmax

2 19b

where σmax is the maximum normal stress, which may be taken as σmax = σY.
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Equation (2.19b) has been widely used to evaluate the post-buckling strength of cold-
formed steel plates (AISI 1996, ENV 1993-1-1 1992). In some design codes, the term 0.25
in Equation (2.19b) is changed to 0.218 or 0.22.
Equation (2.19) may be used to evaluate the effective width of the attached plating of

the plate–stiffener combination model under predominantly axial compressive loads.
More refined expressions of the plate effective width (and the effective shear modulus)
are described in Chapter 4.

2.6.3 Combined Shear Lag-Induced and Buckling-Induced Ineffectiveness

In reality, it is important to realize that the plating in plated structures is likely to be sub-
jected to combined compressive loads and lateral pressure, resulting in both buckling
and shear lag. In this case, evaluation of the effectiveness of the attached plating in
the plate–stiffener combination model must account for both effects.
In this case, σxmax of Equation (2.1) must be the maximum compressive stress, which is

expressed as a function of the combined compressive loads, lateral pressure, and initial
imperfections, as described in detail in Chapter 4.

2.7 Plastic Cross-Sectional Capacities

In the allowable working stress design method, “first yield” is often used as a design cri-
terion, even though most metal structures can experience local yielding and still with-
stand some further increase of loading as the internal stresses are redistributed
because of the ductility of material.
In contrast, the structural design criteria for the ULS design are based on maximum

load-carrying capacity or ultimate strength based on the plastic theory. When the ulti-
mate strength of a plate–stiffener combination model is being considered, plastic cross-
sectional capacities are sometimes of interest when the effects of local buckling and
strain hardening are not of primary concern.
In the subsequent sections, the cross-sectional capacities of the plate–stiffener com-

bination model at either first or full (complete) yield are described under axial load, sec-
tional shear, bending, or a combination of these.

2.7.1 Axial Capacity

The plastic capacity, PP, for axial load is calculated by

PP = ± ApσYp +AwσYw +AfσYf 2 20

where Equation (2.20) is valid for axial tension and axial compression when local buck-
ling does not take place, and a relevant sign convention is used (e.g., positive sign for
tension or negative sign for compression).

2.7.2 Shear Capacity

It is practically considered that only the cross-sectional part parallel to the direction of a
shearing force contributes to the shear structural resistance. When the vertical sectional
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shear force (with a positive sign for positive shear and a negative sign for negative shear)
is considered, for instance, only the stiffener web cross-sectional area of a plate–stiffener
combination model is included in the calculation of shear capacity, FP, as follows:

FP = ± AwτYw 2 21

where τYw = σYw/√3 is the shear yield stress of web.

2.7.3 Bending Capacity

In a beam with uniform material properties, the first yield occurs at the outer fiber of the
cross section at which the greatest bending develops in the span. With further loading,
the cross section becomes entirely plastic. The plastic bending capacity of beams typi-
cally depends on their cross-sectional geometry and their material properties. The capac-
ity formulas take a positive sign for positive bending and a negative sign for negative
bending.

2.7.3.1 Rectangular Cross Section
Before the plastic bending capacity of the plate–stiffener combination model is calcu-
lated, a simpler case with rectangular cross section is considered. The neutral axis
(N.A.) is in this case located at half the height of the web due to symmetry, as shown
in Figure 2.9.
The first yield bending capacity,MY, can then be obtained by the first moment of axial

stresses with regard to the neutral axis when either the upper or lower outer fiber yields
as follows:

MY = ±
hw 2

−hw 2
σxtwzdz = ±ZYσYw 2 22

where ZY = twh2w 6 is the first yield section modulus.

2

N. A. N. A. N. A.

hw

2

hw

tw

σYw σYw

σYw σYw

Figure 2.9 Stress distribution of a rectangular cross-sectional beam at first and full yielding.
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The bending capacity at first yield can also be predicted by applying simple beam the-
ory, leading to the following linear relationship between the bending moment and the
bending stress:

M = ±
σx
z
I 2 23

whereM is the bendingmoment, σx is the bending stress, I is themoment of inertia, and z
is the distance from the neutral axis.
In the case of the rectangular cross-sectional beam, because I = twh3w 12 and σx = σYw

at the outer fiber, that is, z = ±hw/2, the first yield bending capacity obtained from
Equation (2.23) corresponds to Equation (2.22). The position of the plastic neutral axis
is determined so that the areas on two parts, that is, in the tension or compression side,
are equal. For a symmetric rectangular cross-sectional beam, the plastic neutral axis is
located at half the height of the web.
The full plastic bending capacity,MP, is calculated by the first moment of axial stresses

with regard to the plastic neutral axis when the cross section entirely yields, as shown in
Figure 2.9, namely,

MP = ±
hw 2

−hw 2
σxtwzdz = ±ZPσYw 2 24

where ZP = twh2w 4 is the plastic section modulus.

2.7.3.2 Plate–Stiffener Combination Model Cross Section
The location of the elastic neutral axis from outer surface of the effective plating as
shown in Figure 2.10 can be determined from Equation (7.44) or Table 2.1 as follows:

zp =
0 5Apet +Aw t + 0 5hw +Af t + hw + 0 5tf

Ape +Aw +Af
2 25

The first yield bending capacity,MY, can be calculated from Equation (7.47) by apply-
ing classical simple-beam theory as follows:

MY = ±
Ie

zp−0 5t
σYp for first yield at attached plating 2 26a

MY = ±
Ie

t + hw + 0 5tf −zp
σYf for first yield at stiffener flange 2 26b

σyp

σyf
σyf

be

bf

tw

t
zp zp zp–t

tf

t

tf

hw

N. N.N.
N.

A. A.
A.

A.

σyp

σyw

σyw hw+t–zp

Figure 2.10 Stress distribution of the plate–stiffener combination section at full yield.
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where Ie is defined in Table 2.1. It is noted that the segments have been assumed to
remain elastic except the attached plating or stiffener flange as shown in Figure 2.10.
Equation (2.26) can be rewritten as follows:

MY = ±ZYpσYp for first yield at attached plating 2 27a

MY = ±ZYfσYf for first yield at stiffener flange 2 27b

where ZYp = Ie/(zp − 0.5t) is the first yield section modulus at the mid-thickness of the
attached plating side and ZYf = Ie/(hw + t + 0.5tf − zp) is the first yield section modulus
at the mid-thickness of the stiffener flange side.
The location of the plastic neutral axis from the outer surface of plating as shown in

Figure 2.10 can be determined from Equation (7.50) as follows:

zP =
0 5ApeσYpt +AwσYw t + 0 5hw +AfσYf t + hw + 0 5tf

ApeσYp +AwσYw +AfσYf
2 28

The full plastic bending capacity,MP, can also be calculated from the simple-beam the-
ory method from Equation (7.51) as follows:

MP = ± betσYp zP−
t
2

+ zP− t twσYw
zP− t
2

+ hw + t−zP twσYw
hw + t−zP

2
+ bf tfσYf hw + t−zP +

tf
2

= ± betσYp zP−
t
2

+
zP− t

2

2
twσYw +

hw + t−zP
2

2
twσYw

+ bf tfσYf hw + t−zP +
tf
2

2 29

2.7.4 Capacity Under Combined Bending and Axial Load

When combined bending and axial loading is applied, the stress distribution at full yield
of the cross section can be presumably considered to be as shown in Figure 2.11.

e

M M

z z

P yP

σYeq

–σYeq

Figure 2.11 Stress distribution over an arbitrary cross section under combined bending and axial load.
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The axial load, P, and bending moment, M, can then be calculated by integration of the
stress distribution over the cross section as follows:

P =
A
σxdA, M =

A
σxzdA 2 30

where A ()dA represents the integration over the cross-sectional area.
In Equation (2.30), P and M are expressed as a function of an unknown parameter, e,

which is the distance from the outer fiber of the attached plating to the plastic neutral
axis. Combining these two equations with regard to the unknown parameter, an inter-
action relationship between P andM can be obtained. It can be recognized that the plas-
tic capacity of the sections under combined bending and axial loads is less than that for
bending alone.

2.7.4.1 Rectangular Cross Section
Before the plastic capacity of the plate–stiffener combination model under combinedM
and P is calculated, a simpler case with a rectangular cross section is considered. The
stress distribution over a rectangular cross section at full yield may be presumed as that
shown in Figure 2.12. In this case, the stress distribution can be divided into two parts,
one for pure bending stress and the other for pure axial stress.
Based on the presumed stress distribution, the reduced bending moment capacity,M,

and the associated axial load, P, can be calculated by

P = tw hw−2e σYw 2 31a

M =MP−MPe =MP−ZPeσYw

=
tw h2w
4

σYw−
tw hw−2e

2

4
σYw

2 31b

e

P
M

tw

hw × 2e

2

hw

2

hw

y

z
–σYw –σYw

σYw

σYwσYw

+

Figure 2.12 Stress distribution of a rectangular cross section under combined bending and axial load.
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where PP = twhwσYw,MP = twh2w 4 σYeq,MPe = ZPeσYw is the plastic bending capacity for
the cross section of e, and ZPe = [tw(hw − 2e)2]/4 is the plastic section modulus for the
cross section of e.
Combining Equations (2.31a) and (2.31b), the plastic capacity interaction equation of

the plate–beam combination under M and P is given by

M
MP

+
P
PP

2

= 1 2 32

Figure 2.13 shows the aforementioned interaction curve for rectangular cross sections
under combined (positive) bending and (positive) axial load. As evident from Figure 2.13,
the plastic bending capacity significantly decreases as the axial load increases.

2.7.4.2 Plate–Stiffener Combination Model Cross Section
The plastic stress distribution of a plate–stiffener combinationmodel whose cross section is
subject to combined bending and axial loadmay be described in terms of the position of the
plastic neutral axis, e, which is the distance from the outer fiber of the attached plating to the
plastic neutral axis, as those shown in Figure 2.14 (Ueda & Rashed 1984).
In contrast to the symmetric rectangular cross section, the expressions of the plastic

capacity interaction relationships of the plate–stiffener combination model underM and
Pmay differ in accordance with the direction of load application. Based on the presumed
stress distribution for each state of load combination, the reduced bending moment,M,
and the associated axial load, P, can be expressed as a function of the unknown, e. By
omitting e between the two expressions, an interactive relationship for the plastic capac-
ity is then derived.

M
/M

P

M
2

P
PP

1–=

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

P/PP

MP

Figure 2.13 The interaction curve for a rectangular cross section under combined bending and
axial load.
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In the interest of simplicity, Equation (2.32) is often used for the plastic capacity inter-
action formula of the plate–stiffener combination model under M and P, but using PP
and MP for the plate–stiffener combination model.

2.7.5 Capacity Under Combined Bending, Axial Load, and Shearing Force

When combined bending, M, the axial load, P, and the shearing force, F, are applied,
stress distributions similar to that for combined bending and axial load may be
adopted, assuming that the shearing forces are sustained by the stiffener web alone.
In this regard, a reduced yield strength, σYv, for the stiffener web may be introduced
by the Tresca yield criterion, Equation (1.31b), as follows (ENV 1993-1-1 1992):

σYv = 2
σYw
2

2
−

F
Aw

2 0 5

2 33

(F–A)
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(B–C)
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F

(A)
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Figure 2.14 Presumed stress distributions over the plate–stiffener combination model cross
section for varying states of combined bending and axial load.

Buckling and Ultimate Strength of Plate–Stiffener Combinations 99



where F is the applied shearing force.
For combined bending, axial load, and shearing forces, therefore, the approximate

reduced plastic bending capacity of the plate–stiffener combination model cross
section can be obtained from Equation (2.32) with PP andMP for the plate–stiffener com-
bination model, but replacing the stiffener web yield stress σYw with σYv of
Equation (2.33).

2.8 Ultimate Strength of the Plate–Stiffener Combination
Model Under Bending

A structure can collapse when it develops sufficient plastic hinges to form a plastic mech-
anism. The plastic collapse strength formulas of the plate–stiffener combination model
under bending with many types of loading and end conditions can typically be derived by
applying the rigid-plastic theory (Hodge 1959, Neal 1977), whereas the plate–stiffener
combination model is dealt with as a beam.
Belenkiy and Raskin (2001) showed that the ultimate strength of the beams as deter-

mined by the rigid-plastic theory corresponds quite well to a “threshold” (ultimate) load
obtained by nonlinear finite element analysis. This threshold load is defined to separate
the linear elastic regime from the plastic regime. Figure 2.15 illustrates the threshold ulti-
mate load concept for beams. In this figure, the load–deflection curve indicated by the
solid linemay be divided into three regimes: the linear elastic regime (0b), the transitional
regime (bc) in which plastic deflection begins to grow, and the large-deflection
regime (cd).

WA Wc Wd W

P

Transition

A

b

c

d

Large plastic regime

Linear

elastic

regime

0

Pu

Figure 2.15 A schematic representation of the threshold (ultimate) load of beams.
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The true load–deflection curve was approximated by a bilinear relation, that is, 0Ad,
where the deflections wc and wd could be taken as wc = 0.005L and wd = 0.01L, where L is
the span of the beam. The threshold ultimate load is then defined as the load, Pu, at point
A. Based on the comparisons of the ultimate loads of beams with various types of end
conditions and load applications as determined by the rigid-plastic theory with the
threshold loads obtained by nonlinear finite element analyses, Belenkiy and Raskin
(2001) also developed some important insights: (i) the plastic deflection, wA, that corre-
sponds to the threshold loads is normally between 0.001L and 0.004L, and (ii) the effects
of strain hardening and membrane stress on the threshold loads are usually small.
For the use of the rigid-plastic theory to derive the ultimate strength formulations of

beams, the basic assumptions noted in the succeeding text are typically assumed to be
adequate:

• Strain-hardening effects can be ignored.

• The Tresca yield criterion is applicable.

• Small deformations are involved, and thus the membrane effects may be neglected.

• Local buckling does not take place.

• The localized plastic region does not expand into the longitudinal (axial) direction of
beams, and thus the plastic hinge is considered to remain fixed at a particular cross
section.

• The cross section of the beam remains in plane, that is, it does not distort in the axial
direction.

In the following sections, the plastic strength formulas of beams are derived for various
loading and end conditions, neglecting the effect of local buckling. In this case, the plastic
strength formulas are expressed as functions of the beam’s full plastic bending moment,
MP. The approximate ultimate strength of the beams taking into account the effects of
local buckling may then be estimated from those plastic strength formulas but replacing
MP with the ultimate bendingmoment,Mu, which is determined by considering the local
buckling effect at the cross section.

2.8.1 Cantilever Beams

The plastic collapse strength formulas for cantilever beams under various types of load
applications as shown in Figure 2.16 are first derived. When a beam is subjected to point
load Q at the free end as shown in Figure 2.16a, the bending moment along the beam
span is given by

M =Q L−x 2 34

As the point load increases, the plastic region around the fixed end initiates and
expands through the thickness. The beam then collapses via the formation of the plastic
hinge mechanism if the cross section at the fixed end yields entirely, that is, when the
bending moment at the fixed end reaches the plastic bending moment, MP. Therefore,
the plastic collapse load, Qc, is in this case determined as follows:

Qc =
MP

L
2 35

where MP is defined in Section 2.7.3.
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Using the same method as described previously, the plastic collapse loads of the
cantilever beam under different load applications are determined as shown in
Figure 2.16b–d.

2.8.2 Beams Simply Supported at Both Ends

The plastic collapse strength formulas for beams simply supported at both ends and sub-
ject to various types of load applications such as those shown in Figure 2.17 are now
derived.
When a beam is subjected to uniformly distributed line loads, as shown in Figure 2.17a,

it collapses if the cross section yields at any one location inside the span because both
ends are already pinned. Due to the symmetric load application (similar to that shown
in Figure 2.17a), maximum bending occurs at the mid-span, where the cross
section yields first. The reaction forces at both ends and the bending moment distribu-
tion are in this case given by

RA =RB =
qL
2
, M =RAx−

1
2
qx2 =

1
2
qx L−x 2 36

The maximum bending moment, Mmax, at the mid-span, that is, x = L/2, is thus
obtained as follows:

Mmax =
qL2

8
2 37

Q
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3MP

q

L2qc =
2MP

Figure 2.16 Plastic collapse loads of a cantilever beam under various types of load applications.
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By equating Equation (2.37) with the plastic bending capacity,MP, the plastic collapse
strength, qc, is obtained by replacing q in Equation (2.37) with qc as follows:

qc =
8MP

L2
2 38

The same procedure can also be applied to calculate the plastic collapse strengths of
simply supported beams under different load applications, with results as shown in
Figure 2.17b or c.

2.8.3 Beams Simply Supported at One End and Fixed at the Other End

The plastic collapse strength formulas for statically indeterminate beams, simply sup-
ported at one end and fixed at the other end, under various types of load applications,
such as those shown in Figures 2.18 and 2.19, are now derived.
When a beam is subjected to uniformly distributed line loads as shown in Figure 2.18,

the equilibrium condition gives the following equations for the reaction forces and end
moment:

RA =
qL
2

+
MA

L
, RB =

qL
2
−
MA

L
2 39

where RA and RB are the reaction forces at points A and B andMA is the redundant reac-
tion (bending moment) at end A.
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L2
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9 3

Figure 2.17 Plastic collapse loads of a beam under various types of load applications, simply
supported at both ends.
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The bending moment along the span can be expressed in terms of the redundant reac-
tion, MA, as follows:

M = −MA +RAx−
q
2
x2 = −MA 1−

x
L

+
qL
2
x−

q
2
x2 2 40

The bending strain energy,U, of a beam with the effective cross-sectional properties is
given by

U =
1
2 Vol

σxεxdVol =
1
2E Vol

σ2xdVol =
1
2E Vol

M
Ie
z

2

dVol

=
1
2E

L

0

M
Ie

2

Ae

z2dAe dx=
1
2E

L

0

M2

Ie
dx

2 41
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Figure 2.18 Moment distribution of a beam under uniform line load, simply supported at one end and
fixed at the other end.
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Figure 2.19 Plastic collapse loads of a beam under other types of load applications, simply
supported at one end and fixed at the other end. (Note: Qc1 or qc1 indicates the critical load when
the plastic hinge is only formed at the fixed end.)
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where
Ae

z2dAe = Ie, σx is the bending stress, εx is the bending strain,
Vol

dVol indicates

the volume integration over the beam, and
Ae

dAe indicates the area integration over the

effective cross section of the beam, where the subscript “e” represents that the attached
plating of the plate–stiffener combination model (beam) has the effective breadth.
Applying the so-called Castigliano principle, the rotation at the fixed end, which may

be calculated by differentiating the strain energy with regard to the associated bending
moment, must be zero because of the fixed end condition, namely,

θA =
∂U
∂MA

=
L

0

M
EIe

∂M
∂MA

dx= 0 2 42

where θA is the rotation at end A.
By substituting Equation (2.40) into Equation (2.42), the redundant reaction moment,

MA, is determined by

MA =
qL2

8
2 43

As the load increases, the maximum bending moment occurs at the fixed end, that is,
x = 0. When the maximum bending moment at end A reaches the plastic bending capac-
ity |MP|, the fixed end becomes a plastic hinge. The critical lateral load in this state is
defined by replacing q with qc1 as follows:

qc1 =
8MP

L2
2 44

Even after the cross section at the fixed end has yielded, the beam may be able to sus-
tain further loading because a plastic hinge mechanism has not yet formed. Until q = qc1,
themaximumbendingmoment inside the span,Mmax1, occurs at x= 5

8 L. Because endA is
now considered to be pinned, thus keeping the bending moment constant at −MP, the
additional bending moment, ΔM, due to the additional lateral load, that is, q − qc1, is
given as for a beam simply supported at both ends, namely,

ΔM = 1
2
q−qc1 Lx−x2 2 45

The beam collapses if the total (accumulated) maximum bending moment inside the
span reaches the plastic bending moment because a plastic hinge mechanism is then
formed as follows:

Mmax =M∗
max1 +ΔMmax 2 46

where Mmax occurs at x = (2 − √2)L, which does not correspond to the location of
Mmax1 M∗

max1 is calculated by Mmax1 =M using Equations (2.40) and (2.43) at q = qc1
and x = (2 − √2)L, and ΔMmax is obtained by ΔMmax =ΔM using Equation (2.45) at
x = (2 − √2)L.
The beam eventually collapses if the accumulated maximum bending moment inside

the span reaches the plastic bending moment, that is,Mmax =MP. In this state, the plastic
collapse strength of the beam subject to evenly distributed line loads is given by

qc =
2 3 + 2 2 MP

L2
2 47
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For the other types of load applications, as shown in Figures 2.19a and b, the first crit-
ical and plastic collapse loads may be calculated using the same approach as before.

2.8.4 Beams Fixed at Both Ends

The plastic collapse load formulas for statically indeterminate beams fixed at both ends
under various types of load applications, as shown in Figures 2.20 and 2.21, are now
derived. In this case, the beams collapse if the cross sections at both ends and at any
one location inside the span yield.
For a beam subjected to uniformly distributed line loads as shown in Figure 2.20, plas-

tic hinges form simultaneously at both ends, where the maximum bending moments
occur because of the symmetric loading and end conditions. Even after the formation
of plastic hinges at both ends, the beam can withstand further loading until the cross
section at the mid-span yields, leading to a plastic hinge mechanism.
In Figure 2.20, the bending moment along the span may be given by considering the

symmetric load condition with regard to the mid-span as follows:

M = −MA +
qL
2
x−

q
2
x2 2 48

where MA =MB is the bending moment at beam ends.
Because the bending strain energy, U, of the beam with the effective cross

section is calculated from Equation (2.41) and the rotation at fixed end A must be zero,
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Figure 2.20 Moment distribution of a beam under uniform line load, fixed at both ends.
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Figure 2.21 Plastic collapse loads of a beam under other types of load applications, fixed at both ends.
(Note: Qc1 or qc1 indicates the critical load when the plastic hinge is only formed at both fixed ends.)
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Equation (2.42) is satisfied. By solving Equation (2.42) together with Equation (2.48),MA

is determined by

MA =
qL2

12
2 49

We now get a critical load, qc1, when both ends just yield; that is, the end moment at
x = 0 or L reaches the plastic bending moment, −MP, namely,

qc1 =
12MP

L2
2 50

The maximum bending moment,Mmax1, which occurs at the mid-span, that is, x = L/2
until both ends just yield, is calculated from Equation (2.48) with Equation (2.49) because
q = qc1:

Mmax1 =
qc1L2

24
2 51

Even after both ends have yielded, the beammay sustain further loading until the cross
section at the mid-span yields. Although the end moment is kept constant at −MP, the
bending moment inside the span increases. Because the beam can now be considered to
be simply supported at both ends, the additional bending moment, ΔM, inside the span
due to further loading is given by neglecting the membrane stress effects, namely,

ΔM =
q−qc1

2
Lx−x2 2 52

Because the maximum additional bending moment, ΔMmax, occurs at the mid-span,
the total (accumulated) maximum bending moment, Mmax, at the mid-span is obtained
as follows:

Mmax =Mmax1 +ΔMmax =
qc1L2

24
+

q−qc1 L2

8
=
qL2

8
−MP 2 53

where ΔMmax = [(q − qc1)/8]L
2.

Because a plastic hinge mechanism is formed when the cross section at the mid-span
yields, withMmax =MP, the plastic collapse load, qc, of the beam is finally determined by

qc =
16MP

L2
2 54

Using amethod similar to that used previously, the first critical or plastic collapse loads
of the beams under other load applications, such as those shown in Figure 2.21a and b,
can be calculated.

2.8.5 Beams Partially Rotation Restrained at Both Ends

When a beam is connected to adjoining structures, the rotation at the ends can be
restrained to some degree. A beam partially rotation restrained at both ends is now con-
sidered. The beam is subjected to a lateral pressure distribution with a trapezoidal pat-
tern that varies linearly between the two ends as shown in Figure 2.22a, which is given by
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q = −
qB−qD

L
x+ qB 2 55

where qB and pD are the lateral pressures at ends B and D, respectively.
The end moments arise from the constraints against rotation of the beam at the junc-

tures of the beam and the adjoining structure, as indicated in Figure 2.22a. They thus
depend on the torsional rigidity of the adjoining structures.
From the bending moment equilibrium condition, the constraints at the ends of the

beam can be defined as follows:

At endB
d2w
dx2 x=0

=
CB

L
dw
dx x= 0

2 56a

At endD
d2w
dx2 x=L

=
CD

L
dw
dx x= L

2 56b

where w is the lateral deflection of the beam and CB and CD are the respective constraint
constants at the two ends of the beam. For simply supported or clamped ends, these two
constants become either zero or infinity, respectively.
The elastic bending moment distribution of the beam is expressed by applying the sim-

ple beam theory as follows:

M = EIe
d2w
dx2

=MB−
x
L

MB−MD +
qB
2

x2−Lx +
qB−qD

6
Lx−

x3

L
2 57

where Ie is the moment of inertia of the beam with effective section.
Figure 2.22b represents the beam’s elastic bending moment distribution. It can be seen

from the figure that three extreme values of the bending moments developed, at end B, at

W
L

M
B

q
D

q
B

M
D

M
D

M
B

DB

(a)

(b)

Figure 2.22 A beam elastically restrained
at both ends and under lateral pressure:
(a) loading; (b) elastic bending moment
distribution.
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end D, and inside the span. By performing the double integration of Equation (2.57) and
considering the end conditions, the lateral deflection, w, may be expressed by

w=
qB + qD
24EIe

x4

2
−Lx3 +

L3x
2

+
qB−qD
24EIe

−
x5

5L
+
x4

2
−
Lx3

3
+
L3x
30

+
MB

EIe
−
x3

6L
+
x2

2
−
Lx
3

+
MD

EIe

x3

6L
−
Lx
6

2 58

The end moments at ends B and D can be calculated as a function of the constraint
coefficients by substituting Equation (2.58) into the equilibrium condition, Equation
(2.56), as follows:

MB =
CBL2

120
qB−qD 2−CD + qB−qD 30−5CD

12 + 4CB−4CD−CBCD
2 59a

MD =
CDL2

120
qB−qD 2 +CB − qB + qD 30 + 5CB

12 + 4CB−4CD−CBCD
2 59b

The extreme value of the bending moment inside the span occurs where the condition
of dM/dx = 0 is satisfied. When both ends and any one point inside the span yield, a col-
lapse hinge mechanism is formed. Depending on the end condition, the loading and
other details related to the formation of the collapse mechanism may vary.
Under the ideal end conditions previously described in Section 2.8.2 or 2.8.3, the beam

collapses if the following criteria are fulfilled:

1) A beam simply supported at both ends:

qB
2

x2p−Lxp +
qB−qD

6
Lxp−

x3p
L

=MP 2 60

where

xp =
L
2

for qD = qB

xp =
L

qB−qD
qB−

q2B + q2D + qDqB
3

for qB > qD

2) A beam fixed at end B and simply supported at end D:

xp L2− x2p qD + 2L2−3Lxp + x2p qB

6 2L−xp
=MP 2 61

where xp is the distance from end B to the plastic hinge inside the span, which is taken so
that qB or qD should be a minimum.
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2.8.6 Lateral-Torsional Buckling

A beam under lateral load that is bent about its major axis can buckle sideways if its com-
pression flange has insufficient stiffness in the lateral direction. At a critical load, the
plate–stiffener combination model can become unstable because the compression flange
may twist sideways. This phenomenon is sometimes termed lateral-torsional buckling
(or tripping), which is generally considered to be one of the many types of behavior that
may lead to the ULS of the plate–stiffener combination model. Section 5.8 describes lat-
eral-torsional buckling of stiffeners with attached plating.

2.9 Ultimate Strength of the Plate–Stiffener Combination
Model Under Axial Compression

The plate–stiffener combination model under axial compressive loads can be dealt with
as a column. Unlike plate panels, which are described in Chapter 4, a column cannot be
expected to have residual strength after the inception of buckling, and thus the buckling
strength typically is considered to be synonymous with the ultimate strength for the col-
umn members.
In this section, the ultimate strength formulations for the plate–stiffener combination

model under predominantly axial compressive loads are described.

2.9.1 Large-Deflection Behavior of Straight Columns

From the classical large-deflection column theory, the length, dL , of an infinitesimal ele-
ment AB of a laterally deflected column, as shown in Figure 2.23, whose initial length was
dx, can be calculated by (Shames & Dym 1993)

dL 2 = dx 2 1 + 2εx 2 62

where εx = du/dx + ½(du/dx)2 + ½(dw/dx)2 is the axial strain of the straight column tak-
ing into account the large-deformation effects, u is the axial displacement, and w is the
lateral deflection. (For a perfectly straight column, the added deflection equals the total
deflection because no initial deflection exists.)

A

A

C

C

B

θ

B

dx

dL′

dx′ 1 + dx
du

dw
dx

dx

dx
=

W

x

Z

Figure 2.23 Large deflection of a laterally deflected column.
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If the column neutral axis is supposed to be incompressible during its bending from the
straight-line configuration, then dL = dx. Therefore, Equation (2.62) becomes

1 +
du
dx

2

+
dw
dx

2

= 1 2 63

From geometric consideration of Figure 2.23, the rotation of the segment AB can be
calculated by

sinθ =
dw dx dx

AB
=

dw dx dx

1 + du dx 2 + dw+ dx 2 dx
=
dw
dx

2 64

because Equation (2.63) is satisfied as long as the column is incompressible.
After deformation, the curvature, 1/R, of the column is given by considering dL = dx,

namely,

1
R

dθ
dL

=
dθ
dx

=
d2w dx2

cosθ
=

d2w dx2

1− dw dx 2
2 65

becausecosθ (dθ/dx) = d2w/dx2 fromEquation (2.64), cosθ = √(1 − sin2θ) = √[1 − (dw/dx)2],
and R is the radius.
When the column deflection is considered sufficiently small, Equation (2.65) is often

simplified to

1
R

d2w
dx2

2 66

because dw/dx 1 and hence (dw/dx)2≈ 0 in this case.
The total shortening of the entire column can be calculated by considering

Equation (2.63) as follows:

u=
L

0

du
dx

dx=
L

0
1−

dw
dx

2

−1 dx −
1
2

L

0

dw
dx

2

dx 2 67

where it is important to realize that the aforementioned shortening expression accom-
modates only the effects of lateral deflection, whereas the column neutral axis is
incompressible.
We now calculate the strain energy of the column due to bending. Using the

Bernoulli–Euler hypothesis for the bending of beams as described in Section 7.5.1,
the strain energy, U, can be obtained by

U =
1
2 Vol

σxεxdVol =
E
2 Vol

ε2xdVol =
E
2 Vol

z
R

2
dVol =

EIe
2

L

0

1
R

2

dx 2 68

because εx = z R,
Ae

z2dAe = Ie, and σx is the bending stress. The subscript e represents

the effective section.
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Substituting Equation (2.66) into Equation (2.68), the strain energy, U, may approxi-
mately be calculated by

U
EIe
2

L

0

d2w
dx2

2

dx 2 69

In contrast, the external potential energy,W, can be obtained using Equation (2.67) as
follows:

W = Pu=P
L

0

du
dx

dx −
P
2

L

0

dw
dx

2

dx 2 70

The total potential energy, Π, can be given by a sum of the strain energy, U, and the
external potential energy, W, as follows:

Π=U +W 2 71

which results in

Π=
EIe
2

L

0

1
R

2

dx−P
L

0

du
dx

dx
EIe
2

L

0

d2w
dx2

2

dx−
P
2

L

0

dw
dx

2

dx

for the straight column.
The large-deflection behavior of a column can then be analyzed by applying the prin-

ciple of minimum potential energy to Equation (2.71). For instance, when the lateral
deflection, w, is supposed to be a Fourier series function that satisfies the boundary con-
dition of the column and includes several unknown constants, Ci, the function of w is
substituted into Equation (2.71). The constants Ci are then determined by the principle
of minimum potential energy because ∂ /∂Ci = 0; refer also to Equation (2.90).

2.9.2 Elastic Buckling of Straight Columns

To study the ultimate strength of columns, of primary interest is elastic buckling. To
illustrate the column buckling phenomenon, a simply supported straight column is con-
sidered, as shown in Figure 2.24.
When the column deflection is considered sufficiently small, the following values for

the column with effective section are obtained:

Internal bending moment M = −EIe
1
R
= −EIe

d2w
dx2

2 72a

External bending moment M =Pw 2 72b

because the curvature, 1/R, is given by Equation (2.66).

P
x w

Lz

P

Figure 2.24 A straight column simply supported at both ends.
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Considering the equilibrium condition for the bending moment, the following govern-
ing differential equation emerges:

−EIe
d2w
dx2

=Pw or
d2w
dx2

+ k2w= 0 2 73

where k = √(P/EIe).
The general solution of Equation (2.73) reads

w=C1 sinkx+C2 coskx 2 74

where C1 and C2 are constants to be determined in accordance with the end conditions.
Because both ends are simply supported, w = 0 at x = 0 and x = L. Substituting this end

condition into Equation (2.74), the following two conditions emerge:

C2 = 0, C1 sinkL= 0 2 75

Considering the first condition of Equation (2.75), the form of the solution becomes
w =C1 sin kx. This means that the coefficient C1 should not be zero; otherwise no deflec-
tion exists. Thus, the second condition of Equation (2.75) provides a nontrivial solution
as follows:

sinkL= 0 or kL= π, 2π, 3π,…, nπ,… 2 76

The smallest value of the applied load, P, is given when kL = π. Thus, the so-called Euler
buckling load, PE, is calculated by

PE =
π2EIe
L2

2 77

After buckling, the deflection pattern of the column simply supported at both ends is
therefore expressed as w = sin(πx/L).

2.9.3 Effect of End Conditions

The ends of a column are usually welded to other members and thus are restrained
against rotation. The amount of this restraint typically varies with the properties of
the different structural members involved.
For an infinitesimal part of the column with a certain type of end condition(s), as

shown in Figure 2.25, the force equilibrium considerations lead to the basic fourth-order
differential equation for flexural buckling of columns, when dw/dx≈ 0, as follows:

d2

dx2
EIe

d2w
dx2

+P
d2w
dx2

= 0 2 78

When the cross section is uniform along the span, Equation (2.78) can be rewritten as
follows:

EIe
d4w
dx4

+P
d2w
dx2

= 0 2 79
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The general solution of Equation (2.79) is given by

w=C1 coskx+C2 sinkx+C3x+C4 2 80

where k is defined in Equation (2.73).
Considering lateral deflection w, slope dw/dx, bending moment EIed

2w/dx2, and shear
force EIed

3w/dx3 + P dw/dx, in the z direction, the end conditions of the column may be
mathematically expressed by

At the simply supported end w= 0,
d2w
dx2

= 0 2 81a

At the fixed end w= 0,
dw
dx

= 0 2 81b

At the free end d2w
dx

= 0,
d3w
dx3

+ k2
dw
dx

= 0 2 81c

Because two boundary conditions exist at each end, a total of four unknown constants
in Equation (2.80) must be determined in any given case. The lateral deflection, w, then
has nonzero solutions only if the determinant for a set of linear homogeneous equations
with regard to C1–C4 vanishes. The buckling load can be calculated as the minimum
value that satisfies the condition that the determinant becomes zero.
For instance, buckling of a column is now considered when one end is fixed and the other

end is free, such as that shown in Figure 2.26. The end conditions are in this case given by

At x= 0 free end d2w
dx

= 0,
d3w
dx3

+ k2
dw
dx

= 0 2 82a
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Figure 2.25 Force components acting on a column free-body element.
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Figure 2.26 A cantilever column.
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At x= L fixed end w= 0,
dw
dx

= 0 2 82b

By substituting these boundary conditions into Equation (2.80), we get

C1 =C3 = 0, C2 sinkL+C4 = 0, C2k coskL= 0 2 83a

The second and third conditions of Equation (2.83a) become

C4 = −C2 sinkL=C2 −1 n, C2 0, k 0

coskL= 0 kL= 2n−1
π

2
, n= 1, 2,3,…

2 83b

The buckling load is then obtained from the last equation of Equation (2.83b) when the
smallest load is obtained, with n = 1, as follows:

kL=
π

2
PE =

π2EIe
4L2

=
π2EIe
2L 2 2 83c

After buckling, the lateral deflection pattern of the cantilever column is given by w = 1
− sin(πx/2L). As the rotational restraints of the adjacent members increase, the column
ends may approach fixed conditions. In this case, the buckling wavelength between the
points of inflection decreases. For instance, the buckling wavelength of the cantilever col-
umn, as shown in Figure 2.27b, may become 200% of the original length as evident from
Equation (2.83c). For the column fixed at both ends as shown in Figure 2.27c, the buck-
ling wavelength is 50% of the original length. When one end is fixed and the other is
pinned, as shown in Figure 2.27d, the buckling wavelength becomes 70% of the original
length.
It is apparent that the buckling wavelength decreases as the rotational restraints at the

column ends increase. Also, the shorter the buckling wavelength, the larger the buckling
load. For convenience, the term “effective length” (also called “buckling length”) is typ-
ically used to account for the effects of the column end conditions so that the elastic
buckling load of a column with various types of end conditions can be determined by
the Euler formula, but replacing the original (or system) length, L, by the effective length,
Le, as follows:

PE =
π2EIe
L2e

=
π2EIe
αL 2 or σE =

PE
A

=
π2E

αL re
2 2 84

where α is a constant to account for the effect of the column end condition.
For various end conditions, the applicable theoretical values of the effective length, Le,

or constant α, are given as those of Figure 2.27.

2.9.4 Effect of Initial Imperfections

The actual columns in welded plated structures may have initial imperfections in the
form of initial deflections (out of straightness) and residual stresses that affect the struc-
tural behavior and load-carrying capacity.
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An initially deflected column simply supported at both ends as shown in Figure 2.28 is
now considered. The geometric configuration of the initial deflection, w0, which takes a
half sinusoidal wave pattern, may approximately be defined as follows:

w0 = δ0 sin
πx
L

2 85a

where δ0 is the amplitude of the initial deflection.

P
(a)

(b)

(c)

(d)

P

Le = L

Le = 2L
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Figure 2.27 Effective length of a
column varying the end conditions: (a)
both ends pinned (α = 1); (b) one end
free, the other fixed (α = 2); (c) both ends
fixed (α = 0.5); (d) one end pinned, the
other fixed (α = 0.7).
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Figure 2.28 An initially deflected column simply supported at both ends.
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The total (initial plus added) deflection, w, after buckling, may also take a similar shape
to the initial deflection as follows:

w= δ sin
πx
L

2 85b

where δ is the amplitude of the total deflection.
The bending moment equilibrium is in this case given by

EIe
d2 w−w0

dx2
+Pw= 0 2 86

where the first term on the left side represents internal bending moments due to the
added deflection alone, because the initial deflection does not contribute to internal
bending, whereas the second term is the external bending moment imposed by the total
deflection.
The axial strain of a column with initial deflection may be given as similar to that of a

straight column defined in Equation (2.62) by taking into account the large-deflection
effects but by neglecting the large axial displacement effects as follows:

εx =
∂u
∂x

+
1
2

∂2w
∂x2

2

−
1
2

∂2w0

∂x2

2

2 87

where the first term on the right side of Equation (2.87) represents the small strain com-
ponent and the second and third terms portray the large-deflection effects.
To determine the amplitude of total deflection in Equation (2.85), the strain energy-

based approach is used. Considering that the strain energy is due to the contribution
associated with added deflection, that is, w−w0, the elastic strain energy, U, of
Equation (2.69) for the initially deflected column can be rewritten as follows:

U =
EIe
2

L

0

∂2w
∂x2

−
∂2w0

∂x2

2

dx 2 88a

Substituting Equations (2.85a) and (2.85b) into Equation (2.88a) and performing the
integration along the column, the strain energy is obtained as follows:

U =
π4EIe
4L3

δ−δ0
2 2 88b

because

L

0
sin2

πx
L
dx=

L

0

1
2

1−cos
2πx
L

dx=
L
2

On the other hand, the external potential energy,W, of the compressive load, P, related
to the added deflection is calculated from Equation (2.70) together with Equations
(2.85a) and (2.85b) by neglecting the small strain component:

W =Pu= −
P
2

L

0

dw
dx

2

−
dw0

dx

2

dx= −
Pπ2

4L
δ−δ20 2 89
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The total potential energy, П, of the initially deflected column is obtained from
Equation (2.71), but using the strain energy,U, of Equation (2.88) and the external poten-
tial energy, W, of Equation (2.89). Applying the principle of minimum potential energy,
the amplitude of the total deflection can be found as follows:

∂Π
∂δ

= 0=
π4EIe
2L3

δ−δ0 −
Pπ2

2L
δ or δ=

δ0
1−P PE

=ϕδ0 2 90

where PE is the Euler buckling load as defined in Equation (2.77) and ϕ = 1/(1 − P/PE) =
magnification factor.
Substituting Equation (2.90) into Equation (2.85b), the total deflection can now be

obtained as follows:

w=
δ0

1−P PE
sin

πx
L

=ϕδ0 sin
πx
L

2 91

Figure 2.29 plots Equation (2.91), representing the applied compressive load versus the
total deflection of the column, varying the magnitude of initial deflection. As evident
from Figure 2.29, the deflection increases progressively from the very beginning of com-
pressive loading when initial deflection exists and a bifurcation buckling point does not
exist in this case. Also, the load-carrying capacity decreases as the magnitude of initial
deflection increases.
The existence of any compressive residual stresses further reduces the column’s buck-

ling strength. For practical design purposes, the effect of compressive residual stress on
the column buckling strength is sometimes included by deducting the same value of the
compressive residual stress from the computed buckling strength.
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Figure 2.29 The behavior of a column with initial deflection.
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2.9.5 Collapse Strength of Columns

The elastic buckling strength formulas derived thus far are valid as long as the material
remains in the elastic regime. This may be true for a slender column without initial
deflection. Because the Euler buckling stress must be less than the proportional limit
of the material, σP, a limit of the column slenderness ratio for use of the Euler formula
may be given from Equation (2.84) as follows:

L
re

≥
π

α

E
σP

1 2

2 92

because σE ≤ σP.
For instance, if the proportional limit of material is taken as σP = 200MPa, E = 210 GPa

and α = 1.0, the column slenderness ratio must satisfy L/re ≥ π (210 000/200)1/2 = 101.7
so that the Euler formula result is valid to use. For a stocky or imperfect column, how-
ever, the elastic proportional limit is often exceeded, and a certain degree of plasticity
takes place before the inception of buckling. As a result, the real buckling load in this
case is less than the Euler buckling load.
Therefore, the Euler buckling formula is not directly available for a stocky or imperfect

column, both of which are more common in actual structures. However, because the
Euler formula provides very useful insight into the column buckling behavior, many
researchers have attempted to use it to the extent possible, even for elastic–plastic buck-
ling of a column, with corrections applied to some of the parameters involved. For
instance, some classical theories such as the double-modulus theory or tangent-modulus
theory that resemble the original Euler formulation have been suggested to deal with
elastic–plastic effects on column buckling (Bleich 1952).
In reality, a stocky columnwith a high value of computed elastic buckling strength does

not buckle in the elastic regime, but rather reaches the ultimate strength with a certain
degree of plasticity. To account for this behavior, some approximate formulas based on
the insights developed from experiments, such as the so-called Gordon–Rankine formu-
lation, the Tetmajer formulation, and the Johnson–Ostenfeld formulation, are some-
times used, although the Johnson–Ostenfeld formulation is the most popular in
today’s industry practice.
For modern practical design purposes, the various available ultimate strength formu-

lations for the plate–stiffener combination model under predominantly axial compres-
sive loads are often based on one of the three common approaches, namely,

• The Johnson–Ostenfeld formulation method

• The Perry–Robertson formulation method

• A purely empirical formulation method.

The Johnson–Ostenfeld formulationmethod takes into account the effects of plasticity
in the elastic buckling strength. The resulting “elastic–plastic” buckling strength is
termed the “critical” buckling strength, which is approximately regarded as the ultimate
strength.
The Perry–Robertson formulation method considers that the plate–stiffener combi-

nation model collapses when the maximum compressive stress at the extreme fiber
reaches the yield strength of the material. Two possible collapse modes are considered
for the Perry–Robertson formulation method of the plate–stiffener combination model,
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depending on the compressed side, namely, plate-induced failure (PIF) or stiffener-
induced failure (SIF); the former is initiated by compression at the attached plating side,
and the latter is initiated by compression at the stiffener flange side.
In a purely empirical formulation method, the ultimate strength formulations are

developed by curve fitting based on mechanical collapse test results and/or numerical
computations. These types of empirical formulas can be cast as simple closed-form
expressions, which have certain advantages in getting first-cut estimates, whereas their
usemay be restricted to a specified range of dimensions or be subject to other limitations.

2.9.5.1 The Johnson–Ostenfeld Formulation Method
The critical buckling strength based on the Johnson–Ostenfeld formulation is given as
follows:

σcr =
σE for σE ≤ ασF

σF 1−σF 4σE for σE > ασF
2 93

where σE is the elastic buckling stress, σcr is the critical (or elastic–plastic) buckling
stress, σF is the reference yield stress, σF = σY for compressive normal stress and
σF = τY = σY/√3 for shear stress, σY is the material yield stress, and α is a constant depend-
ing on the material proportional limit, which is usually taken as α = 0.5 or 0.6.
For a plate–stiffener combination model with different materials (e.g., mild steel for

the attached plating and high-tensile steel for the stiffener), σYmay be taken as the equiv-
alent yield stress, that is, σY = σYeq as defined in Table 2.1. In using Equation (2.93), the
sign of the compressive stress is taken as positive. Also, Equation (2.93) can be applied for
a plate or stiffened panel as well as a column.

2.9.5.2 The Perry–Robertson Formulation Method
In the Perry–Robertson formulation, it is assumed that a column collapses if the max-
imum compressive stress at the extreme fiber of the column cross section reaches the
yield stress. For an initially deflected column simply supported at both ends as shown
in Figure 2.28, the maximum bending moment, Mmax, can be calculated using the total
deflection, δ, at the mid-span, as given by Equation (2.90), as follows:

Mmax =Pδ=
Pδ0

1−P PE
2 94

where it is assumed that local buckling or lateral-torsional buckling does not occur.
The maximum compressive stress at the outer fiber of the cross section can be

obtained by the sum of axial stress and bending stress as follows:

σmax =
P
A
+
Mmax

Ie
zc =

P
A
+
zc
Ie

Pδ0
1−P PE

= σ +
Aδ0zc
Ie

σ

1−σ σE
2 95

where σ = P/A and zc is the distance from the elastic neutral axis to the outer fiber of the
compressed side.
Following the Perry–Robertson formulation method, the ultimate strength of a col-

umn is determined from Equation (2.95) by replacing σ with σu when σmax reaches
the equivalent yield stress, σYeq, namely,
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σmax = σYeq = σu 1 +
η

1−σu σE
2 96

where η=Aδ0zc Ie = δ0zc r2e .
The real ultimate strength, σu, is taken as the minimum value of the two solutions

obtained by solving Equation (2.96) with regard to σu as follows:

σu
σYeq

=
1
2

1 +
1 + η

λ2e
−

1
4

1 +
1+ η

λ2e

2

−
1

λ2e

0 5

2 97

where λe = (L/πre)√(σYeq/E) = √(σYeq/σE).
For a straight column, that is, without initial deflection, the constant η becomes η= 0.

Therefore, it is evident that Equation (2.97) is reduced to the Euler formula when λe ≥ 1,
namely,

σu
σYeq

=
1

λ2e
2 98

The direction of the column deflection is governed by that of the initial deflection, as
long as lateral loads are not applied. Because the nature of the initial deflection is some-
what uncertain, the failure mode of the plate–stiffener combination model may be either
PIF or SIF. It is for this reason that the ultimate strength for the Perry–Robertson for-
mulation method may be determined as the minimum value of the two strengths.
In a continuous stiffened plate structure, SIF is a trigger to the collapse of the entire

panel. The original concept of the Perry–Robertson formulation method assumes that
SIF occurs if the tip of the stiffener yields. This assumption may in some cases be too
pessimistic in terms of the collapse strength predictions. Rather, plasticity may grow into
the stiffener web as long as lateral-torsional buckling or stiffener web buckling does not
take place, so that the stiffener may resist further loading even after the first yielding
occurs at the extreme fiber of the stiffener. In this regard, only the PIF-based Perry–
Robertson formula, that is, excluding the SIF, is sometimes adopted for prediction of
the ultimate strength of the plate–stiffener combination model as representative of a
continuous stiffened panel.

2.9.5.3 The Paik–Thayamballi Empirical FormulationMethod for a Steel Plate–Stiffener
Combination Model
Although a vast number of empirical formulations (sometimes called column curves) for
the ultimate strength of a column used in framed structures have been developed (e.g.,
Chen & Atsuta 1976, 1977, ECCS 1978, among others), relevant empirical formulas that
can be used to predict the ultimate strength of a plate–stiffener combination model asso-
ciated with plated structures are also available (Lin 1985, Paik & Thayamballi 1997,
Zhang & Khan 2009).
As an example, Paik and Thayamballi (1997) developed an empirical formula to predict

the ultimate strength of a plate–stiffener combination model under axial compression as
a function of the column and plate slenderness ratios. The Paik–Thayamballi empirical
formulation method is derived by curve fitting of a mechanical collapse test database for
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the ultimate strength of steel-stiffened panels under axial compression and with initial
imperfections (initial deflections and residual stresses) as follows:

σu
σYeq

=
1

0 995 + 0 936λ2 + 0 170β2 + 0 188λ2β2−0 067λ4
≤
1

λ2
2 99

where λ and β are the column and plate slenderness ratios for the full section, respec-
tively, as defined in Table 2.1. Because the ultimate strength of a column cannot be
greater than the elastic column buckling strength, σu σYeq = 1 λ2 should be taken
if σu σYeq ≥ 1 λ2.
Equation (2.99) implicitly includes the possible effects of local buckling or lateral-

torsional buckling and initial imperfections (initial deflection and welding residual
stress). Also, both the column and plate slenderness ratios used in Equation (2.99) are
calculated for the full section, that is, without evaluating the effective width of the
attached plating. This may sometimes be of benefit when evaluation of the plate effective
width is difficult.

2.9.5.4 The Paik Empirical Formulation Method for an Aluminum Plate–Stiffener
Combination Model
Paik (2007, 2008b) derived empirical formulations to predict the ultimate compressive
strength of an aluminum plate–stiffener combination model that are similar to
Equation (2.99) but have two different expressions for extruded or built-up T-bar cross
section and flat-bar cross section:
Aluminum extruded or built-up T-bars:

σu
σYeq

=
1

1 318 + 2 759λ2 + 0 185β2−0 177λ2β2 + 1 003λ4
≤
1

λ2
2 100a

Aluminum flat bars:

σu
σYeq

=Min

1

2 500−0 588λ2 + 0 084β2 + 0 069λ2β2 + 1 217λ4

1

−16 297 + 18 776λ+ 17 716β−22 507λβ

≤
1

λ2
2 100b

Figure 2.30a–d confirms the applicability of Equations (2.100a) and (2.100b) by com-
parison with experiments and nonlinear finite element method solutions together with
Equation (2.99), in which experiments and nonlinear finite element solutions are all
obtained for aluminum-stiffened plate structures (Paik 2008b, Paik et al. 2012). For
flat-bar type of stiffeners, aluminum-stiffened plate structures reach the ultimate com-
pressive strength by local web buckling when the column slenderness ratio is small, in
contrast to steel-stiffened plate structures.
It is interesting to note that the Paik–Thayamballi formula of Equation (2.99), which

was originally derived for a steel plate–stiffener combination model, may also be applied
to an aluminum plate–stiffener model when the plate slenderness ratio of the attached
plating is relatively large or the attached plating is thin. It is realized that the bias
and coefficient of variation are 1.032 and 0.101, respectively, for Equation (2.100a)
and 1.020 and 0.114, respectively, for Equation (2.100b). Figure 2.31 compares the
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Figure 2.30 Validity of Equation (2.100a) for aluminum-stiffened plate structures: (a) extruded and
built-up bars with β = 2.08; (b) extruded and built-up bars with β = 3.33; (c) flat bars with β = 2.08; (d) flat
bars with β = 3.33 (Paik 2008b).
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Johnson–Ostenfeld formulation method, the Perry–Robertson formulation method, and
the Paik–Thayamballi empirical formulation method for the column ultimate strength
for a steel plate–stiffener combination model varying the column slenderness ratios for
selected initial eccentricity and plate slenderness ratios. For convenience in the present
comparisons, it was assumed that λe = λ.

2.9.6 Local Web or Flange Buckling Under Axial Compression

In some cases, local buckling can take place in the web or flange of a stiffener in a stif-
fened panel. Once such stiffener web or flange buckling occurs, the stiffened panel may
easily fall into the overall collapse mode because the stiffeners may no longer function as
support members. As described in Chapters 5 and 6, local web buckling is a collapse
mode of a stiffened panel, because the plating is left with essentially no stiffening once
the stiffener web buckles in the elastic–plastic regime, and a global buckling mode may
thus follow immediately.
Chapter 6 describes the ultimate strength calculation methods that account for local

buckling of the stiffener web, where the local web or flange buckling strength
formulations are presented in Chapter 5. It is noted that the plate–stiffener combination
model usually does not account for local web or flange buckling of stiffeners, but the
purely empirical formulation methods such as the Paik–Thayamballi formulation
method have been established based on the experimental database and/or numerical
computations that take into account the effects of local web or flange buckling of
stiffeners.

1.0 Euler formula

Johnson–Ostenfeld formula

Paik–Thayamballi
β = 1.0

η = 0.2
η = 0.4
η = 0.6

β = 2.0
β = 3.0
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Figure 2.31 A comparison of the ultimate strength formulations for a steel plate–stiffener
combination model under axial compression.
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2.9.7 Lateral-Torsional Buckling Under Axial Compression

In some cases, the stiffener web can twist sideways if the stiffener flange is not sufficiently
strong to remain straight. This phenomenon is called lateral-torsional buckling (or trip-
ping), which occurs suddenly and results in subsequent unloading of the support mem-
ber. As described in Chapters 5 and 6, lateral-torsional buckling is a collapse mode of a
stiffened panel, because the plating is left with essentially no stiffening once the stiffener
twists sideways, and a global buckling mode may thus follow immediately.
Chapter 6 describes the ultimate strength calculation methods that account for lateral-

torsional buckling of the stiffener, where the lateral-torsional buckling strength formu-
lations of stiffeners are presented in Chapter 5. It is again noted that the plate–stiffener
combination model usually does not account for lateral-torsional buckling of stiffeners,
but the purely empirical formulation methods such as the Paik–Thayamballi formula-
tion method has been established based on the experimental database and/or numerical
computations that take into account the effects of lateral-torsional buckling of stiffeners.

2.10 Ultimate Strength of the Plate–Stiffener Combination
Model Under Combined Axial Compression and Bending

In this section, the ultimate strength formulations for a plate–stiffener combination
model under combined axial compression and bending are described by accounting
for the effects of initial imperfections. In this case, the plate–stiffener combinationmodel
is dealt with as a beam–column.

2.10.1 The Modified Perry–Robertson Formulation Method

The original Perry–Robertson formulation method is available to calculate the collapse
strength of the plate–stiffener combination model under axial compressive loads only,
where it is assumed that local buckling such as local web or flange buckling and lateral-
torsional buckling of stiffeners does not take place. It is considered that the column col-
lapses if the maximum compressive stress at the outer fiber of the cross section reaches
the yield stress.
For a plate–stiffener combination model under combined axial compression and

bending as a beam–column, the original Perry–Robertson approach may also be applied
to calculate the ultimate strength, but the maximum compressive stress at the outer fiber
of the plate–stiffener combination model cross section is now a function of bending and
axial compression where the bending arises from lateral pressure loads. This approach is
called the modified Perry–Roberson formulation method.
For a plate–stiffener combination model (beam–column) under combined axial com-

pression, P, and lateral line load, q, as defined in Figure 2.5, the internal bending moment
along the span can be obtained by

M =Mq +Pw 2 101

where Mq is the bending moment due to the lateral line load q and w is the total lateral
deflection.
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Using Equations (2.72a) and (2.101), the bending equilibrium of the plate–stiffener
combination model with the effective cross section reads

EIe
d2w
dx2

= −M = −Mq−Pw or
d2w
dx2

+ k2w= −
Mq

EIe
2 102

where k is defined in Equation (2.73).
The total lateral deflection and bending moment distribution of the plate–stiffener

combination model can be obtained by solving Equation (2.102) under prescribed
boundary and loading conditions. For instance, the total lateral deflection and bending
moment of the plate–stiffener combination model simply supported at both ends under
combined axial compressive load, P, and lateral line load, q, are obtained as follows:

w=
q
Pk2

1−
cos k L 2−x
cos kL 2

+
q
2P

x L−x , M =
q
k2

1−
cos k L 2−x
cos kL 2

2 103

Because the maximum lateral deflection, wmax, or the maximum bending moment,
Mmax, occurs at the mid-span, that is, x = L/2, the following values are obtained:

wmax =C1wqmax, Mmax =C2Mqmax 2 104

where

C1 =
384
5k4L4

sec
kL
2

−1−
k2L2

8
,

C2 =
8

k2L2
1−sec kL 2 , wqmax =

5qL4

384EIe
, Mqmax =

qL2

8

wqmax and Mqmax are the maximum lateral deflection and the maximum bending
moment, respectively, caused by lateral line load q alone. The coefficients C1 and C2 por-
tray the magnification factors for the lateral deflection and bending moment, respec-
tively. As is apparent, the magnification factors may differ depending on the load
applications or end conditions.
When applying the Perry–Robertson formulation method, it is assumed that the

plate–stiffener combination model collapses when the maximum compressive stress
at the outer fiber of the cross section reaches the yield stress. Depending on the direction
of lateral loading, the compressed side of the cross section can be automatically
determined.
For practical design purposes, specifically when the direction of lateral loading is pre-

viously unknown, the maximum stress at the cross section may be taken as the larger
value of the stresses at the two extreme fibers, namely,

σmax =
P
A
+
Mmax

Ie
zmax = σYeq 2 105

where zmax is the larger value of zp or hw + t + tf − zp and zp is defined in Table 2.1.
The ultimate axial compressive stress, σu, is obtained as the solution of

Equation (2.105) with regard to σ = P/A. An iterative process may be needed to solve
Equation (2.105) with regard to the axial load becauseMmax is a nonlinear function of P.
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To obtain a closed-form expression of the ultimate compressive strength for the plate–
stiffener combination model, a simplification can herein be made. It is assumed that the
maximum bending moment of the plate–stiffener combination model is the sum of the
bending moment due to lateral loads plus that due to geometric eccentricity, which may
include the lateral deflection caused by an external load as well as the initial deflection,
namely,

Mmax =Mqmax +Pϕ wqmax + δ0 2 106

whereMqmax is the maximum bending moment due to the lateral load alone, wqmax is the
maximum deflection (amplitude) due to the lateral load alone, δ0 is the initial deflection,
and ϕ is the magnification factor as defined in Equation (2.90).
To check the accuracy of Equation (2.106), an example is considered when a beam–

column (plate–stiffener combination model) is subjected to uniform lateral line load, q,
and axial compression P = 0.5PE. We assume that initial deflection does not exist, that is,
δ0 = 0, so that the exact solution of Equation (2.104), which isMmax = 2.030Mqmax, can be
compared directly with Equation (2.106). Because wqmax = 5qL4/(384EIe) and ϕ = 1/(1 −
P/PE) = 2, the maximum bending moment by Equation (2.106) results in

Mmax =Mqmax +
5qL4

384EIe

π2EIe
L2

=Mqmax 1 +
5π2

48
= 2 028Mqmax 2 107

It is evident that Equation (2.106) is sufficiently accurate in this case because the dif-
ference between Equations (2.104) and (2.106) is less than 0.1% in this example. Because
the ultimate strength is reached when the maximum stress equals the yield stress, an
equation similar to Equation (2.105) appears, namely,

σmax =
P
A
+
Mqmax

Ie
zmax +

P
1−P PE

wqmax + δ0
zmax

Ie
= σYeq 2 108

By introducing the following nondimensional parameters,

R=
σu
σYeq

, λe =
σYeq
σE

=
L
πre

σYeq
E

, η=
Azmax

Ie
wqmax + δ0 , μ=

Mqmax

σYeq

zmax

Ie

Equation (2.108) may be expressed as a quadratic function of the axial compressive
stress and lateral load, namely,

ηR− 1−R−μ 1−λ2eR = 0 2 109

Regarding the lateral load as a constant dead load, the ultimate compressive strength of
the plate–stiffener combination model under combined axial compression and lateral
load is obtained as the minimum value of the two solutions of Equation (2.109) with
regard to R, namely,

R=
1
2

1−μ+
1+ η

λ2e
−

1
4

1−μ+
1 + η

λ2e

2

−
1−μ

λ2e

0 5

2 110

Figure 2.32 shows the variation of R so obtained, versus the column slenderness ratio,
for selected values of η and μ. To approximately account for the effects of welding
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residual stresses, Equation (2.110) may be modified by multiplying a knockdown factor,
α, as follows:

R= α
1
2

1−μ+
1 + η

λ2e
−

1
4

1−μ+
1 + η

λ2e

2

−
1−μ

λ2e

0 5

2 111

where the knockdown factor α due to compressive residual stress, σrsx, may sometimes
be taken as α = 1.03 − 0.08|σrsx/σYeq| ≤ 1.0 for built-up sections.

2.10.2 Lateral-Torsional Buckling Under Combined Axial Compression
and Bending

The lateral-torsional buckling (also called tripping) strength, σT, for a plate–stiffener
combination model under combined axial compression and bending can be calculated
as described in Chapter 5, where the bending arises from lateral pressure loads.
To illustrate the length effect of a plate–stiffener combinationmodel under either axial

compression alone or combined axial compression and bending, Figure 2.33 shows the
variations of the elastic tripping strengths and the inelastic tripping strengths predicted
with the Johnson–Ostenfeld formulation method. For comparison, the ordinary Euler
column buckling strengths and the plasticity effect are also plotted.
It is observed from Figure 2.33 that the effects of lateral-torsional buckling are signif-

icant in a relatively stocky column. The lateral-torsional buckling strength of a stocky
column is much lower than the ordinary Euler column buckling strength, which does
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Figure 2.32 Variation of the ultimate compressive strength from the Perry–Robertson formula
versus the column slenderness ratio for plate–stiffener combinations under combined axial
compression and lateral load.
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Figure 2.33 Variation of the lateral-torsional buckling strength versus the column slenderness ratio for
a plate–stiffener combination model under axial compression alone: (a) angle section stiffener with
attached effective plating; (b) Tee-section stiffener with attached effective plating.
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Figure 2.34 Variation of the tripping strength versus the column slenderness ratio for a plate–stiffener
combination model under combined axial compression and bending: (a) angle section stiffener;
(b) Tee-section stiffener.
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not accommodate the lateral-torsional deformations of the stiffener. For a slender col-
umn, however, the lateral-torsional deformation effect is negligible, at least as far as these
examples (with an identical stiffener flange breadth) are concerned.
It is realized that a one-sided (asymmetric) stiffener flange (e.g., angle section stiffener)

can have more desirable performance than a symmetric stiffener flange (e.g., Tee-section
stiffener) when the column slenderness ratio is low or when the column is short in length.
On the contrary, a symmetric stiffener flange can provide more desirable performance
than an asymmetric stiffener flange when the column slenderness ratio is high or when
the column is long in length. As shown in Figure 2.33b, ordinary flexural buckling may be
a more dominant failure mode than lateral-torsional buckling for the symmetric
section stiffener when the column slenderness ratio is high.
Figure 2.34 shows the effects of the lateral load on the lateral-torsional buckling

strength of a plate–stiffener combination model. It is observed from Figure 2.34 that
the lateral loads can significantly reduce the lateral-torsional strength of the plate–
stiffener combination model under axial compression.
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3

Elastic and Inelastic Buckling Strength of Plates Under
Complex Circumstances

3.1 Fundamentals of Plate Buckling

The behavior of a plated structure is considered at three levels: the bare plate element
level, the stiffened panel level, and the entire plated structure level. This chapter
describes buckling strength at the first level, that is, the plating between longitudinal stif-
feners and transverse frames. As the predominantly compressive stress reaches a critical
value, the plate buckles, resulting in a rapid increase in lateral deflection after a signif-
icant decrease in the in-plane stiffness.
The phenomenon of buckling is normally described by categorizing plasticity into

three classes—elastic buckling, elastic–plastic buckling, and plastic buckling—with
the latter two considered inelastic buckling. Elastic buckling occurs solely in the elastic
regime. Elastic–plastic buckling occurs after a local region inside the plate undergoes
plastic deformation. Plastic buckling indicates that buckling occurs in the regime of gross
yielding, that is, after the plate has yielded over large regions. Thin plates normally show
elastic buckling, whereas thick plates usually exhibit inelastic buckling.
rBuckling of a plate between stiffeners, which is a basic failure mode in a stiffened

panel, is a good indication for the serviceability limit state (SLS) design. To under-
stand the ultimate limit state (ULS)-based design procedure, basic knowledge on
the buckling of plates is essential. The buckling behavior of plates normally depends
on a variety of influential factors, including geometric or material properties, loading
characteristics, boundary conditions, initial imperfections, and local damage (e.g.,
perforations).
This chapter describes classical and more advanced formulations of buckling strength

for plates under simple andmore complex circumstances. Generally, in this chapter, new
or less well-known results are emphasized. Multiple load components are treated to the
greatest possible extent. The effects of boundary restraints other than idealized simply
supported or fixed conditions and the effects of lateral pressure, perforations, and resid-
ual stresses are also treated.
The coverage in this chapter is extensive, but as may be surmised, plate elements con-

stitute the major portion of the structural weight of complex plated structures. By exten-
sion, it also follows that there are significant benefits to be gained by designing them in
an optimal and appropriate manner. It is noted that the theories and methodologies
described in this chapter can be commonly applied to steel and aluminum plates.
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3.2 Geometric and Material Properties

For the convenience of plate buckling analysis, the coordinate system for the plate uses x
in the long direction and y in the short direction, as shown in Figure 3.1. The dimensions
of the plate are a in length (i.e., in the x direction), b in breadth (i.e., in the y direction),
and t in thickness. In this case, the plate aspect ratio, a/b, is always greater than 1 (i.e.,
a b≥ 1). Young’s modulus is E, and Poisson’s ratio is v. The elastic shear modulus is
G = E/[2(1 + v)]. The yield stress of the material is σY; τY = σY 3. The plate bending
rigidity is D = Et3/[12(1 − v2)]. The plate slenderness ratio is β = b t σY E.

3.3 Loads and Load Effects

The plate elements in a continuous plated structure are likely to be subjected to com-
bined in-plane and lateral pressure loads. For plate elements in a complex structure,
the load effects (stresses) are calculated by linear elastic finite element analysis (FEA)
or by the classical theory of structural mechanics. The individual load components have
both local and overall structural effects.
In calculating the loadeffects, the structure and the associated loadeffects areoftendivided

into primary, secondary, and tertiary levels. Figure 3.2 illustrates a typical example of these
three levels in a ship structure (Paulling 1988). In this case, the primary level is related
to the response of the entire ship’s hull as a beam under bending or twisting moments.

y

b

a

t∼

p

X

p

τ

τ

σx
σx

σy

σy

σbxσbx

σby

σby

Figure 3.1 A rectangular plate under combined in-plane and lateral pressure loads.
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The secondary level is associatedwith the load effects of a stiffened panel, such as at the outer
bottom plate panels of a double-bottom structure between two adjacent transverse bulk-
heads. The boundaries of the secondary structure (i.e., stiffened panel) are usually formed
by other secondary structures (e.g., side shells or bulkheads). The tertiary level represents
the load effects of the individual plating between stiffeners. The boundaries of the tertiary
structure (i.e., plating) are formed by the stiffeners of the secondary structure (i.e., stiffened
panel) of which it is a part. It is important to realize that the load effect analysismust account
for the three responses noted earlier.
These load components are not always applied simultaneously, but more than one nor-

mally exists and interacts. Therefore, the buckling strength formulations must account
for such combined load effects. In the buckling strength design, the plate element is con-
sidered to be subjected to average in-plane stresses, σx = σxav, σy = σyav, σbx, σby, τ = τav,
and lateral pressure, p, or their combinations, as shown in Figure 3.1.
For perforated plates under in-plane loads, the membrane stress distribution may be

nonuniform even before buckling, and thus the average values of the applied stresses of a
perforated plate may be lower than those of a perfect plate, that is, one without perfora-
tions. For practical design purposes of perforated plates, the average stresses of the plates
excluding perforations are often used as the characteristic measure of the applied stres-
ses, whereas smaller, partial safety factors related to the load effects are usually adopted
in this case.
For convenience in this chapter, axial compressive stress is taken as positive in sign,

whereas axial tension is taken as negative in sign unless otherwise specified.

3.4 Boundary Conditions

The plate elements in plated structures are supported by various types of members along
the edges, which have finite values of torsional rigidity, in contrast to the idealized simply
supported boundary conditions that are often assumed for design purposes.
Depending on the torsional rigidity of support members, the rotation along the plate

edges is restrained to some extent. When the rotational restraints are zero, the edge

Primary: hull girder

Secondary:

double bottom

Tertiary:

plating

Figure 3.2 Three structural response levels:
primary, secondary, and tertiary.
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condition corresponds to a simply supported case, whereas the edge condition becomes
clamped when the rotational restraints are infinite.
Most current practical design guidelines for the buckling and ultimate strength of

plates are based on boundary conditions in which all (four) edges have idealized edge
conditions, such as being simply supported or clamped. In real plates of continuous
plated structures, such idealized edge conditions rarely if ever occur because of the
finite rotational restraints.
For more advanced design of plates against buckling, it is therefore important to better

understand the buckling strength characteristics of plates as a function of the rotational
restraints associated with the support members along the edges.
This chapter deals with the buckling strength of plates with various edge conditions

that are simply supported, clamped, or partially rotation restrained. The first two types
of edge conditions are ideal but are often adequate for practical design purposes.

3.5 Linear Elastic Behavior

The behavior of a plate either before buckling or under predominantly axial tensile load-
ing may be linear elastic until buckling occurs or gross yielding is formed. The linear
elastic behavior of either perfect plates before buckling or imperfect plates under pre-
dominantly axial tensile loading can typically be represented by the relationship between
average stresses and strains in a plane stress state as follows:

εxav =
1
E
σxav−

ν

E
σyav

εyav = −
ν

E
σxav +

1
E
σyav

γav =
1
G
τav

3 1a

where εxav, εyav, and γav are the average strain components corresponding to σxav, σyav,
and τav, respectively. Equation (3.1a) can be rewritten in the matrix form as follows:

σxav
σyav
τav

= Dp
E

εxav
εyav
γav

3 1b

where

Dp
E
=

E
1−v2

1 v 0
v 1 0
0 0 1−v 2

3.6 Elastic Buckling of Simply Supported Plates Under
Single Types of Loads

The elastic buckling stress solutions for a plate under single in-plane loading and com-
mon idealized edge conditions are widely available from classic works on the theory of
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elasticity (e.g., Bleich 1952, Timoshenko & Gere 1982, Hughes & Paik 2013). The elastic
buckling strength of a plate with a/b ≥ 1 is typically given in the following form:

σE = k
π2D
b2t

= k
π2E

12 1−v2
t
b

2

3 2

where σE is the plate buckling strength under a single type of load and k is the buckling
coefficient for the corresponding load. Values of σE and k for various single types of loads
are given in Table 3.1.

3.7 Elastic Buckling of Simply Supported Plates Under Two
Load Components

3.7.1 Biaxial Compression or Tension

As described in Chapter 4, an analytical solution for the elastic buckling condition of a
simply supported plate subject to biaxial loads is given by

m2

a2
σx +

n2

b2
σy−

π2D
t

m2

a2
+
n2

b2

2

= 0 3 3

wherem and n are the buckling half-wave numbers in the x and y directions, respectively.
One half-wave number is normally taken in either the short edge or the direction in

which the axial tensile loads are predominant. For a long plate considered in this chapter,
that is, with a/b ≥ 1, n = 1 can typically be taken. By holding the applied loading ratio
c = σy/σx constant, therefore, Equation (3.3) can be rewritten as follows:

σx
m2

a2
+

c
b2

−
π2D
t

m2

a2
+

1
b2

2

= 0 3 4

Table 3.1 Buckling coefficients for a simply supported plate under single types of loads for a/b ≥ 1.

Load type σE k

σx σxE,1 kx = [a/(mob) +mob/a]
2 where mo is the buckling half-wave number for the

plate in the x direction, which is the minimum integer that satisfies
a/b ≤ √[mo(mo + 1)]. For practical use, the half-wave number m may be taken
as mo = l for l ≤ a/b ≤ √2, mo = 2 for √2 < a/b ≤ √6, and mo = 3 for √6 < a/b ≤ 3.
If a/b > 3, the buckling coefficient can be approximated to kx = 4

σy σyE,1 ky = 1+ b a 2 2

τ τE,1 kτ≈ 4(b/a)2 + 5.34 for a/b ≥ 1 (kτ≈ 5.34(b/a)2 + 4.0 for a/b < 1)

σbx σbxE,1 kbx≈ 23.9

σby σbyE,1
kby≈

23 9 for 1 ≤ a b≤ 1 5

15 87 + 1 87 a b 2 + 8 6 b a 2 for a b > 1 5

Note: The subscript “1” represents buckling under a single type of load.
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Because buckling occurs when Equation (3.4) is satisfied, the bifurcation (buckling)
stress is obtained by replacing σx with σxE as follows:

σxE =
π2D
b2t

1 +m2b2 a2 2

c+m2b2 a2
=
π2D
t

m2 a2 + 1 b2 2

m2 a2 + c b2
3 5a

where σxE indicates the longitudinal axial buckling stress component of a long plate
under combined biaxial loading.
Under axial compression in the x direction alone, the longitudinal axial buckling stress

of the plate can be obtained from Equation (3.3) as follows:

σxE,1 =
π2D
b2t

a
mb

+
mb
a

2

3 5b

As the buckling strength value should be the same at the transition of the buckling
mode, the buckling half-wave number, m, in the x direction of the plate under biaxial
loads can be predicted from Equation (3.5a) as a minimum integer that satisfies the
following condition:

m2 a2 + 1 b2 2

m2 a2 + c b2
≤

m+ 1 2 a2 + 1 b2
2

m+ 1 2 a2 + c b2
3 6a

where it is evident that the buckling half-wave number is affected by the applied loading
ratio as well as the plate aspect ratio.
When c = σy/σx = 0, Equation (3.6a) is simplified to the well-known criterion as follows:

a
b
≤ m m+ 1 3 6b

Because the applied loading ratio, c = σy/σx, is kept constant, the elastic buckling axial
stress in the y direction is obtained by

σyE = cσxE 3 7a

where σyE is the component of the elastic transverse axial buckling stress of the plate
under combined biaxial loading.
Under axial compression in the y direction alone,m= n= 1 can be taken, and thus the

elastic transverse axial buckling strength of the plate can be obtained from Equation (3.3)
as follows:

σyE,1 =
π2D
b2t

1 +
b
a

2 2

3 7b

By substituting the buckling half-wave number, m, to be calculated from
Equation (3.6a) and n = 1 (for the long plate) into Equations (3.5a) and (3.7a), the elastic
buckling interaction relationship for a simply supported long plate subject to biaxial
loads is obtained.
The benefit of Equation (3.5a) is that it is applicable to the plates under any combina-

tion of biaxial loading, for example, axial compressive loading in one direction and
axial tensile loading in the other direction as well as axial compressive loading in both
directions, whereas an opposite sign convention must be considered for axial tension.
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It is evident from Equation (3.5a) that as long as c = σy/σx is greater than −m2b2/a2, the
buckling phenomenon can occur even if axial tensile loads are applied in one direction.
For a long plate, that is, with a/b ≥ 1, Equation (3.3) may be rewritten as a function

of stress components normalized by the buckling stresses under the corresponding
single load component as follows:

m2b2 a2 mob a+ a mob
2

m2b2 a2 + 1 2

σx
σxE,1

+
b2 a2 + 1 2

m2b2 a2 + 1 2

σy
σyE,1

= 1 3 8

where σxE, 1 and σyE, 1 are defined in Equation (3.2) together with Table 3.1,m is defined
in Equation (3.6a), and mo is the buckling half-wave number of the plate under uniaxial
compression in the x direction alone, which can be determined from Equation (3.6b).
Figure 3.3 shows the elastic buckling strength interaction curves of a simply supported

rectangular plate under biaxial loads for a/b = 3 and 5. It is apparent from Figure 3.3 that
the buckling half-wave number in the long direction varies with the loading ratio and
with the plate aspect ratio.
In practice, a numerical iteration process may be necessary to compute the half-wave

number, m, with Equation (3.6a). It is desirable for structural designers to have an
approximate closed-form expression for the resulting plate buckling interaction relation-
ship. Based on a series of computations for a variety of aspect ratios and loading ratios, an
empirical buckling interaction equation for the plate subjected to biaxial compressive
loading may be derived by curve fitting as follows (Ueda et al. 1987):

σxE
σxE,1

α1

+
σyE
σyE,1

α2

= 1 3 9a

where α1 and α2 are constants that are functions of the plate aspect ratio. Based on the
computed results, the constants may be determined empirically as follows:

α1 = α2 = 1 for 1≤ a b ≤ 2 3 9b

α1 = 0 0293 a b 3−0 3364 a b 2 + 1 5854 a b −1 0596

α2 = 0 0049 a b 3−0 1183 a b 2 + 0 6153 a b + 0 8522
for a b > 2

3 9c

Figure 3.4 shows the elastic buckling strength interaction curves for a plate under biax-
ial compression with varying aspect ratios, as obtained by Equation (3.9).

3.7.2 Longitudinal Axial Compression and Longitudinal In-Plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined longitudinal axial compression and longitudinal in-plane bending is typically
given by (Ueda et al. 1987)

σxE
σxE,1

+
σbxE
σbxE,1

c

= 1 3 10

where the constant, c, is often taken as c = 2 (JWS 1971) or c = 1.75 (Hughes & Paik 2013).
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3.7.3 Transverse Axial Compression and Longitudinal In-Plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined transverse axial compression and longitudinal in-plane bending is typically
given by (Ueda et al. 1987)

σyE
σyE,1

α3

+
σbxE
σbxE,1

α4

= 1 3 11a
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Figure 3.3 Elastic buckling interaction
relationship for a plate under biaxial
loads, simply supported at all edges: (a)
a/b = 3 and n = 1; (b) a/b = 5 and n = 1.
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where the constants, α3 and α4, may be estimated as follows (JWS 1971):

α3 = α4 = 1 50 a b −0 30 for 1 ≤ a b≤ 1 6 3 11b

α3 = −0 625 a b + 3 10

α4 = 6 25 a b −7 90
for 1 6 ≤ a b≤ 3 2 3 11c

α3 = 1 10

α4 = 12 10
for 3 2 ≤ a b 3 11d

3.7.4 Longitudinal Axial Compression and Transverse In-Plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined longitudinal axial compression and transverse in-plane bending is typically
given by (Ueda et al. 1987)

σxE
σxE,1

α5

+
σbyE
σbyE,1

α6

= 1 3 12a

where the constants, α5 and α6, may be estimated by (Ueda et al. 1987)

α5 = 0 930 a b 2−2 890 a b + 3 160

α6 = 1 20
for 1 ≤ a b≤ 2 3 12b

α5 = 0 066 a b 2−0 246 a b + 1 328

α6 = 1 20
for 2 < a b≤ 5 3 12c
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Figure 3.4 Approximate elastic buckling interaction relationships for a plate under biaxial
compression with varying aspect ratios, simply supported at all edges, as obtained by Equation (3.9).
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α5 = 1 117 a b −3 837

α6 = −0 167 a b + 2 035
for 5 < a b ≤ 8 3 12d

α5 = 5 10

α6 = 0 70
for 8 < a b 3 12e

3.7.5 Transverse Axial Compression and Transverse In-Plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined transverse axial compression and transverse in-plane bending is typically
given by (Ueda et al. 1987)

σyE
σyE,1

α7

+
σbyE
σbyE,1

α8

= 1 3 13a

where the constants, α7 and α8, may be estimated by (Klöppel & Sheer 1960)

α7 = 1 0

α8 = 14 0−a b 6 5
for 1 ≤ a b≤ 7 5 3 13b

α7 = α8 = 1 0 for 7 5 < a b 3 13c

3.7.6 Biaxial In-Plane Bending

The elastic buckling strength interaction relationship of a simply supported plate under
combined biaxial in-plane bending is typically given by (Ueda et al. 1987)

σbxE
σbxE,1

α9

+
σbyE
σbyE,1

α10

= 1 3 14a

where the constants, α9 and α10, may be estimated by (Ueda et al. 1987)

α9 = 0 050 a b + 1 080

α10 = 0 268 a b −1 248 b a + 2 112
for 1≤ a b ≤ 3 3 14b

α9 = 0 146 a b 2−0 533 a b + 1 515

α10 = 0 268 a b −1 248 b a + 2 112
for 3 < a b ≤ 5 3 14c

α9 = 3 20 a b −13 50

α10 = −0 70 a b + 6 70
for 5 < a b≤ 8 3 14d

α9 = 12 10

α10 = 1 10
for 8 < a b 3 14e
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3.7.7 Longitudinal Axial Compression and Edge Shear

When a plate buckles under edge shear, the deflection pattern is quite complex com-
pared with that under axial compressive loading, and thus a number of terms are nor-
mally needed tomore properly represent the plate deflection by a Fourier series function.
Bleich (1952) studied the buckling of a simply supported rectangular plate subject to lon-
gitudinal axial compression and edge shear using the energy method and developed a
design chart for plate buckling. Ueda et al. (1987) derived an empirical buckling strength
interaction equation for the plate under combined longitudinal axial compression and
edge shear by curve fitting based on the results of Bleich:

σxE
σxE,1

+
τE
τE,1

α11

= 1 3 15a

where the constant, α11, may be given by

α11 =
−0 160 a b 2 + 1 080 a b + 1 082 for 1 ≤ a b≤ 3 2

2 90 for a b > 3 2
3 15b

Figure 3.5 shows the elastic buckling strength interaction curves of a simply supported
plate under combined longitudinal axial compression and edge shear with varying aspect
ratios, as obtained by Equation (3.15).

3.7.8 Transverse Axial Compression and Edge Shear

Based on the theoretical results of the buckling strength for rectangular plates subject to
combined transverse axial compression and edge shear as obtained by Bleich (1952) and
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Figure 3.5 Approximate elastic buckling interactions of a plate under longitudinal axial compression
and edge shear with varying aspect ratios, simply supported at all edges, as obtained by Equation (3.15).
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Timoshenko and Gere (1982), Ueda et al. (1987) derived the following buckling interac-
tion equation by curve fitting:

σyE
σyE,1

+
τE
τE,1

α12

= 1 3 16a

where the constant, α12, may be given by

α12 =

0 10 a b + 1 90 for 1≤ a b ≤ 2

0 70 a b + 0 70 for 2 < a b≤ 6

4 90 for 6 < a b

3 16b

Figure 3.6 shows the elastic buckling interaction curves of a simply supported plate
under combined transverse axial compression and edge shear with varying aspect ratios,
as obtained by Equation (3.16).

3.7.9 Longitudinal In-Plane Bending and Edge Shear

The elastic buckling interaction relationship of a simply supported plate under combined
longitudinal in-plane bending and edge shear is typically given by (Ueda et al. 1987)

σbxE
σbxE,1

c

+
τE
τE,1

c

= 1 3 17

where the constant, c, is sometimes taken as c = 2 (JWS 1971).
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Figure 3.6 Approximate elastic buckling interactions of a plate under transverse axial compression
and edge shear with varying aspect ratios, simply supported at all edges, as obtained by Equation (3.16).
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3.7.10 Transverse In-Plane Bending and Edge Shear

The elastic buckling interaction relationship of a simply supported plate under combined
transverse in-plane bending and edge shear is typically given by (Ueda et al. 1987)

σbyE
σbyE,1

c

+
τE
τE,1

c

= 1 3 18

where the constant, c, is sometimes taken as c = 2 (JWS 1971).

3.8 Elastic Buckling of Simply Supported Plates Under More
than Three Load Components

The elastic buckling interaction relationship of a plate under a combination of three load
components, such as longitudinal axial compression, transverse axial compression, and
edge shear, is now derived based on three sets of interaction relationships between two
load components, such as that between the longitudinal axial compression and the trans-
verse axial compression, that between the longitudinal axial compression and the edge
shear, and that between the transverse axial compression and the edge shear.
Figure 3.7 shows a schematic for the development of the buckling interaction equation

between the three load components (Ueda et al. 1987). Two sets of interaction relation-
ships between two load components are chosen so that one of the load components is
common to both relationships. These relationships are in turn combined to obtain a new
relationship between three load components.
Consider that the plate buckles under three load components, which are denoted by

σ∗xE, σ
∗
yE, and τ

∗
E. When no transverse axial compression is applied, the interaction among

1.0

B

0

A Resemble
curves

1.0

1.0

τ*
τE,1

τE/τE,1

σxE/σxE,1

σyE/σyE,1

Figure 3.7 A schematic representation for derivation of the buckling interaction relationship
among three load components.
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σ∗xE, σ∗yE, and τ∗E corresponds to that of the σxE − τE relationship, as indicated in
Equation (3.15). In this case, the critical value, σ∗xE, of the longitudinal axial compression,
σx, which causes buckling together with τ∗E, is obtained from Equation (3.15) as follows:

σ∗xE = σxE,1 1−
τ∗E
τE,1

α11

3 19

Similarly, when no longitudinal axial compression is applied, the critical value,
σ∗yE, of transverse axial compression, σy, which causes the buckling, is obtained from
Equation (3.16):

σ∗yE = σyE,1 1−
τ∗E
τE,1

α12

3 20

It is assumed that a relationship similar to that of Equation (3.9a), that is, for the case
under biaxial compression, exists between σ∗xE and σ∗yE in any plane of τ∗/τE,1 = constant,
that is, together with any value of edge shear. When we replace σxE,1 and σyE,1 in
Equation (3.9a) with σ∗xE and σ∗yE from Equations (3.19) and (3.20), respectively, the fol-
lowing buckling interaction relationship among σxE, σyE, and τ is obtained when τE = τ∗E:

σxE
σxE,1 1− τE τE,1

α11

α1

+
σyE

σyE,1 1− τE τE,1
α12

α2

= 1 3 21

where it is important to realize that the plate can, of course, buckle from edge shear
alone, that is, if the values of 1− τE τE,1

α11 or 1− τE τE,1
α12 in the denominator reach

zero or become negative.
The buckling strength interaction equations under other sets of the three load com-

ponents can also be derived in a similar manner to that between σx, σy, and τ. Also, all five
potential in-plane load components—longitudinal axial compression, transverse axial
compression, edge shear, longitudinal in-plane bending, and transverse in-plane
bending—may be obtained with a similar approach as follows:

σxE
C1C4σxE,1 1− τE C3C6τE,1

α11

α1

+
σyE

C2C5σyE,1 1− τE C3C6τE,1
α12

α2

= 1

3 22

where

C1 = 1−
σbxE

C7σbxE,1

2

, C2 = 1−
σbxE

C7σbxE,1

α4 1 α3

, C3 = 1−
σbxE

C7σbxE,1

2 0 5

,

C4 = 1−
σbyE
σbyE,1

α6 1 α5

, C5 = 1−
σbyE
σbyE,1

α8 1 α7

, C6 = 1−
σbyE
σbyE,1

2 0 5

,

C7 = 1−
σbyE
σbyE,1

α10 1 α9

In Equation (3.22), c = 2 has been used for Equations (3.10), (3.17), and (3.18). As may
be surmised from Equation (3.22), the plate can, of course, buckle from edge shear alone,
that is, when the denominator reaches zero or becomes negative.

Ultimate Limit State Analysis and Design of Plated Structures148



3.9 Elastic Buckling of Clamped Plates

3.9.1 Single Types of Loads

The elastic bifurcation buckling stress of plates with clamped edge conditions and under
single types of loads may also be calculated from Equation (3.2), but with the use of dif-
ferent buckling coefficients. Table 3.2 indicates the buckling coefficients of clamped
plates with a/b ≥ 1, where the long edges are taken in the x direction and the short edges
are taken in the y direction (Bleich 1952).

3.9.2 Combined Loads

For practical purposes, it is often assumed that the elastic buckling interactive relation-
ship between combined loads for a plate with the boundary condition clamped at some
or all edges is the same as that for a plate simply supported at all edges but using the
corresponding buckling strength components under single loads.
Figures 3.8 and 3.9 show the elastic buckling interaction relationships of rectangular

plates clamped at all edges between biaxial compressions and between uniaxial compres-
sion and edge shear, respectively, with varying aspect ratios, as those obtained by the
eigenvalue analysis using the finite element method. The corresponding buckling inter-
action equations for plates simply supported at four edges, such as Equations (3.9) and
(3.15), are also shown in the figures.
It is apparent from Figures 3.8 and 3.9 that due to the rotational restraints at the edges,

the buckling interaction of clamped plates becomes more convex than that of simply
supported plates, but the buckling interaction for simply supported plates seems to rep-
resent the results fairly well, although slightly on the pessimistic side.

3.10 Elastic Buckling of Partially Rotation Restrained Plates

In a continuous stiffened plate structure, the rotation of the plating at the edges is to
some extent restrained depending on the torsional rigidity of support members (stiffen-
ers). This section describes closed-form elastic plate buckling strength formulations that
account for the effect of rotational restraints at the plate edges, as originally developed by
Paik and Thayamballi (2000).

3.10.1 Rotational Restraint Parameters

The support members of the plate elements have finite values of torsional rigidity, and
thus the rotation along the plate edges is to some extent restrained. Essentially, the buck-
ling strength of the plate elements is affected by these rotational restraints.
When the dimensions of support members (stiffeners) are defined as shown in

Figure 5.3, the rotational restraint parameters of the longitudinal (x) and transverse
(y) support members in a continuous plate structure can be determined as follows:

ζL =CL
GJL
bD

, ζS =CS
GJS
aD

3 23
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Table 3.2 Elastic buckling coefficients of clamped plates under single types of loads for a/b ≥ 1.

Load type σE BC k

Uniaxial compression in the x
direction, σx

σxE,1 SSLC
kx =

7 39 a b 2−19 6 a b + 20

6 98

for 1.0 ≤ a/b ≤ 1.33

for 1.33 < a/b

SCLS

kx =

−0 95 a b 3 + 6 4 a b 2−14 86 a b + 16 34

0 2 a b 2−1 4 a b + 6 64

−0 05 a b + 4 4

4 0

for 1.0 ≤ a/b < 2.0

for 2.0 ≤ a/b < 3.0

for 3.0 ≤ a/b < 8.0

for 8.0 ≤ a/b

AC

kx =

−1 23 a b 3 + 7 9 a b 2−17 65 a b + 21 35

0 2 a b 2−1 62 a b + 10 35

−0 062 a b + 7 476

6 98

for 1.0 ≤ a/b < 2.0

for 3.0 ≤ a/b < 3.0

for 2.0 ≤ a/b < 8.0

for 8.0 ≤ a/b

Uniaxial compression in the y
direction, σy

σyE,1 SSLC ky = [1.0 + (b/a)2]2 + 3.01 for 0.0 < b/a ≤ 1.0

SCLS

ky =

1 0 + b a 2 2
+ 0 12

0 95 + 1 89 b a 2 2

13 98 b a −6 20

for 0.0 < b/a < 0.34

for 0.34 ≤ b/a ≤ 0.96

for 0.96 < b/a ≤ 1.0

AC
ky =

1 0 + b a 2 2
+ 4 8

1 92 + 1 305 b a 2 2

for 0.0 < b/a < 0.8

for 0.8 ≤ b/a ≤ 1.0

Uniform edge shear, τ τE,1 SSLC kτ = 2.4(b/a)2 + 1.08(b/a) + 9.0 for 0.0 < b/a ≤ 1.0

SCLS
kτ =

2 25 b a 2 + 1 95 b a + 5 35

22 92 b a 3−33 0 b a 2 + 20 43 b a + 2 13

for 0.0 < b/a ≤ 0.4

for 0.4 < b/a ≤ 1.0

AC kτ = 5.4(b/a)2 + 0.6(b/a) + 9.0 for 0.0 < b/a ≤ 1.0

Note:AC, all edges clamped; BC, boundary condition; SCLS, short (y) edges clamped and long (x) edges simply supported; SSLC, short (y) edges simply supported and long (x)
edges clamped.



where ζL and ζs are the rotational restraint parameters for the longitudinal or transverse
support member, JL = hwxt3wx + bfxt3fx 3 is the torsional constant of the longitudinal

support member, JS = hwyt3wy + bfyt3fy 3 is the torsional constant of the transverse sup-

port member, G and D are defined in Section 3.2, and CL and CS are constants.
The support members may have welding induced initial distortions or in some cases

distort sideways due to axial compression before plate buckling, so that they may not
fully contribute to the rotational restraints along the plate edges. CL and CS in
Equation (3.23) are constants used to account for this effect and are taken as values less
than 1.0. For the sake of simplicity, however, CL =CS = 1 is usually applied; otherwise,
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Figure 3.8 Elastic buckling interaction
relationships of plates between biaxial
compressive loads (line: Equation (3.9) for
plates simply supported at all edges;
symbols: eigenvalue finite element solutions
for plates clamped at all edges).
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Figure 3.9 Elastic buckling interaction
relationships of plates between axial
compression and edge shear (line:
Equation (3.15) for plates simply supported at
all edges; symbols: eigenvalue finite element
solutions for plates clamped at all edges).
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they can be determined as the relative torsional rigidity of the support member to the
plate part, as follows:

CL =
JL
JpL

≤ 1 0, CS =
JS
JpS

≤ 1 0 3 24

where

JpL =
bt3

3
, JpS =

at3

3

3.10.2 Longitudinal Axial Compression

The elastic buckling stress of a plate with partially rotation restrained edge conditions in
longitudinal axial compression can also be calculated from Equation (3.2) but using a
different buckling coefficient, kx. In the following, empirical formulas for the buckling
coefficient, kx, which are expressed in terms of the plate aspect ratio and the torsional
rigidity of support members, are presented, following Paik and Thayamballi (2000).

3.10.2.1 Partially Rotation Restrained at Long Edges and Simply Supported at
Short Edges

kx =

0 396ζ3L−1 974ζ2L + 3 565ζL + 4 0 for 0 ≤ ζL < 2

6 951−0 881 ζL−0 4 for 2 ≤ ζL < 20

7 025 for 20 ≤ ζL

3 25a

The accuracy of Equation (3.25a) is verified in Figure 3.10 by comparison with the
exact theoretical solutions as obtained by direct solution of the characteristic equation.
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Figure 3.10 Accuracy of Equation (3.25a) for a plate under longitudinal axial compression, partially
rotation restrained at the long edges and simply supported at the short edges.

Ultimate Limit State Analysis and Design of Plated Structures152



3.10.2.2 Partially Rotation Restrained at Short Edges and Simply Supported
at Long Edges

kx = d1ζ
4
S + d2ζ

3
S + d3ζ

2
S + d4ζS + d5 3 25b

where

d1 =

−1 010 a b 4 + 12 827 a b 3−52 553 a b 2 + 67 072 a b −27 585 for 0 ≤ ζS < 0 4

0 047 a b 4−0 586 a b 3 + 2 576 a b 2−4 410 a b + 1 748 for 0 4≤ ζS < 0 8

−0 017 a b 2 + 0 099 a b −0 150 for 0 8≤ ζS < 2

0 0 for 2 ≤ ζS

d2 =

0 881 a b 4−10 851 a b 3 + 41 688 a b 2−43 150 a b + 14 615 for 0 ≤ ζS < 0 4

−0 123 a b 4 + 1 549 a b 3−6 788 a b 2 + 11 299 a b −3 662 for 0 4≤ ζS < 0 8

0 138 a b 2−0 793 a b + 1 171 for 0 8≤ ζS < 2

0 0 for 2 ≤ ζS

d3 =

−0 190 a b 4 + 2 093 a b 3−5 891 a b 2−2 096 a b + 1 792 for 0 ≤ ζS < 0 4

0 114 a b 4−1 412 a b 3 + 5 933 a b 2−8 638 a b + 0 224 for 0 4 ≤ ζS < 0 8

−0 457 a b 2 + 2 571 a b −3 712 for 0 8 ≤ ζS < 2

0 0 for 2 ≤ ζS

d4 =

0 004 a b 4−0 007 a b 3−0 243 a b 2 + 0 630 a b + 3 617 for 0 ≤ ζS < 0 4

−0 021 a b 4 + 0 184 a b 3−0 126 a b 2−2 625 a b + 6 457 for 0 4 ≤ ζS < 0 8

0 822 a b 2−4 516 a b + 6 304 for 0 8 ≤ ζS < 2

−0 106 a b + 0 176 for 2 ≤ ζS

0 0 for 20 ≤ ζS

d5 =

4 0 for 0 ≤ ζS < 0 4

−0 001 a b 4 + 0 033 a b 3−0 241 a b 2 + 0 684 a b + 3 539 for 0 4≤ ζS < 0 8

−0 148 a b 2 + 0 596 a b + 3 847 for 0 8≤ ζS < 2

−1 822 a b + 7 850 for 2 ≤ ζS < 20

0 041 a b 4−0 602 a b 3 + 3 303 a b 2−8 176 a b + 12 144 for 20 ≤ ζS

In calculating kx of Equation (3.25b), the following conditions must be satisfied for the
approximations to hold: (i) if 4.0 < a/b ≤ 4.5 and ζS ≥ 0.2, then ζS = 0.2; (ii) if a/b > 4.5 and
ζS ≥ 0.1, then ζS = 0.1; (iii) ifa/b ≥ 2.2 and ζS ≥ 0.4, then ζS = 0.4; (iv) ifa/b ≥ 1.5 and ζS ≥ 1.4,
then ζS = 1.4; (v) if 8 ≤ a/b ≤ 20, then ζS = 8; and (vi) if a/b ≥ 5, then a/b = 5.
Figure 3.11a and b shows the variation of the buckling coefficient, kx, as a function of

the plate aspect ratio and the torsional rigidity of the support members at the short edges.
The accuracy of Equation (3.25b) is verified in Figure 3.11b by comparison with the exact
theoretical solutions as obtained by direct solution of the characteristic equation
described in Paik and Thayamballi (2000).
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3.10.2.3 Partially Rotation Restrained at Both Long and Short Edges
For practical design purposes, the partially rotation restrained boundary conditions at
both long and short edges may be expressed by a relevant combination of the previous
two edge conditions and the simply supported edge condition. Specifically, one can
assume
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Figure 3.11 (a) Variation of the buckling coefficient, kx, for a plate under longitudinal axial
compression, partially rotation restrained at the short edges and simply supported at the long
edges; (b) accuracy of Equation (3.25b) for a plate under longitudinal axial compression, partially
rotation restrained at the short edges and simply supported at the long edges.
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kx = kx1 + kx2−kx0 3 25c

where kx is the buckling coefficient of a plate partially rotation restrained at both long and
short edges, kx1 is the buckling coefficient of a plate partially rotation restrained at the
long edges and simply supported at the short edges, as defined in Equation (3.25a), kx2 is
the buckling coefficient of a plate partially rotation restrained at the short edges and sim-
ply supported at the long edges, as defined in Equation (3.25b), and kx0 is the buckling
coefficient of a plate simply supported at all edges, as defined in Table 3.1.

3.10.3 Transverse Axial Compression

The elastic buckling stress of a plate with partially rotation restrained edge conditions
and under transverse axial compression can also be calculated from Equation (3.2)
but using a different buckling coefficient, ky. In the following, the empirical formulas
of the buckling coefficient, ky, which are expressed in terms of the plate aspect ratio
and the torsional rigidity of support members, are presented, following Paik and
Thayamballi (2000).

3.10.3.1 Partially Rotation Restrained at Long Edges and Simply Supported
at Short Edges

ky = e1ζ
2
L + e2ζL + e3 3 26a

where

e1 =

1 322 b a 4−1 919 b a 3 + 0 021 b a 2 + 0 032 b a for 0 ≤ ζL < 2

−0 463 b a 4 + 1 023 b a 3−0 649 b a 2 + 0 073 b a for 2 ≤ ζL < 8

0 0 for 8 ≤ ζL

e2 =

−0 179 b a 4−3 098 b a 3 + 5 648 b a 2−0 199 b a for 0 ≤ ζL < 2

5 432 b a 4−11 324 b a 3 + 6 189 b a 2−0 068 b a for 2 ≤ ζL < 8

−1 047 b a 4 + 2 624 b a 3−2 215 b a 2 + 0 646 b a for 8 ≤ ζL < 20

0 0 for 20 ≤ ζL

e3 =

0 994 b a 4 + 0 011 b a 3 + 1 991 b a 2 + 0 003 b a + 1 0 for 0≤ ζL < 2

−3 131 b a 4 + 4 753 b a 3 + 3 587 b a 2−0 433 b a + 1 0 for 2≤ ζL < 8

20 111 b a 4−43 697 b a 3 + 30 941 b a 2−1 836 b a + 1 0 for 8≤ ζL < 20

0 751 b a 4−0 047 b a 3 + 2 053 b a 2−0 015 b a + 4 0 for 20≤ ζL

Figure 3.12a and b shows the variation in the buckling coefficient, ky, for a plate under
transverse axial compression, partially rotation restrained at the long edges and simply
supported at the short edges, as a function of the plate aspect ratio and the torsional
rigidity of the support members at the long edges. The accuracy of Equation (3.26a)
is verified in Figure 3.12b by comparison with the exact theoretical solutions as
obtained by direct solution of the characteristic equation described in Paik and
Thayamballi (2000).

Elastic and Inelastic Buckling Strength of Plates Under Complex Circumstances 155



3.10.3.2 Partially Rotation Restrained at Short Edges and Simply Supported
at Long Edges

ky = f1ζ
2
S + f2ζS + f3 3 26b

where

f1 =

0 543 b a 4−1 297 b a 3 + 0 192 b a 2−0 016 b a for 0≤ ζS < 2

−0 347 b a 4 + 0 403 b a 3−0 147 b a 2 + 0 016 b a for 2≤ ζS < 6

0 0 for 6≤ ζS
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Figure 3.12 (a) Variation of the buckling coefficient, ky, for a plate under transverse axial
compression, partially rotation restrained at the long edges and simply supported at the short edges;
(b) accuracy of Equation (3.26a) for a plate under transverse axial compression, partially rotation
restrained at the long edges and simply supported at the short edges.
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f2 =

−1 094 b a 4 + 4 401 b a 3−0 751 b a 2 + 0 068 b a for 0 ≤ ζS < 2

2 139 b a 4−1 76l b a 3 + 0 419 b a 2−0 030 b a for 2 ≤ ζS < 6

−0 199 b a 4 + 0 308 b a 3−0 118 b a 2 + 0 013 b a for 6 ≤ ζS < 20

0 0 for 20 ≤ ζS

f3 =

0 994 b a 4 + 0 011 b a 3 + 1 991 b a 2 + 0 003 b a + 1 0 for 0 ≤ ζS < 2

−2 031 b a 4 + 5 765 b a 3 + 0 870 b a 2 + 0 102 b a + 1 0 for 2 ≤ ζS < 6

−0 289 b a 4 + 7 507 b a 3−1 029 b a 2 + 0 398 b a + 1 0 for 6 ≤ ζS < 20

−6 278 b a 4 + 17 135 b a 3−5 026 b a 2 + 0 860 b a + 1 0 for 20 ≤ ζS

Figure 3.13a and b shows the variation in the buckling coefficient, ky, for a plate
under transverse axial compression, partially rotation restrained at the short edges
and simply supported at the long edges, as a function of the plate aspect ratio and
the torsional rigidity of the support members at the short edges. The accuracy of
Equation (3.26b) is verified in Figure 3.13b by comparison with the exact theoretical
solutions as obtained by direct solution of the characteristic equation described in Paik
and Thayamballi (2000).

3.10.3.3 Partially Rotation Restrained at Both Long and Short Edges
For a plate partially rotation restrained at both long and short edges under transverse
axial compression, the buckling coefficient, ky, may be expressed by a relevant combina-
tion of the previous two edge conditions in addition to the condition in which all edges
are simply supported, as follows:

ky = ky1 + ky2−ky0 3 26c

where ky is the buckling coefficient of a plate partially rotation restrained at both
long and short edges, ky1 is the buckling coefficient of a plate partially rotation
restrained at the long edges and simply supported at the short edges, as defined in
Equation (3.26a), ky2 is the buckling coefficient of a plate partially rotation restrai-
ned at the short edges and simply supported at the long edges, as defined in
Equation (3.26b), and ky0 is the buckling coefficient of a plate simply supported at
all edges, as defined in Table 3.1.

3.10.4 Combined Loads

It is often assumed with reasonable certainty that the elastic buckling interactive rela-
tionship between combined loads for a plate partially rotation restrained at the edges
is similar to that for a plate simply supported at all edges. Therefore, the same buck-
ling interactive relationship of a simply supported plate under combined loads may be
used for a plate partially rotation restrained at the edges but replacing the buckling
strengths under single types of load components by those for the corresponding edge
conditions.
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3.11 Effect of Welding Induced Residual Stresses

Welding induced residual stresses reduce the plate buckling strength. For a plate element
between stiffeners, the elastic buckling stress may be given by considering that an
effective compressive residual stress reduces the buckling strength. Therefore, the
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Figure 3.13 (a) Variation of the buckling coefficient, ky, for a plate under transverse axial compression,
partially rotation restrained at the short edges and simply supported at the long edges; (b) accuracy
of Equation (3.26b) for a plate under transverse axial compression, partially rotation restrained at
the short edges and simply supported at the long edges.
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elastic buckling stress of a plate with welding induced residual stress in axial compression
in the x direction can be calculated from Equation (3.2):

σxE,1 = kx
π2E

12 1−v2
t
b

2

−σrex 3 27a

where σrex = σrcx b−2bt b is the effective welding induced compressive residual stress in
the x direction, σrcx is the actual welding induced compressive residual stress, and bt is
the breadth of the heat-affected zone in the y direction as described in Section 1.7.3.
In a similar way, the elastic buckling stress of a plate under axial compression in the y

direction can be calculated from Equation (3.2) after including the effect of welding
residual stress, as follows:

σyE,1 = ky
π2E

12 1−v2
t
b

2

−σrey 3 27b

where σrey = σrcy a−2at a is the effective welding induced compressive residual stress
in the y direction, σrcy is the actual welding induced compressive residual stress, and at is
the breadth of the heat-affected zone in the x direction as described in Chapter 1.
Figure 3.14 shows the influence of welding induced residual stress on the compressive

buckling stress for a simply supported plate with a yield stress of 352MPa. In the calcu-
lations indicated in Figure 3.14, the level of residual stresses and the plate slenderness
ratio vary. It is evident from Figure 3.14 that welding induced residual stresses can sig-
nificantly reduce the compressive buckling stress of plates in some cases. The reduction
tendency of the buckling stress for thin plates is more significant than that for thick
plates, as expected.
It is interesting to note that very thin plates, such as those used to build living quarters

in offshore platforms, often buckle under a biaxial compressive residual stress condition
alone that arises from welding performed to attach support members in both longitudi-
nal and transverse directions, as described in Chapter 1, even without external mechan-
ical loads. In this case, an optimum design of the plate and support members to prevent
buckling can be achieved by applying Equation (3.9) and Section 3.10 associated with
welding induced residual stresses and partially rotation restrained edge conditions
(Paik & Yi 2016).

3.12 Effect of Lateral Pressure Loads

Plates in a continuous stiffened panel are sometimes subjected to lateral pressure loads.
For example, the bottom plates of ships or ship-shaped offshore structures are subjected
to lateral pressure loads from cargo and/or water in addition to additional in-plane loads
in operation.
As shown in Figure 3.15, the edges of a plate under lateral pressure loads approach the

condition of being clamped, depending on the thickness of the plate and the pressures
involved. Also, the lateral pressure loading may beneficially disturb the occurrence of the
inherent plate buckling pattern. As a result, the elastic buckling strength of a long plate
under lateral pressure loading is greater than that without it.
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For practical design purposes, a correction factormay be used to account for the effect of
lateral pressure on the plate buckling strength, with the factor being applied by multipli-
cation to the buckling strength calculated for the plate without lateral pressure loads. In
this regard, Fujikubo et al. (1998) proposed plate compressive buckling strength correction
factors to account for the effect of lateral pressure by curve fitting based on the finite
element solutions for a long plate element in a continuous stiffened panel, as follows:

Cpx = 1 +
1
576

pb4

Et4

1 6

for
a
b
≥ 2 3 28a
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Figure 3.14 Variation of the elastic compressive buckling stress (normalized by the elastic
buckling compressive stress without residual stresses) and the magnitude of welding induced
residual stress for (a) a relatively thick plate and (b) a relatively thin plate.
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Cpy = 1+
1
160

b
a

0 95 pb4

Et4

1 75

for
a
b
≥ 2 3 28b

where Cpx and Cpy are correction factors of the elastic compressive buckling strength in
the x and y directions, respectively, to account for the effect of lateral pressure, and p is
the magnitude of net lateral pressure loads.
For a nearly square plate (i.e., with a/b≈ 1) under combined axial compression and

lateral pressure, one half-wave deflection occurs from the beginning, so the bifurcation
buckling phenomenon may not appear as the axial compressive loads increase. In this
case, it is beneficial to define an equivalent buckling strength for practical design pur-
poses. It is considered that the increase in the buckling strength due to the rotational
restraints and the decrease in the buckling strength due to one half-wave deflection
caused by lateral pressure may be offset. For a square plate, therefore, Cpx =Cpy = 1.0
may approximately be adopted.
The elastic compressive buckling stress of a plate to account for the effects of

lateral pressure and welding induced residual stresses can then be calculated from
Equations (3.27a) and (3.27b) but using the multiplicative correction factors of
Equations (3.28a) and (3.28b) as follows:

σxE,1 =Cpx kx
π2E

12 1−v2
t
b

2

−σrex 3 29a

σyE,1 =Cpy ky
π2E

12 1−v2
t
b

2

−σrey 3 29b

Figure 3.16 plots Equations (3.29a) and (3.29b) for a specific steel plate with a × b =
2400 mm× 800mm and E = 210 GPa as a function of the plate thickness and water
head when no welding residual stresses exist. It is apparent from Figure 3.16 that the

(a)

(b)

(c)

Without lateral pressure

With lateral pressure

Figure 3.15 Schematic of axial compressive buckling pattern of a plate with or without lateral
pressure loads: (a) without lateral pressure; (b) with relatively small amount of lateral pressure;
(c) with relatively large amount of lateral pressure (Hughes & Paik 2013).
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Figure 3.16 Effect of lateral pressure on the plate compressive buckling strength: (a) Cpx versus
plate thickness; (b) Cpy versus plate thickness.
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increasing trend in buckling strength due to lateral pressure for a thin plate is greater
than that for a thick plate. It is noted that lateral pressure may not affect the buckling
strength of a perforated plate because the perforated plate may not be subjected to lateral
pressure loads.

3.13 Effect of Opening

In a plate element of plated structures, an opening (cut out) is sometimes made to create
a point of access or to lighten the structure. This perforation reduces the plate’s buckling
strength. The opening must be included in the buckling strength formulations as a
parameter of influence where significant.
Figure 3.17 shows a plate with a centrally located opening. To account for the effect of

the opening on the plate buckling strength, one must use a relevant buckling strength
reduction factor, which is defined as the ratio of the buckling coefficient of a perforated
plate to that of a plate without the hole. In this case, empirical formulations may be
derived for the plate buckling strength reduction factors due to opening by curve fitting
based on the results of eigenvalue analysis of the finite element method.
In structural analysis and design, it is noted that the load effects (e.g., stresses) in a

plate are usually defined for a perfect plate (i.e., one without an opening), although
the plate capacity is evaluated by considering the effect of the opening. In this case,
the partial safety factor may be adjusted to account for the effect of the opening in
applying Equation (1.17). In the following sections, empirical formulations of the
elastic buckling strength for a plate with a circular opening, that is, ac = bc = dc, are
presented.
Chapter 4 describes the ultimate strength of perforated plates. For buckling and ulti-

mate strength of perforated plate panels, interested readers may refer to Narayanan and
der Avanessian (1984), Brown et al. (1987), Paik (2007a, 2007b, 2008), Kim et al. (2009),
Suneel Kumar et al. (2009), and Wang et al. (2009), among others.

3.13.1 Longitudinal Axial Compression

Figure 3.18 shows the variation of the buckling reduction factor, RxE, of the plate under σx
varying the size of the opening and the plate aspect ratio, as obtained by the eigenvalue

b

t

ac

22yc 2xc 2yc

ac bc

a

bc
xc

= 1+∼

Figure 3.17 A plate with a centrally located opening.
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analysis of the finite element method. In this case, RxE may be defined by a cubic equation
in terms of the size of the opening and the plate’s aspect ratio, as follows:

RxE = αE1
dc
b

3

+ αE2
dc
b

2

+ αE3
dc
b
+ 1 3 30a

where

αE1 =

0 002 a b 8 238 for 1 ≤ a b < 2

−1 542 a b 2 + 7 232a b−7 666 for 2 ≤ a b < 3

−0 052 a b 2 + 0 526a b−0 964 for 3 ≤ a b≤ 6

αE2 =

0 655 + 1 4 123 a b −8 922 for 1 ≤ a b < 2

1 767 a b 2−7 937a b+ 7 982 for 2 ≤ a b < 3

0 071 a b 2−0 732a b+ 1 631 for 3 ≤ a b ≤ 6

αE3 =

−0 945 + 1 −5 661 a b + 12 342 for 1≤ a b < 2

−0 248 a b 2 + 0 796a b−0 565 for 2≤ a b < 3

−0 020 a b 2 + 0 199a b−0 826 for 3≤ a b ≤ 6

Figure 3.19 shows the accuracy of Equation (3.30a) by comparison with the eigenvalue
finite element buckling solutions. The corresponding elastic plate buckling stress of a
plate with a centrally located circular hole can be calculated as follows:

σxE,1 =RxEkx0
π2E

12 1−v2
t
b

2

3 30b

where kx0 is the longitudinal compressive buckling coefficient of a plate without an
opening.
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Figure 3.18 Variation of the buckling strength reduction factor of a plate under longitudinal axial
compression varying the size of the opening and the plate aspect ratio as obtained by eigenvalue
FEA (kx, kx0 = longitudinal compressive buckling coefficients for the plate with and without an opening).
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3.13.2 Transverse Axial Compression

Figure 3.20 shows the variation of the buckling reduction factor, RyE, of a plate under σy
varying the size of the opening and the plate aspect ratio, as obtained by the eigenvalue
analysis of the finite element method. In this case, RyE may be defined by a cubic equation
in terms of the size of the opening and the plate aspect ratio as follows:

RyE = αE4
dc
b

2

+ αE5
dc
b
+ 1 3 31a
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Figure 3.19 Accuracy of Equation (3.30a) for longitudinal axial compressive loading.
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Figure 3.20 Variation of the buckling strength reduction factor of the plate under transverse axial
compression varying the size of the opening and the plate aspect ratio as obtained by eigenvalue FEA
(ky, ky0 = transverse compressive buckling coefficients for the plate with and without an opening).
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where

αE4 =
0 034 a b 2−0 327a b+ 0 768 for 1 ≤ a b < 4

0 004 for 4 ≤ a b≤ 6

αE5 = −0 008−1 0 967 a b + 0 302 for 1 ≤ a b≤ 6

Figure 3.21 shows the accuracy of Equation (3.31a) by comparison with the finite
element buckling eigenvalue solutions. The corresponding elastic plate buckling stress
of the perforated plate is then calculated as follows:

σyE,1 =RyEky0
π2E

12 1−v2
t
b

2

3 31b

where ky0 is the transverse compressive buckling coefficient of a plate without an
opening.

3.13.3 Edge Shear

Figure 3.22 shows the variation of the buckling reduction factor, RτE, of a plate
under τ varying the size of the opening and the plate aspect ratio, as obtained by
the eigenvalue analysis of the finite element method. In this case, RτE may be defined
by a cubic equation in terms of the opening size and the plate aspect ratio as follows:

RτE = αE6
dc
b

3

+ αE7
dc
b

2

+ αE8
dc
b
+ 1 3 32a
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Figure 3.21 The accuracy of Equation (3.31a) for transverse axial compressive loading.
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where

αE6 =
0 094 a b 2 + 0 035a b + 1 551 for 1 ≤ a b < 3

2 502 for 3 ≤ a b≤ 6

αE7 =
−0 039 a b 2−0 807a b−0 405 for 1≤ a b < 3

−3 177 for 3≤ a b ≤ 6

αE8 =
−0 053 a b 2 + 0 785a b−1 875 for 1 ≤ a b < 3

0 003 for 3 ≤ a b≤ 6

Figure 3.23 shows the accuracy of Equation (3.32a) by comparison with the eigenvalue
finite element buckling solutions. The corresponding elastic plate buckling stress of the
perforated plate is then calculated as follows:

τE,1 =RτEkτ0
π2E

12 1−v2
t
b

2

3 32b

where kτ0 is the shear buckling coefficient of a plate without an opening.

3.13.4 Combined Loads

For practical design purposes, it may be assumed that the elastic buckling interaction
relationship between combined loads for a perforated plate is the same as that for a plate
without an opening, but using the corresponding buckling strength components under
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Figure 3.22 Variation of the buckling strength reduction factor of a plate under edge shear varying
the size of the opening and the plate aspect ratio as obtained by eigenvalue FEA (kτ, kτ0 = shear
buckling coefficients for the plate with and without an opening).
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single types of loads. Figure 3.24 shows some selected elastic buckling strength interac-
tion curves of plates with a centrally located circular opening and under combined loads.
The finite element eigenvalue solutions are also compared. It is apparent that the
assumption of the buckling interaction relationship made earlier is relevant.

3.14 Elastic–Plastic Buckling Strength

3.14.1 Single Types of Loads

A thick plate with a high elastic buckling strength will not buckle in the elastic regime
and will reach the ULS with a certain degree of plasticity. Methods to predict the buck-
ling capacity of a plate while accounting for the effect of plasticity differ depending on the
presence of an opening.

3.14.1.1 Plates Without Opening
The elastic–plastic buckling strength is obtained by the plasticity correction of the cor-
responding elastic buckling stress using the Johnson–Ostenfeld formulation method,
described in Chapter 2, and it is often termed the “critical” buckling strength. Under
single types of loads, the elastic–plastic buckling stress is then approximated by substi-
tuting the computed elastic buckling stress into Equation (2.93) as follows:

σxcr =
σxE,1 for σxE,1 ≤ ασY

σY 1−σY 4σxE,1 for σxE,1 > ασY
3 33a
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Figure 3.23 The accuracy of Equation (3.32a) for edge shear.
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Figure 3.24 Elastic buckling strength interaction of a plate with a centrally located circular hole:
(a) under combined longitudinal and transverse axial compression (α1, α2 = as defined in Equation (3.9));
(b) under combined longitudinal axial compression and edge shear (α11 = as defined in
Equation (3.15)); (c) under combined transverse axial compression and edge shear (α12 = as defined in
Equation (3.16)).
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σycr =
σyE,1 for σyE,1 ≤ ασY

σY 1−σY 4σyE,1 for σyE,1 > ασY
3 33b

τcr =
τE,1 for τE,1 ≤ατY

τY 1−τY 4τE,1 for τE,1 > ατY
3 33c

where τY = σY 3, α = 0.5 or 0.6. In Equation (3.33), the compressive normal stress and
shear stress are taken as positive. The critical buckling strengths are often regarded as the
corresponding ultimate strengths for practical design purposes.
Figure 3.25 shows the resulting relationships between the critical buckling strength and

the elastic buckling strength for steel plates (without opening) with varying edge condi-
tions (Jun 2002). The ultimate strength obtained by the elastic–plastic large-deflection
finite elementmethod solutions using the elastic–perfectly plastic material model without
the strain-hardening effect is also shown for comparison. It is evident that regardless of
the edge conditions, the Johnson–Ostenfeld formulation method predicts fairly well the
elastic–plastic or plastic buckling strength of relatively thick steel plates (without an open-
ing) as a function of the elastic buckling strength, albeit on the pessimistic side.

3.14.1.2 Perforated Plates
For a perforated plate, however, Equation (3.33) using the Johnson–Ostenfeld formula-
tion method may lead to inadequate results with an overestimation or underestimation
of the critical buckling strength depending on the plate’s slenderness ratio and/or the
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Figure 3.24 (Continued )
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opening size. Figure 3.26 compares the critical buckling strengths, as obtained from
Equation (3.33), with the ultimate strengths, as obtained from nonlinear finite element
method, for plates with a centrally located circular opening (Paik 2008). For a thin per-
forated plate, the critical buckling strength is significantly underestimated compared
with the ultimate strength. In contrast, the critical buckling strength of a thick perforated
plate is overestimated, specifically when the opening size is large.
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Figure 3.25 (a) The critical buckling stress, σxcr, versus the elastic bifurcation buckling stress, σxE,1, of
plates without hole under longitudinal compression alone, a/b = 3; (b) the critical buckling stress, σycr,
versus the elastic bifurcation buckling stress, σyE,1, of plates without hole under transverse
compression alone, a/b = 3; (c) the critical buckling stress, τcr, versus the elastic bifurcation buckling
stress, τE,1, of plates without hole under edge shear alone, a/b = 3.
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It is emphasized that the intention of the critical buckling strength predictions for rel-
atively thick perforated plates is to account for the effect of elastic–plastic buckling. It is
important to realize from these figures that the Johnson–Ostenfeld formulation method
should not be used to predict the critical bucking strength of a perforated plate and that
the ultimate strength described in Chapter 4 must be a better and more consistent basis
for structural design. In this case, the ultimate strength of a perforated plate can be deter-
mined from Equation (4.86) as follows:

σxcr = σxu =Rxuσxuo

σycr = σyu =Ryuσyuo

τcr = τu =Rτuτuo

3 34

where σxu, σyu, and τu are the ultimate strengths of a perforated plate; σxuo, σyuo, and τuo
are the ultimate strengths of a plate without an opening, as described in Section 4.10; and
Rxu, Ryu, and Rτu are the ultimate strength reduction factors of Equations (4.87a), (4.87b),
and (4.87c), respectively.

3.14.2 Combined Loads

For the buckling strength design of a plate under combined longitudinal compression
and tension, σx, transverse compression/tension, σy, and edge shear, τ, the critical buck-
ling strength interaction function, ΓB, is often expressed as follows:
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σx
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Ultimate Limit State Analysis and Design of Plated Structures172



0.0

0.0 0.2

dc

dc/b

σY = 352.8 MPa

W0pl = 0.1 β2t (buckling mode)

b
t

a

dcb
t

a

t

a/b = 3

a/b = 1

a/b = 1

a/b = 2
a/b = 3

a/b = 3

a/b = 3

a/b = 4
a/b = 5

a/b = 5

a/b = 6

b × t = 800 × 10 mm

σY = 352.8 MPa

W0pl = 0.1 β2t (buckling mode)

b × t = 800 × 20 mm

0.4 0.6

5
1

5
1

0.8 1.0

0.2

0.4

0.6
(a)

(b)

β = = 3.3
E

b σY

σ x
cr

/σ
Y

Elastic buckling strength

with plasticity correction

Elastic buckling strength

with plasticity correction

FEM:

FEM:

0.0

0.0 0.2

dc/b

t

0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

β = = 1.7
E

b σY

σ x
cr

/σ
Y

Figure 3.26 (a) A comparison of the critical buckling strength, σxcr, with the ultimate strength for plates
with a centrally located circular hole and under longitudinal axial compression, β = 3.3; (b) a comparison
of the critical buckling strength, σxcr, with the ultimate strength for plates with a centrally located
circular hole and under longitudinal axial compression, β = 1.7; (c) a comparison of the critical buckling
strength, σycr, with the ultimate strength for plates with a centrally located circular hole and under
transverse axial compression, β = 3.3; (d) a comparison of the critical buckling strength, σycr, with the
ultimate strength for plates with a centrally located circular hole and under transverse axial
compression, β = 1.7; (e) a comparison of the critical buckling strength, τcr, with the ultimate strength for
plates with a centrally located circular hole and under edge shear, β = 3.3; (f ) a comparison of the critical
buckling strength, τcr, with the ultimate strength for plates with a centrally located circular hole and
under edge shear, β = 1.7. (β, plate slenderness ratio; w0pl, plate initial deflection).
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where σx, σy, and τ are the applied stress components and σxcr, σycr, and τcr are the critical
buckling strength components obtained from Equation (3.33) or (3.34); α = 0 when both
σx and σy are compressive, whereas α = 1 when either σx, σy, or both are tensile.
In the use of Equation (3.35), a compressive stress takes a negative sign, whereas a

tensile stress takes a positive sign. Before buckling, the value of ΓB is smaller than zero,
whereas buckling takes place if ΓB just reaches zero and buckling has occurred if ΓB > 0.
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4

Large-Deflection and Ultimate Strength Behavior of Plates

4.1 Fundamentals of Plate Collapse Behavior

The ultimate strength behavior of a plate under predominantly compressive loads is
much more complex involving buckling and plastic collapse than a plate under predom-
inantly axial tensile loads that would fail by gross yielding.
Figures 4.1, 4.2, and 4.3 show the elastic–plastic large-deflection behavior of steel or

aluminum plates under longitudinal axial compressive loads with or without initial
imperfections until and after the ultimate strength is reached. The plates are 2400
mm long and 800 mm wide and are simply supported at all four edges, keeping them
straight. The nonlinear finite element method as described in Chapter 12 is used for
the analysis where the elastic–perfectly plastic material model is applied by neglecting
the strain-hardening effect.
Figure 4.1 presents the ultimate strength behavior of a steel plate that is made of mild

steel with a yield strength of σY = 235MPa, an elasticmodulus of E = 205.8 GPa, and Pois-
son’s ratio of ν= 0 3. Two kinds of plate thicknesses are considered with t = 15mm

or the plate slenderness ratio, β = b t σY E = 1.80, and with t = 9mm or β = 3.0.
Initial deflection is considered for the thinner plate with w0pl = 8.1 mm where w0pl is
the maximum initial deflection at the plate center, although the thicker plate is perfectly
flat without initial deflection. It is apparent from Figure 4.1 that the ultimate strength
behavior of a thick plate is different from that of a thin plate as would be expected
and the initially deflected plate does not show the bifurcation buckling but the total
deflection is increased progressively from the very beginning of loading.
Figure 4.2 presents the ultimate strength behavior of an aluminum plate that is made

of aluminum alloy 5083-O with a yield strength of σY = 125MPa, an elastic modulus of
E = 72 GPa, and Poisson’s ratio of ν= 0 33. Similarly, two kinds of plate thicknesses
are considered with t = 13mm or β = 2.56 and with t = 6mm or β = 5.56. The thinner
plate has the initial deflection of w0pl = 8.0 mm. It is observed from Figure 4.2 that the
ultimate strength behavior of an aluminum plate is similar to that of a steel plate.
It is recognized that the material strength of welded aluminum plates in the softened

zone is recovered by natural aging over a period of time (Lancaster 2003), but the plate
ultimate strengthmay be reduced by softening phenomenon as far as the softened zone is
not recovered. To illustrate the effects of welding induced residual stresses and softening
phenomenon in the heat-affected zone on the ultimate strength behavior of a welded
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Figure 4.1 The ultimate strength behavior of a steel plate under longitudinal axial compressive loads:
(a) axial compressive stress versus axial compressive strain relation; (b) axial compressive loads
versus lateral deflection relation; (c) deflected shape at the ultimate limit state of flat thick plate with
t = 15mm; (d) deflected shape at the ultimate limit state of flat thin plate with t = 9mm; (e) deflected
shape at the ultimate limit state of initially deflected thin plate with t = 9mm (the deflected shape
is amplified by 10 times).
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aluminum plate as shown in Figure 4.3, a specific scenario is considered. The plate is
made of aluminum alloy 5083-H116 with a yield strength of σY = 215MPa. The plate
thickness is t = 9mm or β = 4.86. A very small initial deflection with w0pl = 1 mm is con-
sidered, while the plate has an average level of residual stresses with σrcx = −0 15σY as
per Figure 1.34 where the breadth of the heat-affected zone is b'p = 63.2 mm as per
Figure 1.27 and the yield strength in the softened zone is assumed to be 167MPa
(= 0.777σY). Welding is performed in the longitudinal edges only, and thus neither resid-
ual stress nor softening takes place in the transverse direction. It is observed from
Figure 4.3 that the welding induced residual stresses significantly reduce the ultimate
strength, but the effect of softening phenomenon can be neglected in this specific case.
The behavior of a plate under applied loads may be classified into five regimes: pre-

buckling, buckling, post-buckling, ultimate strength, and post-ultimate strength. In
the pre-buckling regime, the structural response between loads and displacements is
usually linear, and the structural component is stable. As the predominantly compressive
stress reaches a critical value, buckling occurs, as described in Chapter 3.
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Figure 4.1 (Continued )
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Figure 4.2 The ultimate strength behavior of an aluminum plate under longitudinal axial compressive
loads: (a) axial compressive stress versus axial compressive strain relation; (b) axial compressive
loads versus lateral deflection relation; (c) deflected shape at the ultimate limit state of flat thick plate
with t = 13mm; (d) deflected shape at the ultimate limit state of flat thin plate with t = 6mm;
(e) deflected shape at the ultimate limit state of initially deflected thin plate with t = 6mm
(the deflected shape is amplified by 10 times).
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Unlike columns, in which buckling is meant to cause collapse, plates that buckle in the
elastic regime may have sufficient redundancy to remain stable in the sense that further
loading can be sustained until the ultimate strength is reached, even if the in-plane stiff-
ness significantly decreases after the inception of buckling. In this regard, the elastic
buckling of a plate between stiffeners may in some design cases be allowed to reduce
the structural weight associated with efficient and economic design. Because residual
strength is not expected in a plate after buckling occurs in the inelastic regime, however,
inelastic buckling is considered to be the plate’s ultimate limit state (ULS).
As the applied loads increase, the plate eventually reaches the ULS due to expansion of

the yielded region. The in-plane stiffness of the collapsed plate takes a “negative” value in
the post-ULS regime, and this insufficient redundancy leads to a high degree of instabil-
ity. A plate with initial imperfections begins to deflect from the very beginning as the
compressive loads increase, so a bifurcation buckling phenomenon does not occur.
The ultimate strength of imperfect structures is lower than that of perfect structures.
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Figure 4.3 Effects of residual stresses and softening on the ultimate strength behavior of a welded
aluminum plate under longitudinal axial compressive loads: (a) axial compressive stress versus
axial compressive strain relation; (b) axial compressive loads versus lateral deflection relation.
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The ultimate strength behavior of a plate depends on a variety of influential factors
such as geometric or material properties, loading characteristics, initial imperfections
(i.e., initial deflections, residual stresses, or softening in the heat-affected zone of a
welded aluminum plate), boundary conditions, and existing local damage related to cor-
rosion, fatigue crack, and denting.
In the ULS design of plate elements using Equation (1.17), the demand indicates the

extreme value of the applied stresses, and the capacity represents the ultimate strength.
This chapter presents the ultimate strength formulations of plates under combined in-
plane and lateral pressure loads accounting for the effects of initial imperfections in the
form of initial deflection and welding residual stresses. The effects of openings, corrosion
diminution, fatigue cracking, and local denting damage on the plate ultimate strength are
described. The average stress–strain relationships of plates are also described until and
after the ultimate strength is reached. It is noted that the theories and methodologies
described in this chapter can be commonly applied to both steel and aluminum plates.

4.2 Structural Idealizations of Plates

4.2.1 Geometric Properties

Figure 4.4 shows the coordinate of a rectangular plate element between longitudinal stif-
feners and transverse frames in a continuous stiffened plate structure. The x axis of the
plate is taken in any one reference direction, and the y axis is taken in the direction nor-
mal to the x direction. Therefore, one may not always be required to take the plate length
to be located along the long edges. One benefit of this type of coordinate system is that
computerization of strength calculations is much easier for a large plated structure that is

a

σxav

σyav

τav

τav

b

p

x

y

Figure 4.4 The coordinate of a rectangular plate under biaxial loads, edge shear, and lateral pressure.
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composed of a number of individual plate elements in which some plate elements are
“wide” and others are “long.” The plate length and breadth are denoted by a and b,
respectively. The plate thickness is t.

4.2.2 Material Properties

The plate elements in a plated structure are made of mild steel, high tensile steel, or alu-
minum alloy, with a yield strength, σY. Young’s modulus and Poisson’s ratio are E and v,
respectively. The elastic shear modulus is G = E/[2(1 + v)]. The plate bending rigidity is
denoted byD = Et3/[12(1 − v2)]. The plate slenderness ratio is defined as β = (b/t)√(σY/E).

4.2.3 Loads and Load Effects

When a continuous plated structure is subjected to external loads, the load effects (e.g.,
stress, deformation) of the plate elements can be computed by linear elastic finite
element analysis or by the classical theory of structural mechanics.
The potential load components that act on a plate element generally include four

types (or six load components): biaxial loads (i.e., compression or tension), edge shear,
biaxial in-plane bending, and lateral pressure, as described in Chapter 3. When the
plate is relatively small compared with the entire plated structure, the influence of
in-plane bending effects on the plate ultimate strength may be negligible. In contrast,
the effect of in-plane bending on the plate buckling strength may need to be consid-
ered, as described in Chapter 3. In this regard, this chapter deals with three types of
loads (or four load components): longitudinal compression or tension (σxav), transverse
compression or tension (σyav), edge shear (τ = τav), and lateral pressure loads (p), as
shown in Figure 4.4.
In ships and offshore structures, lateral pressure loading arises from water pressure

and/or cargo weight. The still-water magnitude of water pressure depends on the vessel’s
draught, and the still-water value of cargo pressure is determined by the amount and
density of the cargo loaded. These still-water pressure values are augmented by wave
action and vessel motion at sea. Typically, the larger in-plane loads are caused by lon-
gitudinal vessel hull girder bending, both in still-water and in waves at sea.
In this chapter, it is denoted that the compressive stress is negative and the tensile

stress is positive, unless otherwise specified. That is, the longitudinal axial load has a neg-
ative value when the corresponding load is compressive, and vice versa.

4.2.4 Fabrication Related Initial Imperfections

Welding is normally used to fabricate steel- or aluminum-plated structures, so initial
imperfections develop that may in some cases significantly affect (reduce) the structural
capacity. In advanced structural design, therefore, strength calculations of plates should
accommodate the initial imperfections as parameters of influence. The characteristics of
the welding induced initial imperfections are uncertain, and an idealized model is used to
represent them as described in Section 1.7.
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4.2.5 Boundary Conditions

In a continuous plated structure, the edges of the plate elements are supported by lon-
gitudinal stiffeners and transverse frames. The bending rigidities of the boundary sup-
port members are usually quite large compared with that of the plate itself, which
implies that the relative lateral deflections of the support members to the plate itself
are very small, even up to plate collapse. Therefore, it is presumed that the support mem-
bers at the four plate edges remain in the same plane. The rotational restraints along the
plate edges depend on the torsional rigidities of the support members, and these are nei-
ther zero nor infinite, as described in Chapter 3.
When predominantly in-plane compressive loads are applied to a continuous plated

structure surrounded by support members, the buckling pattern of the plates is expected
to be asymmetrical; that is, one plate element tends to buckle up and the adjacent plate
element tends to deflect down. In this case (after buckling), the rotational restraints along
the plate edges can be considered to be small.
When the plated structure is subjected to combined axial compression and lateral

pressure loads, however, the structure’s buckling pattern can tend to be symmetrical,
at least for sufficiently large pressures, that is, each adjacent plate element may deflect
in the direction of lateral pressure loading. In this case, the edge rotational restraints can
become so large that they may be considered to correspond to a clamped condition at the
beginning of loading. However, if plasticity occurs earlier along the edges, where the lar-
ger bending moments are developed, the rotational restraints at the yielded edges
decrease as the applied loads increase.
In fact, slender stiffeners prone to torsional bucklingmay even destabilize the plate in the

sense that the overall buckling of the stiffened panel, together with stiffeners, can then
occur at a stress level lower than that of a simply supported plate. However, our treatment
in this chapter is based on the normal presumption that stiffeners and other support mem-
bers have been properly designed so that their local instability does not occur before the
plating fails. When the stiffeners are very weak, they can buckle together with the plate as
part of what is called overall buckling. The design and analysis procedure for the overall
buckling of stiffened panels are treated separately, as described in Chapters 5 and 6.
In some cases, specifically under large lateral pressure loading, the plate edges may not

remain straight. This is a special case that must be treated separately. However, as long as
the stiffeners are sufficiently strong to avoid failure before the plate buckles, which is the
case with which this chapter is concerned, the plate will fail locally. In a continuous pla-
ted structure for which such a hypothesis can be accepted, the edges of the individual
plate elements remain nearly straight due to the relative structural response to the adja-
cent plate elements until the ULS is reached.
In this chapter, therefore, it is basically presumed that the plate edges are simply sup-

ported, with zero deflection and zero rotational restraints along four edges and with all
edges kept straight. This contrasts with our more sophisticated treatment of buckling of
plates in Chapter 3, wherein the effects of the rotational restraints of the support mem-
bers are accommodated. Part of the reason is mathematical convenience. The effects of
clamped or partially rotation restrained edge conditions are, of course, described in this
chapter separately.
Figure 4.5 shows the effects of the straight edge condition on the ultimate strength

behavior of a simply supported plate under axial compression or edge shear, as obtained
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Figure 4.5 Effect of the straight edge condition on the collapse behavior of a simply supported steel
plate: (a) under longitudinal compression; (b) under edge shear, as obtained by elastic–plastic
large-deflection finite element method.
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by the nonlinear finite element method analysis (FEA). As would be expected, the ulti-
mate strength of a plate with the unloaded edges kept straight is greater than that when
the unloaded edges move freely in plane. For relatively thick plates with a thickness of
20 mm, the difference in the ultimate strength is very small. However, the difference
becomes about 20% for relatively thin plates with a thickness of 10 mm.
Another illustrative example to investigate the effects of the plate boundary condition

on collapse behavior is that of a plate under combined axial compression and lateral pres-
sure. Two types of structural idealizations using nonlinear FEA may be relevant: one is a
single plate with the condition that all edges are simply supported, as shown in
Figure 4.6a, and the other is that a three-bay plate model is taken as the extent of the
analysis, as shown in Figure 4.6b. It is supposed that all plate edges are simply supported,
keeping them straight. In the FEA, the simply supported condition is applied along the
transverse frames, and some rotational restraints automatically develop due to the action
of lateral pressure.
Figure 4.7 shows the ultimate strength behavior with varying magnitudes of lateral

pressure, as obtained by nonlinear FEA. It is apparent from Figure 4.7 that the ultimate
strength of the three-bay plate model is greater than that of the single-bay plate model
and that the strength increase tends to grow as the magnitude of the lateral pressure
increases, because the plate edges along the transverse frames become clamped due
to the action of lateral pressure; the three-bay plate model automatically takes this effect
into account. However, the effect of rotational restraints due to lateral pressure is small,
and thus the simply supported plate edge condition may be relevant regardless of the
lateral pressure load applied.

4.3 Nonlinear Governing Differential Equations of Plates

The post-buckling or large-deflection behavior of plates in the elastic regime can be ana-
lyzed by solving the two nonlinear governing differential equations of the large-
deflection plate theory: the equilibrium equation and the compatibility equation
(Marguerre 1938, Timoshenko & Woinowsky-Krieger 1981):
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Figure 4.6 (a) A single-bay plate model and (b) a three-bay plate model under combined axial
compression and lateral pressure.
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∂4F
∂x4

+ 2
∂4F

∂x2∂y2
+
∂4F
∂y4

−E
∂2w
∂x∂y

2

−
∂2w
∂x2

∂2w
∂y2

+ 2
∂2w0

∂x∂y
∂2w
∂x∂y

−
∂2w0

∂x2
∂2w
∂y2

−
∂2w
∂x2

∂2w0

∂y2
= 0

4 1b

where w and w0 are the added and initial deflections, respectively, and F is Airy’s stress
function. When Airy’s stress function, F, and the added deflection, w, are known, the
stresses inside the plate can be calculated as follows:

σx =
∂2F
∂y2

−
Ez

1−v2
∂2w
∂x2

+ v
∂2w
∂y2

4 2a

σy =
∂2F
∂x2

−
Ez

1−v2
∂2w
∂y2

+ v
∂2w
∂x2

4 2b

τ = −
∂2F
∂x∂y

−
Ez

2 1 + v
∂2w
∂x∂y

4 2c

where z is the coordinate in the plate thickness direction, with z = 0 at its mid-thickness.
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Figure 4.7 The ultimate strength behavior of a plate under combined axial compression and lateral
pressure, as obtained by elastic–plastic large-deflection FEA.
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By solving the governing differential equations subject to the given boundary condi-
tions, load application, and initial imperfections, the stress distribution inside the plate
can be calculated, and thus it is possible to examine the elastic large-deflection behavior
of the plate. The normal stresses are taken as negative for compression and positive for
tension.
To solve Equations (4.1a) and (4.1b), initial and added deflection functions that satisfy

the boundary conditions are presumed. Using energy methods such as the Galerkin
method (Fletcher 1984), the unknown values in the presumed added deflection function
can be determined as a function of the applied loads. It is of course desirable to adopt an
added deflection function that can accurately represent the plate’s deflection patterns
due to the corresponding load applications. This may obviously require a number of
unknown values to be included in the presumed added deflection function.
In fact, the solution of the nonlinear governing differential equations of a plate with

such a deflection function is difficult for several reasons, and some simplifications are
therefore suggested. One reason is that it is difficult to deal with more than two unknown
values of the added deflection function in the analytical approach, and thus it is suggested
to use a single deflection component that represents the plate behavior. Another reason
is that combined load applications usually result in more complex patterns of deflection,
and thus a simplified approach using a single deflection component is not always suc-
cessful. In this case, the load conditions are considered only by a single load component
or at most a few components that can be represented by the presumed deflection func-
tion with the single deflection component.

4.4 Elastic Large-Deflection Behavior of Simply
Supported Plates

To accurately analyze the elastic large-deflection behavior of the simply supported plates
under the considerations described in Section 4.2, the initial and added deflection func-
tions that satisfy the simply supported boundary conditions can be expressed by a Four-
ier series function as follows:

w0 =
i

m= 1

j

n=1

A0mn sin
mπx
a

sin
nπy
b

4 3a

w=
i

m=1

j

n= 1

Amn sin
mπx
a

sin
nπy
b

4 3b

where A0mn and Amn are the initial and added deflection amplitudes and i and j are the
maximum numbers of deflection components in the x or y direction; as many as possible
should be taken. For modeling of the plate initial deflection, Section 1.7 can be
referred to.
It is confirmed that Equations (4.3a) and (4.3b) satisfy the simply supported boundary

conditions at the four edges of the plate because the deflections and out-of-plane bend-
ing moments (i.e., rotations should occur freely) should be zero at the plate edges,
namely,
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w= 0 at x= 0, a and y= 0, b 4 4a

∂2w
∂x2

= 0 at y= 0, b 4 4b

∂2w
∂y2

= 0 at x= 0, a 4 4c

For the sake of simplicity, the added deflection function and the related initial deflec-
tion function are presumed with a single deflection component but with consideration
of the best representation of the deflection patterns that correspond to the load appli-
cations as described in Section 4.3. It is realized that the deflection patterns due to in-
plane loads are quite different from those under lateral pressure loads; these load
conditions are thus dealt with separately, whereas their interacting effects shall be con-
sidered approximately. Also, the deflection patterns due to edge shear are quite com-
plex, so it cannot be represented by any deflection function with a single deflection
component. In this case, numerical computations are more convenient than the ana-
lytical approach.

4.4.1 Lateral Pressure Loads

The initial and added deflection functions of a simply supported plate under lateral pres-
sure loads alone can be expressed from Equations (4.3a) and (4.3b), considering one half-
wave number in both the x and y directions, as follows:

w0 =A01 sin
πx
a
sin

πy
b

4 5a

w=A1 sin
πx
a
sin

πy
b

4 5b

where A01 =A011 and A1 =A11 are the initial and added deflection amplitudes.
The substitution of Equations (4.5a) and (4.5b) into Equation (4.1b) results in

∂4F
∂x4

+ 2
∂4F

∂x2∂y2
+
∂4F
∂y4

= −
π4EA1 A1 + 2A01

2a2b2
cos

2πx
a

+ cos
2πy
b

4 6

The particular solution, FP, of the Airy stress function, F, is obtained by solving
Equation (4.6) as follows:

FP =
EA1 A1 + 2A01

32
a2

b2
cos

2πx
a

+
b2

a2
cos

2πy
b

4 7

The homogeneous solution, FH, of the stress function, F, that satisfies the loading con-
dition is given by treating the welding induced residual stress as an initial stress param-
eter, namely,

FH = σrx
y2

2
+ σry

x2

2
4 8

where σrx and σry are the welding induced residual stresses, as defined in Section 1.7.3.
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The applicable stress function, F, can then be expressed as the sum of the particular
solution and the homogeneous solution as follows:

F = σrx
y2

2
+ σry

x2

2
+
EA1 A1 + 2A01

32
a2

b2
cos

2πx
a

+
b2

a2
cos

2πy
b

4 9

By substituting Equations (4.5a), (4.5b), and (4.9) into Equation (4.1a) and applying the
Galerkin method (Fletcher 1984), the following equation is obtained:

a

0

b

0
D

∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t
∂2F
∂y2

∂2 w+w0

∂x2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y
+
∂2F
∂x2

∂2 w+w0

∂y2
+
p
t

× sin
πx
a
sin

πy
b
dxdy= 0

4 10

By performing the integration of Equation (4.10) over the entire plate, a third-order
equation with respect to the unknown variable, A1, is obtained as follows:

C1A
3
1 +C2A

2
1 +C3A1 +C4 = 0 4 11

where

C1 =
π2E
16

b
a3

+
a
b3

,

C2 =
3π2EA01

16
b
a3

+
a
b3

,

C3 = π
2E

A2
01

8
b
a3

+
a
b3

+
b
a
σrex +

a
b
σrey +

π2D
t

1
ab

b
a
+
a
b

2

,

C4 =A01
b
a
σrex +

a
b
σrey −

16ab
π4t

p,

σrex = σrcx +
2
b
σrtx−σrcx bt−

b
2π

sin
2πbt
b

≈
b−2bt

b
σrcx,

σrey = σrcy +
2
a

σrty−σrcy at−
a

2mπ
sin

2mπat
a

≈
a−2at

a
σrcy

The solution of Equation (4.11) can be obtained by the so-called Cardano method as
follows:

Am = −
C2

3C1
+ k1 + k2 4 12
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where

k1 = −
Y
2
+

Y 2

4
+
X3

27

1 3

,

k2 = −
Y
2
−

Y 2

4
+
X3

27

1 3

,

X =
C3

C1
−

C2
2

3C2
1
,

Y =
2 C3

2

27 C3
1
−
C2C3

3C2
1
+
C4

C1

Equation (4.12) can be dealt with numerically using the FORTRAN computer subrou-
tine CARDANO given in the appendices to this book. Once A1 is determined as a func-
tion of lateral pressure loads p and initial imperfections, the lateral deflection and
membrane stresses inside the plate can be calculated from Equations (4.3b) and (4.2),
respectively. The membrane stress distribution of the plate must be nonuniform, and
the maximum and minimum membrane stresses of the plate in the x and y directions
are obtained considering the distribution of welding induced residual stresses, as shown
in Figure 4.8, as follows:

σxmax =
∂2F
∂y2 x=0, y= bt or b−bt

4 13a

σxmin =
∂2F
∂y2 x= 0, y= b 2

4 13b

σymax =
∂2F
∂x2 x= at or a−at , y= 0

4 13c

σymin =
∂2F
∂x2 x= a 2, y= 0

4 13d

For this case, the maximum and minimum membrane stresses are then computed
from Equation (4.13) as follows:

σxmax = σrtx−
Eπ2A1 A1 + 2A01

8a2
cos

2πbt
b

4 14a

σxmin = σrcx +
Eπ2A1 A1 + 2A01

8a2
4 14b

σymax = σrty−
Eπ2A1 A1 + 2A01

8b2
cos

2πat
a

4 14c

σymin = σrcy +
Eπ2A1 A1 + 2A01

8b2
4 14d
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4.4.2 Combined Biaxial Loads

In this case, the plate behavior is represented by the buckling mode component, denoted
by them half-wave number in the x direction and the n half-wave number in the y direc-
tion. The initial and added deflection functions of a plate under biaxial loads may thus be
expressed as follows:

w0 =A0mn sin
mπx
a

sin
nπy
b

4 15a

a – 2at

–

(a)

(b)

+

at

σymax

σ r
ty

σrcy

σ*
ymax

at

Residual stress distribution

Membrane stress distribution
due to applied loads accounting for
the effect of residual stress

Total membrane stress
distribution

– +

σrtx

Residual stress distribution

Membrane stress distribution
due to applied loads accounting
for the effect of residual stress

Total membrane stress
distribution

b – 2bt

σ*
xmax

σxmax

σrcx

bt

bt

Figure 4.8 A schematic of the total membrane stress distribution inside the plate considering the
effect of welding induced residual stress distribution: (a) x direction; (b) y direction.
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w=Amn sin
mπx
a

sin
nπy
b

4 15b

where A0mn and Amn are the initial and added deflection amplitudes andm and n are the
buckling half-wave numbers in the x or y directions. For a plate with a b≥ 1, for which
the x coordinate is taken in the plate length direction, n= 1 is identified, and m is deter-
mined as a minimum integer that satisfies the following equation, as described in
Chapter 3:

a) When σxav and σyav are both nonzero compressive,

m2 a2 + 1 b2 2

m2 a2 + c b2
≤

m+ 1 2 a2 + 1 b2
2

m+ 1 2 a2 + c b2
4 16a

where c= σyav σxav.
b) When σxav is tensile or zero whatever σyav,

m= 1 4 16b

c) When σxav is compressive and σyav is tensile or zero,

a
b
≤ m m+ 1 4 16c

In a similar way to Equation (4.9), the Airy stress function F can be expressed as
follows:

F = σxav + σrx
y2

2
+ σyav + σry

x2

2

+
EAmn Amn + 2A0mn

32
n2a2

m2b2
cos

2mπx
a

+
m2b2

n2a2
cos

2nπy
b

4 17

The Galerkin method is applied with Equation (4.1a) as follows:

a

0

b

0
D

∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t
∂2F
∂y2

∂2 w+w0

∂x2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y
+
∂2F
∂x2

∂2 w+w0

∂y2

× sin
mπx
a

sin
nπy
b

dxdy= 0

4 18

By substituting Equations (4.15a), (4.15b), and (4.17) into Equation (4.18) and perform-
ing the integration over the entire plate, the following third-order equation with regard
to the unknown amplitude Amn is obtained as follows:

C1A
3
mn +C2A

2
mn +C3Amn +C4 = 0 4 19

where

C1 =
π2E
16

m4b
a3

+
n4a
b3

,
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C2 =
3π2EA0mn

16
m4b
a3

+
n4a
b3

,

C3 = π2E
A2
0mn

8
m4b
a3

+
n4a
b3

+
m2b
a

σxav + σrex

+
n2a
b

σyav + σrey +
π2D
t

m2n2

ab
mb
na

+
na
mb

2

,

C4 =A0mn
m2b
a

σxav + σrex +
n2a
b

σyav + σrey ,

σrex = σrcx +
2
b
σrtx−σrcx bt −

b
2nπ

sin
2nπbt
b

≈
b−2bt

b
σrcx,

σrey = σrcy +
2
b

σrty−σrcy at −
a

2mπ
sin

2mπat
a

≈
a−2at

a
σrcy.

The unknown deflection component (amplitude) Amn can be obtained as a solution of
Equation (4.19) using the Cardano method or the FORTRAN computer program CAR-
DANO given in the appendices to this book. The maximum and minimum membrane
stresses inside the plate are in this case determined from Equation (4.13) as follows:

σxmax = σxav + σrtx−
Eπ2m2Amn Amn + 2A0mn

8a2
cos

2nπbt
b

4 20a

σxmin = σxav + σrcx +
Eπ2m2Amn Amn + 2A0mn

8a2
4 20b

σymax = σyav + σrty−
Eπ2n2Amn Amn + 2A0mn

8b2
cos

2mπat
a

4 20c

σymin = σyav + σrcy +
Eπ2n2Amn Amn + 2A0mn

8b2
4 20d

For the case of a perfectly flat plate without initial deflections but with welding induced
residual stresses, Equation (4.19) is simplified as follows, because C2 =C4 = 0:

Amn C1A
2
mn +C3 = 0 4 21

where

C1 =
π2E
16

m4b
a3

+
n4a
b3

,

C3 =
m2b
a

σxav + σrex +
n2a
b

σyav + σrey +
π2D
t

m2n2

ab
mb
na

+
na
mb

2

.

The nonzero solution of Amn is defined from Equation (4.21) as follows:

Amn = −
C3

C1
4 22

Immediately before or after buckling, no deflection must have occurred. That is,

Amn = −
C3

C1
= 0 or C3 = 0 4 23
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Equation (4.23) indicates the bifurcation buckling condition of a perfectly flat plate
under biaxial loads with welding induced residual stresses, namely,

m2b
a

σxav + σrex +
n2a
b

σyav + σrey +
π2D
t

m2n2

ab
mb
na

+
na
mb

2

= 0 4 24

Because c= σyav σxav, the elastic longitudinal compressive buckling strength σxE of the
plate under biaxial loads can be calculated from Equation (4.24) as follows:

σxE = −
ab

m2b2 + cn2a2
π2D
t

m2n2

ab
mb
na

+
na
mb

2

+
m2b
a

σrex +
n2a
b

σrey 4 25

For a plate with a b ≥ 1 and thus n= 1, the buckling half-wave numberm in the x direc-
tion is determined from Equation (4.25) as a minimum integer that satisfies the following
condition:

ab
m2b2 + ca2

π2D
t

m2

ab
mb
a

+
a
mb

2

+
m2b
a

σrex +
a
b
σrey

≤
ab

m+ 1 2b2 + ca2
π2D
t

m+ 1 2

ab
m+ 1 b

a
+

a
m+ 1 b

2

+
m+ 1 2b

a
σrex +

a
b
σrey

4 26a

By neglecting the effect of welding induced residual stresses on the bucking mode,
Equation (4.26a) is simplified to

m2b2 + a2 2

m2a2b4 + ca4b2
≤

m+ 1 2b2 + a2
2

m+ 1 2a2b4 + ca4b2
4 26b

Equation (4.26b) is equivalent to Equation (4.16a). For uniaxial compression σxav,
Equation (4.26b) is further simplified as c= 0:

a
b
≤ m m+ 1 4 26c

In this case, Equation (4.25) is simplified to

σxE = −
π2D
b2t

mb
a

+
a
mb

2

−σrex−
a2

m2b2
σrey 4 27

For uniaxial compression σyav, the elastic transverse compressive buckling strength σyE
is determined as follows as m= n= 1 for a plate with a b≥ 1:

σyE = −
π2D
b2t

1 +
b
a

2 2

−
b2

a2
σrex−σrey 4 28

4.4.3 Interaction Effect Between Biaxial Loads and Lateral Pressure

The elastic large-deflection behavior of plates under combined biaxial loads and lateral
pressure is significantly affected by the amount of lateral pressure loads, among other

Ultimate Limit State Analysis and Design of Plated Structures198



factors (Hughes & Paik 2013). In fact, it is not possible to analyze large-deflection plate
behavior with the deflection functions of Equation (4.5) or (4.15), which have a single
deflection component; a greater number of deflection components must be included
in these functions to make it possible.
For the sake of simplicity, however, the contribution made by the lateral pressure loads

to the nonlinear membrane stresses inside the plate is accounted for in an approximate
fashion, where the membrane stresses that arise from only the deflection components of
m= 1 and n= 1 are linearly superposed to those that arise from the biaxial loads. In this
case, the coefficient C4 of Equation (4.19) is redefined as follows (Hughes & Paik 2013):

C4 =A0mn
m2b
a

σxav + σrex +
n2a
b

σyav + σrey −
16ab
π4t

p 4 29

Figure 4.9 confirms the applicability of this approach by comparison with the present
method solutions and more refined numerical computations for a simply supported
square plate under combined uniaxial compression and lateral pressure loads, with lat-
eral pressure loads of various magnitudes. It is observed from this figure that, due to lat-
eral pressure loads, the deflection increases from the beginning of axial compressive
loading; therefore, no bifurcation (buckling) point can be defined because lateral pres-
sure loads are applied. It should be noted, however, that this observation is true only
for a square or near-square plate. For a long plate, a bifurcation point in longitudinal
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Figure 4.9 The elastic large-deflection behavior of a simply supported square plate element under
combined longitudinal axial compression and lateral pressure (Hughes & Paik 2013).
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compression may appear even in the presence of lateral pressure loads as long as the
magnitude of these loads is not large. In this case, the value of the “elastic” bifurcation
load is, however, normally greater than that without the lateral pressure loads.

4.4.4 Interaction Effect Between Biaxial and Edge Shear Loads

The deflection patterns of a plate under edge shear loading is very complex in its geo-
metrical shape, and thus Equation (4.5) or (4.15) cannot represent the plate behavior
under edge shear together with biaxial and lateral pressure loads.
Ueda et al. (1984) proposed an approximate method to predict the maximum andmin-

imum membrane stresses inside the plate, where empirical coefficients developed based
on numerical computations are introduced with Equations (4.13) and (4.20):

σxmax = σxav + σrtx−
Eπ2m2Amn Amn + 2A0mn

8a2
cos

2nπbt
b

1 3
τav
τE

c

+ 1

+ 1 62σxE
τav
τE

2 4

4 30a

σxmin = σxav + σrcx +
Eπ2m2Amn Amn + 2A0mn

8a2
0 3

τav
τE

+ 1

−1 3σxE
τav
τE

2 1
4 30b

σymax = σyav + σrty−
Eπ2n2Amn Amn + 2A0mn

8b2
cos

2mπat
a

1 3
τav
τE

c

+ 1

+ 1 62σyE
τav
τE

2 4
4 30c

σymin = σyav + σrcy +
Eπ2n2Amn Amn + 2A0mn

8b2
0 3

τav
τE

+ 1

−1 3σyE
τav
τE

2 1
4 30d

where σxE is the elastic buckling stress under axial compression in the x direction, σyE is
the elastic buckling stress under axial compression in the y direction, τE is the elastic
buckling stress under edge shear, and c= 1 5 for τav ≤ τE or c= 1 for τav > τE.
Figure 4.10 confirms the applicability of this approach by comparison with more

refined numerical computations for a simply supported plate under combined longitu-
dinal compression and edge shear, where SPINE represents the elastic large-deflection
behavior obtained by the incremental Galerkin method described in Chapter 11. It is
observed from this figure that edge shear amplifies the maximum and minimum mem-
brane stresses inside the plate.
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4.5 Elastic Large-Deflection Behavior of Clamped Plates

When the torsional rigidity of the support members is very strong compared with the
bending rigidity of the plate itself, as described in Chapter 3, and/or when the plate ele-
ment is subjected to predominantly lateral pressure loads, the rotational restraints at the
plate edges tend to become large. In this situation, the plate edges may be assumed to be
clamped. The elastic large-deflection behavior of a clamped plate is completely different
from that of a simply supported plate. In the following, the elastic large-deflection behav-
ior of a plate clamped at four edges is described by solving the nonlinear governing dif-
ferential equations, Equations (4.1a) and (4.1b). The effects of initial deflection and
welding induced residual stress are considered.

4.5.1 Lateral Pressure Loads

In this case, the initial and added deflection functions may be assumed as follows:

w0 =
1
4
A01 1−cos

2πx
a

1−cos
2πy
b

4 31a

w=
1
4
A1 1−cos

2πx
a

1−cos
2πy
b

4 31b
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Figure 4.10 Validation of Equation (4.30) for a simply supported plate under combined longitudinal
compression and edge shear (SPINE represents the incremental Galerkin method solutions
described in Chapter 11).
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where A01 and A1 are the initial and added deflection amplitudes.
It is confirmed that Equations (4.31a) and (4.31b) satisfy the clamped conditions at the

plate edges, because the deflections and rotations must be zero, as follows:

w= 0 at x= 0, a and y= 0, b 4 32

∂w
∂x

= 0 at y= 0, b 4 32

∂w
∂y

= 0 at x= 0, a 4 32

The substitution of Equations (4.31a) and (4.31b) into Equation (4.1b) gives the Airy
stress function F as follows:

F = σrx
y2

2
+ σry

x2

2

+
EA1 A1 + 2A01

512a2b2

16a4 cos
2πx
a

−a4 cos
4πx
a

+ b4 16 cos
2πy
b

−cos
4πy
b

+ 8a4

cos
2πx
a

−
4πy
b

b2 + 4a2 2 −

2 cos
2πx
a

−
2πy
b

b2 + a2 2 +
cos

4πx
a

−
2πy
b

4b2 + a2 2

−

2 cos
2πx
a

+
2πy
b

b2 + a2 2 +
2 cos

4πx
a

+
2πy
b

4b2 + a2 2 +
cos

2πx
a

+
4πy
b

b2 + 4a2 2

4 33

Similar to Equation (4.10), the application of the Galerkin method leads to

b

0

a

0

D
∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t

∂2F
∂y2

∂2 w+w0

∂x2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y

+
∂2F
∂x2

∂2 w+w0

∂y2
+
p
t

× 1−cos
2πx
a

1−cos
2πy
b

dxdy= 0

4 34

Substituting Equations (4.31a) and (4.31b) into Equation (4.34) and performing the
integration over the entire plate, the following equation with regard to the unknown
added deflection amplitude A1 is given by

C1A
3
1 +C2A

2
1 +C3A1 +C4 = 0 4 35

where

C1 =
π2E

256a3b3
K ,
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C2 =
3π2EA01

256a3b3
K ,

C3 =
π2E A2

01

128a3b3
K +

3b
4a

σrex +
3a
4b

σrey +
π2D
t

3b
a3

+
3a
b3

+
2
ab

,

C4 =
3A01

4ab
b2σrex + a

2σrey −
ab
π2t

p,

σrex = σrcx +
2
b
σrtx−σrcx bt −

b
2π

sin
2πbt
b

≈
b−2bt

b
σrcx,

σrey = σrcy +
2
b

σrty−σrcy at −
a
2π

sin
2πat
a

≈
a−2at

a
σrcy,

K =
H

4a6 + 21a4b2 + 21a2b4 + 4b6 2,

H = 272a16 + 2856a14b2 + 11273a12b4 + 23146a10b6 + 23146a6b10

+ 31506a8b8 + 11273a4b12 + 2856a2b14 + 272b16

Once A1 is determined as a function of the lateral pressure loads p using the Cardano
method or the FORTRAN computer program CARDANO given in the appendices to
this book, the deflection and membrane stresses inside the plate can be obtained.

4.5.2 Combined Biaxial Loads

In this case, the initial and added deflection functions may be assumed as follows:

w0 =
1
4
A0mn 1−cos

2mπx
a

1−cos
2nπy
b

4 36a

w=
1
4
Amn 1−cos

2mπx
a

1−cos
2nπy
b

4 36b

where A0mn and Amn are the initial and added deflection amplitudes andm and n are the
buckling half-wave numbers in the x or y direction of the plate. The Airy stress function F
is obtained as follows:

F = σxav + σrx
y2

2
+ σyav + σry

x2

2

+
EAmn Amn + 2A0mn

512m2n2a2b2

16n4a4 cos
2mπx
a

−n4a4 cos
4mπx
a

+m4b4 16 cos
2nπy
b

−cos
4nπy
b

+ 8n4a4

cos
2mπx
a

−
4nπy
b

m2b2 + 4n2a2 2 −

2 cos
2mπx
a

−
2nπy
b

m2b2 + n2a2 2 +
cos

4mπx
a

−
2nπy
b

4m2b2 + n2a2 2

−

2 cos
2mπx
a

+
2nπy
b

m2b2 + n2a2 2 +
2 cos

4mπx
a

+
2nπy
b

4m2b2 + n2a2 2 +
cos

2mπx
a

+
4nπy
b

m2b2 + 4n2a2 2

4 37

Large-Deflection and Ultimate Strength Behavior of Plates 203



The Galerkin method is applied to Equation (4.1a) as follows:

b

0

a

0

D
∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t

∂2F
∂y2

∂2 w+w0

∂x2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y

+
∂2F
∂x2

∂2 w+w0

∂y2

× 1−cos
2mπx
a

1−cos
2nπy
b

dxdy= 0

4 38

Substituting Equations (4.36a) and (4.36b) into Equation (4.38) and performing the
integration over the entire plate, the following equation with regard to the unknown
deflection Amn is obtained:

C1A
3
mn +C2A

2
mn +C3Amn +C4 = 0 4 39

where

C1 =
π2E

256a3b3
K ,

C2 =
3π2EA0mn

256a3b3
K ,

C3 =
π2E A2

0mn

128a3b3
K +

3m2b
4a

σxav + σrex +
3n2a
4b

σyav + σrey

+
π2D
t

3m4b
a3

+
3n4a
b3

+
2m2n2

ab
,

C4 =
3A0mn

4ab
m2b2 σxav + σrex + n2a2 σyav + σrey ,

σrex = σrcx +
2
b
σrtx−σrcx bt −

b
2nπ

sin
2nπbt
b

≈
b−2bt

b
σrcx,

σrey = σrcy +
2
b

σrty−σrcy at −
a

2mπ
sin

2mπat
a

≈
a−2at

a
σrcy,

K =
H

4n6a6 + 21m2n4a4b2 + 21m4n2a2b4 + 4m6b6 2,

H = 272n16a16 + 2856m2n14a14b2 + 11273m4n12a12b4 + 23146m6n10a10b6 + 23146m10n6a6b10

+ 31506m8n8a8b8 + 11273m12n4a4b12 + 2856m14n2a2b14 + 272m16b16

Again, onceAmn is determined as a function of σxav and σyav using the Cardanomethod
or the FORTRAN computer program CARDANO given in the appendices to this book,
the deflection and membrane stresses inside the plate can be obtained. For particular
cases with no initial deflections, that is, A0mn = 0, C2 =C4 = 0. Therefore, Amn is deter-
mined from Equation (4.22), whereas C1 and C3 are defined in Equation (4.39). In this
case, the same expression of Equation (4.23) can be used to determine the elastic
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buckling strength condition of a clamped plate under combined biaxial loads as follows,
because C3 = 0:

3m2b
4a

σxav + σrex +
3n2a
4b

σyav + σrey +
π2D
t

3m4b
a3

+
3n4a
b3

+
2m2n2

ab
= 0 4 40

When the ratio of biaxial loading, c= σyav σxav, is kept constant, the elastic compressive
buckling strength σxE in the x direction is obtained as follows:

σxE = −
4ab

3m2b2 + 3cn2a2
3m2b
4a

σrex +
3n2a
4b

σrey +
π2D
t

3m4b
a3

+
3n4a
b3

+
2m2n2

ab

4 41

For a long plate with a b≥ 1, n= 1 may be taken. In contrast, the buckling half-wave
number m in the x direction can be determined as a minimum integer that satisfies the
following condition:

4ab
3m2b2 + 3ca2

3m2b
4a

σrex +
3a
4b

σrey +
π2D
t

3m4b
a3

+
3a
b3

+
2m2

ab

≤
4ab

3 m+ 1 2b2 + 3ca2
3 m+ 1 2b

4a
σrex +

3a
4b

σrey +
π2D
t

3 m+ 1 4b
a3

+
3a
b3

+
2 m+ 1 2

ab

4 42a

Equation (4.42a) can be simplified by neglecting the effect of welding induced residual
stresses as follows:

4ab
3m2b2 + 3ca2

3m4b
a3

+
3a
b3

+
2m2

ab
≤

4ab

3 m+ 1 2b2 + 3ca2
3 m+ 1 4b

a3
+
3a
b3

+
2 m+ 1 2

ab

4 42b

For uniaxial compression σxav, with σyav = 0 or c= 0, the elastic buckling strength σxE of
a clamped plate is then determined from Equation (4.42) as follows:

σxE = −
4a

3m2b
3m2b
4a

σrex +
3a
4b

σrey +
π2D
t

3m4b
a3

+
3a
b3

+
2m2

ab
4 43a

If no welding induced residual stresses exist, Equation (4.43a) is simplified to

σxE = −
4π2D
3t

3m4b4 + 3a4 + 2m2a2b2

m2a2b4
4 43b

In this case, the buckling half-wave number m can be determined as a minimum inte-
ger that satisfies the following condition:

3m4b4 + 3a4 + 2m2a2b2

m2a2b4
≤
3 m+ 1 4b4 + 3a4 + 2 m+ 1 2a2b2

m+ 1 2a2b4
4 44
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For uniaxial compression σyav, with σxav = 0, the elastic buckling strength σyE of a
clamped plate is obtained as follows:

σyE = −
4b
3a

3b
4a

σrex +
3a
4b

σrey +
π2D
t

3b
a3

+
3a
b3

+
2
ab

4 45a

where m= n= 1 was taken for a plate with a b ≥ 1.
If no welding induced residual stresses exist, Equation (4.45a) is simplified to

σyE = −
4π2D
3t

3b4 + 3a4 + 2a2b2

a4b2
4 45b

4.5.3 Interaction Effect Between Biaxial Loads and Lateral Pressure

Similar to Equation (4.29), the effect of lateral pressure loads is approximately accounted
for as follows:

C4 =
3A0mn

4ab
m2b2 σxav + σrex + n2a2 σyav + σrey −

ab
π2t

p 4 46

Upon calculating the deflection and membrane stresses for a clamped plate under
combined in-plane and lateral pressure loads, C4 in Equation (4.46) is used instead of
C4 in Equation (4.39).

4.6 Elastic Large-Deflection Behavior of Partially Rotation
Restrained Plates

The rotational restraints at the plate edges are neither zero nor infinite because the plate
edges are supported by longitudinal stiffeners and transverse frames; rather, they depend
on the torsional rigidities of the support members, as described in Chapter 3.
The elastic large-deflection behavior of such plates certainly depends on the degree of

rotational restraints. Dealing with the elastic large-deflection behavior of a partially rota-
tion restrained plate is not easy. For the sake of simplicity, C3 and C4 in Equation (4.19)
for a simply supported plate under combined biaxial and lateral pressure loads are mod-
ified as follows (Hughes & Paik 2013):

C3 =
π2EA0mn

2

8
m4b
a3

+
n4a
b3

+
m2b
a

σxav + σrex +
n2a
b

σyav + σrey

+
π2D
t

m2n2

ab
mb
na

+
na
mb

2 kxky
kxokyo

CpxCpy

4 47a

C4 =A0mn
m2b
a

σxav + σrex +
n2a
b

σyav + σrey −
16ab
π4t

p 4 47b

where kxo and kyo are the buckling coefficients for a simply supported plate under uni-
axial compression in the x or y direction as described in Chapter 3, kx and ky are the buck-
ling coefficients for a partially rotation restrained plate under uniaxial compression in the
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x or y direction as described in Chapter 3, and Cpx and Cpy are the coefficients that deal
with the effects of lateral pressure loads on the compressive buckling strength in the x or
y direction, as defined in Equation (3.28). The plate deflection amplitude Amn is deter-
mined as a solution of Equation (4.19), but C3 and C4 in this case are defined as those in
Equations (4.47a) and (4.47b).
Figure 4.11 shows the variation of the coefficient C3 in Equation (4.47a) as a function of

the parameters of rotational restraints, ζL and ζS, as defined in Equation (3.23). It is
apparent from Figure 4.11 that the coefficient C3 progressively increases with increase
in the rotational restraints. This suggestion is straightforward to apply while giving rea-
sonably accurate solutions as discussed in the following section.
In the following, the applicability of this approach is confirmed by comparison with

more refined finite element method solutions for partially rotation restrained plates
under uniaxial or biaxial compression (Paik et al. 2012). Tables 4.1 and 4.2 indicate
the dimensions of longitudinal stiffeners and transverse frames together with the rota-
tional restraint parameters ζL and ζS, as defined in Equation (3.23). The plate aspect ratio,
dimensions of the support members, and biaxial loading ratio are varied in the illustrative
examples, where the plate breadth is b = 1000mm, the plate thickness is t = 20mm,
Young’s modulus is E = 205.8 GPa, and Poisson’s ratio is ν = 0.3. The maximum initial
deflection of the plate is assumed to be w0pl = b 200.
Table 4.3 and Figure 4.12 indicate the boundary condition and mesh modeling of the

finite element analysis. It is noted that the finite element method cannot deal with the
parameters of rotational restraints in an explicit manner. Instead, a two-bay finite
element model as shown in Figure 4.12 is employed in both the x and y directions as
the extent of the analysis to automatically take into account the effect of partially rotation
restrained edges at the support member locations.
Figure 4.13a shows the mesh modeling. A number of 14 rectangular-type plate–shell

elements were used in the y direction of the plating between longitudinal stiffeners, and a
number of six rectangular-type plate–shell elements were used for the longitudinal stiff-
ener web in the web height direction. A number of two rectangular plate–shell elements
were used for T-type stiffener flange in the flange breadth direction. In the x direction of
the panel, the plate–shell elements were assigned so that the element aspect ratio
becomes unity. Figure 4.13b and c shows illustrative examples of the plate initial deflec-
tion patterns applied, in which the buckling mode shape of the plate initial deflection is
considered in the finite element analysis. The buckling mode of a plate can be deter-
mined from Equation (4.16) depending on the plate aspect ratio and the loading ratio
or condition. Figure 4.14 illustrates three types of loading conditions considered. Under
biaxial compression, its ratio between longitudinal compression and transverse com-
pression is varied.

4.6.1 Longitudinal Compression

Figures 4.15, 4.16, and 4.17 present comparisons of the theory and the FEA for a plate
under longitudinal axial compression with various sizes of support members in terms of
the elastic large-deflection behavior of plates, in which the vertical axis represents the
applied average longitudinal compressive stress, σxav, normalized by the corresponding
elastic buckling stress, σxE, of the simply supported plate and the horizontal axis
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Figure 4.11 Variation of the coefficient C3 as a function of the rotational restraint parameters with
varying the plate aspect ratio: (a) for the longitudinal stiffeners; (b) for the transverse frames.
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represents the maximum total deflection of the plate including both initial and added
deflections. It is apparent from these figures that the behavior of the plate with partially
rotation restrained edges is in between those of the plates with simply supported and
clamped edges. It is concluded that the solutions obtained with the theory show reason-
ably good correlation with those of the nonlinear FEA.

4.6.2 Transverse Compression

Figures 4.18, 4.19, and 4.20 present comparisons of the results of the theory and the FEA
for a plate under transverse axial compression with various sizes of support members in
terms of the elastic large-deflection behavior of plates, in which the vertical axis repre-
sents the applied average transverse compressive stress, σyav, normalized by the

Table 4.1 Dimensions of the longitudinal stiffeners of the plate.

Longitudinal stiffener size (mm) ζL

Case hwx twx bfx tfx a b= 1 3 5

I 250 12 150 15 0.1642

II 400 12 150 15 0.2096

III 500 12 150 15 0.2398

Table 4.2 Dimensions of the transverse frames of the plate.

Case

Transverse stiffener size (mm) ζS

hwy twy bfy tfy a b= 1 3 5

A 650 12 150 15 0.2852 0.0951 0.0570

B 1200 12 150 15 0.4515 0.1505 0.0903

Table 4.3 Boundary conditions of the finite element models using the two-bay/double span stiffened
panel as indicated in Figure 4.12.

Boundary Description

A–A and D–D Symmetric condition with Ry =Rz = 0 and uniform displacement in the x
direction (Ux = uniform), coupled with the longitudinal stiffener

A–D and A –D Symmetric condition with Rx =Rz = 0 and uniform displacement in the y
direction (Uy = uniform), coupled with the transverse frame

A –D , A –D , B–B ,
and C–C

Uz = 0

Note: Ux,Uy, and Uz indicate the translational degrees of freedom in the x, y, and z direction, and Rx, Ry, and Rz
indicate the rotational degrees of freedom in the x, y, and z direction.
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corresponding elastic buckling stress, σyE, of the simply supported plate and the horizon-
tal axis represents the maximum total deflection of the plate including both initial and
added deflections. It is apparent from these figures that the behavior of the plate with
partially rotation restrained edges is in between those of the plates with simply supported
and clamped edges. Again, it is concluded that the solutions obtained with the theory
show very good correlation with those of the nonlinear FEA.

4.6.3 Biaxial Compression

Figures 4.21, 4.22, and 4.23 present comparisons of the results of the theory and the FEA
for a plate under biaxial compression with various sizes of support members and biaxial
loading ratios. In these figures, the vertical axis represents the applied average longitu-
dinal compressive stress, σxav, normalized by the corresponding elastic buckling stress,
σxE, of the simply supported plate, although the plate is actually subjected to both lon-
gitudinal and transverse compressive loads, keeping the biaxial loading ratio constant. It
is also concluded that the solutions of the theory show reasonably good correlation with
those of the nonlinear FEA.

4.7 Effect of the Bathtub Deflection Shape

For a square or long plate, the plate deflection is normally quite similar to a sinusoidal
pattern. For a long plate under predominantly transverse compressive loading, however,
the plate deflection may differ somewhat from the sinusoidal pattern; it normally takes
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Figure 4.12 Boundary conditions for the finite element model.
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Figure 4.13 (a) Mesh modeling for the finite element analysis; (b) Initial deflection pattern applied for a
plate with a/b = 5 under predominantly longitudinal axial compression (plate initial deflection
amplified by 80 times); (c) Initial deflection pattern applied for a plate with a/b = 5 under predominantly
transverse axial compression (plate initial deflection amplified by 80 times).
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the so-called “bathtub” (or bulb) shape around the plate edges, whereas the deflected
shape in the middle part of the plate is nearly flat, as shown in Figure 4.24. Due to
the bathtub-type deflection, the rotation and deflection around the plate edges are nor-
mally greater than those of the sinusoidal pattern, resulting in larger values of the mem-
brane stresses.
This implies that the presumed deflection functions with one mode term may not be

valid further for a plate in compression along the short edges, and thus a more refined
deflection function, that is, one with deflection terms of at least more than 2, may be
needed. However, it is in this case not straightforward to analytically solve the nonlinear
governing differential equations.
As an easier alternative, while maintaining the deflection functions with a single com-

ponent, the maximum and minimum membrane stresses along the edges of the plate in
predominantly transverse compressive loading are approximately corrected by introdu-
cing a factor, ρ, to account for the deflection effects of the bathtub shape as follows (Ueda
et al. 1984):

ρ=
1

2

b
a
− 2 + 2 4 48

σxav

σyav

y
z

x

σyav

σyav

σyav

σxav

σxav

σxav

Figure 4.14 Three types of loading conditions considered in the finite element analysis, including
longitudinal compression, σxav, transverse compression, σyav, and biaxial compression, σxav and σyav.
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The correction factor ρ of Equation (4.48) is then applied to the maximum and min-
imum membrane stresses of Equation (4.20) for a simply supported plate under biaxial
loads as follows:

σxmax = σxav + σrtx−ρ
Eπ2m2Amn Amn + 2A0mn

8a2
cos

2nπbt
b

4 49a

σ x
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Figure 4.15 Comparison between the theory and the FEA for a plate with a/b = 1 under
longitudinal compression with the transverse frames of Case A and the longitudinal stiffeners of
(a) Case I; (b) Case II and (c) Case III.
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σxmin = σxav + σrcx + ρ
Eπ2m2Amn Amn + 2A0mn

8a2
4 49b

σymax = σyav + σrty−ρ
Eπ2n2Amn Amn + 2A0mn

8b2
cos

2mπat
a

4 49c

σymin = σyav + σrcy + ρ
Eπ2n2Amn Amn + 2A0mn

8b2
4 49d

For other types of load applications, a similar modification of the maximum and min-
imum membrane stresses shall be made with the correction factor ρ of Equation (4.48).

4.8 Evaluation of In-Plane Stiffness Reduction Due
to Deflection

The membrane stress distribution inside a plate is no longer uniform once buckling or
deflection has occurred. Figure 4.25 shows a schematic of the membrane normal stress
distribution inside a plate under predominantly longitudinal compressive loading before
and after buckling.
It is important to realize that many factors, including buckling, initial deflection, and

lateral pressure loading, can cause the membrane stress distribution in the loading (x)
direction to become nonuniform as the plate deflects. The membrane stress distribution
in the y direction also becomes nonuniform as long as the unloaded plate edges remain
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Figure 4.16 Comparison between the theory and the FEA for a plate with a/b = 3 under
longitudinal compression with the transverse frames of Case B and the longitudinal stiffeners of
(a) Case I; (b) Case II; (c) Case III.
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straight, whereas no membrane stresses develop in the y direction if the unloaded plate
edges move freely in plane.
It is apparent from Figure 4.25 that the maximum compressive membrane stresses

develop around the plate edges that remain straight, whereas the minimum membrane
stresses occur in themiddle of the plate, where amembrane tension field is formed by the
plate deflection because the plate edges remain straight. The location of the maximum
compressive stresses depends on the residual stresses. If there are no residual stresses,
the maximum compressive stresses develop along the edges. In contrast, when residual
stresses do exist, the maximum compressive stresses are found inside the plate at the
limits of the tensile residual stress block breadths from the plate edges, as illustrated
in Figure 4.8.
To model the large-deflection behavior of a plate deflected by buckling and/or lateral

pressure loading, two concepts are relevant (Paik 2008a):

• The effective width or length concept

• The effective shear modulus concept

The membrane stress distribution inside the deflected plate is nonuniform, but that
inside the undeflected plate is uniform. The basic ideas behind the two concepts men-
tioned earlier are to deal with the deflected plate as an undeflected plate but with the
reduced in-plane stiffness. This idealization is beneficial because the theory of linear
structural mechanics can still be applied. In the following section, the formulations of
the two concepts are derived in detail.
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Figure 4.17 Comparison between the theory and the FEA for a plate with a/b = 5 under
longitudinal compression with the transverse fames of Case B and the longitudinal stiffeners of
(a) Case I; (b) Case II and (c) Case III.
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4.8.1 Effective Width

The effective width is a virtually reduced width of a plate between two longitudinal stif-
feners. The effective width of a plate with initial imperfections under combined in-plane
and lateral pressure loads is defined as the ratio of the average stress to the maximum
stress as follows:

be
b
=

σxav
σxmax

4 50

where σxmax is the maximum compressive stress, which is expressed as a function of
combined in-plane and lateral pressure loads as well as initial imperfections, and be
may also be called the “effective breadth” if lateral pressure, p, exists, because in that case,
the shear lag effect also develops.
It is of interest to calculate the ultimate effective width, beu, at the ULS of the plate,

which can be obtained from Equation (4.50) when σxav = σxu as follows:

beu
b

=
σxu
σuxmax

4 51a

where σuxmax = σxmax at σxav = σxu and σxu is the plate ultimate strength as described in
Section 4.9.
Equation (4.50) or (4.51a) explicitly accounts for the influence of the initial imperfec-

tions and lateral pressure as parameters of influence. In contrast, the more typical
approach in this regard is exemplified by Faulkner (1975), as indicated in
Equation (2.19a), who suggested an empirical effective width formula for simply
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Figure 4.18 Comparison between the theory and the FEA for a plate with a/b = 1 under transverse
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supported plates under longitudinal compression alone, that is, without lateral pressure,
at the ULS as follows:

beu
b

=
1 0 for β ≤ 1

2 β−1 β2 for β > 1
4 51b

where Equation (4.51b) implicitly involves the influence of initial imperfections at an
“average” level. In some design codes, the terms 2 and 1 for β > 1 are changed to 1.8
and 0.9, respectively.
Figure 4.26 plots Equations (4.50) and (4.51a) with increasing σxav, varying plate slen-

derness ratios, initial deflections, residual stresses, and lateral pressure. The Faulkner for-
mula, Equation (4.51b), is also shown for comparison. The plate ultimate strength, σxu, as
obtained from Section 4.9, is also plotted. The Faulkner formula corresponds well to the
effective width only for relatively thick plates with an “average” level of initial imperfec-
tions. It is apparent from Figure 4.26 that the plate effective width varies with the level of
initial imperfections as well as applied loads, and Equation (4.50) or (4.51a) therefore
better embodies the nature of the plate effective width. It is evident from Figure 4.26c
that the lateral pressure is also a significant factor that influences (reduces) the plate
effective “breadth,” as would be expected.
It is often useful to derive a closed-form expression of the reduced (tangent) effective

width to represent the in-plane effectiveness of the buckled plate, namely,

b∗e
b
=

∂σxmax

∂σxav

−1

4 52

where b∗e is the reduced (tangent) effective width.

0.0

0.4

1.8
(c)

0.6

0.2

1.0

1.2

0.8

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

: FEM
: Theory

Clamped
(ζL= ζS = ∞)

Simply supported
(ζL = ζS = 0.0)

Partially rotation restrained
(ζL = 0.2398 with Case III and
ζS = 0.2852 with Case A)

σ y
av

/σ
yE

(w+w0)/t

a/b = 1

Figure 4.18 (Continued )

Ultimate Limit State Analysis and Design of Plated Structures220



0.0

0.4

1.8

(a)

0.6

0.2

1.0

1.2

0.8

1.4

1.6

0.0 0.4 0.8 1.2 1.6 1.8

: FEM

: Theory

Clamped

(ζL= ζS = ∞)

Simply supported

(ζL = ζS = 0.0)

Partially rotation restrained

(ζL = 0.1642 with Case I and

ζS = 0.1505 with Case B)

σ y
av

/σ
yE

(w+w0)/t

a/b = 3

0.0

0.4

1.8

(b)

0.6

0.2

1.0

1.2

0.8

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

: FEM

: Theory

Clamped

(ζL= ζS = ∞)

Simply supported

(ζL = ζS = 0.0)

Partially rotation restrained

(ζL = 0.2096 with Case II and

ζS = 0.1505 with Case B)

σ y
av

/σ
yE

(w+w0)/t

a/b = 3

Figure 4.19 Comparison between the theory and the FEA for a plate with a/b = 3 under transverse
compression with the transverse frames of Case B and the longitudinal stiffeners of (a) Case I; (b) Case II
and (c) Case III.
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For a simply supported plate without initial imperfections and under uniaxial com-
pressive loads in the x direction, Equation (4.20) of the maximum and minimum mem-
brane stresses can be further simplified to

σxmax = a1σxav + a2, σxmin = b1σxav + b2, σymax = c1σxav + c2, σymin = d1σxav + d2

4 53

where

a1 = 1 + ρ
2m4

a4 m4 a4 + 1 b4
, a2 = ρx

2m2

a2 m4 a4 + 1 b4
π2D
t

m2

a2
+

1
b2

2

,

b1 = 1−ρ
2m4

a4 m4 a4 + 1 b4
, b2 = −ρx

2m2

a2 m4 a4 + 1 b4
π2D
t

m2

a2
+

1
b2

2

,

c1 = ρ
2m2

a2b2 m4 a4 + 1 b4
, c2 = ρ

2
b2 m4 a4 + 1 b4

π2D
t

m2

a2
+

1
b2

2

,

d1 = −ρ
2m2

a2b2 m4 a4 + 1 b4
, d2 = −ρ

2
b2 m4 a4 + 1 b4

π2D
t

m2

a2
+

1
b2

2

When neither initial imperfections nor lateral pressure is involved, the effective width
formula of a simply supported plate under uniaxial compression in the x direction can be
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Figure 4.20 Comparison between the theory and the FEA for a plate with a/b = 5 under transverse
compression with the transverse frames of Case B and the longitudinal stiffeners of (a) Case I; (b) Case II
and (c) Case III.
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expressed from Equation (4.50) as a function of the average stress as follows because
σxmax = a1σxav + a2 from Equation (4.53):

be
b
=

σxav
a1σxav + a2

4 54a

or as a function of the average strain because σxmax = a1σxav + a2 = Eεxav:

be
b
=

1
a1

1−
a2
E

1
εxav

4 54b

The reduced effective width of a simply supported plate under uniaxial compressive
loads in the x direction is obtained from Equation (4.52) when neither initial imperfec-
tions nor lateral pressure is involved:

b∗e
b
=

1
a1

4 55

4.8.2 Effective Length

The effective “length” is a virtually reduced length of a plate between two transverse
frames. Similar to the effective width of Equation (4.50), the effective length of a plate
in association with the axial compressive stress σyav in the y direction can be defined
as follows:

ae
a
=

σyav
σymax

4 56
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Figure 4.21 Comparison between the theory and the FEA for a plate with a/b = 1 under
biaxial compression with the longitudinal stiffeners of Case II and the transverse frames of Case A:
(a) σyav/σxav = 0.5; (b) σyav/σxav = 2.0.
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Figure 4.23 Comparison between the theory and the FEA for a plate with a/b = 5 under
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(a) σyav/σxav = 0.5; (b) σyav/σxav = 2.0.
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Figure 4.24 The so-called “bathtub” shape of the plate deflection.
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where σymax is the maximum compressive stress, which is expressed as a function of the
combined in-plane and lateral pressure loads and the initial imperfections.
It is again of interest to calculate the ultimate effective length, aeu, at the ULS of the

plate, which can be obtained from Equation (4.56) when σyav = σyu as follows:

aeu
a

=
σyu
σuymax

4 57a

where σuymax = σymax at σyav = σyu, and σyu is the plate ultimate strength as described in
Section 4.9.
Although Equation (4.57) explicitly accounts for the influence of initial imperfections

and lateral pressure as parameters of influence, the more typical approach is that exem-
plified by Faulkner et al. (1973), who suggested an empirical effective length formula for
simply supported plates under transverse compression alone, that is, without lateral
pressure, at the ULS as follows:

aeu
a

=
0 9

β2
+
b
a
1 9
β

1−
0 9

β2
for

a
b
≥ 1 9 4 57b

where Equation (4.57b) implicitly involves the influence of initial imperfections at an
“average” level.
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The reduced tangent effective length of a plate representing the in-plane effectiveness
due to buckling or other reasons of deflection is given by

a∗e
a
=

∂σymax

∂σyav

−1

4 58

where a∗e is the reduced (tangent) effective length.
For a simply supported plate without initial imperfections and lateral pressure and

under uniaxial compressive loads in the y direction, Equation (4.20) of the maximum
and minimum membrane stresses can be further simplified to

σxmax = e1σyav + e2, σxmin = f1σyav + f2, σymax = g1σyav + g2, σymin = h1σyav + h2

4 59

where

e1 = ρ
2n2

a2b2 1 a4 + n4 b4
, e2 = ρ

2
a2 1 a4 + n4 b4

π2D
t

1
a2

+
n2

b2

2

,

f1 = −ρ
2n2

a2b2 1 a4 + n4 b4
, f2 = −ρ

2
a2 1 a4 + n4 b4

π2D
t

1
a2

+
n2

b2

2

,

g1 = 1 + ρ
2n4

b4 1 a4 + n4 b4
, g2 = ρ

2n2

b2 1 a4 + n4 b4
π2D
t

1
a2

+
n2

b2

2

,

h1 = 1−ρ
2n4

b4 1 a4 + n4 b4
, h2 = −ρ

2n2

b2 1 a4 + n4 b4
π2D
t

1
a2

+
n2

b2

2

For a simply supported plate without both the initial imperfections and lateral pressure
loads, Equation (4.56) can be given with σymax = g1σyav + g2 from Equation (4.59):

ae
a
=

σyav
g1σyav + g2

4 60a

We can recast Equation (4.60a) as a function of the membrane strain because
σymax = g1σyav + g2 = Eεyav as follows:

ae
a
=

1
g1

1−
g2
E

1
εyav

4 60b

The reduced effective length of a simply supported plate representing the in-plane
effectiveness due to buckling under uniaxial compressive loads in the y direction is given
from Equation (4.58) when neither the initial imperfections nor lateral pressure is
involved:

a∗e
a
=

1
g1

4 61

4.8.3 Effective Shear Modulus

Although the effective width is recognized as an efficient approach to evaluate the large-
deflection behavior of a plate under predominantly axial compressive loads, the concept
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of the effective shear modulus, originally suggested by Paik (1995), may be useful to rep-
resent the behavior of a plate buckled in edge shear.
The basic concept of the effective shear modulus for a plate buckled in edge shear is

now described. In plane stress problems, the relationship between membrane shear
stress, τ, and shear strain, γ, is given by

τ =Gγ 4 62

where G = E/[2(1 + v)] is the shear modulus.
Although the shear strain distribution would be uniform inside the plate before buck-

ling, it is no longer uniform after shear buckling occurs. The shear strain at any point
inside the buckled plate may be calculated by accounting for the large-deflection effects
as follows:

γ =
∂u
∂y

+
∂v
∂x

+
∂w
∂x

∂w
∂y

+
∂w
∂x

∂w0

∂y
+
∂w0

∂x
∂w
∂y

4 63

where u and v are the axial displacements in the x and y directions, respectively. The first
bracketed term on the right side of the previous equation represents the membrane shear
strain component, and the second term indicates the additional shear strain component
due to large-deflection effects.
The basic idea of either the effective width or the effective shear modulus concepts is to

regard the deflected (buckled) plate as an equivalent “flat” (undeflected) plate, but with a
reduced (effective) in-plane stiffness. Therefore, the membrane shear strain component,
γm, of the buckled plate must in this case be evaluated as follows:

γm =
∂u
∂y

+
∂v
∂x

=
τ

G
−

∂w
∂x

∂w
∂y

+
∂w
∂x

∂w0

∂y
+
∂w0

∂x
∂w
∂y

4 64

The membrane shear strain at any point inside the plate can, in a real case, be com-
puted using numerical methods such as the finite element method described in
Chapter 12 or the incremental Galerkin method described Chapter 11. The mean mem-
brane shear strain, γav, may be defined as an average of the shear strains thus computed
over the entire plate as follows:

γav =
1
ab

a

0

b

0
γmdxdy 4 65

Because the shear stress at the plate edges may equal the average shear stress, that is,
τ = τav, the effective shear modulus, Ge, that represents the effectiveness of a plate
buckled in edge shear can be defined by

Ge =
τav
γav

4 66

An empirical expression for the effective shear modulus can be developed by curve
fitting based on numerical computations and on various influential factors such as
the plate aspect ratio and initial imperfections. For instance, the effective shear modulus
formula of a simply supported rectangular plate with initial deflections may be
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empirically derived based on the results of the incremental Galerkin method described in
Chapter 11 (Paik 1995):

Ge

G
=

c1V 3 + c2V 2 + c3V + c4 for V ≤ 1 0

d1V 2 + d2V + d3 for V > 1 0
4 67

where

c1 = −0 309W 3
0 + 0 590W 2

0 −0 286W0,

c2 = 0 353W 3
0 −0 644W 2

0 + 0 270W0,

c3 = −0 072W 3
0 + 0 134W 2

0 −0 059W0,

c4 = 0 005W 3
0 −0 033W 2

0 + 0 001W0 + 1 0,

d1 = −0 007W 3
0 + 0 015W 2

0 −0 018W0 + 0 015,

d2 = −0 022W 3
0 + 0 006W 2

0 + 0 075W0−0 118,

d3 = 0 008W 3
0 + 0 025W 2

0 −0 130W0 + 1 103

with V = τav τE, W0 =w0pl t, and τE is the elastic shear buckling stress of the plate, as
defined in Chapter 3.
When the initial deflection is not involved, Equation (4.67) is simplified to

Ge

G
=

1 0 for τav τE ≤ 1

0 015 τav τE
2−0 118τav τE + 1 103 for τav τE > 1

4 68

Figure 4.27 plots Equations (4.67). It is apparent from Figure 4.27 that the effective
shear modulus of a plate decreases after buckling as the edge shear stress increases.
The initial deflection also reduces the effective shear modulus, as would be expected.

1.04

1.00

W0 = 0.2
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Figure 4.27 Variation of the effective shear modulus for a plate with increase in edge shear.
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4.9 Ultimate Strength

The existing analytical methods to calculate the ultimate strength of plates can be cate-
gorized into two approaches:

• The rigid-plastic theory method

• The membrane stress-based method

This section describes the ultimate strength formulations for a plate element under
combined biaxial loads, edge shear, or lateral pressure, which consider the effects of ini-
tial imperfections. The effects of opening or structural damage on the plate ultimate
strength are described separately.

4.9.1 Ultimate Strength by Gross Yielding

For a plate element under predominantly axial tensile loading and/or with a very large
thickness or a very low plate slenderness ratio, the ultimate strength is reached by gross
yielding. In this case, the ultimate strength criterion is typically given by the von Mises
yield condition, Equation (1.31c), which can be used as an upper limit of the plate ulti-
mate strength, as follows:

σxav
σY

2

−
σxav
σY

σyav
σY

+
σyav
σY

2

+
τav
τY

2

= 1 4 69

4.9.2 Rigid-Plastic Theory Method

In the classical rigid-plastic theory method (Wood 1961), the kinematically admissible
collapse mechanisms of the plate at the ultimate strength are presumed, and the ultimate
strength is then determined by applying the classical energy principle so that the internal
strain energy is in equilibrium with the external potential energy. To account for
the large-deflection effect, the rigid-plastic approach must be combined with the elastic
large-deflection theory of the plate. This method is often used to indicate the upper or
lower bound solutions of the ultimate strength.

4.9.2.1 Lateral Pressure Loads
Jones (1975) derived the collapse strength of a rectangular plate under lateral pressure loads
using the rigid-plastic theory method without accounting for the large-deflection effect:

8MP

b2
1 + α+ α2 ≤ pu ≤

24MP

b2
1

3 + α2−α
2 for a simply supported plate

4 70a

16MP

b2
1 + α2 ≤ pu ≤

48MP

b2
1

3 + α2−α
2 for a clamped plate 4 70b

where pu is the collapse strength, MP = σYt2 4 is the full plastic bending moment,
and α= b a.
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For a square plate with α= 1, Equation (4.70a) or (4.70b) can be simplified to

24MP

b2
≤ pu ≤

24MP

b2
for a simply supported square plate 4 71a

32MP

b2
≤ pu ≤

48MP

b2
for a clamped square plate 4 71b

It is apparent from Equation (4.71a) that the lower and upper limits coincide for a sim-
ply supported plate, whereas they differ significantly, that is, 2 : 3, for a clamped plate. In
this case, Fox (1974) showed that the collapse load equals 42.85MP/b

2. In this regard, an
upper limit, pcr, of the ultimate lateral pressure load for a simply supported plate may be
given as follows:

pcr =
6t2σY
b2

1

3 + α2−α
2 4 72

The ultimate lateral pressure load, puo, should not be greater than the upper limit, pcr.
It is noted that the rigid-plastic theory formulas noted earlier do not account for the
membrane effects; thus, they may predict the critical lateral pressure pessimistically
as far as the assumed collapse mechanism is admissible. Interestingly, the so-called per-
manent deflection of the plate under lateral pressure loads may be defined as the max-
imum deflection at the ultimate lateral pressure.

4.9.2.2 Axial Compressive Loads
Paik and Pedersen (1996) used the rigid-plastic theory method by taking into account the
large-deflection effect to derive the ultimate strength formulation of a plate under axial
compressive loads. The effects of both welding induced residual stress and initial deflec-
tions with a complex shape are also considered. Figure 4.28 shows a schematic of the
Paik–Pedersen method.
In this method, the initial and added deflections of the plate are assumed to be similar

to Equation (4.15) as follows:

w0 =A0i sin
iπx
a

sin
πy
b

4 73a

w=Ai sin
iπx
a

sin
πy
b

4 73b

where A0i and Ai are the initial or added deflection amplitudes with respect to the half-
wave mode i, which is considered to be from 1 to 2m in the plate collapse strength cal-
culations in which m is the buckling half-wave number to be taken as an integer that
satisfies a b ≤ m m+ 1 .
The unknown amplitude Ai can be determined from Equation (4.19) as a function of

σxav, which is the average (applied) compressive stress taken as Px/(bt), where Px is the
axial compressive load in the x direction. According to the rigid-plastic theory, the fol-
lowing equilibrium condition between external work and internal energy associated with

Large-Deflection and Ultimate Strength Behavior of Plates 235



virtual forces, stresses, and strains must be satisfied for a presumed plastic collapse
mechanism (Jones 2012), namely,

σxavbtδu= −
r

n=1 Ln

NδUdLn +
s

n= 1

M +wN δθdLn 4 74

where Ln is the length of the nth plastic hinge,M is the moment per unit length along the
plastic hinge line, N is the axial force per unit length along the plastic hinge line, r is the
number of inclined hinge lines, s is the number of horizontal or vertical hinge lines, U is
the axial displacement along the plastic hinge line, u is the axial displacement in the x
direction, w is the lateral deflection of the plate, and θ is the rotation along the plastic
hinge line.
In Equation (4.74), the prefix δ denotes the virtual variable. The left and right terms of

Equation (4.74) represent the external virtual-work and the internal virtual-energy dis-
sipation, respectively. The first and second terms on the right side represent the energy
contributions due to virtual-axial displacement and virtual rotation along the plastic
hinge lines, respectively. In the Paik–Pedersen method, the plate is considered to have
three different types of collapse mechanisms, depending on the plate aspect ratio and the
deflection shape, among other factors, as shown in Figure 4.29.

Ultimate compressive
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Elastic large deflection analysis
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Figure 4.28 A schematic of the Paik–Pedersen method used to calculate the ultimate strength of
a plate under axial compression and with a complex shape of initial deflection and welding induced
residual stress.
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Figure 4.29 Collapse mechanisms for a plate under axial compressive loads: (a) mode I for a ib > 1;
(b) mode II for a ib = 1; (c) mode III for a ib < 1.
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For each of the three types of presumed collapse mechanisms shown in Figure 4.29, the
deflection of the plate can be determined from Equation (4.74) as follows:

a) Mode I for
a
ib

> 1

In this mode, as shown in Figure 4.29a, the virtual deflections, w, virtual rotations,
δθ, and virtual-axial displacements, δu, along plastic hinge lines I and II are deter-
mined as follows:

wI =Ai 1−
2 sinα
b

Ln , wII =Ai, δθI =
4Aisin2α
b cosα

,

δθ II =
4Ai

b
, δU I = δusinα, δU II = 0

4 75a

where α is the angle between plastic hinge lines I and II. The superscripted I and II
indicate plastic hinge lines I and II.
The axial force and bending moment per unit length along the hinge lines are

calculated as follows:

N I =
σxavt
2

cos2α−1 , N II = 0,

M I =
4 1− p2x MP

16−3 p2x cos2α+ 1 2−12 p2xsin
22α

, M II =
2 1− p2x MP

4−3 p2x

4 75b

where px = σxav σY, MP = σYt2 4 = plastic moment along the plastic hinge lines, and
σY is the material yield stress.
The substitution of Equations (4.75a) and (4.75b) into Equation (4.74) yields the

following:

σxavbtδu= −4

b
2 sinα
0

N IδU I−M Iδθ I−wIN Iδθ I dLn

−

a
i
−b cotα

0
N IIδU II−M IIδθII−wIIN IIδθ II dLn

= −σxavbtδu cos2α−1 + 8AiM
I tanα+ 4AiM

II 1
b

a
i
−b cotα

+ 2A2
i σxavt cos2α−1 tanα

4 75c

The angle α can be determined by minimizing the total potential energy, but for the
sake of simplicity, α= π 4 is assumed for all three collapse modes. In this case,
Equation (4.75c) gives the maximum deflection,Wi, for the mode I collapse mechan-
ism as follows:

Wi =
Ai

t
=
1− p2x
px

4

16−15 p2x
+

1

4−3 p2x

a
ib
−1 4 75d
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b) Mode II for
a
ib

= 1

Similar tomode I and with α= π 4, as shown in Figure 4.29b, the virtual deflections,
virtual rotations, and virtual in-plane deformations along hinge line I are determined
as follows:

wI =Ai 1−
2Ln
b

, δθI =
2 2Ai

b
, δU I =

2δu
2

4 76a

The axial forces and bendingmoments along hinge line I are determined as follows:

N I = −
σxavt
2

, M I =
4 1− p2x Mp

16−15 p2x
4 76b

Substitution of Equation (4.76a) and (4.76b) into Equation (4.74) yields the
following:

σxavbtδu= −4

2b
2

0
N IδU I−M Iδθ I−wIN Iδθ I dLn

= σxavbtδu+ 8AiM
I−2σxavtA

2
i

4 76c

Equation (4.76c) gives the maximum deflection, Wi, for the mode II collapse mech-
anism as follows:

Wi =
Ai

t
=

4 1− p2x
px 16−15 p2x

4 76d

c) Mode III for
a
ib

< 1

In this mode, shown in Figure 4.29c, the virtual deflections, virtual rotations, and
virtual in-plane deformations along the hinge lines are determined as follows:

wI =Ai 1−
2i cosα

a
Ln , wIII =Ai, δθ I =

4iAicos2α
a sinα

,

δθIII =
4i
a
Ai, U I = δusinα, U III = δu

4 77a

The axial force and the bending moment along the hinge lines are determined as
follows:

N I =
σxavt
2

cos2α−1 ,

N III = −σxavt,

M I =
4 1− p2x MP

16−3 p2x cos2α+ 1 2−12 p2xsin
22α,

M III = 1−p2x MP

4 77b
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The substitution of Equation (4.77a) and (4.77b) into Equation (4.74) yields the
following:

σxavbtδu= −4

a
2i cosα
0

N IδU I−M Iδθ I−wIN IδθI dLn

−
b−

a
i tanα

0
N IIIδU III−M IIIδθ III−wIIIN IIIδθ III dLn

= σxavbtδu−
σxavatδu

i
tanα cos2α+ 8AiM

I cotα+ 4AiM
III ib

a
− tanα

+ 2A2
i σxavt cos2α−1 cotα+ 2 tanα−

2ib
a

4 77c

Equations (4.77c) gives the maximum deflection, Wi, for the mode III collapse
mechanism as follows:

Wi =
Ai

t
=

a
2ib−a

1−
p2x
px

4

16−15 p2x
+
ib
2a

−
1
2

4 77d

The ultimate strength of the plate is now determined as the intersection between Ai

andWi with varying values for i, which may be taken as 1–2 ×m (two times the buck-
ling half-wave number), as shown in Figure 4.28. The real plate ultimate strengthmin-
imum is taken as the minimum value among the three values obtained for ultimate
strength.

4.9.3 Membrane Stress-Based Method

In this method, the membrane stresses inside the plate are computed by solving the non-
linear governing differential equations of elastic large-deflection plate theory, and it is
considered that the plate will collapse if the membrane stress reaches a critical value
(e.g., the yield stress) or if any relevant criterion in terms of membrane stresses is
satisfied.
With an increase in the plate deflection, the upper and/or lower fibers inside the mid-

dle of the plate will initially yield by the action of bending. However, as long as it is pos-
sible to redistribute the applied loads to the straight plate boundaries by membrane
action, the plate will not collapse. Collapse will then occur when the most stressed
boundary locations yield, because the plate can no longer keep the boundaries straight,
resulting in a rapid increase of lateral plate deflection.

4.9.3.1 Ultimate Strength Conditions
Because of the nature of combined membrane axial stresses in the x and y directions,
three possible locations at the edges—plate corners, longitudinal edges, and transverse
edges—that could initially yield are generally considered, as shown in Figure 4.30. The
stress status for the two edge locations, that is, at each longitudinal or transverse edge,
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can be expected to be the same as long as the longitudinal or transverse axial stresses are
uniformly applied, that is, without in-plane bending. Depending on the predominant
half-wave mode in the long direction, the location of the possible plasticity can vary
at the long edges because the location of the minimum membrane stresses can differ,
whereas it is always located at the mid-edges in the short direction.
The occurrence of yielding can be assessed using the vonMises yield criterion. The three

resulting ultimate strength criteria for the most probable yield locations are as follows:

1) Yielding at corners:

σxmax

σY

2

−
σxmax

σY

σymax

σY
+

σymax

σY

2

+
τav
τY

2

= 1 4 78a

2) Yielding at longitudinal edges:

σxmax

σY

2

−
σxmax

σY

σymin

σY
+

σymin

σY

2

+
τav
τY

2

= 1 4 78b

3) Yielding at transverse edges:

σxmin

σY

2

−
σxmin

σY

σymax

σY
+

σymax

σY

2

+
τav
τY

2

= 1 4 78c
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Figure 4.30 Three possible locations for the initial plastic yield at the plate edges under combined
loads: (a) plasticity at corners; (b) plasticity at longitudinal edges; (c) plasticity at transverse edges
(•, expected yielding locations; C, compression; T, tension).
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Although the maximum or minimum membrane stresses of a deflected plate under
simple types of load applications such as uniaxial compression or combined uniaxial
compression and lateral pressure loads may be calculated as described in Sections
4.4–4.7, the calculation of the maximum and minimum membrane stresses of a plate
under more complex load applications such as combined biaxial loads, edge shear,
and lateral pressure is not straightforward.
As an easier alternative approach, Equation (4.78) may be used to develop the plate

ultimate strength formulations under simpler load applications, and a relevant combi-
nation of such strength formulations as obtained for various simpler load cases may
be adopted to derive the strength formula under all potential load applications.

4.9.3.2 Lateral Pressure Loads
The ultimate strength, pu0, of a plate under lateral pressure alonemay be calculated as the
lowest value of the three lateral pressures, as obtained by satisfying the three conditions
of Equation (4.78) when σxav = σyav = τav = 0.
Figure 4.31 compares the present method, denoted by ALPS/ULSAP (2017), to the

correspondingmechanical collapse test results fromYamamoto et al. (1970) and the incre-
mental Galerkin method solutions as described in Chapter 11, denoted by SPINE, for a
plate with a/b = 3 under combined longitudinal axial compression and lateral pres-
sure loads.

4.9.3.3 Combined Longitudinal Axial Loads and Lateral Pressure
The maximum and minimum membrane stresses are in this case calculated in terms of
σxav and p together with initial imperfections. Under the present type of load application,
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Figure 4.31 Comparison of ALPS/ULSAP, with the collapse test results of Yamamoto et al. and the
incremental Galerkin method solutions, denoted by SPINE, for plating under combined longitudinal
axial compression and lateral pressure loads.
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the initial yield location at the plate edges may be the longitudinal edges by the nature of
the von Mises yield condition, Equation (1.31c).
By substituting themaximum andminimummembrane stresses into Equation (4.78b),

the ultimate longitudinal axial strength, σxu, is obtained as the solution of the following
equation with regard to σxav, regarding p as a secondary constant load:

σxmax

σY

2

−
σxmax

σY

σymin

σY
+

σymin

σY

2

= 1 4 79a

where σxmax and σymin are the maximum andminimummembrane stresses in the x and y
directions.
When the lateral pressure is not involved, the ultimate strength, σxu, is calculated by

letting p = 0. It is interesting to note that when the unloaded edges move freely in plane,
no membrane stresses develop in the y direction, as shown in Figure 4.25b. In this case,
the ultimate strength formulation, Equation (4.79a), can be simplified to

σxmax = σY 4 79b

Alternatively, using the effective width approach, σxu is simply given by

σxu = σY
beu
b

4 79c

where beu is the effective width at the ultimate strength.
When the plate is subjected to predominantly axial tensile loads, the plate ultimate

strength may approximately be taken as σxu = σY, whereas the ultimate strength of the
plate under combined longitudinal axial tension and lateral pressure loads can also be
calculated from Equation (4.79a).
Figure 4.32 compares the theoretical results of Equation (4.79a), denoted by ALPS/

ULSAP, with the mechanical collapse tests and the nonlinear FEA for simply sup-
ported long plates with different plate aspect ratios and under longitudinal axial com-
pressive loads. Whereas Equation (4.79a) deals with initial imperfections as direct
parameters of influence, the mechanical collapse tests involve various uncertain levels
of both initial deflections and residual stresses. For more details of the test data, read-
ers should refer to Ellinas et al. (1984). The FEA has two types of unloaded plate edge
condition: (i) the unloaded plate edges move freely in plane, and (ii) they are kept
straight. For the FEAs, an “average” level of initial deflection is considered, and the
welding induced residual stresses are not included. The finite element method solu-
tions with edge condition (i) are smaller than those with edge condition (ii), as would
be expected.

4.9.3.4 Combined Transverse Axial Loads and Lateral Pressure
The maximum and minimum membrane stresses are in this case calculated in terms of
σyav and p together with initial imperfections. For this type of load application, the initial
yield location at the plate edges may be the transverse edges by the nature of the von
Mises yield condition, Equation (1.31c).
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By substituting the maximum andminimummembrane stresses into Equation (4.78c),
the ultimate transverse axial strength, σyu, is obtained as the solution of the following
equation with regard to σyav, regarding p as a secondary constant load:

σxmin

σY

2

−
σxmin

σY

σymax

σY
+

σymax

σY

2

= 1 4 80a

where σxmin and σymax are the minimum andmaximummembrane stresses in the x and y
directions.
When the lateral pressure is not involved, the ultimate strength, σyu, is of course cal-

culated by letting p = 0. When the unloaded edges move freely in plane, no membrane
stresses develop in the x direction. Therefore, Equation (4.80a) can in this case be sim-
plified as follows:

σymax = σY 4 80b

Alternatively, using the effective width approach, σyu may be given by

σyu = σY
aeu
a

4 80c

where aeu is the effective length at the ultimate strength.
When the plate is subjected to predominantly axial tensile loads, the plate ultimate

strength may approximately be taken as σyu = σY, and the ultimate strength of the plate
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Figure 4.32 Comparison of the present method, denoted by ALPS/ULSAP, with the test database
(reference numbers for test data are taken from Ellinas et al. (1984)).
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under combined transverse axial tension and lateral pressure loads can also be calculated
from Equation (4.80a). Figure 4.33 compares Equation (4.80a), denoted by ALPS/
ULSAP, with nonlinear finite element method solutions for simply supported plates.

4.9.3.5 Edge Shear
Because the deflection pattern of a plate is quite complex after buckling under predom-
inantly edge shear, the analytical approach by solving the nonlinear governing differen-
tial equations may not be straightforward for evaluation of the membrane stress
distribution inside the plate buckled in edge shear. In this case, a nonlinear numerical
method is more convenient.
In such a case, a series of elastic–plastic large-deflection finite element method solu-

tions for plates under edge shear alone were carried out by Paik et al. (2001) by varying
the plate slenderness ratio, the plate aspect ratio, the boundary condition, and the mag-
nitude of initial deflections where the plate edges remained straight. By curve fitting
based on the computed results, the following empirical formula for the ultimate strength,
τu0, of a plate under edge shear alone was derived:

τu0
τY

=

1 324 τE τY for 0 < τE τY ≤ 0 5

0 039 τE τY
3−0 274 τE τY

2 + 0 676 τE τY + 0 388 for 0 5 < τE τY ≤ 2 0

0 956 for τE τY > 2 0

4 81

where τE is the elastic shear buckling stress of the plate.
Figure 4.34 shows the variation of the plate ultimate edge shear strength for simply sup-

ported plates plotted versus the elastic shear buckling stress for various plate aspect ratios.

σ y
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Figure 4.33 Variation of the ultimate transverse compressive strength of a long plate as a function of
the reduced slenderness ratio, a/b = 3.
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The dotted line represents the elastic shear buckling strength with plasticity correction
using the Johnson–Ostenfeld formulation method as described in Chapter 2.
Equation (4.81) has been subdivided into three equations representing the ultimate
edge shear strength of thin plates, medium-thickness plates, and thick plates, respectively.
It is apparent from Figure 4.34 that Equation (4.81) covers a wider range of the plate
slenderness ratio with reasonable accuracy. It shows a modeling error characterized by
a mean bias of 0.931 and a coefficient of variation of 0.075 when compared with the non-
linear finite element method solutions for plates by varying the aspect ratios and initial
deflections.
Figure 4.35 shows the effect of the plate aspect ratio on the plate ultimate shear

strength. As the plate aspect ratio increases, the plate ultimate shear strength tends to
decrease. However, it is apparent from Figure 4.35 that the ultimate shear strength
depends weakly on the plate aspect ratio, especially for relatively thick plates.
In the treatment, the ultimate strength of a stiffened panel in edge shear is approxi-

mately taken as that of the plating between the stiffeners in edge shear. Any strength
reserve due to tension field action, where a developing diagonal tension is anchored by
the adjoining stiffening, is not included, so the approach is somewhat pessimistic. Also,
implicit in the approach is the (usually reasonable) assumption that the stiffeners of a stif-
fened panel are normally designed so that they remain straight until the panel buckles in
edge shear. Corrections are necessary if this is not the case, as described in Chapter 7.
Alternatively, ENV 1993-1-1 (1992) of Eurocode 3 suggests an empirical formula for

the plate ultimate shear strength, as described in Chapter 7. Also, the plate ultimate edge
shear strength is often predicted by the plasticity correction of the elastic shear buckling
strength using the Johnson–Ostenfeld formulation method, as described in Chapter 2.
Nara et al. (1988) proposed an empirical closed-form expression of the ultimate shear
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Figure 4.34 The ultimate strength versus the elastic buckling stress of the plate under edge shear.
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strength of plating obtained by curve fitting based on the nonlinear finite element
method solutions as follows:

τu
τY

=
0 486
λ

0 333

≤ 1 0 for 0 486 ≤ λ≤ 2 0 4 82

where λ= τY τE and τE is the elastic shear buckling stress. In Figure 4.34, Equation
(4.82) is compared with Equation (4.81) and with more refined nonlinear finite element
method solutions.

4.9.3.6 Combined Edge Shear Loads and Lateral Pressure
Although the effects of lateral pressure loads on the ultimate edge shear strength are typ-
ically neglected in most current design procedures of plated structures, the lateral pres-
sure loads may in some cases affect (reduce) the plate ultimate edge shear strength.
Figure 4.36 shows the ultimate strength interactive relationship for a plate under com-

bined edge shear and lateral pressure based on the incremental Galerkin method solu-
tions described in Chapter 11, denoted by SPINE. It is apparent from Figure 4.36 that the
ultimate strength interaction between edge shear and lateral pressure is significant and
thus cannot be ignored.
From the limited results, it is also observed that their interacting effect tends to become

moderate with an increase in the plate aspect ratio. As a pessimistic measure, the plate
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Figure 4.35 Effect of the aspect ratio on the plate ultimate shear strength.
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ultimate strength interaction equation between edge shear and lateral pressure may be
derived by curve fitting based on the interaction curve of square plates (i.e., with a/b = 1)
as follows:

τ

τu0

1 5

+
p
pu0

1 2

= 1 4 83a

where τu0 is the plate ultimate strength under edge shear alone as defined in
Equation (4.81) and pu0 is the plate ultimate strength under lateral pressure loads alone.
The ultimate edge shear strength, τu, of a plate under combined τav and p is then

obtained as the solution of Equation (4.83a) with regard to τav, treating p as a secondary
constant load parameter, as follows:

τu = τu0 1−
p
pu0

1 2
1

1 5

4 83b

4.9.3.7 Combined Biaxial Loads, Edge Shear Loads, and Lateral Pressure
The ultimate strength formulation under all of the load components involved can now be
derived by a relevant combination. Although various types of plate ultimate strength
interactive relationships with biaxial compression have been suggested in the literature,
most of them may be generalized to the following form:

σxav
σxu

c1

+ α
σxav
σxu

σyav
σyu

+
σyav
σyu

c2

= 1 4 84
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Figure 4.36 Ultimate strength interaction relationship for a simply supported plate subjected to
edge shear and lateral pressure loads.
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where σxu and σyu are the ultimate strength under σxav and σyav and α, c1, and c2 are
coefficients.
Some examples of the constants used in Equation (4.84) by different investigators are

indicated in Table 4.4. Figure 4.37 plots Equation (4.84) with the various constants indi-
cated in Table 4.4. Figure 4.38 compares the ultimate strength interaction curves using
the constants of Paik et al. (2001) with nonlinear finite element method results for a sim-
ply supported plate under biaxial compression or tension, where Equation (4.84) is
denoted by ALPS/ULSAP (2017).

Table 4.4 Examples of the constants used in Equation (4.84) for biaxial compressive loading.

Reference Constants used in Equation (4.84)

BS 5400 (2000) c1 = c2 = 2, α = 0; both σxav and σyav are compressive

Valsgåard (1980) c1 = 1, c2 = 2, α = −0.25 for a/b = 3; both σxav and σyav are compressive

Dier and Dowling (1980) c1 = c2 = 2, α = 0.45; both σxav and σyav are compressive

Stonor et al. (1983) c1 = c2 = 1.5, α = 0 (lower bound)

c1 = c2 = 2, α = −1 (upper bound)

Both σxav and σyav are compressive

Paik et al. (2001) c1 = c2 = 2, α = 0; both σxav and σyav are compressive (negative)

c1 = c2 = 2, α = −1; either σxav or σyav or both are tensile (positive)
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Figure 4.37 Various types of the plate ultimate strength interaction curves under biaxial loads.
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Figure 4.38 Ultimate strength interaction relationship between biaxial compression or tension for a
thin plate: a/b = 3, b = 1000mm, E = 205.8 GPa, σY = 235.2 MPa: (a) t = 15mm; (b) t = 25mm.
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In general, the plate elements that make up a plated structure can sometimes be
subjected to axial tension in one direction, while axial compression is applied in the
other direction. By the nature of the von Mises yield condition, Equation (1.31c),
the biaxial compressive loading condition is not always the most critical, but in some
cases the loading condition under axial tension in one direction and axial compression
in the other direction could be more important. This implies that the plate ultimate
strength interactive relationships should in principle be established by considering
any possible combination of axial loads (tensile or compressive) together with edge
shear loads.
Based on the insights developed by a series of nonlinear numerical solutions in which

the loading ratio and the plate aspect ratio vary, for instance, the following ultimate
strength interaction relationship between biaxial compression or tension, edge shear,
and lateral pressure may be proposed:

σxav
σxu

c1

+ α
σxav
σxu

σyav
σyu

+
σyav
σyu

c2

+
τav
τu

c3

= 1 4 85

where σxu, σyu, and τu are the ultimate strength under σxav, σyav, and τav by taking into
account the effect of lateral pressure loads. The coefficients of Equation (4.85) may be
taken as c1 = c2 = c3 = 2, whereas α = 0 when both σxav and σyav are compressive (negative)
and α = −1 when either σxav or σyav, or both, is tensile (positive).
Figure 4.39 shows the ultimate strength interaction curves of a plate under combined

longitudinal compression and edge shear by comparison with Equation (4.85) and more
refined method solutions, where SPINE indicates the solutions of the incremental
Galerkin method described in Chapter 11.

4.10 Effect of Opening

An opening in a plate can reduce its ultimate strength as well as buckling strength. As
described in Chapter 3, it is cautioned that the Johnson–Ostenfeld formulation method
is inadequate to predict the “critical” bucking strength of a perforated plate that is
regarded as the maximum load-carrying capacity, because it may overestimate the
strength for relatively thick plates with opening. The ultimate strength is a better basis
to evaluate the load-carrying capacity of perforated plates.
This section describes empirical formulations to predict the ultimate strength of plates

with a centrally located opening as shown in Figure 3.17, where the length of hole in the x
direction is denoted by ac and the breadth of hole in the y direction is denoted by bc. The
elastic buckling strength of perforated plates is described in Chapter 3. For detailed
description on the ultimate strength of perforated plate panels, Chapter 10 is referred
to. Interested readers may also refer to Narayanan and der Avanessian (1984), Brown
et al. (1987), Paik (2007a, 2007b, 2008b), Kim et al. (2009), Suneel Kumar et al.
(2009), and Wang et al. (2009b), among others.
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4.10.1 Single Types of Loads

The ultimate strength of a plate with an opening can be predicted using the strength
reduction factors:

σxu =Rxuσxu0 4 86a

σyu =Ryuσyu0 4 86b

τu =Rτuτu0 4 86c

where σxu, σyu, and τu are the ultimate strength of a perforated plate; σxu0, σyu0, and τu0 are
the ultimate strength of a plate without opening; and Rxu, Ryu and Rτu are the strength
reduction factors.
The ultimate strength reduction factors in Equation (4.86) are defined as follows:

Rxu = c1
bc
b

2

+ c2
bc
b
+ 1 0 4 87a

Ryu = c3
ac
b

2
+ c4

ac
b
+ 1 0 4 87b
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Figure 4.39 Ultimate strength interaction relationship between longitudinal compression and edge
shear for a square plate.
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Rτu = c5
dc
b

2

+ c6
dc
b
+ 1 0 4 87c

where

c1 = −0 700, c2 = −0 365

c3 =
−0 177 a b 2 + 1 088a b−1 671 for 1 ≤ a b ≤ 3

0 0 for 3 ≤ a b ≤ 6
,

c4 =
−0 048 a b 2 + 0 252a b−0 386 for 1 ≤ a b ≤ 3

−0 062 for 3 ≤ a b ≤ 6

c5 = −0 009
a
b

2
−0 068

a
b

−0 415,

c6 = −0 025
a
b

2
+ 0 309

a
b

−0 787

dc =
ac + bc

2

In the previous equations, both elliptical and rectangular holes are approximated as
circular holes, but the diameter of the circular hole is represented by the breadth of
the hole in the transverse direction, bc, for longitudinal compressive loads, by the length
of the hole in the longitudinal direction, ac, for transverse compressive loads, or by an
average of the hole size, dc = ac + bc 2, for edge shear. Figure 4.40 confirms the accu-
racy of Equation (4.86) with Equation (4.87) by comparison with nonlinear finite element
method solutions for a simply supported plate with an opening (Paik 2008b).

4.10.2 Biaxial Compression

Figure 4.41 shows a perforated plate where a circular hole with a diameter of dc is located
at the center of the plate. It is considered that the plate has an average level of initial
deflection w0pl = 0 1β2t in the plate buckling mode that can routinely occur during weld-
ing fabrication of stiffened plate structures. Figure 4.42 shows a sample of the finite
element mesh modeling for a perforated plate with an aspect ratio of a/b = 3.
Figure 4.43 presents the ultimate strength behavior of perforated plates under biaxial
compression (Paik 2008b). From the computed results, the ultimate strength interaction
relation of a perforated plate may be represented by the following equation:

σxav
σxu

c1

+
σyav
σyu

c2

= 1 4 88

where σxu and σyu are the ultimate strengths of a perforated plate under σxav or σyav alone
that can be determined from Equation (4.86a) or (4.86b) and c1 and c2 are constants that
may be taken as c1 = 1 and c2 = 7. In Figure 4.43, Equation (4.88) with c1 = c2 = 2, which
are constants well adopted for plates without opening, is also compared. The ultimate
strength interaction relation of a perforated plate under biaxial compression differs from
that of a plate without opening.
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Figure 4.40 Ultimate strength of a perforated plate: (a) under longitudinal compression; (b) under
transverse compression; (c) under edge shear.
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Figure 4.42 A sample of the finite element mesh modeling for a plate with a centrally located circular
hole, a b= 3.
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nonlinear FEA for a b= 3, β = 2 2, dc b= 0 4.
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4.10.3 Combined Longitudinal Compression and Edge Shear

Figure 4.44 shows the ultimate strength behavior of a plate with a centrally located cir-
cular hole under longitudinal compression edge shear (Paik 2008b). It is apparent from
this figure that the ultimate strength interaction relation of a perforated plate under com-
bined longitudinal compression and edge shear can be represented as the following
equation:

σxav
σxu

2

+
τav
τu

2

= 1 4 89

where σxu and τu are the ultimate strength of a perforated plate under σxav or τav alone
that can be determined from Equation (4.86a) or (4.86c).

4.10.4 Combined Transverse Compression and Edge Shear

Figure 4.45 shows the ultimate strength behavior of a plate with a centrally located cir-
cular hole under transverse compression edge shear (Paik 2008b). It is apparent from this
figure that the ultimate strength interaction relation of a perforated plate under com-
bined transverse compression and edge shear can be represented as the following
equation:

σyav
σyu

2

+
τav
τu

2

= 1 4 90

where σyu and τu are the ultimate strength of a perforated plate under σxav or τav alone
that can be determined from Equation (4.86b) or (4.86c).

4.11 Effect of Age Related Structural Deterioration

Two primary parameters of age related structural degradation are corrosion and fatigue
cracks (Paik & Melchers 2008). As corrosion damage or fatigue cracking can reduce the
plate ultimate strength, the evaluation of the capacity associated with Equation (1.17)
needs to account for age related damage as a parameter of influence.

4.11.1 Corrosion Damage

For general (uniform) corrosion that uniformly reduces the plate thickness, the plate ulti-
mate strength calculations can be carried out by excluding the thickness lost to corro-
sion. For localized corrosion, such as pitting or grooving, the strength calculation
procedure can be more complex (Paik et al. 2003a, 2004), but for a simplified pessimistic
treatment, the corroded plates may also be idealized using an equivalent general corro-
sion. The ultimate strength of plates with corrosion damage may be determined from
Equation (4.86), but the strength reduction factors can be defined as follows:

Rxu =
Axo−Axw

Axo
4 91a
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Figure 4.44 (a) The ultimate strength behavior of a plate with a centrally located circular hole under
combined longitudinal compression and edge shear; (b) the ultimate strength interaction relation
of a perforated plate under combined longitudinal compression and edge shear, as obtained by
nonlinear FEA for a b= 3, β = 2 2, dc b= 0 4.
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Figure 4.45 (a) The ultimate strength behavior of a plate with a centrally located circular hole
under combined transverse compression and edge shear; (b) the ultimate strength interaction relation
of a perforated plate under combined transverse compression and edge shear, as obtained by
nonlinear FEA for a b= 3, β = 2 2, dc b= 0 4.
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Ryu =
Ayo−Ayw

Ayo
4 91b

Rτu =
1 0 for α ≤ 1 0

1 0−0 18ℓn α for α > 1 0
4 91c

where Axw and Ayw are the total cross-sectional areas associated with all pits (corrosion
wear) at the cross section of the largest number of pits in the x or y direction of the plate;
Axo and Ayo are the total cross-sectional areas of the original (intact) plate without pits in

the x or y direction; α=
n

i= 1
Vpi × 100 abt (%) is the volumetric degree of pits; Vpi

is the volume of the ith pit, which may be determined as Vpi = πdwid2
wi 4; ddi is the depth

of the ith pit; dwi is the diameter of the ith pit; and n is the total number of pits.

4.11.2 Fatigue Cracking Damage

As cracking damage can reduce the ultimate strength of plated structures, the capacity
associated with Equation (1.17) should be evaluated by accounting for the effect of crack-
ing damage. The ultimate strength of plates with cracking damage may also be predicted
from Equation (4.86), but the strength reduction factors are in this case given, as
described in Section 9.7, as follows:

Rxu =
Axo−Axc

Axo
4 92a

Ryu =
Ayo−Ayc

Ayo
4 92b

Rτu =
1
2

Axo−Axc

Axo
+
Ayo−Ayc

Ayo
4 92c

where Axc and Ayc are the cross-sectional areas associated with crack damage, projected
to the x or y direction, and Axo and Ayo are the cross-sectional areas of the intact
(uncracked) plate in the x or y direction.
For detailed description on the ultimate strength of cracked plates, Chapter 9 is

referred to. Interested readers may also refer to Paik et al. (2005), Paik (2008c, 2008d,
2009) and Wang et al. (2009a, 2015), Shi and Wang (2012), Rahbar-Ranji and Zarookian
(2014), Underwood et al. (2015), Cui et al. (2016, 2017), and Shi et al. (2017), among
others.

4.12 Effect of Local Denting Damage

As local denting damage can reduce the ultimate strength of plated structures, the capac-
ity associated with Equation (1.17) should be evaluated by accounting for the effect of
local denting damage. The ultimate strength of plates with local denting damage as
shown in Figure 10.33 may also be predicted from Equation (4.86), but the strength
reduction factors are in this case given by (Paik et al. 2003b, Paik 2005).
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Rxu = c1ℓn
Dd

t
+ c2 c3 4 93a

Ryu = c4ℓn
Dd

t
+ c5 c6 4 93b

Rτu =
1 0 + c7

Dd

t

2

−c8
Dd

t
for 1 <

Dd

t
≤ 10

1 0 + 100c7−10c8 for
Dd

t
> 10

4 93c

where

c1 = −0 042
dd
b

2

−0 105
dd
b

+ 0 015

c2 = −0 138
dd
b

2

−0 302
dd
b

+ 1 042

c3 =

−1 44
h
b

2

+ 1 74
h
b
+ 0 49 for h ≤

b
2

−1 44
b−h
b

2

+ 1 74
b−h
b

+ 0 49 for h >
b
2

c4 = −0 042
dd
a

2

−0 105
dd
a

+ 0 015

c5 = −0 138
dd
a

2

−0 302
dd
a

+ 1 042

c6 =
−1 44

s
a

2
+ 1 74

s
a
+ 0 49 for s ≤

a
2

−1 44
a−s
a

2
+ 1 74

a−s
a

+ 0 49 for s >
a
2

c7 = 0 0129
dd
b

0 26

−0 0076

c8 = 0 1888
dd
b

0 49

−0 07

Dd, dd, h, and s are defined in Figure 10.33.
For detailed description on the ultimate strength of dented plates, Chapter 10 is referred

to. Interested readers may also refer to Saad-Eldeen et al. (2015, 2016), Raviprakash et al.
(2012), Xu and Guedes Soares (2013, 2015), and Li et al. (2014, 2015), among others.

4.13 Average Stress–Average Strain Relationship of Plates

In this section, the relationship between the average stress and the average strain of a
plate element with initial imperfections is analytically derived.
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4.13.1 Pre-buckling or Undeflected Regime

In the linear elastic regime without lateral deflection, the relationship between average
stresses and average strains in a plane stress state is represented as described in
Section 3.5:

εxav =
1
E
σxav−

ν

E
σyav

εyav = −
ν

E
σxav +

1
E
σyav

γav =
1
G
τav

4 94a

where εxav, εyav, and γav are the average strain components corresponding to σxav, σyav,
and τav, respectively. Equation (4.94a) can be rewritten in the matrix form as follows:

σxav

σyav

τav

= Dp
E

εxav

εyav

γav

4 94b

where

Dp
E
=

E
1−v2

1 v 0

v 1 0

0 0 1−v 2

4.13.2 Post-buckling or Deflected Regime

For an imperfect plate element under combined biaxial and lateral pressure loads, the
average stress–strain relationship can be derived as long as the unloaded edges remain
straight:

εxav =
1
E
σxmax =

1
E
b
be
σxav or σxav =

be
b
Eεxav 4 95a

εyav =
1
E
σymax =

1
E
a
ae
σyav or σyav =

ae
a
Eεyav 4 95b

The incremental form of Equation (4.95) is given by

Δεxav =
1
E

∂σxmax

∂σxav
Δσxav or Δσxav = ∂

σxmax

∂σxav

−1

EΔεxav 4 96a

Δεyav =
1
E

∂σymax

∂σyav
Δσyav or Δσyav =

∂σymax

∂σyav

−1

EΔεyav 4 96b

where the prefix,Δ, represents the increment of the variable (throughout this chapter). The
numerical approach is often more pertinent for the computation of ∂σxmax/∂σxav with
infinitesimal stress variations around σxav or for the computation of ∂σymax/∂σyav with infin-
itesimal stress variations around σyav.
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For a simply supported plate without both initial imperfections and lateral pressure
loads and under uniaxial loads in each direction, Equations (4.95a) and (4.95b) can be
simplified to

εxav =
1
E

a1σxav + a2 or σxav =
1
a1

Eεxav−a2 4 97a

εyav =
1
E

g1σyav + g2 or σyav =
1
g1

Eεyav−g2 4 97b

The incremental forms of Equations (4.97a) and (4.97b) are then given by

Δσxav =
E
a1

Δεxav 4 98a

Δσyav =
E
g1
Δεyav 4 98b

In Equation (4.98), E/a1 or E/g1 is the effective Young’s modulus (tangent modulus)
after buckling for a perfectly flat plate under uniaxial compressive loads in the x or y
direction, namely,

Ex =
E
a1

=E 1 + ρ
2m4

m4 + a4 b4
4 99a

Ey =
E
a1

= E 1 + ρ
2n4

n4 + b4 a4
4 99b

where Equation (4.99a) or (4.99b) represents that the tangent modulus of the buckled
plate does not change with the applied loads, as it is a function of the plate aspect ratio.
Figure 4.46 shows the relationship between average stress and average strain for a simply
supported plate without initial imperfections under uniaxial compressive loads in the x
direction. Figure 4.47 shows the variation of the tangent modulus of the buckled plate as
a function of the plate aspect ratio where E∗ =Ex. It is interesting to note that the effective
tangent modulus varies in a cyclic pattern with regard to a mean equal to E∗/E = 0.5, and
for a shorter plate, the effect of the aspect ratio is more significant.
The membrane strain components of a deflected or buckled plate element under com-

bined biaxial loads, edge shear, and lateral pressure can now be given by

εxav =
1
E

σxmax−vσyav 4 100a

εyav =
1
E

−vσxav + σymax 4 100b

γav =
τav
Ge

4 100c

where σxmax and σymax are the maximum membrane stresses in the x or y direction
described in Sections 4.4–4.7 and Ge is the effective shear modulus described in
Section 4.8.3.
Because σxmax, σymax, and Ge are nonlinear functions with regard to the corresponding

average stress components, Equation (4.100) indicates a set of nonlinear relationships
between membrane stresses and strains. The incremental form of the membrane
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stress–strain relationship is relevant by differentiating Equation (4.100) with regard to
the corresponding average stress components as follows:

Δεxav =
1
E

∂σxmax

∂σxav
Δσxav +

∂σxmax

∂σyav
−v Δσyav 4 101a

Δεyav =
1
E

∂σymax

∂σxav
−v Δσxav +

∂σymax

∂σyav
Δσyav 4 101b

Δγav =
1
Ge

1−
τav
Ge

∂Ge

∂τav
Δτav 4 101c

The differentiation of maximum membrane stresses may often be carried out numer-
ically with infinitesimal stress variations around the corresponding average stress.
Equation (4.101) can then be rewritten in the matrix form as follows:

Δσxav
Δσyav
Δτav

= Dp
B

Δεxav
Δεyav
Δγav

4 102

where

Dp
B
=

1
A1B2−A2B1

B2 −A2 0

−B1 A1 0

0 0 1 C1

is the stress–strain matrix of the plate in the post-buckling or deflected regime, with

A1 =
1
E
∂σxmax

∂σxav
, A2 =

1
E

∂σxmax

∂σyav
−v ,

B1 =
1
E

∂σymax

∂σxav
−v , B2 =

1
E
∂σymax

∂σyav
,

C1 =
1
Ge

1−
τav
Ge

∂Ge

∂τav

When no deflections have occurred or under biaxial tensile loading, the differentia-
tions in Equation (4.102) are simplified to

∂σxmax

∂σxav
=
∂σymax

∂σyav
= 1 and

∂σxmax

∂σyav
=
∂σymax

∂σxav
=
∂Ge

∂τav
= 0 4 103

In this case, Equation (4.103) becomes Equation (4.94b) in the linear elastic regime.

4.13.3 Post-ultimate Strength Regime

In the post-ultimate strength regime, the internal stress decreases as long as the axial
compressive displacements continue to increase. In this case, the average membrane
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stress components may be calculated in terms of the plate effective width or length as
follows:

σxav =
be
b
σuxmax 4 104a

σyav =
ae
a
σuymax 4 104b

where σuxmax and σuymax are the maximum membrane stresses of the plate in the x or y
direction, immediately after the ultimate strength is reached, that is, σuxmax = σxmax at
σxav = σxu and σuymax = σymax at σyav = σyu.
The effective width or length of the plate in the post-ultimate strength regime may be

defined as follows:

be
b
=

σ∗xav
σ∗xmax

4 105a

ae
a
=

σ∗yav
σ∗ymax

4 105b

where the asterisk represents a value of the plate in the post-ultimate strength regime.
For a plate without initial imperfections, σ∗xmax or σ

∗
ymax can be obtained in a simpler form

as follows:

σ∗xmax =Eεxav = 2σ∗xav−σxE 4 106a

σ∗ymax = Eεyav = 2σ∗yav−σyE 4 106b

where σxE and σyE are the elastic compressive buckling stresses in the x or y direction.
By substituting Equation (4.106) into Equation (4.105), the plate effective width or

length can be expressed in terms of strain components as follows:

be
b
=
1
2

1+
σxE
Eεxav

4 107a

ae
a
=
1
2

1 +
σyE
Eεyav

4 107b

When the effects of initial imperfections are neglected in the post-ultimate strength
regime, the average stress–average strain relationship can be derived by substituting
Equation (4.107) into Equation (4.104) as follows:

σxav =
1
2

1 +
σxE
Eεxav

σuxmax 4 108a

σyav =
1
2

1 +
σyE
Eεyav

σuymax 4 108b

The incremental form of Equations (4.108) is then given by

Δσxav = −
σuxmax

2
σxE
E ε2xav

Δεxav 4 109a
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Δσyav = −
σuymax

2
σyE
E ε2yav

Δεyav 4 109b

In contrast, the average shear stress–average shear strain relationship in the post-
ultimate strength regime is given by

Δτav =G∗
eΔγav 4 109c

where G∗
e is the tangent shear modulus in the post-ultimate strength regime, which is

often assumed to be G∗
e = 0 when the unloading behavior due to shear is not very

significant.
In combined load cases, the average stress–average strain relationship of the plate in

the post-ultimate strength regime is therefore given from the combination of all stress–
strain relationships derived earlier as follows:

Δσxav
Δσyav
Δτav

= Dp
U

Δεxav
Δεyav
Δγav

4 110

where

Dp
U
=

A1 0 0

0 A2 0

0 0 A3

is the stress–strain matrix of the plate in the post-ultimate strength regime, with

A1 = −
σuxmax

2
σxE
E ε2xav

, A2 = −
σuymax

2
σyE
E ε2yav

, A3 =G∗
e
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5

Elastic and Inelastic Buckling Strength of Stiffened
Panels and Grillages

5.1 Fundamentals of Stiffened Panel Buckling

As compressive or edge shear loads increase, a stiffened panel, as an assembly of plating
and stiffeners, can buckle if the applied load (or for convenience, stress) reaches a critical
value. The buckling patterns of the stiffened panel can normally be categorized into two
major groups—overall buckling and local buckling—the latter of which is associated with
the buckling of either plating or stiffeners. Figure 5.1 shows typical patterns of stiffened
panel buckling, with the focus on the buckling patterns induced by axial compressive
loading. Shear buckling patterns occur where tension field actions are formed, as
described in Chapter 7.
When the stiffeners are “small,” a stiffened panel can buckle together with the plating,

in amode that may be termed overall buckling, as shown in Figure 5.1a. In contrast, when
the stiffeners are relatively strong, they remain straight until the plating between them
buckles locally, as shown in Figure 5.1b. If the height of the stiffener web is large or the
web thickness is small, the stiffener web can buckle locally, much like a plate element, as
shown in Figure 5.1c.When the torsional rigidity of the stiffener is not strong enough, the
stiffener can twist sideways, in a mode called lateral-torsional buckling (also called trip-
ping), as shown in Figure 5.1d. Although Figure 5.1 illustrates each buckling pattern sep-
arately for convenience, in some cases, some buckling modes may interact and occur
almost simultaneously.
Unlike columns that buckling is meant to collapse, a stiffened panel can normally sus-

tain further applied loads even after buckling occurs locally, and the stiffened panel ulti-
mate strength is eventually reached by excessive plasticity in the plate field and/or failure
of the stiffener. However, any occurrence of elastic overall buckling results in significant
instability of the entire structure. In structural design, therefore, the order of the buckling
modes for a stiffened panel or grillage (cross-stiffened panel) needs to be controlled so
that the overall buckling mode is prevented before local buckling of the plating between
stiffeners.
The elastic buckling of a stiffened panel is a good indication of the required panel

strength with regard to the serviceability limit state (SLS) design. To better understand
the ultimate limit state (ULS) design procedure, it is essential to have basic knowledge of
the stiffened panel’s buckling strength.
In the SLS or ULS design of stiffened panels using Equation (1.17), the design load

effects (i.e., stresses) are calculated with the classical theory of structural mechanics
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or with linear elastic finite element analysis, whereas the design capacity can be deter-
mined by relevant buckling strength formulations.
This chapter presents the fundamentals and useful elastic buckling strength design for-

mulations for a stiffened panel under combined loads and under single types of loads.
The elastic–plastic buckling strength in such a case may, as usual, be estimated by cor-
recting the elastic buckling strength using the Johnson–Ostenfeld formulation method,
Equation (2.93), so that the influence of plasticity is approximately considered. It is also
noted that the theories and methodologies described in this chapter can be commonly
applied to both steel- and aluminum-stiffened panels.

5.2 Structural Idealizations of Stiffened Panels

5.2.1 Geometric Properties

Figure 5.2 shows a typical stiffened panel surrounded by heavy longitudinal girders and
heavy transverse frames in a continuous stiffened plate structure. The stiffened panel
usually has a number of stiffeners in one direction, that is, in the longitudinal or long
direction. In some cases, the stiffened panel has stiffeners in both directions, which is
termed a cross-stiffened panel or grillage.
The length and breadth of the stiffened panel are denoted by L and B, respectively. The

thickness of the plate is t. The numbers of x and y stiffeners are nsx and nsy, respectively.
The stiffeners are considered to be arranged with the same spacing in any given direction,

(a) (b)

(c) (d)

Figure 5.1 Schematics of various types of stiffened panel buckling under predominantly axial
compressive loading: (a) overall grillage buckling; (b) local buckling of plating between stiffeners; (c)
local buckling of stiffeners; (d) lateral-torsional buckling of stiffener.
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and the spacing of the stiffeners is denoted by abetween y stiffeners, that is,a = L/(nsy + 1),
and b between x stiffeners, that is, b = B/(nsx + 1).
Figure 5.3 presents the typical geometry of the stiffeners in the x or y direction. Stiffen-

ers are placed to one side of the panel, that is, on the positive side of the z direction. The
geometry of the stiffeners in each direction of the panel is considered to be identical.

5.2.2 Material Properties

The elastic modulus and Poisson’s ratio of both the plating and the stiffeners are E and v,
respectively. The elastic shear modulus is thus G = E/[2(1 + v)]. The bending rigidity of
the plating between stiffeners is denoted byD = Et3/[12(1 − v2)]. The material yield stress
is σYp for the plating and σYs for the stiffeners. When the material of the stiffened flange
or web is different from that of the plating, an equivalent yield stress is identified as per
Table 2.1. The slenderness ratio of the plating between longitudinal stiffeners is denoted
by β = b t σYp E.
For a stiffened panel that may buckle in the overall mode and reach the ultimate

strength primarily by excessive plasticity of the plating, it may be idealized as an “ortho-
tropic plate.” In this case, it is proposed that an equivalent yield stress, σYeq, for the entire
stiffened panel may approximately be defined as follows:

σYeq =

σYx for a longitudinally stiffened panel

σYy for a transversely stiffened panel

σYx + σYy 2 for a cross-stiffened panel

5 1

Heavy longitudinals and transverses

Stiffened panel

Stiffeners Plate field

Figure 5.2 A continuous stiffened plate structure.
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where

σYx =
BtσYp + nsxAsxσYs

Bt + nsxAsx
,

σYy =
LtσYp + nsyAsyσYs

Lt + nsyAsy
,

Asx = hwxtwx + bfxtfx,

Asy = hwytwy + bfytfy

5.2.3 Loads and Load Effects

When a continuous stiffened plate structure is subjected to external loads, the load
effects (e.g., stresses, deformations) can be typically analyzed by the linear elastic

b

hwx hwx

bfx bfx

bfy bfy

hwx

twx

hwy hwy hwy

twx

twx
twx tfx

twy twy
twy

Flat bar Angle bar Tee bar

tfy tfy

b

t t t

b

Flat bar

(a)

(b)
a a

t t t

a

Angle bar Tee bar

Figure 5.3 Typical cross-sectional types: (a) longitudinal stiffeners; (b) transverse stiffeners.
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finite element method or the classical theory of structural mechanics. The structural
responses associated with the structure’s primary, secondary, and tertiary levels must
be accounted for, as described in Section 3.3, in determination of the characteristic meas-
ure of the load effects in a stiffened panel.
Figure 5.4 illustrates the potential stresses that act on stiffened panels, which are gen-

erally of six types as follows:

• Longitudinal axial stress

• Transverse axial stress

• Edge shear stress

• Longitudinal in-plane bending stress

• Transverse in-plane bending stress

• Lateral pressure-related stress

In this chapter (and Chapter 6), it is taken that compressive stresses are negative and
tensile stresses are positive, unless otherwise specified. When a stiffened panel is simul-
taneously subjected to combined in-plane loads and lateral pressure, the latter is nor-
mally considered to be applied first in our treatment, and the other in-plane load
components will then be taken to be applied afterward.
In the overall buckling mode, the plating typically deflects together with stiffeners. In

this case, the average values of the applied axial stresses are often used as the character-
istic measure of the load effects, thus neglecting the influence of in-plane bending as
follows:

σxav =
σx1 + σx2

2
, σyav =

σy1 + σy2
2

5 2

where σx1, σx2, σy1, and σy2 are defined in Figure 5.4. In a local buckling mode, the axial
compressive stresses applied at the location of the most highly stressed stiffeners may be
used as the stress parameters for the local buckling analysis of the stiffeners or plating.
The values of the highest applied stresses at the x and y stiffeners are denoted by σxM and
σyM, respectively, and the edge shear stress and uniform lateral pressure loads are
denoted by τav and p, respectively.

5.2.4 Boundary Conditions

The edges of the stiffened panel extent are usually supported by strong beam members
(e.g., girders or frames). The bending rigidities of the boundary support members are
normally quite large compared with that of the plating itself, which implies that the nor-
mal displacements of the support members in the direction of panel deflections are very
small, even up to panel collapse. The rotational restraints along the panel edges depend
on the torsional rigidities of the longitudinal girders or transverse frames, which are nei-
ther zero nor infinite.
When predominantly in-plane compressive loads are applied to a continuous

plated structure surrounded by such support members, the panel’s buckling pattern is
expected to be asymmetrical; that is, one panel tends to buckle up and the adjacent panel
tends to deflect down. In this case, rotational restraints along the panel edges can be
considered small.
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Figure 5.4 Types of load effects in a stiffened panel: (a) a cross-stiffened panel; (b) a longitudinally
stiffened panel.
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When the plated structure is subjected predominantly to lateral pressure loads, how-
ever, the structure’s buckling pattern tends to be symmetrical, at least for large enough
pressures, that is, each adjacent panel may deflect in the direction of the lateral pressure
load. In this case, the edge rotational restraints can eventually become sufficiently large
that they correspond to a clamped condition from the beginning of loading in some
cases. However, if plasticity occurs earlier along the panel edges where the large bending
moments develop, the rotational restraints at the yielded edges will then decrease as the
applied loads increase.
In a continuous plated structure, the edges of individual stiffened panels are considered

to remain almost straight because the structural response is relative to the adjacent
panels even if the panel deflects. In this regard, an idealized condition, that is, one with
no rotational restraints along the panel edges, has been widely used for practical pur-
poses of analysis.
In this chapter (and Chapter 6), it is also assumed that the panel edges are simply sup-

ported, with zero deflection and zero rotational restraints along the four edges, and that
all edges are kept straight. In most practical situations, this approximation will lead to
adequate results. In contrast, the influence of rotational restraints along the junctions
of plate–stiffener and/or stiffener web–flange may need to be considered in the calcula-
tions of local buckling of either the plating between the stiffeners or the stiffener web, as
described in Chapters 3 and 4.

5.2.5 Fabrication Related Initial Imperfections

Although fabrication related initial imperfections in a stiffened panel are described in
Section 1.7, it is assumed for the purposes of this chapter that initial distortions do
not exist, mostly because a bifurcation buckling phenomenon may not appear in a panel
that has initial deformations or curvature. The effects of welding induced residual stres-
ses are dealt with. As described in Chapter 6, however, the influence of the initial imper-
fections on the panel ultimate strength needs to be accounted for.

5.3 Overall Buckling Versus Local Buckling

Because any occurrence of elastic overall panel buckling leads to significant instability of
the entire plated structure, the order of the panel buckling modes is typically controlled
such that the overall panel buckling mode is prevented before local buckling of the plat-
ing between stiffeners.
Under a multiaxial compressive loading condition, the following criterion must be sat-

isfied so that overall panel buckling may not take place before local buckling of the plat-
ing between stiffeners, namely,

KOB ≤KLB 5 3a

whereKLB and KOB denote the characteristic measures of local plate buckling and overall
panel buckling, respectively, which may be given in terms of the applied stresses and the
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corresponding buckling strength components. For instance, KLB and KOB may be given
for a stiffened panel under biaxial compressive loads as follows:

KOB =
σxav
σxEO

2

+
σyav
σyEO

2

, KLB =
σxM
σxEL

2 σyM
σyEL

2

5 3b

where σxav and σyav are the average compressive stresses in the x or y direction, σxM and
σyM are the highest compressive stresses in the x or y direction, σxEO and σyEO are the
elastic overall compressive buckling stresses in the x or y direction, and σxEL and σyEL
are the elastic compressive buckling stresses of the plating between the stiffeners in
the x or y direction.
For uniaxial compression, the criterion is readily obtained from Equations (5.3a) and

(5.3b) so that overall buckling will not occur before local buckling of the plating between
the stiffeners as long as the following condition is satisfied:

σxav
σxEO

≤
σxM
σxEL

or
σyav
σyEO

≤
σyM
σyEL

5 3c

In this regard, Equations (5.3a), (5.3b), and (5.3c) can be used to control the order of the
buckling mode for a stiffened panel once the elastic buckling strength components in the
local and overall modes are known.

5.4 Elastic Overall Buckling Strength

This section presents the elastic overall buckling strength formulations of a stiffened
panel under combined loads and single types of loads.

5.4.1 Longitudinal Axial Compression

5.4.1.1 Longitudinally Stiffened Panels
The overall buckling of a panel with only longitudinal stiffeners and under longitudinal
axial compression may approximately be represented by the column buckling of a plate–
stiffener combination model, as described in Chapter 2. In this case, the plate–stiffener
combination model as representative of the panel is supposed to be simply supported at
both ends.

5.4.1.2 Transversely Stiffened Panels
The overall buckling strength of the panel with only transverse stiffeners and under lon-
gitudinal axial compression may be approximately predicted from the corresponding
plate buckling strength formula, as described in Chapter 3, for a wide plate between
two stiffeners. It is cautioned that the panel’s coordinate system must be rotated to
use the buckling strength formulations described in Chapter 3, which are available for
only long plates, that is, L/B ≥ 1.

5.4.1.3 Cross-Stiffened Panels (Grillages)
When the panel has stiffeners in both the x and y directions and it buckles in the overall
mode, the panel’s elastic overall buckling strength can be calculated by solving the
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nonlinear governing differential equations derived from the elastic large-deflection
orthotropic plate theory, as described in Chapter 6. An analytical solution of the elastic
overall buckling for a simply supported orthotropic plate under uniaxial compressive
loads in the x direction is given by

σxEO,1 = −
π2

B2t
Dx

m2B2

L2
+ 2Hn2 +Dy

n4L2

m2B2
−kxO

π2D
B2t

5 4

where

kxO =
1
D

Dx
m2B2

L2
+ 2Hn2 +Dy

n4L2

m2B2

is the elastic overall buckling strength coefficient for longitudinal axial compression and
Dx, Dy, and H are defined in Chapter 6. The subscript “1” indicates that the number of
load components is one.m and n are the overall buckling half-wave numbers of the panel
in the x and y directions, respectively. As long as longitudinal compressive loads are
applied, the buckling half-wave number of the orthotropic plate in the direction of
the short edge may be taken as 1, which is similar to that of an isotropic plate, namely,

n= 1 for a long orthotropic plate withL B ≥ 1 5 5a

m= 1 for awide orthotropic plate withL B < 1 5 5b

When the cross-stiffened panel surrounded by heavy longitudinal girders and trans-
verse frames is relatively wide, therefore,m = 1may sometimes be used for practical pur-
poses. In this case, the buckling half-wave number in the y direction may also be taken as
n = 1 because no axial compressive loads are applied in the y direction. In contrast, m
must be determined for a long orthotropic plate as a minimum integer that satisfies
the following condition because n = 1, namely,

L
B

4

≤
Dx

Dy
m2 m+ 1 2 5 6a

From this, it is evident that the buckling half-wave number of the orthotropic plate is
affected by the structural orthotropy and by the panel aspect ratio. For an isotropic plate,
Equation (5.6a) becomes

L
B
≤ m m+ 1 5 6b

because Dx =Dy.

5.4.2 Transverse Axial Compression

5.4.2.1 Longitudinally Stiffened Panels
The overall buckling strength of a panel with only longitudinal stiffeners and under
transverse axial compression may approximately be predicted from the corresponding
plate buckling strength formula, as described in Chapter 3, for a wide plate between
two stiffeners. It is cautioned that the panel’s coordinate system must be rotated to
use the plate buckling formula of Chapter 3 because the plate buckling strength formu-
lations described in Chapter 3 consider only long plates, that is, L/B ≥ 1.
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5.4.2.2 Transversely Stiffened Panels
The overall buckling of a panel with only transverse stiffeners, and under transverse axial
compression, may approximately be represented by the column buckling of the plate–
stiffener combination model with the simply supported end condition, as described in
Chapter 2.

5.4.2.3 Cross-Stiffened Panels (Grillages)
The large-deflection orthotropic plate theory can be applied to calculate the elastic over-
all buckling of a cross-stiffened panel under axial compression in the y direction, as
described in Chapter 6.
In this case, the solution of the nonlinear governing differential equations of the large-

deflection orthotropic plate theory under the boundary conditions of simple supports at
all edges gives the elastic overall buckling strength of a stiffened panel under uniaxial
compressive loads in the y direction as follows:

σyEO,1 = −
π2

B2t
Dx

m4B4

n2L4
+ 2H

m2B2

L2
+Dyn

2 = −kyO
π2D
B2t

5 7

where

kyO =
1
D

Dx
m4B4

n2L4
+ 2H

m2B2

L2
+Dyn

2

is the elastic overall buckling strength coefficient for transverse axial compression and
Dx, Dy, and H are defined in Chapter 6. m and n are the buckling half-wave numbers
of the panel in the x and y directions, respectively. m = n = 1 may be taken for a long
orthotropic plate (i.e., with L/B ≥ 1), because no axial compressive loads are applied in
the x direction. For a wide orthotropic plate (i.e., with L/B < 1), the buckling half-wave
number in the y direction may be determined as a minimum integer that satisfies the
following condition because m = 1:

B
L

4

≤
Dy

Dx
n2 n+ 1 2 5 8a

For an isotropic plate, Equation (5.8a) will be simplified to

B
L
≤ n n+ 1 5 8b

because Dx =Dy.

5.4.3 Edge Shear

The elastic overall buckling of a stiffened panel under edge shear may be determined with
the orthotropic plate theory. The elastic overall buckling strength for a simply supported
orthotropic plate in edge shear was obtained by Seydel (1933) and is given by

τEO,1 = kτ
π2

B2t
D1 4

x D3 4
y 5 9
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where kτ is the shear buckling coefficient, which may be determined from Figure 5.5 as a
function of the panel aspect ratio and the various structural orthotropy parameters. It is
apparent from Figure 5.5 that kτ ≈ 9.34 when Dx =Dy =H =D and L/B = 1, which corre-
sponds to the elastic shear buckling coefficient of an isotropic square plate.
As long as the stiffeners are not very weak and they remain straight, that is the case when

no significant membrane tension field develops, the elastic overall shear buckling strength
of a stiffened panel can be approximately taken as the elastic shear buckling strength of a
simply supported plate between stiffeners with kτ, as described in Chapter 3, as follows:

τEO,1 = kτ
π2

12 1−v2
t
b

2

5 10

5.4.4 Combined Biaxial Compression or Tension

The elastic overall post-buckling behavior of a stiffened panel under combined biaxial
compression or tension can be calculated by analytical solution of the nonlinear govern-
ing differential equation of the large-deflection orthotropic plate theory, as described in
Chapter 6. Immediately before bifurcation buckling occurs, the panel lateral deflection
must be zero. This requirement results in an overall panel buckling criterion under com-
bined biaxial loads as follows:

m2B
L

σxav +
n2L
B

σyav +
π2

t
Dx

m4B
L3

+ 2H
m2n2

LB
+Dy

n4L
B3

= 0 5 11

where σxav and σyav are the applied axial stresses in the x or d y direction andm and n are
the buckling half-wave numbers in the x or y direction.
It is apparent from Equation (5.11) that Equation (5.4) or (5.7), which is applicable to

the corresponding uniaxial compressive load cases, may be obtained by setting the other
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Figure 5.5 Overall buckling coefficient of stiffened panels in edge shear (Allen & Bulson 1980).
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stress component to zero. By holding the loading ratio, c = σyav/σxav, constant, the elastic
overall buckling strength components, σxEO or σyEO, are in this case calculated by the
solution of Equation (5.11) as follows:

σxEO = −
π2

t m2B L+ cn2L B
Dx

m4B2

n2L4
+ 2H

m2

L2
+Dy

n2

B2
5 12a

σyEO =

−
π2

t m2B cL + n2L B
Dx

m4B2

n2L4
+ 2H

m2

L2
+Dy

n2

B2
for σxav 0

−
π2B
n2Lt

Dx
m4B2

n2L4
+ 2H

m2

L2
+Dy

n2

B2
for σxav = 0

5 12b

For a long panel, that is, with L/B ≥ 1, the buckling half-wave numberm in the x direc-
tion is determined as a minimum integer that satisfies the following condition because n
= 1 in the direction of the short edges:

Dx m4B4 L4 + 2H m2 L2 +Dy 1 B2

m2B L+ cL B

≤
Dx m+ 1 4B2 L4 + 2H m+ 1 2 L2 +Dy 1 B2

m+ 1 2B L+ cL B

5 13

where it is evident that the buckling half-wave number of the panel under biaxial loads is
affected by the biaxial loading ratio and by the structural orthotropy and aspect ratio.
For a wide panel, that is, with L/B < 1, the buckling half-wave number n in the y direc-

tion can be determined as the minimum integer that satisfies the following condition
because m = 1 in the direction of the short edges:

Dx B2 n2L4 + 2H 1 L2 +Dy n2 B2

B L+ cn2L B

≤
Dx B2 n+ 1 2L4 + 2H 1 L2 +Dy n+ 1 2 B2

B L+ c n+ 1 2L B

5 14

5.4.5 Combined Uniaxial Compression and Edge Shear

Following the isotropic buckling strength interaction relationship described in Chapter 3,
the elastic overall buckling strength interaction equations for a stiffened panel under
combined uniaxial compression and edge shear are sometimes used for practical design
purposes as follows:

σxav
σxEO,1

+
τav
τEO,1

2

= 1 5 15a

σyav
σyEO,1

+
τav
τEO,1

2

= 1 5 15b
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5.5 Elastic Local Buckling Strength of Plating Between
Stiffeners

When the stiffeners become stiff, they may remain straight until the plating between
them buckles locally. In this case, the local buckling strength of the plating can be cal-
culated with the methods for the bare plate element between stiffeners, taking into
account the influences of various parameters, as described in Chapter 3.

5.6 Elastic Local Buckling Strength of Stiffener Web

The web of a stiffener in a stiffened panel can locally buckle, a possibility that must usu-
ally be considered for built-up sections. This failure mode is termed “stiffener web
buckling,” which can sometimes be a quite sudden phenomenon that results in unload-
ing of the stiffened panel, particularly with the use of deep webs or flat-bar stiffeners. In
this case, once such stiffener web buckling occurs, the buckled or collapsed plating is left
with essentially no stiffening, and thus overall stiffened panel collapse may follow with
little increase in the loading.
The local buckling of the stiffener web and the buckling or collapse of the plating between

the stiffeners normally interact and can take place in any order, depending on the dimen-
sions of plating and stiffener. Clearly, buckling of the stiffener web before the inception of
buckling in the plating between the stiffeners is normally an undesirable failure mode.
It is necessary in design that the stiffener web should resist buckling until the plating

between the stiffeners buckles or collapses. However, the local buckling strength of the stiff-
ener web depends significantly on the torsional rigidities of the adjacent members to which
they are attached, among other factors. Because the rotational restraints along any plate–
stiffener intersection can be decreased by the collapse of the plating involved, the stiffener
web buckling strength should be calculated by accounting for this effect. In the following, an
exact solution of the stiffener web buckling is described, following Paik et al. (1998).

5.6.1 Governing Differential Equation

Figure 5.6 shows a schematic representation of the loading and boundary conditions for a
plate–stiffener combination model with the attached effective plating between two adja-
cent transverse frames in a continuous stiffened plate structure. In this case, the elastic
buckling strength for the stiffener web can be analyzed by solving the governing differ-
ential equations (Bleich 1952).
The elastic buckling strength of a stiffener web, which is regarded as a very long plate

(strip) under the appropriate edge conditions, may be analytically addressed as a char-
acteristic value problem. The boundary condition of the flat-bar stiffener along one edge
is free, but for angle-type or Tee stiffeners, it may be assumed that the stiffener flange will
not buckle until the inception of local buckling in the stiffener web, whereas the attached
plating of the stiffened panel can itself buckle. This would imply that the rotational
restraint at the web–flange junction is fully effective until the stiffener web buckles,
whereas that at the web-plating junction takes a value derived from an effective cross
section.
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The fundamental differential equation for the out-of-plane (i.e., sideways) deflection of
the stiffener web with zero initial deflection under axial compressive loads can be derived
under the assumption that the deflection is small when compared with the thickness of the
stiffener web. The applicable equation for the stiffener web was given by Bleich (1952) as

Dw
∂4υ

∂x4
+ 2

∂4υ

∂2x∂2z
+
∂4υ

∂z4
+ twσx

∂2υ

∂x2
= 0 5 16

where υ is the sideways deflection of the stiffener web, Dw =Et3w 12 1−v2 is the bend-
ing rigidity of stiffener web, and tw is the thickness of the stiffener web.
The solution of the aforementioned equation for υ will provide the deflected form of

the stiffener web under compression σx, such as σx = σxM when in-plane bending is
applied, or σx = σxav for uniform compression, which represents equilibrium but in an
unstable position. The buckling strength is defined by the load at a bifurcation point
where, in addition to the plane equilibrium from υ = 0, a deflected but unstable form
of equilibrium occurs.

5.6.2 Exact Web Buckling Characteristic Equation

To solve Equation (5.16), edge conditions for the stiffener web that are consistent with
its support characteristics should be prescribed. The loaded edges of the stiffener web at
x = 0 and a are normally supported by transverse frames and can (somewhat pessimis-
tically) be assumed to be simply supported as follows:

υ= 0 at x= 0 and a 5 17a

Mz = 0 at x= 0 and a 5 17b

where Mz is the bending moment per unit length of stiffener web about the z axis.
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Figure 5.6 Schematic representation of loading and boundary conditions for the plate–stiffener
combination model with the attached effective plating between two adjacent transverse frames under
axial compression.
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In practical cases, because the bending rigidity of the plating in the x–y plane is nor-
mally comparatively very large, the deflection (sideways movement) of the stiffener web
along the lower edge, that is, z = 0, relative to transverse frames, can be assumed to be
zero, and hence

υ= 0 at z = 0 5 18

The edge of the stiffener web along z = 0, where it joins the plating, cannot be assumed
to rotate freely during buckling. Hence, we consider that the lower edge of the stiffener
web is rotationally restrained, with the magnitude of the restraint depending on the tor-
sional rigidity of the plating. Along the edge at z = 0, the bending moments that appear
during buckling of the stiffener web must be equal and opposite to the rate of change of
the twisting moments of plating, which gives us the condition that

Mx = −
∂mx

∂x
at z = 0 5 19

where Mx is the bending moment per unit length of the stiffener web about the x axis,
which is taken as follows:

Mx = −Dw
∂2υ

∂z2
+ v

∂2υ

∂x2
5 20

mx is the twisting moment per unit length of plating about the x axis, which may be
approximated by neglecting the warping rigidity of the plating as

mx = −GJp
∂2υ

∂x∂z
5 21

Jp = bet
3/3 is the torsion constant of attached effective plating, be is the effective width of

the attached plating, and t is the thickness of the attached plating.
The edge condition for the stiffener web at z = hw depends on both the bending and the

torsional rigidities of the stiffener flange, where hw is the height of the stiffener web. For
flat-bar stiffeners that do not have a stiffener flange, the deflection and rotation along the
edge at z = hw occurs freely. In contrast, for angle or Tee-section stiffeners, the stiffener
web is partially rotation restrained by the stiffener flange. Hence, the deflection (sideways
movement) along this edge is not zero, but equals the deflection of the stiffener flange.
The general condition for deflection along the edge at z = hw can be expressed by

EIf
∂4υ

∂x4
=Dw

∂3υ

∂z3
+ 2−υ

∂3υ

∂x2∂z
at z = hw 5 22

where If is the moment of inertia of the stiffener flange at z = hw with regard to the z axis,
which is taken as If = b3f tf 3 in the case of an angle section and If = b3f tf 12 in the case of a
Tee section.
The rotation along the edge at z = hw is restrained due to the stiffener flange’s torsional

rigidity, and the bending moment of the stiffener web equals the rate of change of the
twisting moment of the stiffener flange, namely,

Mx = −
∂mx

∂x
at z = hw 5 23

Elastic and Inelastic Buckling Strength of Stiffened Panels and Grillages 285



In Equation (5.23), mx is given by

mx = −GJf
∂2υ

∂x∂z
5 24

where Jf = bf t3f 3 is the torsion constant of the stiffener flange, bf is the breadth of the
stiffener flange, and tf is the thickness of the stiffener flange.
For flat-bar stiffeners, that is, with If = 0 or Jf = 0, Equation (5.23) corresponds to the

condition that the rotation at z = hw occurs freely so that no moments develop there.
The general solution of Equation (5.16), which satisfies the conditions of simple sup-

port at x = 0 and a, as expressed by Equation (5.17), can be assumed to have the follow-
ing form:

υ=Z z sin
mπx
a

5 25

where Z(z) indicates a function of z and m represents the number of primary buckling
half waves for the stiffener web along the x direction.
Substituting Equation (5.25) into Equation (5.16), an ordinary differential equation of

the fourth order is obtained upon replacing σx by σWE as follows:

∂4Z
∂z4

−2
mπ

a

2 ∂2Z
∂z2

+
mπ

a

4
1−μ2 Z = 0 5 26

where

μ=
a

mhw
kw, kw = σWE

h2wtw
π2Dw

and σWE is the elastic local buckling stress of stiffener web.
The general solution of Equation (5.26) is given by

Z z =C1e
−α1z +C2e

α1z +C3 cos α2z +C4 sin α2z 5 27

where

α1 =
mπ

a
μ+ 1, α2 =

mπ

a
μ−1

From Equations (5.18) and (5.19), the following relationships between the constants in
Equation (5.27) can be obtained:

C1 =
C3 α21 + α22−α1α3

2α1α3
+
C4α2
2α1

, C2 = −
C3 α21 + α22−α1α3

2α1α3
−
C4α2
2α1

5 28

where

α3 =
GJp
Dw

mπ

a

2
= hwζp

mπ

a

2
, ζp =

GJp
hwDw

Upon substitution of Equation (5.28) into Equation (5.27), we obtain

Z z =C3 cos α2z−cosh α1z−
α21 + α22
α1α3

sinh α1z +C4 sin α2z−
α2
α1

sinh α1z

5 29
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Substitution of Equation (5.29) into Equation (5.25) yields

υ= C3 cos α2z−cosh α1z−
α21 + α22
α1α3

sinh α1z

+C4 sin α2z−
α2
α1

sinh α1z sin
mπx
a

5 30

Using the boundary conditions, that is, Equations (5.23) and (5.24), along the edge of
the stiffener web at z = hw, the unknown constants, C3 and C4, are determined from

A11 A12

A21 A22

C3

C4
= 0 5 31

where

A11 = hwγf
mπ

a

4
cos α2hw−cosh α1hw−S sin α1hw

− α32 sin α2hw−α
3
1 sinh α1hw−Sα

3
1 cosh α1hw

− 2−v
mπ

a

2
α2 sin α2hw + α1 sinh α1hw + Sα1 cosh α1hw

A12 = hwγf
mπ

a

4
sin α2hw−

α2
α1

sinh α1hw + α32 cos α2hw + α21α2 cosh α1hw

+ 2−v
mπ

a

2
α2 cos α2hw + α2 cosh α1hw ,

A21 = hwζf
mπ

a

2
α2 sin α2hw + α1 sinh α1hw + Sα1 cosh α1hw

+ α22 cos α2hw + α21 cosh α1hw + Sα21 sinh α1hw

+ v
mπ

a

2
cos α2hw−cos α1hw−S sinh α1hw ,

A22 = −hwζf
mπ

a

2
α2 cos α2hw−α2 cosh α1hw + α22 sin α2hw + α1α2 sinh α1hw

+ v
mπ

a

2
sin α2hw−

α2
α1

sinh α1hw ,

S =
α21 + α22
α1α3

, γf =
EIf

hwDw
, ζf =

GJf
hwDw

Equation (5.31) has solutions different from zero only if the determinant, Δ, of the
coefficient matrix vanishes. The condition for determinant Δ = 0 of Equation (5.31)
yields

Δ=
A11 A12

A21 A22
= 0 or Δ=A11A22−A12A21 = 0 5 32
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Equation (5.32) is the characteristic equation for elastic buckling of the stiffener web
with or without a stiffener flange, the latter being a flat-bar stiffener. The solution of
Equation (5.32) would then provide the value of the buckling coefficient, kw, for stiffener
web buckling. The stiffener web’s elastic local buckling strength can be obtained by sol-
ving the characteristic equation, with compressive stress taking a negative sign as follows:

σWE = −kw
π2E

12 1−v2
tw
hw

2

5 33

where σWE is the elastic buckling strength of stiffener web and kw is the elastic buckling
strength coefficient of the stiffener web.
To account for the effect of welding residual stress, the web buckling stress computed

from Equation (5.33) may be reduced by the compressive residual stress in the stiff-
ener web.

5.6.3 Closed-Form Expressions of Stiffener Web Buckling Strength

The task of solving Equation (5.32) in any specific case is not always straightforward, and
so it is most desirable for a designer to have a closed-form expression to predict the local
buckling strength of the stiffener web more readily.
An empirical expression is particularly useful to predict the buckling strength of the

stiffener web in terms of the relevant torsional rigidities of the plating and the stiffener
flange. One such expression for the buckling coefficient, kw, in Equation (5.33) was given
by Paik et al. (1998) as follows:

kw =

C1ζp +C2 for 0 ≤ ζp ≤ ηw

C3−1 C4ζp +C5 for ηw < ζp ≤ 60

C3−1 60C4 +C5 for 60 < ζp

5 34

where

ηw = −0 444ζ2f + 3 333ζf + 1 0,

C1 = −0 001ζf + 0 303,

C2 = 0 308ζf + 0 427,

C3 =

−4 350ζ2f + 3 965ζf + 1 277 for 0 ≤ ζf ≤ 0 2

−0 427ζ2f + 2 267ζf + 1 460 for 0 2 < ζf ≤ 1 5

−0 133ζ2f + 1 567ζf + 1 850 for 1 5 < ζf ≤ 3 0

5 354 for 3 0 < ζf

C4 =

−6 70ζ2f + 1 40 for 0 ≤ ζf ≤ 0 1

1 5 10ζf + 0 860 for 0 1 < ζf ≤ 1 0

1 4 0ζf + 1 814 for 1 0 < ζf ≤ 3 0

0 0724 for 3 0 < ζf
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C5 =

−1 135ζf + 0 428 for 0≤ ζf ≤ 0 2

−0 299ζ3f + 0 803ζ2f −0 783ζf + 0 328 for 0 2 < ζf ≤ 1 0

−0 016ζ3f + 0 117ζ2f −0 285ζf + 0 235 for 1 0 < ζf ≤ 3 0

0 001 for 3 0 < ζf

For flat-bar stiffeners, Equation (5.34) will become much simpler because ζf = 0, and
the computed results are well approximated by

kw =

0 303ζp + 0 427 for 0≤ ζp ≤ 1

1 277−1 1 40ζp + 0 428 for 1 < ζp ≤ 60

1 2652 for 60 < ζp

5 35

Figure 5.7a shows the variation in the elastic buckling coefficient for a flat-bar stiffener
web as a function of the web aspect ratio, a/hw, and the torsional rigidity of the plating. It
can be seen from this figure that an increase in the torsional rigidity of the plating will
result in a significant increase in the web buckling coefficient. Therefore, accounting for
such effects can be important, particularly in cases in which stiffener web buckling is a
possibility. The effects of the web aspect ratio on the stiffener web’s buckling strength can
be ignored in most practical cases.
Figure 5.7b and c shows the variations in the elastic buckling strength coefficient for an

angle or Tee-section stiffener web as a function of three parameters: the aspect ratio of
the stiffener web, the torsional rigidity of the plating, and the torsional rigidity of the stiff-
ener flange.
The results are shown in the practical ranges of the parameters applicable to the stif-

fened panels inmerchant ships.With an increase in the torsional rigidities of the stiffener
flange and/or plating, the elastic buckling strength of the stiffener web increases signif-
icantly, whereas the influence of the web aspect ratio on the buckling strength of the stiff-
ener web can again be ignored for most practical purposes.
The dotted lines in Figure 5.7 represent the approximate solutions for the web buck-

ling coefficient, as given in Equation (5.34) or (5.35). These may be compared with the
solid lines in the figure, which represent the results computed by direct solution of the
characteristic buckling equation, Equation (5.32). A combination of Equation (5.33) and
Equation (5.34) or (5.35) provides reasonably accurate predictions for the elastic buck-
ling strength of the stiffener web with or without a stiffener flange.

5.7 Elastic Local Buckling Strength of Stiffener Flange

Local buckling of the stiffener flange before buckling of the plating between the stiffeners
is an undesirable failure mode. In design, stiffener flange buckling must be prevented
until the stiffened panel reaches its ultimate strength.
For practical pessimistic assessment, the elastic local compressive buckling strength of

the stiffener flange, denoted by σFE, can be estimated with a plate idealization in which
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Figure 5.7 Variation of the elastic buckling strength coefficient: (a) flat-bar stiffener web as a function
of the web aspect ratio and the torsional rigidity of the plating; (b, c) angle or Tee-section stiffener
web as a function of the web aspect ratio and torsional rigidities of the plating or stiffener flange.
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three edges are simply supported and one edge is free, as shown in Figure 5.8, with the
results as follows:

σFE = kf
π2E

12 1−v2
tf
b∗f

2

5 36

where kf = 0.425 + b∗f a
2
,b∗f = bf for asymmetric angle stiffeners and b∗f = 0 5bf for sym-

metric Tee stiffeners.

5.8 Lateral-Torsional Buckling Strength of Stiffeners

5.8.1 Fundamentals of Lateral-Torsional Buckling

Lateral-torsional buckling (also called tripping) of stiffeners is a phenomenon in which
the failure of a stiffened panel occurs after the stiffener twists sideways about the edge of
the stiffener web attached to the plating. When the stiffener’s torsional rigidity is low or
the stiffener flange is weak, this phenomenon is more likely to occur.
Like stiffener web buckling, lateral-torsional buckling can be a relatively sudden phe-

nomenon that results in unloading of the stiffened panel. Once tripping occurs, the
buckled or collapsed plating is left with essentially much reduced stiffening and thus
overall collapse may follow. A plate–stiffener combination model, as described in
Chapter 2, with the attached effective plating under combined axial compression and
lateral line loads, is typically considered to collapse if lateral-torsional buckling occurs
after the plating between the stiffeners collapses.
In a continuous stiffened panel, lateral-torsional buckling may generally involve a cou-

pling of sideways and vertical deflection and rotation of the stiffener web together with
local buckling of the attached plating, as shown in Figure 5.9a. Unlike an ordinary beam–
column in framed structures, the attached plating of a plate–stiffener combination
model in plated structures is restricted from deflecting sideways, whereas the beam (stiff-
ener) flange is relatively free to deflect sideways and vertically.
For asymmetric section profiles (e.g., angle section), vertical bending, sideways bend-

ing, and torsion are typically coupled, whereas for symmetric section profiles (e.g., Tee
section), only sideways bending and torsion are normally coupled, which implies that the
overall flexural Euler buckling and lateral-torsional buckling can sometimes be closely
coupled for plate–stiffener combination models.
Many researchers have examined the lateral-torsional buckling of stiffeners in theoret-

ical, numerical, and experimental studies. Very earlier studies that used the classical the-
ory of thin-walled bars were summarized by Bleich (1952). During the 1970s and 1980s,

Simply supported

Free tf

a

*bf

Figure 5.8 A stiffener flange with three simply supported edges and one free edge.
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further studies were undertaken by Faulkner et al. (1973), Smith (1976), Adamchak
(1979), and Faulkner (1975, 1987), among others. Hughes and Paik (2013) reviewed
and summarized some of these studies. During the 1990s, in addition to the lateral-
torsional buckling problem under axial compression alone (Danielson et al. 1990,
Danielson 1995, Hu et al. 1997), the effect of combined axial compression and lateral
loads was studied by Hughes and Ma (1996a, 1996b) and by Hu et al. (2000), among
others.
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Figure 5.9 General and idealized tripping deformations of a plate–stiffener combination model: (a)
general deformations of flexible stiffener web with plate rotational restraints; (b) simplified
deformations of flexible stiffener web without plate rotational restraints; (c) simplified deformations of
rigid stiffener web without plate rotational restraints.
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Although nonlinear finite element methods can accurately analyze the lateral-torsional
buckling behavior in any specific case, it is not straightforward to derive theoretical solu-
tions for the lateral-torsional buckling strength of a plate–stiffener combination model,
as described in Chapter 2, considering the general section deformations depicted in
Figure 5.9a. For practical design purposes, however, it would be more desirable to use
a closed-form expression of the lateral-torsional buckling strength that is based on
the corresponding analytical solutions.
Related to this problem, different idealizations of the tripping deformations may be

made as approximations to the most general case of tripping deformations, as shown
in Figure 5.9a, which all potentially account for the coupling effect between the flexural
column buckling and lateral-torsional buckling. Three possible idealizations are as
follows:

• Flexible web without the plate rotational restraint (see Figure 5.9b)

• Rigid web with the plate rotational restraint

• Rigid web without the plate rotational restraint (see Figure 5.9c)

Although the rotational restraints between the stiffener web and the attached plating
generally play an important role in the lateral-torsional buckling behavior or local buck-
ling of the stiffener web, the rotational restraint effects from the plating may be ignored if
the plating between the stiffeners buckles before lateral-torsional buckling occurs, which
implies that the contribution of the attached plating to restrict the rotation of the stiff-
ener web about the plate–web junction is small, and thus the stiffener and the attached
plating may be considered to be pin-joined.
This assumption will arguably result in a lower bound solution of the lateral-torsional

buckling strength because plate rotational restraints will always exist to some extent,
whereas the effect of buckled plating may approximately be incorporated within the
effective plate width in the sectional properties of the plate–stiffener combination model
without needing to change the axis of rotation. Solutions that include such an approach
may typically be used when the ratio of the stiffener web height to the web thickness,
hw/tw, is less than 20 (Hughes & Ma 1996a).
In contrast, as the height of the stiffener web increases, the stiffener web is likely to

deflect sideways, and local buckling of the stiffener web can occur in some cases. Because
this type of failure is in principle considered in Section 5.6, it is assumed for the lateral-
torsional buckling analysis herein that the cross section of the stiffener web does not
deflect locally, which is similar to the assumption of the ordinary beam–column theory,
whereas it can twist sideways. This assumption may result in an optimistic strength pre-
diction, particularly when the ratio of the stiffener web height to the web thickness is very
large, which allows local web buckling to take place. The lateral-torsional buckling
strength of a flat-bar stiffener may be considered to equal the local web buckling strength
of the stiffener, as described in Section 5.6.

5.8.2 Closed-Form Expressions of Lateral-Torsional Buckling Strength

To derive a closed-form analytical solution of the lateral-torsional buckling strength,
therefore, the rigid-web case without the plate rotational restraints may be adopted,
as shown in Figure 5.9c.
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The elastic lateral-torsional buckling strength of angle or Tee-type stiffeners under
combined axial compression, σx (= σxM or σxav), and uniform lateral pressure line load,
q = pb (a line force obtained by multiplying the uniform lateral pressure, p, and the
breadth, b, of the plating between the stiffeners, as shown in Figure 2.5) in the x direction,
can be calculated by applying the principle of minimum potential energy.
The strain energy, U, of the plate–stiffener combination model, as defined in

Equation (2.68), with the attached effective plating stored during the lateral-torsional
buckling can in this case be given with vw = zθ (= sideways deflection of the web),
vT = hwθ (= maximum value of vw), and ϕB = ϕT = θ, resulting in

U =
E
2

a

0
Ie

∂2w
∂x2

2

dx+
E
2

a

0
Izh

2
w

∂2θ

∂x2

2

dx+
E
2

a

0
2Izyhw

∂2w
∂x2

∂2θ

∂x2
dx

+
G
2

a

0
Jw + Jf

∂θ

∂x

2

dx

5 37

where I is the stiffener’s moment of inertia and the attached effective width of the plating
with regard to the y axis, given by

Ie = be

t 2

− t 2

zp−z
2
dz + tw

hw 2

−hw 2
zp−

t
2
−
hw
2
−z

2

dz

+ bf
tf 2

− tf 2
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2
−hw−

tf
2
−z

2

dz

5 38a

where Iz is the moment of inertia of the panel with respect to the z axis, given by

Iz = t
be

0
y20dy+ hw

tw

0
y20dz + tf

bf

0
y0−y

2dz 5 38b

Izy is the product of inertia of the panel with respect to the yz plane, given by

Izy =
be

0

t 2

− t 2

zp−z y0dzdy+
tw

0

hw 2

−hw 2
zp−

t
2
−
hw
2
−z y0dzdy

+
bf

0

tf 2

− tf 2
zp−

t
2
−hw−

tf
2
−z y0−y dzdy

5 38c

Jw is the torsion constant for the web, given by

Jw =
1
3
t3whw 1−

192
π5

tw
hw

∞

n= 1,3,5

1
n5

tanh
nπhw
2tw

5 38d

Jf is the torsion constant for the flange, given by

Jf =
1
3
t3f bf 1−

192
π5

tf
bf

∞

n= 1,3,5

1
n5

tanh
nπbf
2tf

5 38e

zp is the distance from the middle plane of the attached plating to the elastic horizontal
neutral axis with attached effective plating, and y0 is the distance from the middle plane
of the web to the elastic vertical neutral axis with attached effective plating.
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In Equation (5.37), w is the deflection of the stiffener in the z direction, and θ is the
rotation of the stiffener with regard to the x axis. The moments of inertia and other geo-
metric constants used in Equation (5.37) are calculated for the stiffener with attached
effective plating, which approximately accommodates the effects of plate buckling.
In contrast, the external potential energy,W, generated during lateral-torsional buck-

ling is given by

W = −
1
2 Ap

σp
a

0

∂w
∂x

2

dxdA−
1
2 Aw

σw
a

0

∂w
∂x

2

+ z2
∂θ

∂x

2

dxdA

−
1
2 Af

σf
a

0
h2w

∂θ

∂x

2

+
∂w
∂x

2

−2y
∂w
∂x

∂θ

∂x
+ y2

∂θ

∂x

2

dxdA
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where σp, σw, and σf are the axial stresses in the plate, web, and flange, respectively.

Ap
dA, Aw

dA, and Af
dA indicate the integration for the corresponding section area

of plating (i.e., Ap = bet), web (i.e., Aw = hwtw), and flange (i.e., Af = bftf), respectively.
The total potential energy, Π, is obtained from the sum of U in Equation (5.37) andW

in Equation (5.39) as follows:

Π=U +W 5 40

When the plate–stiffener combination model, as described in Chapter 2, which is
assumed to be simply supported at both ends, is subjected to combined axial compressive
stress, σx, and uniform lateral line load, q = pb, the axial stresses at the plate (i.e., σp), web
(i.e., σw), and flange (i.e., σf) can be calculated for the stiffener with the associated effective
plating as follows:

σp = σx−
q
Ie
zp
x L−x

2
,

σw = σx−
q
Ie

zp−z
x a−x

2
,

σf = σx−
q
Ie

zp−hw
x a−x

2

5 41

The displacement functions of the stiffener due to tripping are assumed (because the
stiffener web does not deflect locally and the end conditions are simply supported) as
follows:

w=
m=1

Am sin
mπx
a

, θ =
m= 1

Bm sin
mπx
a

5 42

where Am and Bm are unknown constants.
In plated structures, a stiffened panel is usually a multi-bay structure supported by

transverse frames or brackets. Therefore, Equation (5.42) may be simplified further by
taking only the predominant tripping half-wave number of the stiffener between two
transverse frames or brackets for the plating’s post-buckling behavior. Usually, the pri-
mary lateral-torsional buckling half-wave number is not known beforehand, but it can be
determined so that the resulting lateral-torsional buckling strength must be the lowest of
those obtained for potential half-wave numbers.
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Substituting Equation (5.42) into the total potential energy equation,Π, Equation (5.40),
and applying the principle of minimum potential energy, the unknown constants Am and
Bm can be determined as follows:

∂Π
∂Am

= 0,
∂Π
∂Bm

= 0 5 43

The characteristic equation for elastic flexural-torsional buckling of the stiffener can
turn out as a bifurcation condition. The elastic flexural-torsional buckling stress, σTE , of
the plate–stiffener combination model is obtained by solution of the characteristic equa-
tion with regard to the axial compressive stress, whereas the lateral pressure is regarded
as a given constant load. Interested readers may refer to Hughes and Ma (1996a, 1996b).

5.8.2.1 Elastic Flexural-Torsional Buckling Strength of Asymmetric Angle Stiffeners
A closed-form expression of the elastic flexural-torsional buckling strength of asymmet-
ric angle stiffeners can be obtained with compressive stress taken as negative as follows:

σTE = −1 min
m=1,2,3,…

C2 + C2
2 −4C1C3

2C1
5 44

where

C1 = bet + hwtw + bf tf Ip−S
2
f ,

C2 = − Ip EI
mπ

a

2
−
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12
S1
Ie
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3
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2
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2
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−
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12
S1
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1−
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12
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1−
3
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−
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3

m2π2

2
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tf b2f
2
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S1 = − zp−hw tfbf −betzp−hwtw zp−
hw
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,

S2 = − zp−hw tf h2wbf +
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3
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1
3
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,
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S3 = zp−hw
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Ip is the polar moment of inertia of stiffener about the toe, given by

Ip =
tw h3w
3

+
t3whw
3

+
b3f tf
3

+
bf t3f
3

+Afh
2
w

zp =
0 5Aw t + hw +Af 0 5t + hw + 0 5tf

bet + hwtw + bf tf

y0 =
b2f tf

2 bet + hwtw + bf tf

q is the equivalent line pressure (q = pb), andm is the tripping half-wave number of the
stiffener.

5.8.2.2 Elastic Flexural-Torsional Buckling Strength of Symmetric Tee Stiffeners
A closed-form expression of the elastic flexural-torsional buckling strength of symmetric
Tee stiffeners can be obtained with compressive stress taken as negative as follows:

σTE = −1 min
m= 1,2,3,…

−a2G Jw + Jf +EIf h2wm
2π2

Ipa2
+
qa2

12
S4
IeIp

1−
3

m2π2
5 45

where

S4 = − zp−hw tf
h2wbf + b3f

12
−h3wtw

1
3
zp−

hw
4

,

Ip =
tw h3w
3

+
t3whw
12

+
bf t3f
3

+
b3f tf
12

+Afh
2
w, If =

b3f tf
12

5.8.2.3 Elastic Flexural-Torsional Buckling Strength of Flat-Bar Stiffeners
As previously noted, the elastic flexural-torsional buckling strength of flat-bar stiffeners
is taken as being approximately equal to the local buckling strength, σWE , of the stiffener
web, as defined in Equation (5.33) with Equation (5.35), that is, σTE = σWE .
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5.8.2.4 Effect of Welding Induced Residual Stresses
To account for the effects of welding residual stresses, the flexural-torsional buckling
stress computed earlier is typically reduced by an effective compressive residual stress,
σ∗rs. Danielson (1995) suggested an empirical formula of σ∗rs as follows:

σ∗rs = σrc 1 +
2π2I
b3t

5 46
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Figure 5.10 Effect of the hw/tw ratio on the lateral-torsional buckling strength of a plate and flange–
stiffener combination without considering the plate rotational restraints (σYeq is the equivalent
yield strength of the plate–stiffener combination): (a) angle section stiffener with attached effective
plating; (b) Tee-section stiffener with attached effective plating.
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where σrc is the compressive residual stress in the stiffener web and I is the moment of
inertia for the full section of the plate–stiffener combination model.
Figure 5.10 confirms the validity of the lateral-torsional buckling strength formulations

by comparison with nonlinear finite element method solutions. The effect of the hw/tw
ratio on the lateral-torsional buckling strength for a particular plate–stiffener combina-
tion model is investigated in this figure. The two types of idealizations, that is, one for a
flexible web as given byHughes andMa (1996a) using a simplified numerical method and
the other for a rigid web as predicted by Equations (5.44) and (5.45), both without plate
rotational restraints, are considered in addition to more refined eigenvalue finite element
method solutions. It is apparent from Figure 5.10 that the effects of stiffener web deflec-
tion can be ignored when the hw/tw ratio is low, but the rigid-web approximation, which
neglects the effects of stiffener web deflection, can result in overestimation of the elastic
lateral-torsional buckling strength for higher hw/tw ratios. The elastic lateral-torsional
buckling strength increases further because of the rotational restraint effect along the
web–plate intersection (Hu et al. 2000).

5.9 Elastic–Plastic Buckling Strength

The stocky stiffened panel will buckle in the inelastic regime with a certain degree of
plasticity. Although the nonlinear finite element method can deal accurately with this
behavior, it is a computing- and labor-intensive process. For practical design purposes,
an easier alternative to account for the influence of plasticity is to make the plasticity
correction of the elastic buckling strength using the Johnson–Ostenfeld formulation
method, as described in Equation (2.93).
The applicability of the Johnson–Ostenfeld formulation method in predicting the ine-

lastic lateral-torsional buckling strength is confirmed in Figure 5.10. It is interesting to
note from this figure that the inelastic flexural-torsional buckling strength may not be
significantly affected by the stiffener web deflection and the Johnson–Ostenfeld formu-
lation method is useful for approximate prediction of the inelastic lateral-torsional buck-
ling strength, which is regarded as the ultimate strength for practical design purposes
(Adamchak 1979, Hughes & Paik 2013).
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6

Large-Deflection and Ultimate Strength Behavior of Stiffened
Panels and Grillages

6.1 Fundamentals of Stiffened Panel Ultimate Strength
Behavior

A stiffened panel is an assembly of plating and stiffeners (support members). Even if the
stiffened panel or its parts initially buckle in the elastic or even inelastic regime, the stif-
fened panel will normally be able to sustain further applied loads. The ultimate strength
of the stiffened panel is eventually reached by excessive plasticity and/or by stiffener
failure.
A method for the prediction of a stiffened panel’s ultimate strength has its own level of

accuracy. In addition to the inherent and modeling uncertainties in the structural prop-
erties and failure phenomena involved, the following four aspects are the primary reasons
for such differences:

• The numerous collapse modes involved, the manner in which they are idealized for
consideration, and the effects of failure mode interactions that must be considered

• Differences in the evaluation of the ineffectiveness in the in-plane stiffness of the plat-
ing between the stiffeners

• Consideration of welding induced initial imperfections and existing structural damage

• Consideration of rotational restraints between the plating and the stiffeners and/or
between the stiffener web and the flange

First, not all theoretically possible collapse modes are usually considered in the develop-
ment of any specific design-orientedmethod of predicting strength. Second, it is important
to accurately evaluate the ineffectiveness of the plating or stiffeners after local buckling
and/or with large deflection. As the loads increase, the effective width or breadth of the
buckled or deflected platingwould, by definition, vary because it is a function of the applied
stresses. However, most simplified methods assume that the effective width of the plating
does not depend on the applied loads, and the ultimate effective width of the plating is
instead used as a convenient “constant.” Third, fabrication related initial deformations
and residual stresses are not always treated as the parameters of influence in development
of the method. Most methods account for the influence of initial imperfections in the plat-
ing between stiffeners, but only some of them include initial imperfection effects for the
stiffeners. Finally, stiffeners have some rotational restraints at their line of attachment to
the plating and/or along the stiffener web–flange intersection. Such restraints affect the
failure of a stiffener, but most methods neglect this effect.
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In the ultimate limit state (ULS) design of stiffened panels using Equation (1.17), the
capacity indicates the ultimate strength that may be determined by relevant ultimate
strength formulations, whereas the demand represents the extreme value of the load
effects (stresses), which are determined with the classical theory of structural mechanics
or linear elastic finite element analysis once the overall loads are known.
This chapter describes the ultimate strength formulations for stiffened panels and gril-

lages. The formulations presented are designed to be more sophisticated than previous
theoretically based simplified procedures. It is noted that the theories andmethodologies
described in this chapter can be commonly applied to both steel- and aluminum-
stiffened panels.

6.2 Classification of Panel Collapse Modes

When subjected to predominantly axial tension, a stiffened panel may fail by gross yield-
ing. In contrast, a stiffened panel under predominantly compressive loads may poten-
tially show a variety of failure modes until the ultimate strength is reached, as shown
in Figure 6.1, with the focus on the collapse patterns induced by axial compressive load-
ing for illustrative purposes. The primary modes of overall failure for a stiffened panel are
categorized into the following six types:

•Mode I: Overall collapse of plating and stiffeners as a unit
– Mode I-1: Mode I for uniaxially stiffened panels (see Figure 6.1a)
– Mode I-2: Mode I for cross-stiffened panels (grillages) (see Figure 6.1b)

•Mode II: Plate collapse without distinct failure of stiffener (see Figure 6.1c)

•Mode III: Beam–column collapse (see Figure 6.1d)

•Mode IV: Collapse by local web buckling of stiffener (see Figure 6.1e)

•Mode V: Collapse by lateral-torsional buckling of stiffener (see Figure 6.1f )

•Mode VI: Gross yielding

Mode I depicts the typical collapse pattern when the stiffeners are relatively weak. In
this case, the stiffeners can buckle together with the plating as a unit, and the overall
buckling behavior is initially elastic. The stiffened panel can normally sustain further
loading even after overall buckling occurs in the elastic regime, and the ultimate strength
is eventually reached by the formation of a large yield region inside the panel and/or
along the panel edges. In mode I, the collapse behavior of a uniaxially stiffened panel,
termed mode I-1, differs slightly from that of a cross-stiffened panel (grillage), termed
mode I-2. The former is in fact initiated by beam–column failure, whereas the latter fail-
ure resembles that of an “orthotropic plate.”
Mode II represents the collapse pattern in which the panel collapses by yielding along

the plate–stiffener intersection at the panel edges, with no stiffener failure. This type of
collapse can be important in some cases in which the panel is subjected predominantly to
biaxial compressive loads.
Mode III indicates a failure pattern in which the ultimate strength is reached by yield-

ing of the plate–stiffener combination at the mid-span. Mode III failure typically occurs
when the dimensions of the stiffeners are intermediate, that is, neither weak nor very
strong.
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Modes IV and V typically arise from stiffener-induced failure when the ratio of the
stiffener web height to the stiffener web thickness is large and/or when the type of stiff-
ener flange is unable to remain straight so that the stiffener web buckles or twists side-
ways. Mode IV represents a failure pattern in which the panel collapses by local
compressive buckling of the stiffener web, whereas mode V can occur when the ultimate
strength is reached after lateral-torsional buckling (also called tripping) of the stiffener.
Mode VI typically takes place when the panel slenderness is very low (i.e., the panel is

very stocky) and/or when the panel is subjected predominantly to axial tensile loading so
that neither local nor overall buckling occurs until the panel cross section yields in large
regions or entirely.
Although Figure 6.1 illustrates each collapse pattern separately, some collapse modes

may in some cases interact and occur simultaneously. It is also important to realize that
the division of the behavior of a stiffened panel as illustrated earlier is (i) artificial and
(ii) not necessarily completely descriptive of all anticipated actual behavior, although
based on insights and experiences, such division is thought to be adequate for design

(a)

(b)

Figure 6.1 Failure modes (shaded areas represent yielded region): (a) mode I-1: overall collapse of a
uniaxially stiffened panel; (b) mode I-2: overall collapse of a cross-stiffened panel; (c) mode II: plate
collapse without distinct failure of stiffener; (d) mode III: beam–column collapse; (e) mode IV: collapse
by local web buckling of stiffener; (f ) mode V: collapse by flexural-torsional buckling of stiffener.
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(c)

(d)

(e)

(f)

Figure 6.1 (Continued )



purposes in plated structures. Further, even accepting these idealizations of behavior, the
calculation of the ultimate strength of the stiffened panel under combined loads is not
straightforward because of the interplay of the various factors, such as geometric and
material properties, loading, boundary conditions, welding induced initial imperfections,
and existing structural damages.
For practical design purposes, therefore, it is typically considered that the collapse of

the stiffened panels occurs at the lowest value among the various ultimate loads calcu-
lated when considering each of the previouslymentioned six collapse patterns separately.

6.3 Structural Idealizations of Stiffened Panels

The structural idealizations of the stiffened panels are described in Section 5.2. The char-
acteristics of the fabrication related initial imperfections are idealized as described in
Section 1.7.
A stiffened panel is surrounded by strong support members such as longitudinal gir-

ders and transverse frames, and it has stiffeners in the x and y directions. The stiffeners
are attached to one side of the panel, that is, they are placed on the positive side in the z
direction, as shown in Figure 5.3. The length and breadth of the cross-stiffened panel (or
grillage) are denoted by L and B, respectively, as shown in Figure 5.4a. The panel’s stiffen-
ers are identical in terms of geometry and material, with the same spacing. The number
of stiffeners in the x or y direction is nsx or nsy, and thus the stiffener spacing in the x or y
direction is a= L nsy + 1 or b=B nsx + 1 . In many cases in a continuous stiffened
plate structure, the stiffeners in the stiffened panel are positioned in only one direction.
In such a case, the panel length is denoted by a in which the coordinate of the panel is
taken so that the stiffeners are positioned in the x direction, as shown in Figure 5.4b.
The thickness of the plating between the stiffeners is t. In some panels, the thicknesses

of the individual plates between the stiffeners may not be the same. In this case, the plate
thickness t used in the ultimate strength formulations of the panels is represented by an
equivalent plate thickness that is approximated as follows:

t =
b
B

nsx + 1

i= 1

ti 6 1

where ti is the thickness of the ith plate.
The dimensions of the stiffeners in the x or y directions are defined in Figure 5.3. The

plating and stiffeners are of the same material, although their yield stresses may differ.
The plating and stiffeners have the same value of either Young’s modulus or Poisson’s
ratio, defined by E and ν, respectively, and the elastic shear modulus is defined by
G = E 2 1 + ν . The material yield stress of the plating is σYp. The slenderness ratio
and the flexural (bending) rigidity of the plating between the stiffeners are given by
β = b t σYp E and D=Et3 12 1−ν2 , respectively.
In some plate panels, the material yield stress of the plating differs from that of the

stiffeners. In a steel-stiffened panel, for example, the plating may be made of mild steel,
whereas the stiffeners are made of high-tensile steel. In an aluminum-stiffened panel, the
material yield stress of the stiffeners is sometimes greater than that of the plating, with
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different tempers of aluminum alloys as indicated in Tables 1.3 and 1.4. The yield stress is
σYw for the stiffener web and σYf for the stiffener flange. In this case, an equivalent yield
stress σYeq can be defined to represent the yield stress of the entire panel:

σYeq =
BtσYp + nsx hwxtwxσYw + bfxtfxσYf

Bt + nsx hwxtwx + bfxtfx

for a uniaxially stiffened panel in the xdirection

6 2a

σYeq =
1
2

BtσYp + nsx hwxtwxσYw + bfxtfxσYf
Bt + nsx hwxtwx + bfxtfx

+
LtσYp + nsy hwytwyσYw + bfytfyσYf

Lt + nsy hwytwy + bfytfy

for a cross-stiffened panel

6 2b

The equivalent yield stress of a plate–stiffener combination model indicated in
Table 2.1 is defined as follows:

σYeq =
btσYp + hwxtwxσYw + bfxtfxσYf

bt + hwxtwx + bfxtfx

for the plate-stiffener combination model in thexdirection

6 2c

σYeq =
atσYp + hwytwyσYw + bfytfyσYf

at + hwytwy + bfytfy

for the plate-stiffener combination model in theydirection

6 2d

Because the stiffened panel is supported by strong members, the rotational restraints
along the panel edges depend on the relative values of the torsional rigidities of the sup-
port members to the flexural rigidity of the panel, and these values are neither zero nor
infinite. For the sake of simplicity, however, it is often assumed that the stiffened panel
edges are simply supported, with zero deflection and zero rotational restraints along the
four edges and with all edges kept straight. In engineering practice, this approximation is
considered adequate. As described in Chapters 3, 4, and 5, however, the effects of rota-
tional restraints at the four edges of the plating and at the junctions of the plate and the
stiffener or the stiffener web–flange are considered in calculations of the local buckling
and ultimate strength of either the plating between the stiffeners or the stiffener web, the
latter being associated with collapse modes IV and V.
Six potential stress components act on a stiffened panel—longitudinal axial stress,

transverse axial stress, edge shear, longitudinal in-plane bending, transverse in-plane
bending, and lateral pressure—as described in Section 5.2.3. To develop the ultimate
strength formulations for the panel, this chapter simplifies some of the applied load
components that depend on the collapse mode: σxav is the average axial stress in the
x direction, σyav is the average axial stress in the y direction, τav is the average edge shear
stress, and p is the lateral pressure.
The average stress components applied in a stiffened panel are then defined as follows,

where in the x direction, σx2 is always larger than σx1, or in the y direction, σy2 is always
larger than σy1:
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6.3.1 Collapse Modes I and VI

The effect of in-plane bending moments is neglected over the stiffened panel, and the
following four load components are defined in this case:

σxav =
σx1 + σx2

2
, σyav =

σy1 + σy2
2

, τav, p 6 3a

6.3.2 Collapse Modes II, III, IV, and V

The most highly stressed plating between the stiffeners is considered to determine the
panel’s ultimate strength.

σxM = σx2−
b
2B

σx2−σx1 , σyM = σy2−
a
2L

σy2−σy1 , τav, p 6 3b

It is considered that the compressive stress is negative and that the tensile stress is pos-
itive. That is, the axial load has a negative value when the corresponding load is compres-
sive, and vice versa.

6.4 Nonlinear Governing Differential Equations
of Stiffened Panels

The nonlinear governing differential equations of a stiffened panel can be divided into
two groups depending on the buckling modes: those for overall panel buckling and those
for local plate buckling. The former type of post-buckling behavior is analyzed with the
large-deflection orthotropic plate theory, whereas the latter type is analyzed with
the large-deflection isotropic plate theory.

6.4.1 Large-Deflection Orthotropic Plate Theory

If a stiffened panel has several small stiffeners, it may buckle in the overall grillage buck-
ling mode under compressive loads, as shown in Figure 5.1a. In this case, the panel may
be idealized as an orthotropic plate, in which the stiffeners are in a sense smeared into the
plating.
The orthotropic plate approach implies that the stiffeners are relatively numerous and

small so that they deflect together with the plating as a unit and that the physical stiffen-
ers remain stable through the ranges of orthotropic plate behavior. It is recognized that
application of the orthotropic plate theory to cross-stiffened panels must be restricted to
those with more than three stiffeners in each direction and that the stiffeners in a given
direction must be similar (Smith 1966, Troitsky 1976, Mansour 1977). For an approxi-
mation, however, the post-buckling behavior of a plate panel with numerous small stif-
feners in one direction may also be analyzed with the orthotropic plate theory.
The overall buckling behavior of the panel can then be analyzed by solving the two

nonlinear governing differential equations of the large-deflection orthotropic plate the-
ory: the equilibrium equation and the compatibility equation (e.g., Troitsky 1976). By
accounting for the effects of the initial deflections, the two governing differential
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equations for the cross-stiffened panel (i.e., one with stiffeners in both the x and y direc-
tions) can be written as follows:

Dx
∂4w
∂x4

+ 2H
∂4w

∂x2∂y2
+Dy

∂4w
∂y4

− t
∂2F
∂y2

∂2 w+w0

∂x2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y
+
∂2F
∂x2

∂2 w+w0

∂y2
+
p
t

= 0

6 4a

1
Ey

∂4F
∂x4

+
1
Gxy

−2
vx
Ex

∂4F
∂x2∂y2

+
1
Ex

∂4F
∂y4

−
∂2w
∂x∂y

2

−
∂2w
∂x2

∂2w
∂y2

+ 2
∂2w0

∂x∂y
∂2w
∂x∂y

−
∂2w0

∂x2
∂2w
∂y2

−
∂2w
∂x2

∂2w0

∂y2
= 0

6 4b

where w0 and w are the initial and added deflection functions for the orthotropic plate,
respectively; F is Airy’s stress function; Ex and Ey are the elastic moduli of the orthotropic
plate in the x and y directions, respectively; Gxy is the elastic shear modulus of the ortho-
tropic plate; Dx and Dy are the flexural rigidities of the orthotropic plate in the x and y
directions, respectively; and H is the effective torsional rigidity of the orthotropic plate.
Once Airy’s stress function, F, and the added deflection, w, are known, the stresses

inside the panel can be calculated as follows:

σx =
∂2F
∂y2

−
Exz

1−vxvy

∂2w
∂x2

+ vy
∂2w
∂y2

6 5a

σy =
∂2F
∂x2

−
Eyz

1−vxvy

∂2w
∂y2

+ vx
∂2w
∂x2

6 5b

τ = −
∂2F
∂x∂y

−2Gxyz
∂2w
∂x∂y

6 5c

where σx and σy are the normal stresses in the x and y direction, respectively; τ is the shear
stress; and the z axis is along the plate’s thickness, with z = 0 at the mid-thickness.
The reliability of the orthotropic plate theory analysis depends significantly on various

elastic constants that must be determined when a stiffened panel is replaced with an
equivalent orthotropic plate. In the following, the large-deflection orthotropic plate the-
ory constants developed by Paik et al. (2001) are introduced.
An isotropic plate has two independent elastic constants: the elastic modulus, E, and

the Poisson ratio, v. For the orthotropic plate, four elastic constants—Ex, Ey, vx, and vy—
are required to describe the orthotropic stress–strain relationship of the plate. In real
stiffened panels, the anisotropy in the two mutually perpendicular directions arises from
different properties of the geometry rather than from different properties of the material,
which itself is inherently isotropic. In this case, the corresponding orthotropic constants
of the elastic moduli can be approximately given by

Ex = E 1 +
nsxAsx

Bt
6 6a

Ey = E 1 +
nsyAsy

Lt
6 6b
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Gxy =
ExEy

Ex + 1+ 2 vxvy Ey

≈
ExEy

2 1 + vxvy
6 6c

The flexural and torsional rigidities of the orthotropic plate are determined as follows:

Dx =
Et3

12 1−vxvy
+

Et z20x
1−vxvy

+
EIx
b

6 7a

Dy =
Et3

12 1−vxvy
+

Et z20y
1−vxvy

+
EIy
a

6 7b

H =
1
2

vyDx + vxDy +Gxy
t3

3
6 7c

where

Ix =
twx h3wx
12

+ twxhwx
hwx
2

+
t
2
−z0x

2

+
bfx t3fx
12

+ bfxtfx
tfx
2

+ hwx +
t
2
−z0x

2

,

Iy =
twy h3wy
12

+ twyhwy
hwy
2

+
t
2
−z0y

2

+
bfy t3fy
12

+ bfytfy
tfy
2
+ hwy +

t
2
−z0y

2

,

z0x =
hwxtwx hwx 2 + t 2 + bfxtfx tfx 2 + hwx + t 2

bt + hwxtwx + bfxtfx
,

z0y =
hwytwy hwy 2 + t 2 + bfytfy tfy 2 + hwy + t 2

at + hwytwy + bfytfy

For an isotropic plate, the flexural rigidities will of course simplify into the following
well-known expression:

Dx =Dy =H =D=
Et3

12 1−v2
6 8

To determine the various elastic constants indicated earlier, Poisson’s ratios vx and vy
due to structural orthotropy, which are not material properties but rather elastic con-
stants that correspond to the given geometrical configuration, should be known in
advance. Based on Betti’s reciprocity theorem, the following two requirements are then
pertinent:

vxEy = vyEx, vxDy = vyDx 6 9

Substitution of Equations (6.6) and (6.7) into Equation (6.9) leads to

EIx
b

Ey
Ex

2

−
EIy
a

Ey
Ex

v3x

−
Ey
Ex

Et3

12
+ Etz20x +

EIx
b

−
Et3

12
−Etz20y−

EIy
a

vx = 0

6 10
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The solution of Equation (6.10) together with Equation (6.9) results in the effective
Poisson ratios in the x and y directions, namely,

vx = c
Ey Ex Et3 12 +Et z20x +EIx b −Et3 12−Et z20y−EIy a

EIx b Ey Ex
2
− EIy a Ey Ex

0 5

6 11a

vy =
Ey
Ex

vx

= c
Ey
Ex

Ey Ex Et3 12 +Et z20x +EIx b −Et3 12−Et z20y−EIy a

EIx b Ey Ex
2
− EIy a Ey Ex

0 5 6 11b

where c is a correction factor to correlate Poisson’s ratios with vx = vy = v for an isotropic
plate, which may approximately be taken as c = v/0.86. Note also that vx = vy = v if

EIx
b

Ey
Ex

2

=
EIy
a

Ey
Ex

or
Ex
Ey

=
a
b
Ix
Iy

6 11c

For an orthotropic plate theory application, it is assumed that the effect of welding
induced residual stresses can be neglected because the effects of both tensile and compres-
sive residual stresses may be offset in the panel’s overall deflection response. For an
orthotropic plate under predominantly compressive loads, the membrane stress distribu-
tion inside the plate is not uniform, as illustrated in Figure 6.2. In this case, the maximum
and minimum membrane stresses of the plate are determined at z = 0 as follows:

σxmax = σx x=0, y= 0 6 12a

σxmin = σy x= 0, y=B 2
6 12b

L

σxmax

=

σymax

σxmin

σxav

σxav σxdy1
0

B

B

σymin

y

B

X

Figure 6.2 Membrane stress distribution inside an orthotropic plate under predominantly longitudinal
axial compressive loads.
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σymax = σy x= 0, y= 0
6 12c

σymin = σy x=L 2,B=0 6 12d

6.4.2 Large-Deflection Isotropic Plate Theory

When the stiffeners have sufficient strength, they will not fail before the plating between
them buckles. In this case, the large-deflection behavior (including buckling) of the plat-
ing between stiffeners is of primary concern and can be analyzed by solving the nonlinear
governing differential equations of the large-deflection isotropic plate theory, as
described in Chapter 4.

6.5 Elastic Large-Deflection Behavior After Overall Grillage
Buckling

In a manner similar to the isotropic plate theory method described in Chapter 4, the gov-
erning differential equations of the orthotropic plate, Equations (6.4a) and (6.4b), can be
solved with the Galerkin method. In this case, the initial and added deflection functions
of the orthotropic plate that satisfy the simply supported conditions at the panel edges
can be presumed as follows:

w0 =A0mn sin
mπx
L

sin
nπy
B

6 13a

w=Amn sin
mπx
L

sin
nπy
B

6 13b

where A0mn and Amn are the amplitudes of the initial and added deflection functions,
respectively, and m and n are the buckling half-wave numbers in the x and y directions,
respectively. For modeling the panel initial deflection, Section 1.7 can be referred to.

6.5.1 Lateral Pressure Loads

For an orthotropic plate under lateral pressure loads alone, the initial and added plate
deflection functions are assumed as Equation (6.13) but with m= n= 1. In this case,
the unknown amplitude A1 =A11 with A01 =A011 can be determined as the solution to
the following equation:

C1A
3
1 +C2A

2
1 +C3A1 +C4 = 0 6 14

where C1 =
π2

16
Ex

B
a3

+Ey
L
B3

, C2 =
3π2A01

16
Ex

B
a3

+Ey
L
B3

, C3 =
π2 A2

01

8
Ex

B
a3

+ Ey
L
B3

+
π2

t
Dx

B
a3

+ 2H
1
aB

+Dy
L
B3

, C4 = −
16aB
π4t

p.

The solution of Equation (6.14) can be obtained using the Cardano method or the
FORTRAN computer subroutine CARDANO given in the appendices to this book.
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The maximum and minimum membrane stresses inside the orthotropic plate can then
be obtained from Equation (6.12) as follows:

σxmax = −
π2ExA1 A1 + 2A01

8L2
6 15a

σxmin =
π2ExA1 A1 + 2A01

8L2
6 15b

σymax = −
π2EyA1 A1 + 2A01

8B2
6 15c

σymin =
π2EyA1 A1 + 2A01

8B2
6 15d

6.5.2 Combined Biaxial Loads

In this case, the initial and added deflection functions are assumed as Equations (6.13a)
and (6.13b), and the unknown amplitudeAmn can be determined by solving the following
equation:

C1Amn
3 +C2Amn

2 +C3Amn +C4 = 0 6 16

where
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16
Ex

m4B
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+ Ey
n4L
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3π2A0mn

16
Ex
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2
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8
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+Ey
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L
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n2L
B
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Dx

m4B
L3

+ 2H
m2n2

LB
+Dy

n4L
B3

,

C4 =A0mn
m2B
L

σxav +
n2L
B

σyav

The solution of Equation (6.16) can be obtained using the Cardano method or the
FORTRAN computer subroutine CARDANO given in the appendices to this book. It
is interesting to determine the elastic bifurcation buckling strength of the orthotropic
plate without initial deflections and under biaxial compressive loads in a manner similar
to that of an isotropic plate described in Chapter 4. For an orthotropic plate with L B ≥ 1,
n= 1 can be adopted. In this case, the following condition must be satisfied immediately
before or after buckling as A0mn = 0:

Am1 = −
C3

C1
= 0 6 17
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where

C1 =
π2

16
Ex

m4B
L3

+ Ey
L
B3

,

C3 =
m2B
L

σxav +
L
B
σyav +

π2

t
Dx

m4B
L3

+ 2H
m2

LB
+Dy

L
B3

The solution of Equation (6.17) results in either C3 = 0 or the following equation:

m2B
L

σxav +
L
B
σyav +

π2

t
Dx

m4B
L3

+ 2H
m2

LB
+Dy

L
B3

= 0 6 18

Equation (6.18) is the elastic bifurcation buckling condition of the orthotropic plate
under biaxial compressive loads. When the loading ratio between biaxial compression
is defined as c= σyav σxav, the elastic overall buckling strength, σxEO, of the orthotropic
plate in longitudinal compressive loads σxav is determined from Equation (6.18) as
follows:

σxEO = −
LB

m2B2 + cL2
π2

t
Dx

m2

L2
+ 2H

1
B2

+Dy
L2

m2B4
6 19

In this case, the bucking half-wave numberm can be determined as a minimum integer
that satisfies the following condition:

LB
m2B2 + cL2

Dx
m2

L2
+ 2H

1
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+Dy
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LB

m+ 1 2B2 + cL2
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L2
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1
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+Dy
L2

m+ 1 2B4

6 20

For a uniaxial compression in the x direction with c= σyav σxav = 0, Equation (6.19) is
simplified to

σxEO = −
π2

t
Dx

m2

L2
+ 2H

1
B2

+Dy
L2

m2B4
6 21

In this case, the buckling half-wave numberm is determined as aminimum integer that
satisfies the following condition:

Dx
m2

L2
+ 2H

1
B2

+Dy
L2

m2B4
≤Dx

m+ 1 2

L2
+ 2H

1
B2

+Dy
L2

m+ 1 2B4
6 22a

or, more simply,

L
B

4

≤
Dx

Dy
m2 m+ 1 2 6 22b

It is evident from Equation (6.22b) that the buckling mode depends on both the plate
aspect ratio and the structural orthotropy. For an isotropic plate under σxav in
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compression, Equation (6.22b) will simplify to the well-known condition because Dx =Dy

as follows:

L
B
≤ m m+ 1 6 22c

For an orthotropic plate with L B ≥ 1, the elastic bifurcation buckling strength under
transverse compression σyav is obtained from Equation (6.18) as follows because σxav = 0:

σyEO = −
π2

t
Dx

B2

L4
+ 2H

1
L2

+Dy
1
B2

6 23

Once Am is determined as the solution of Equation (6.16) for the given values of σxav
and σyav, the maximum or minimum membrane stresses in the x and y direction can be
determined from Equation (6.12) as follows:

σxmax = σxav−
m2π2ExAm Am + 2A0mn

8L2
6 24a

σxmin = σxav +
m2π2ExAmn Amn + 2A0mn

8L2
6 24b

σymax = σyav−
π2EyAmn Amn + 2A0mn

8B2
6 24c

σymin = σyav +
π2EyAmn Amn + 2A0mn

8B2
6 24d

6.5.3 Effect of the Bathtub Deflection Shape

In a manner similar to that of the isotropic plate theory method associated with the bath-
tub-shaped deflection as described in Chapter 4, the maximum and minimum mem-
brane stresses in Equation (6.24) are amplified by multiplying a correction factor
(Paik et al. 2001) as follows:

σxmax = σxav−ρ
m2π2ExAmn Amn + 2A0mn

8L2
6 25a

σxmin = σxav + ρ
m2π2ExAmn Amn + 2A0mn

8L2
6 25b

σymax = σyav−ρ
π2EyAmn Amn + 2A0mn

8B2
6 25c

σymin = σyav + ρ
π2EyAmn Amn + 2A0mn

8B2
6 25d

The correction factor ρ in Equation (6.25) may be given as follows:

ρ=
ρc for L B 4 ≥Dy 4Dx

2ρc for L B 4 <Dy 4Dx

6 26
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where

ρc =
1 0 for H D < 1 3569

0 0894 H D−1 3569 + 1 0 for H D ≥ 1 3569

Because ρc is always greater than 1.0, the large-deflection-related terms of the maxi-
mum and minimum membrane stresses are amplified because of the bathtub-shaped
deflection. When tensile loads are applied, ρ= 1 is used.

6.5.4 Interaction Effect Between Biaxial Loads and Lateral Pressure

In a manner similar to that of the isotropic plate theory method described in Chapter 4,
C4 in Equation (6.16) is modified to superpose the effects of lateral pressure loads p as
follows:

C4 =A0mn
m2B
L

σxav +
n2L
B

σyav −
16LB
π4t

p 6 27

6.6 Ultimate Strength

The ultimate strength formulations for the stiffened panel under combined in-plane and
lateral pressure loads are now presented for all potential collapse modes noted in
Section 6.2. The minimum value among the six ultimate strengths so obtained for the
six collapse modes is then taken as the real ultimate strength.

6.6.1 Mode I: Overall Collapse

In collapse mode I, the stiffened panel is idealized as an orthotropic plate under com-
bined σxav, σyav, τav, and p. In this case, the ultimate strength interaction relationship
of the stiffened panel is given by

σxav
σIxu

c1

−α
σxav
σIxu

σyav
σIyu

+
σyav
σIyu

c2

+
τav
τIu

c3

= 1 6 28

where σIxu, σ
I
yu, and τ

I
u are the ultimate strengths of the collapse mode I stiffened panel for

σxav, σyav, and τav, respectively, taking into account the effects of lateral pressure loads p,
c1−c3 = coefficients, as defined in Equation (4.85), which may be taken as c1 = c2 = c3 = 2,
whereas α = 0 when both σxav and σyav are compressive (negative) and α = −1 when σxav,
σyav, or both are tensile (positive). In the following, the formulations for calculation of
σIxu, σ

I
yu, and τIu are described.

6.6.1.1 Calculation of σ Ixu
σIxu is the maximum longitudinal-axial-load carrying capacity when the stiffened panel is
subjected to combined σxav and p. In this case, collapse will occur when the most stressed
boundary locations yield, because the longitudinal panel boundaries can no longer be

Large-Deflection and Ultimate Strength Behavior of Stiffened Panels and Grillages 315



kept straight, resulting in a rapid increase in lateral deflection, as shown in Figure 6.3.
Therefore, σIxu can be determined as the solution of the following equation with regard
to σxav:

σxmax

σYeq

2

−
σxmax

σYeq

σymin

σYeq
+

σymin

σYeq

2

= 1 6 29

where σxmax and σymin are the maximum and minimummembrane stresses in the x and
y directions, respectively, as a function of σxav and p.

6.6.1.2 Calculation of σ Iyu
σIyu is the maximum transverse-axial-load carrying capacity when the stiffened panel is
subjected to combined σyav and p. In this case, collapse will occur when the most stressed
boundary locations yield, because the transverse panel boundaries can no longer be kept
straight, resulting in a rapid increase in lateral deflection, as shown in Figure 6.4. There-
fore, σIyu can be determined as the solution of the following equation with regard to σyav:

σxmin

σYeq

2

−
σxmin

σYeq

σymax

σYeq
+

σymax

σYeq

2

= 1 6 30
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Figure 6.4 Plasticity at panel transverse
edges for a combined σyav and p (●,
expected yielding locations; C, compression;
T, tension).
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Figure 6.3 Plasticity at panel longitudinal
edges for a combined σxav and p (●,
expected yielding locations; C, compression;
T, tension).
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where σxmin and σymax are the minimum and maximum membrane stresses in the x and
y directions, respectively, as a function of σyav and p.

6.6.1.3 Calculation of τ Iu
τIu is the maximum edge-shear-load carrying capacity when the stiffened panel is sub-
jected to combined τav and p. In this case, Equations (4.83b) can be used as follows:

τIu = τu0 1−
p
pu0

1 2
1

1 5

6 31

where pu0 is the ultimate lateral pressure load, as the minimum value among three solu-
tions determined from Equation (4.78) with the maximum or minimum membrane
stresses defined in Equation (6.25).
τu0 is the ultimate strength of a cross-stiffened panel under edge shear. Mikami et al.

(1989) proposed an empirical ultimate shear strength formula of a cross-stiffened panel
that was originally intended for the design of the plate girder web under shearing force as
follows:

τu0
τY

=

1 0 for λ≤ 0 6

1 0−0 614 λ−0 6 for 0 6 < λ≤ 2

1 λ2 for λ > 2

6 32

with λ = √(τE/τY), τE is the elastic shear buckling stress, and τY = σYeq/√3.

6.6.2 Mode II: Plate Collapse Without Distinct Failure of Stiffener

In collapse mode II, the stiffened panel reaches the ultimate strength via collapse of the
plating between the stiffeners under σxM, σyM, τav, and p. The collapse of the plating is
considered to occur when the most highly stressed plate corners yield. In this case, the
ultimate strength interaction relationship of the stiffened panel is given by

σxM
σIIxu

c1

−α
σxM
σIIxu

σyM
σIIyu

+
σyM
σIIyu

c2

+
τav
τIIu

c3

= 1 6 33

where σIIxu, σ
II
yu, and τIIu are the ultimate strengths of the collapse mode II stiffened panel

for σxM, σyM, and τav, respectively, taking into account the effects of lateral pressure loads
p, and c1−c3 are coefficients, as defined in Equation (6.28). In the following, the formula-
tions for calculation of σIIxu, σ

II
yu, and τIIu are described.

6.6.2.1 Calculation of σIIxu
The ultimate longitudinal axial strength, σIIxu, based onmode II is considered for themost
highly stressed plating between stiffeners under combined σxM and p when σyM = τ = 0.
The applicable maximum and minimum membrane stress components for the plating
between stiffeners can be calculated by solving the nonlinear governing differential equa-
tions of the large-deflection isotropic plate theory, as described in Chapter 4. The stif-
fened panel is then considered to collapse in mode II if the plate corner yields, which
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results in the condition in Equation (4.78a). In this case, σxmax and σymax are functions of
σxM and p, as well as the initial imperfections.
The panel ultimate longitudinal axial strength, σIIxu, based on mode II is then obtained

by solving Equation (4.78a) with regard to σxM by substituting the maximum and min-
imummembrane stress components upon replacing σxav with σxM. The approach used is
quite similar to that for mode I based on the initial yield at the panel boundaries, except
for (i) the inclusion of both welding induced residual stresses and initial deflections and
(ii) the consideration of yielding at the plate corners.

6.6.2.2 Calculation of σIIyu
For combined σyM and p, the panel ultimate transverse axial strength, σIIxu, based onmode
II is obtained by solving Equation (4.78a) with regard to σyM, but substituting the max-
imum and minimum membrane stress components into Equation (4.78a). As before,
these membrane stress components are derived by solving the nonlinear governing dif-
ferential equations of the large-deflection isotropic plate theory, as described in
Chapter 4. In this case, σxmax and σymax are functions of σyM and p, as well as initial
imperfections.

6.6.2.3 Calculation of τIIu
When the stiffeners are relatively strong (or the plating fails before the stiffeners), τIIu is
determined from Equation (6.31), but in this case, τu0 and pu0 are considered for the plat-
ing between the longitudinal and transverse stiffeners, as described in Section 4.9.3.6.

6.6.3 Mode III: Beam–Column Collapse

In collapse mode III, it is considered that the stiffened panel reaches the ultimate
strength if the most highly stressed stiffener in the x or y direction under the four stress
components (σxM, σyM, τav, and p) fails as a beam–column, which can be idealized by the
plate–stiffener combination model as described in Chapter 2. In this case, the ultimate
strength interaction relationship of the stiffened panel is given by

σxM
σIIIxu

c1

−α
σxM
σIIIxu

σyM
σIIIyu

+
σyM
σIIIyu

c2

+
τu
τIIIu

c3

= 1 6 34

where σIIIxu, σ
III
yu, and τIIIu are the ultimate strengths of the collapse mode II stiffened panel

for σxM, σyM, and τav, taking into account the effects of lateral pressure loads p, c1−c3 =
coefficients, as defined in Equation (6.28). In the following, the formulations for calcu-
lation of σIIIxu, σ

III
yu, and τIIIu are described.

6.6.3.1 Calculation of σIIIxu
σIIIxu is the maximum longitudinal-axial-load capacity of the stiffened panel under com-
bined σxM and p. When the stiffened panel is subjected to axial compressive loads alone,
σIIIxu can be determined with the Johnson–Ostenfeld formulation method, the Perry–
Robertson formulation method, or the empirical formulation method, as described in
Section 2.9.5. When the stiffened panel is subjected to combined longitudinal axial loads
and lateral pressure, σIIIxu can be determined with the modified Perry–Robertson

Ultimate Limit State Analysis and Design of Plated Structures318



formulation method. Upon using the plate–stiffener combination model, the effective
width or breadth of the attached plating should be considered, as described in
Section 4.8.
In the original or modified Perry–Robertson formulation method, the ultimate

strength is considered to have been reached if the extreme fibers of the cross
section (at the mid-span in the simply supported case) yield, that is, when the axial stress
at the outmost section reaches the yield stress either on the stiffener or the plate side,
with the former being called “stiffener-induced failure” and the latter being called
“plate-induced failure.” It is recognized that the stiffener-induced failure mode predic-
tions are too pessimistic in comparison with the actual test data or nonlinear finite-
element method solutions when the stiffeners are relatively small.
Although the idea of the Perry–Robertson formulation method assumes that stiffener-

induced failure occurs if the tip of the stiffener yields, plasticity may grow into the stiffener
web as long as lateral-torsional buckling or stiffener web buckling does not occur, so the
stiffener may resist further loading even after the first yielding occurs at the extreme fiber
of the stiffener. In such cases, one may exclude the stiffener-induced failure condition (i.e.,
yieldingat the tipof thestiffener) fromthemodeIIIpanelultimatestrengthcalculations.The
possibility of the stiffener-induced failuremode due to local buckling of the stiffener web or
lateral-torsional buckling of the stiffener is dealt with in modes IV and V, respectively.

6.6.3.2 Calculation of σIIIyu
σIIIyu is the maximum transverse-axial-load capacity of the stiffened panel under combined
σyM and p, and it can be calculated in a manner similar to that under combined σxM and p
using a representative of the plate–stiffener combination model. When transverse stif-
feners are not present, σIIIyu is determined as the ultimate strength of the plating between
two longitudinal stiffeners.

6.6.3.3 Calculation of τIIIu
τIIIu is obtained as τIIIu = τIIu where the ultimate lateral load, pu0, and the ultimate shear
strength, τu0, are defined as the same as those of mode II.

6.6.4 Mode IV: Collapse by Local Web Buckling of Stiffener

If the height of the stiffener web increases in comparison with its thickness, the stiffener
web is likely to deform, and local buckling can in some cases occur. Once web buckling
occurs, the buckled or collapsed plating may be left with essentially little stiffening after
overall grillage collapse. The welding induced initial imperfections in the plating between
the stiffeners are included as parameters of influence.
In mode IV, the stiffened panel under σxM, σyM, τav, and p is considered to have reached

the ultimate strength if local buckling of the stiffener web takes place at its most highly
stressed location. In this case, the ultimate strength interaction relationship of the stif-
fened panel is given by

σxM
σIVxu

c1

−α
σxM
σIVxu

σyM
σIVyu

+
σyM
σIVyu

c2

+
τav
τIVu

c3

= 1 6 35
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where σIVxu, σ
IV
yu , and τIVu are the ultimate strength of the collapse mode II stiffened panel

for σxM, σyM, and τav, taking into account the effect of lateral pressure loads p, c1−c3 =
coefficients, as defined in Equation (6.28). In the following, the formulations for calcu-
lation of σIVxu, σ

IV
yu , and τIVu are described.

6.6.4.1 Calculation of σIVxu
σIVxu is the maximum longitudinal-axial-load capacity of the stiffened panel under σxM and
p when the longitudinal stiffener web buckles. In this case, the ultimate strength of the
stiffened panel is approximated as a weighted average of the ultimate strengths of
the stiffener and the associated plating. The intention behind the averaging proposed
is to avoid an overly pessimistic estimate of the stiffened panel ultimate strength as
follows:

σIVxu =
bt σpxu + hwxtwx σ

w
xu−bfxtfxσYf

bt + hwxtwx + bfxtfx
6 36

where σpxu is the ultimate strength of the plating between the longitudinal stiffeners under
σxM and p, which can be determined as described in Section 4.9, and σwxu is the ultimate
strength of the longitudinal stiffener, which can be approximately determined with the
Johnson–Ostenfeld formulation method with the elastic buckling strength of the stiff-
ener web, as described in Section 5.6. The negative sign in the numerator of
Equation (6.36) indicates the compressive stress associated with the contribution of
the stiffener flange.

6.6.4.2 Calculation of σIVyu
Similar to σIVxu, σ

IV
yu is the maximum longitudinal-axial-load capacity of the stiffened panel

under σyM and pwhen the transverse stiffener web buckles. In this case, σIVyu can be deter-
mined as follows:

σIVyu =
at σpyu + hwytwy σwyu−bfytfyσYf

at + hwytwy + bfytfy
6 37a

where σpyu is the ultimate strength of the plating between the transverse stiffeners under
σyM and p, which can be determined as described in Section 4.9, and σwyu is the ultimate
strength of the transverse stiffener, which can be approximately determined with the
Johnson–Ostenfeld formulation method with the elastic buckling strength of the stiffener
web, as described in Section 5.6. For longitudinally stiffened panels, Equation (6.37a) is
simplified to

σIVyu = σ
p
yu 6 37b

6.6.4.3 Calculation of τIVu
τIVu is obtained as τIVu = τIIIu = τIIu , where the ultimate lateral load, pu0, and the ultimate
shear strength, τu0, are defined as the same as in mode II.
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6.6.5 Mode V: Collapse by Lateral-Torsional Buckling of Stiffener

Lateral-torsional buckling (also called tripping) of stiffeners is a phenomenon in which a
stiffened panel fails after the stiffener twists sideways about the edge of the stiffener web
attached to the plating. When the torsional rigidity of the stiffener is low or the stiffener
flange is weak, this phenomenon is more likely to occur.
Like the stiffener web buckling previously described, lateral-torsional buckling can be a

relatively sudden phenomenon that results in unloading of the stiffened panel. Once lat-
eral-torsional buckling occurs, the buckled or collapsed plating is left with little stiffen-
ing, and thus overall collapse may follow. In mode V, the stiffened panel is considered to
collapse if lateral-torsional buckling occurs.
Local buckling of the stiffener web is treated in mode IV, and thus for the purposes of

mode V, we consider a type of tripping in which the cross section of the stiffener web
does not deform locally, consistent with a similar assumption used in ordinary beam–
column theory. It therefore follows that the lateral-torsional buckling strength of the
flat-bar type of stiffener equals the local buckling of the stiffener web, and such a case
is treated as part of mode IV and not mode V.
Similar to mode IV, it is idealized that the most highly stressed stiffener under consid-

eration is subjected to combined σxM, σyM, τav, and p. The welding induced initial imper-
fections in the plating between the stiffeners are included as parameters of influence. In
this case, the ultimate strength interaction relationship of the stiffened panel is given by

σxM
σVxu

c1

−α
σxM
σVxu

σyM
σVyu

+
σyM
σVyu

c2

+
τav
τVu

c3

= 1 6 38

where σVxu, σ
V
yu, and τVu are the ultimate strengths of the collapse mode II stiffened panel

for σxM, σyM, and τav, taking into account the effect of lateral pressure loads p, c1−c3 =
coefficients, as defined in Equation (6.28). In the following, the formulations for calcu-
lation of σVxu, σ

V
yu, and τVu are described.

6.6.5.1 Calculation of σVxu
σVxu is the maximum longitudinal-axial-load capacity of the stiffened panel under σxM and
p when the longitudinal stiffener fails by lateral-torsional buckling. Similar to the stiff-
ener web buckling in mode IV, the ultimate strength of the stiffened panel is approxi-
mated as a weighted average of the ultimate strengths of the stiffener and the
associated plating as follows:

σVxu =
bt σpxu + hwxtwx σ

w
xu−bfxtfxσYf

bt + hwxtwx + bfxtfx
6 39

where σpxu is the ultimate strength of the plating between the longitudinal stiffener under
σxM and p, which can be determined as described in Section 4.9, and σwxu is the ultimate
strength of the longitudinal stiffener, which can be approximately determined by the
Johnson–Ostenfeld formulation method with the elastic flexural-torsional buckling
strength, as described in Section 5.8. The negative sign in the numerator of
Equation (6.39) indicates the compressive stress associated with the contribution of
the stiffener flange.
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6.6.5.2 Calculation of σVyu
Similar to σVxu, σ

V
yu is the maximum longitudinal-axial-load capacity of the stiffened panel

under σyM and p when the transverse stiffener fails by flexural-torsional buckling. In this
case, σVyu can be determined as follows:

σVyu =
at σpyu + hwytwy σ

w
yu−bfytfyσYf

at + hwytwy + bfytfy
6 40a

where σpyu is the ultimate strength of the plating between the transverse stiffener under
σyM and p, which can be determined as described in Section 4.9, and σwyu is the ultimate
strength of the transverse stiffener, which can be approximately determined by the John-
son–Ostenfeld formulation method with the elastic lateral-torsional buckling strength,
as described in Section 5.8. For longitudinally stiffened panels, Equation (6.40a) is
simplified to

σVyu = σ
p
yu 6 40b

6.6.5.3 Calculation of τVu
τVu is obtained as τVu = τIVu = τIIIu = τIIu , where the ultimate lateral load, pu0, and the ultimate
shear strength, τu0, are defined as the same as those of mode II.

6.6.6 Mode VI: Gross Yielding

In mode VI, the stiffened panel reaches the ultimate strength by gross yielding of the
cross section with neither local nor overall (grillage) buckling. The applicable ultimate
strength interaction relationship for a stiffened panel under combined loads is in this
case similar in form to the von Mises yield condition:

σxM
σVIxu

c1

−
σxM
σVIxu

σyM
σVIyu

+
σyM
σVIyu

c2

+
τav
τVIu

c3

= 1 6 41

where σVIxu = ± σYeq (+ for σxM in tension, − for σxM in compression), σVIyu = ± σYeq (+ for

σyM in tension, − for σyM in compression), and τVIu = σYeq 3, σYeq is the equivalent yield
stress, as defined in Equation (6.2). The coefficients c1–c3 are taken as those of
Equation (6.28).

6.6.7 Determination of the Real Ultimate Strength

The six modes of the stiffened panel collapse have been considered separately, but some
modes may interact and take place simultaneously. For the sake of simplicity, however, it
is considered that a stiffened panel will reach the ULS if the dominant collapse mode
occurs first among the six types of collapse patterns.
The ultimate strengths of the stiffened panel are therefore computed separately for

each of the six collapse modes, and the smallest value among the computed strengths
is taken as the real ultimate strength of the stiffened panel. For the purposes of automated
computations, it is considered that the stiffened panel reaches the ULS if any one
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conditionamong the sixultimatestrengthcharacteristicconditions, that is, Equations (6.28),
(6.33), (6.34), (6.35), (6.38), and (6.41), is satisfied first as the applied loads are increased.This
method is also of benefit because the dominant collapse mode of the stiffened panel can be
recognized in an explicit form so that the safety design to prevent the computed collapse
pattern can be developed more efficiently.

6.7 Effects of Age Related and Accident Induced Damages

Age related and accident induced damages may significantly reduce the ultimate
strength of stiffened panels and they should be dealt with as parameters of influence.
For general corrosion that uniformly reduces the panel thickness, the ultimate strength
or effectiveness of the panel can be evaluated by excluding the corrosion diminution
(reduction in thickness). For stiffened panels with premised cracking damage, the
strength reduction factor method may be used as described in Chapters 4 and 9. The
buckling and ultimate strength of stiffened panels with accident induced damage such
as local denting can be evaluated as described in Chapters 4 and 10.

6.8 Benchmark Studies

The ultimate strength formulations for stiffened panels described in this chapter are
automated within the computer program ALPS/ULSAP (2017). In this section, the
benchmark studies by ALPS/ULSAP are presented with other methods, including the
nonlinear finite element method (Paik et al. 2011, ISSC 2012).
Table 6.1 indicates the candidate methods used for the benchmark studies. Stiffened

panels surrounded by longitudinal girders and transverse frames are selected as the tar-
get structure of the benchmark studies as shown in Figure 6.5. Two types of stiffened
panels are considered, that is, panels taken from the bottom panels of a bulk carrier

Table 6.1 Candidate methods used for the benchmark studies (Paik et al. 2011, ISSC 2012).

Method/tool Symbol Working organization

ALPS/ULSAP ALPS/ULSAP (PNU) Pusan National University

BV Advanced Buckling
(BV 2011)

BV Advanced Buckling (BV) Bureau Veritas

DNV/PULS DNV/PULS (DNV) Det Norske Veritas

ABAQUS ABAQUS (NTUA) National Technical University of Athens

ABAQUS (DNV) Det Norske Veritas

ANSYS ANSYS (ULG) University of Liege

ANSYS (IRS) Indian Register of Shipping

ANSYS (PNU) Pusan National University

MSC/MARC MSC/MARC (OU) Osaka University
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and the deck panels of a very large double-hulled crude oil tanker. The stiffened panels
have only longitudinal stiffeners. Table 6.2 indicates the types and dimensions of the
stiffeners. The yield stresses of the stiffener web, the flange, and the plating are the same.
Modeling techniques for nonlinear finite element analysis are described in Chapter 12.
Although the effects of welding induced residual stresses are not considered, three

types of initial distortions—plate initial deflection, the column-type initial distortion

• Yield stress of plate, σYp = 313.6 MPa

(a)

(b)

• Yield stress of stiffener, σYs = 313.6 MPa

• Elastic modulus, E = 205800 MPa

• Poisson’s ratio, v = 0.3

• Plate length, a = 2550 mm

• Plate breath, b = 850 mm

• Plate thickness, tp = 9.5, 11, 13, 16, 22, 33mm

• Number of stiffeners: 2 stiffeners in a panel

• Yield stress of plate, σYp = 313.6 MPa

• Yield stress of stiffener, σYs = 313.6 MPa

• Elastic modulus, E = 205800 MPa

• Poisson’s ratio, v = 0.3

• Plate length, a = 4750 mm

• Plate breath, b = 950 mm

• Plate thickness, tp = 11, 12.5, 15, 18.5, 25, 37 mm

• Number of the stiffeners: 8 stiffeners in a panel
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Figure 6.5 Target stiffened panels selected from (a) a bulk carrier and (b) a double-hulled oil tanker.

Table 6.2 Types and dimensions of the stiffeners (in mm).

Size Flat bar, hw × tw Angle bar, hw × bf × tw tf Tee bar, hw × bf × tw tf

Size 1 150 × 17 138 × 90 × 9/12 138 × 90 × 9/12

Size 2 250 × 25 235 × 90 × 10/15 235 × 90 × 10/15

Size 3 350 × 35 383 × 100 × 12/17 383 × 100 × 12/17

Size 4 550 × 35 580 × 150 × 15/20 580 × 150 × 15/20
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of the stiffener, and the sideways initial distortion of the stiffener—are considered, which
can be expressed as described in Section 1.7:

• Buckling mode initial deflection of plating: w0pl =A0m sin
mπx
a

sin
πy
b

• Column-type distortion of stiffener: w0c =B0 sin
πx
a
sin

πy
B

• Sideways initial distortion of stiffener: w0s =C0
z
hw

sin
πx
a

wherem is the buckling mode of the plate and A0m, B0, and C0 are the coefficients of the
initial distortions,which are presumedas indicated inTable 6.3,whereβ = b tp σYp E,
tp is the thickness of the plating, σYp is the yield stress of the plating, E is the elastic

Table 6.3 Coefficients of initial plate deflections and stiffener distortions.

Method/tool A0m B0 C0

ALPS/ULSAP 0.1β2tp 0.0015a 0.0015a

DNV/PULS b/200 0.001a 0.001a

ABAQUS 0.1β2tp 0.0015a 0.0015a

ANSYS 0.1β2tp 0.0015a 0.0015a

MSC/MARC 0.1β2tp 0.0015a 0.0015a
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Figure 6.6 Ultimate strength of a stiffened panel under uniaxial compression: (a) bulk carrier panel
with Tee bars (size 4); (b) bulk carrier panel with angle bars (size 3); (c) tanker panel with angle bars
(size 4); (d) tanker panel with flat bars (size 2); (e) tanker panel with Tee bars (size 4).
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modulus, a is the panel length or spacing between the transverse frames, b is the breadth
of the plating or the spacing between the longitudinal stiffeners, and hw is the height of
the stiffener web.
Figure 6.6a–e presents the ultimate strengths of stiffened panels under longitudinal or

transverse compression with various types or dimensions. Figure 6.7a–e presents the
ultimate strength interaction relationships of the stiffened panels under biaxial compres-
sion. Figure 6.8a and b presents the ultimate strength interaction relationships of the stif-
fened panels under combined axial compression and lateral pressure loads. As would be
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Figure 6.6 (Continued )
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expected, the candidate methods provide different results, implying that many modeling
uncertainties associated with the ultimate strength calculations are involved. The ulti-
mate strength formulations of the stiffened panels described in this chapter are consid-
ered to be comparable with more refined methods, such as the nonlinear finite element
method.
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Figure 6.7 Ultimate strength interaction relation of a stiffened panel under biaxial compression:
(a) bulk carrier panel with flat bars (size 1), tp = 9.5 mm; (b) bulk carrier panel with flat bars (size 1),
tp = 11mm; (c) bulk carrier panel with angle bars (size 3), tp = 13mm; (d) bulk carrier panel with Tee bars
(size 3), tp = 13mm; (e) tanker panel with Tee bars (size 4), tp = 18.5 mm.
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Figure 6.8 Ultimate strength interaction relation of a stiffened panel under combined axial
compression and lateral pressure loads: (a) tanker panel with Tee bars (size 3), tp = 15mm; (b) tanker
panel with Tee bars (size 3), tp = 18.5 mm.
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7

Buckling and Ultimate Strength of Plate Assemblies

Corrugated Panels, Plate Girders, Box Columns, and Box Girders

7.1 Introduction

Units or blocks of plate assemblies often constitute the primary strength parts in building
plated structures. These include corrugated plate panels, plate girders, box columns, and
box girders. This chapter is a first principle-based treatment of the buckling and ultimate
strength of plate assemblies. In usual design practice, the design of such assemblies relies
largely on structural codes and classification society rules, which contain a wealth of
varying approaches to the strength treatment of these members, some based on classical
theory and others based on the results of numerical computation and structural model
testing.
Corrugated panels are typically seen at the transverse bulkheads of merchant ships that

carry bulk cargoes such as iron ore or coal. In civil engineering structures, the webs of
plate girders are sometimes constructed of corrugated plate panels. In the transverse
bulkheads of merchant ships, corrugated panels are likely to be subjected to lateral pres-
sure and axial loads, whereas, in civil engineering structures, they are typically subjected
to axial loads and shearing forces.
Welded plate girders, which are one major type of plate assembly of interest, are used

as the primary strength members in industrial buildings, bridges, ships, and offshore
platforms. They are typically used to resist bending about their strong axis. The flanges
of a plate girder are designed to effectively sustain bending stresses, whereas the web is
designed to resist stresses due to shearing forces.
In buildings, especially for the fabrication of portal frames in the competitive industrial

sector, the web of plate girders is sometimes not stiffened, except at the bearings or at
locations at which point loads are applied. A slender web may buckle in the elastic
regime. To improve the load-carrying capacity of plate girders, therefore, the web should
be stiffened in the longitudinal and/or transverse directions to the extent required, with
longitudinal stiffeners located in the compression zone of the web.
In the past, when the linear theory of plate buckling was used for the design of large

plate girders, longitudinal stiffeners were invariably used, but unstiffened webs could be
more economical than stiffened webs in many cases (Maquoi 1992). Plate girder webs
without stiffeners are not necessarily stocky in the field of buildings. For instance, many
industrial buildings used as warehouses are now erected using deep girders with unstif-
fened slender webs with slenderness ratios (i.e., the ratio of the girder depth to the web
thickness) sometimes as high as 300.
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The webs of plate girders are normally welded to each flange with a single-sided butt
weld. When the web has stiffeners in both the longitudinal and transverse directions, the
longitudinal stiffeners may be welded on one side of the web, with the transverse stiffen-
ers located on the other side. Because of extensive welding processes used during the
fabrication of plate girders, initial imperfections, including initial deflection and residual
stress or softening in the heat-affected zone of welded aluminum structures, normally
develop and may affect the ultimate strength.
Welded built-up box columns or girders with relatively large sizes are commonly used

in offshore structures, building frames, and other civil engineering structures. Box col-
umns are predominantly subjected to axial compressive loads, whereas box girders are
used to sustain predominantly bending moments. Box girders can have a variety of cross-
sectional shapes, ranging from a deep narrow box to a wide shallow box. The flanges of
box girders are normally wider and more slender than those of plate girders, whereas the
slenderness of the webs of box girders is comparable with those of plate girders. These
are, however, generalizations that may not always hold true in specific cases. The relative
distribution of material in a plated beam or column unit is, however, usually driven by
cost and arrangement considerations.
This chapter deals with the ultimate strength formulations for selected types of plate

assemblies. With the load effects computed with the usual linear elastic finite element
method or the classical theory of structural mechanics, the ultimate limit state (ULS)
design of such plate assemblies is undertaken so that Equation (1.17) is satisfied. It is
noted that the theories and methodologies described in this chapter can be commonly
applied to steel- and aluminum-plated structures.

7.2 Ultimate Strength of Corrugated Panels

This section presents the ultimate strength formulations of a corrugated panel under
some typical types of load application. Figure 7.1 is a schematic of the corrugated panel
considered.

7.2.1 Ultimate Strength Under Axial Compression

The ultimate strength of the corrugated panel under axial compressive loads may be
obtained as the sum of the ultimate compressive strengths of the individual walls of
the corrugations, that is, the flanges and webs. In this case, all four edges of each plate
may be assumed to be simply supported. The ultimate strength formulations of the
individual plate elements presented in Chapter 4 can be used for this purpose. Alterna-
tively, a simpler approach may be applied with the elastic plate buckling strength by the
plasticity correction using the Johnson–Ostenfeld formulation method described in
Equation (2.93).

7.2.2 Ultimate Strength Under Shearing Force

Due to corrugations, the shear strength of a corrugated panel is greater than that of a
similar flat plate with the same thickness and overall dimensions. Under shearing force,
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two distinct buckling modes are normally relevant (Maquoi 1992): (i) shear buckling that
occurs locally in the largest plane wall element of the folds and is restricted to that region
only and (ii) global shear buckling that generally involves several folds that may occur
with snap-through and causes yield lines to cross these folds, resulting in an appropriate
change in the panel configuration.
In contrast to plane webs, corrugated webs do not usually exhibit a significant strength

reserve after shear buckling. Hence, the corrugated panel may be considered to reach the
ULS if the wall of the corrugation buckles. For this case, the elastic local shear buckling
strength may be calculated for the corrugation flange (plate) with the condition of simple
supports at all four edges. As shown in Figure 7.1, the length, breadth, and thickness of
the plate are denoted by h, b, and t, respectively. The critical local shear buckling
strength, τL, may be estimated with the plasticity correction of the corresponding elastic
buckling stress using the Johnson–Ostenfeld formulation method described in
Equation (2.93).
The elastic global shear buckling strength, τ∗G, of the corrugated panel may be given by

(Maquoi 1992)

τ∗G =
36
h2t

DxD3
y

4 7 1

where

Dx =
Et3

12 1−ν2
b+ c

b+ c cos θ
, Dy =

Ed2t
12 1−ν2

3b+ c cos θ
b+ c

E is Young’s modulus and v is Poisson’s ratio.
The critical global shear buckling strength, τG, is then estimated by the plasticity cor-

rection of τ∗G using the Johnson–Ostenfeld formulation method. Corrugated panel

h

t
b

d

c cb

θ

Figure 7.1 Schematic of the corrugated panel.
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collapse may involve both buckling modes. In this case, Maquoi (1992) suggests the fol-
lowing simple expression for the ultimate shear strength, τu, of the corrugated panel, tak-
ing into account the interactive effects between the buckling modes, namely,

τu = 1 3
τLτG
τL + τG

7 2

where τu should not be greater than either τL or τG.
Equation (7.2) does not have a physical meaning but serves to interpolate between the

local and global buckling strengths.

7.2.3 Ultimate Strength Under Lateral Pressure

The corrugated transverse bulkheads of merchant ships such as bulk carriers are often
arranged to efficiently sustain large lateral pressure loads. Because of the importance of
such members to the integrity of the ships that carry dense bulk cargoes, the ultimate
strength of corrugated panels under lateral pressure loads has been studied by many
investigators (Caldwell 1955, Paik et al. 1997, Ji et al. 2001, among others).
One of the important insights from these experiments (Caldwell 1955, Paik et al. 1997)

is that each corrugation of the corrugated panel
deforms similarly (or can normally be designed
to deform similarly) under a similar distribution
of pressure, which implies that the behavior of a
single central corrugation could be considered
nearly representative of an entire corru-
gated panel.
Figure 7.2 represents a typical collapse pattern of

a corrugated panel under uniform lateral pressure
as obtained by an experiment (Paik et al. 1997).
Given such behavior, the ultimate strength of a
corrugated panel under lateral pressure loads, p,
may be estimated for an equivalent beam with
the single corrugation cross section and under a
line load, that is, q = p(b + c), which is multiplied
by p with the breadth (i.e., b + c) of the beam.
For a single corrugation beam simply supported

at both ends and under a triangular type of lateral
line loading, as indicated in Figure 2.17c, for
instance, the ultimate strength is given by repla-
cing the plastic bending moment with the ultimate
bending moment in the same figure:

qu =
9 3
h2

Mu 7 3

where Mu is the ultimate bending moment of the
single corrugation beam.
For other types of end conditions or line load

applications, a similar procedure can be applied

Figure 7.2 A typical collapse pattern of
the corrugated panel under lateral
pressure (Paik et al. 1997).
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by replacing the plastic bending capacity with the relevant ultimate bending capacity, as
described in Section 2.8.
When a single corrugation is subjected to lateral pressure loads, as shown in Figure 7.3,

Mu in Equation (7.3) may in the limit be estimated by considering a relevant bending
stress distribution under a plastic hinge condition, representing that all parts in compres-
sion reach the ultimate compressive stress, whereas all parts in tension reach the yield
stress, as shown in Figure 7.4. This accommodates local buckling in the compressed part
of the corrugation. In this case, Mu is given by (Paik et al. 1997)

Mu = σY Afg +AW
g2

d
sin θ + σu d−g Af +AW

d−g
d

sin θ 7 4

whereAw = ct/cos θ,Af = bt, g = d[2σuAwsin θ – (σY − σu)Af]/[2(σu + σY)Awsin θ], σY is the
yield stress, t, d is defined in Figure 7.1, and σu is the ultimate compressive stress of the
corrugation flange to account for buckling.

7.3 Ultimate Strength of Plate Girders

Figure 7.5 shows a plate girder with transverse stiffeners under combined bending
moments and shearing forces. This section describes the ultimate strength formulations
of such plate girders under bending moment, shearing force, patch load, and combina-
tions thereof. For the ULS design of plate girders, interested readers may refer to
Maquoi (1992) and Kitada and Dogaki (1997), among others. For plate girders with per-
forated web under axial compression and bending moment, Zhao et al. (2015) may be
referred to.

Figure 7.3 A single corrugation under lateral pressure load.
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Figure 7.4 Idealized stress distribution at a plastic hinge in a single corrugation cross section.
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7.3.1 Ultimate Strength Under Shearing Force

A stocky plate girder web under shearing force may not fail until the following upper
limit of the load-carrying capacity is reached, namely,

VP = htwτY 7 5

where τY = σYw/√3 is the shear yield stress, σYw is the web yield stress, andVP is the plastic
shear strength.
However, a slender web can buckle before it reaches its ultimate strength. Shear buck-

ling is considered to take place if the following criteria are satisfied (ENV 1993-1-1 1992):

h
tw

= 69ε foran unstiffened web 7 6a

h
tw

= 30ε ks forastiffened web 7 6b

where ε= √ 235 σYw , σYw is the web yield stress (N/mm2), and ks is the web shear buck-
ling coefficient (which is given as 5.34 for webs with transverse stiffeners at the supports
but no intermediate transverse stiffeners); ks = 4.0 + 5.34(h/a)2 for webs with transverse
stiffeners at the supports and intermediate transverse stiffeners with a/h < 1; ks = 5.34 +
4.0(h/a)2 for webs with transverse stiffeners at the supports and intermediate transverse
stiffeners with a/h ≥ 1.
Equation (7.6a) implies that all webs with h/tw greater than 69ε may be designed to

have transverse stiffeners at the supports. The shear buckling strength of a web depends
on the h/tw ratio and the spacing, a, of any intermediate web stiffeners. The shear buck-
ling strength may also be affected by the anchorage of the tension fields associated with
the end stiffeners or flanges. The anchorage provided by flanges will normally be reduced
by longitudinal stresses due to bending moment and axial load.
For shear buckling strength estimation of plate girder webs without intermediate

transverse stiffeners or of webs with transverse stiffeners only, the following twomethods
are useful (ENV 1993-1-1 1992):

1) The simple post-elastic critical buckling strength method, which can be used for the
webs of plate girders, with or without intermediate transverse stiffeners, provided that
the web has transverse stiffeners at the supports, but only for webs for which a/h ≥ 3.0.
It has been found that the simple post-critical method tends to underestimate the
strength if a/h < 3.0.

M

V

M

bf

tf
twhh

V

a a a

Figure 7.5 A plate girder under longitudinal bending and shearing forces.
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2) The tension fieldmethod, whichmay be used for webs with transverse stiffeners at the
supports plus intermediate transverse stiffeners, provided that adjacent panels or end
posts provide anchorage for the tension fields, but only for webs for which a/h < 3.0.
It has been found that the tension field method tends to underestimate the strength if
a/h ≥ 3.0.

For both of these methods, the transverse stiffeners are considered to be sufficiently
stiff that they will remain straight until the web buckles. In this regard, ENV 1993-1-1
(1992) of Eurocode 3 suggests that the following stiffness criterion for the transverse stif-
feners must be satisfied:

Is ≥
1 5h3t3w a2 for a h < 2

0 75ht3w for a h ≥ 2
7 7

where Is is the moment of inertia of the transverse stiffener.

7.3.1.1 Simple Post-Critical Buckling Method
In this method, the ultimate shear load of a web is calculated as follows:

Vu = htwτu 7 8

where τu is the simple post-critical shear strength, which is taken as Equation (4.81) or
the formula of ENV 1993-1-1 (1992), namely,

τu =

τY for λ ≤ 0 8

1−0 625 λ– 0 8 τY for 0 8 < λ < 1 2

0 9 λτY for λ ≥ 1 2

7 9

where

λ=
τY
τE

=
h
tw

1

37 4ε ks

τE is the elastic web shear buckling stress and ks and ε are defined in Equations (7.6).

7.3.1.2 Tension Field Method
The plate girder with intermediate transverse stiffeners normally has significant reserve
strength after the web buckles in shear because the so-called tension field effect appears
in the web, as shown in Figure 7.6a. As the applied loads increase, the stress inside the
web is redistributed so that the diagonal tensile stresses continue to increase with the
applied shear, whereas the diagonal compressive stresses remain substantially
unchanged. In this regard, the web ultimate shear load, Vu, is typically given as a sum
of the three contributions, namely,

Vu =Vcr +Vt +Vf 7 10

whereVcr is the beam-action strength,Vt is the tension field strength, andVf is the frame-
action strength.
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For practical purposes, the frame-action strength is often neglected, that is, Vf = 0. The
beam-action strength, Vcr is obtained by

Vcr = htwτcr 7 11

where τcr is the critical shear buckling stress, which can be obtained by the plasticity cor-
rection of the elastic shear buckling stress, τE, using the Johnson–Ostenfeld formulation
method as described in Equation (2.93).
τE is often estimated with the assumption that all four web edges are simply supported,

given by

τE = ks
π2E

12 1−v2
tw
h

2

7 12a

where E is Young’s modulus, v is Poisson’s ratio, and ks is the elastic shear buckling coef-
ficient for the web with intermediate transverse stiffeners as defined in Equation (7.6) or

ks =
5 34 + 4 h a 2 for a h ≥ 1

4 0 + 5 34 h a 2 for a h < 1
7 12b

Two models are typically adopted for strength predictions related to the tension field
action: the so-called Basler model (Basler 1961) and the so-called Cardiff model (Porter
et al. 1975). In the Basler model, the flanges are assumed to be too flexible to support any
lateral loading induced by the tension field. The yield band, which determines the tension
field strength, is resisted by the transverse stiffeners alone. The width of the tensile band
depends on the slope of the band that is chosen to maximize the shear strength. The
Basler model may be considered to provide a lower bound to the web ultimate shear
strength.

(a)

(b)

Figure 7.6 Tension field action in the web of a plate girder under shearing force: (a) tension field action
in the web; (b) truss-like structure.
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The plate girder subject to a tension field is considered to behave as a truss structure
together with the flanges and vertical stiffeners to transfer additional shearing force, as
shown in Figure 7.6b. However, the plate girder may not sustain further increase of shear
if the tension field material yields. The contribution due to the tension field action to the
load-carrying capacity is then given by

Vt = htwτtf 7 13

where τtf is the shear strength due to the tension field contribution.
Using the Basler model, τtf can be approximately calculated based on the model of the

truss-like structure, which neglects the contribution made by the bending resistance of
the flanges, with results as follows:

τtf =
σYw
2

1−τcr τY

1 + a h 2
7 14

where τcr is defined in Equation (7.11).
It is noted that the transverse stiffeners in such a case in which the tension field is used

in design should be sufficiently strong that they can sustain and transmit the forces
caused by the tension field action in the web. To achieve this, the following criteria need
to be satisfied:

As ≥
Ps
σYw

, Is ≥
Psh2

π2E
7 15a

where As and Is are the cross-sectional area and the moment of inertia of the transverse
stiffener, which is similar to Equation (7.7), and Ps is the stiffener force due to the tension
field action, given by (Trahair and Bradford 1988):

Ps =
σYwhtw

2
1−

τcr
τY

a
h
−

a h 2

1 + a h
2 7 15b

Some valuable improvements to the Basler model were made by Rockey and his col-
leagues at University College, Cardiff (Porter et al. 1975), and the result is often called the
Cardiff model. The Cardiff model accounts for the effects of the bending stiffness of the
flanges on the width of the diagonal tension band. Although the diagonal tension band is
composed of three parts, as shown in Figure 7.6a, the central part is anchored to the
transverse stiffeners, while the other two parts are anchored to the lower and upper
flanges. Therefore, the strength related to the tension field action is determined by
the vertical component of the force in the band at collapse. If the flanges have an infinite
flexural stiffness for bending in the plane of the web, a pure tension field will develop. In
this case, the anchorage lengths on the flanges become equal to the spacing, a, of the
intermediate transverse stiffeners (or the web length). For very flexible flanges, the ten-
sion field is anchored on the adjacent webs only. In practice, the anchorage lengths will
span only part of the web length because the flanges have a finite flexural rigidity. For an
elaborate description of the Basler and Cardiff models, interested readers may refer to
Maquoi (1992). The descriptions earlier are only for internal webs. Maquoi (1992)
may also be referred to for information on end webs.
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7.3.2 Ultimate Strength Under Bending Moment

The collapse behavior of a plate girder under bending is governed by buckling of the web
and the compression flange. The elastic buckling stress, σbE, of the plate girder web under
longitudinal bending may be calculated from Equation (3.2), considering that all four
web edges are simply supported as follows:

σbE = kb
π2E

12 1−ν2
tw
h

2

7 16

where

kb =
2 39 for a h ≥

2
3

15 9 + 1 87 h a 2 + 8 6 a h 2 for a h <
2
3

The inelastic (or critical) buckling strength, σbcr, of the web under bending is then esti-
mated by the plasticity correction of the elastic buckling strength using the Johnson–
Ostenfeld formulation method described in Equation (2.93). When the web buckles in
bending, the corresponding critical bending moment,Mwcr, for the plate girder is given by

Mwcr =
2I
h
σbcr 7 17

where I is the moment of inertia of the plate girder cross section.
Under longitudinal bending,M, the compression flange is subjected to the axial com-

pressive stress, given by

σf = −
M
2I

h+ tf 7 18

The compression flange may buckle before or after the web fails, whereas the failure
pattern of the former type, that is, buckling of the compression flange before failure of the
web, is quite undesirable. The buckling of the compression flange may be estimated from
Equation (5.36), considering the half flange with regard to the web with boundary con-
ditions simply supported at three edges and free at one edge, as shown in Figure 5.8. The
critical buckling strength, σfcr, of the compression flange is then approximately com-
puted by the plasticity correction of the corresponding elastic buckling strength using
the Johnson–Ostenfeld formulation method described in Equation (2.93).
To prevent the possibility of the compression flange buckling in the plane of the plate

girder web, the following criterion needs to be satisfied (ENV 1993-1-1 1992):

h
tw

≤ 0 55
E
σYf

Aw

Afc
7 19

where Aw is the area of the web, Afc is the area of the compression flange, and σYf is the
yield stress of the compression flange.
The critical bending moment at buckling of the compression flange may be given by

Mfcr =
2Iσfcr
h+ tf

7 20
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For a plate girder with unequal flanges, the buckling of the flanges may be checked for
the weaker flange. The plastic bending moment of the plate girder without local buckling
is given by

MP =MPw +MPf 7 21

where MPf = hbftfσYf is the plastic moment of the flanges and MPw = (h2tw/4)σYw is the
plastic moment of the web.
In practice, the flanges are normally designed so that they do not buckle until the plate

girder reaches the ultimate strength. In this case, the ultimate strength behavior of the
plate girder is primarily governed by buckling of the web. Therefore, two types of failure
regimes should be considered for the calculation of the ultimate strength, depending on
flange failure either before or after buckling of the web.

7.3.2.1 Mode I
IfMwcr >MY, the web may not buckle until the flange fails or yields. In this case, the plate
girder is considered to reach the ultimate strength if the compression flange yields. This
results in

Mu =MY 7 22

where Mu is the ultimate bending moment of the plate girder and MY = (2I/h)σYf is the
critical bending moment at the yielding of the compression flange.

7.3.2.2 Mode II
The axial stress distribution over the plate girder cross section immediately after the web
buckles in bending may be idealized, as shown in Figure 7.7. The plate girder may sustain
a further increase of bending, but only the flange and the web with the effective
section will be available in the compression zone, whereas all sections in the tension side

h
+ =eh

ch

σbcr σa

σfc

σbcr σa

Figure 7.7 Idealized stress distribution over the plate girder cross section under bending after buckling
of the web (c, effective section coefficient).
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are still fully effective, as shown in Figure 7.8. The axial stress, σfc, of the compression
flange is then computed by

σfc = −
h+ tf
2

Mwcr

I
+
M –Mwcr

Ie
1 + 2e 7 23

where

Ie =
1
2
+ 2e2 h2bf tf +

1
3
h3tw

1
4
+ 3e2−

1
2
+ e−c

3

is the effective moment of inertia of the plate girder cross section, with

e=
1
2
+ c+ 2

bf tf
htw

− 2 1 + 2
bf tf
htw

c+
bf tf
htw

The plate girder is considered to collapse if the axial stress of the compression flange
reaches the yield stress, namely, σfc = −σYf. This results in

Mu =Mwcr + MY−Mwcr
Ie
I

1
1 + 2e

7 24

Predictions of the ultimate bending strength are often made by applying the concept of
the effective cross section associated with the effective width of the compression ele-
ments. The plastic bending capacity is then calculated as for the procedure described
in Chapter 2 but with the effective cross sections, as shown in Figure 7.8. It is noted that
even for uniaxial compressive loading, the additional moment induced by the shift of the
neutral axis can develop in the effective cross section and must be considered in the
strength calculations.
The shear lag effects in flanges may be neglected if the flange breadth is less than 10% of

the length between the points of zeromoment for the internal elements or if the outstand
is less than 5% of the length between the points of zero moment for the outstand ele-
ments. When these limits are exceeded, the shear lag effects cannot be neglected and
an effective breadth of the flanges should be used. More elaborate descriptions of the
possible interaction between shear lag and plate buckling are described in Chapter 2.
For other types of ultimate bending strength design formulations for plate girders with

stiffened webs, interested readers may refer to Kitada and Dogaki (1997).

N.
N. A.

A. e

Noneffective
zone

Figure 7.8 Effective cross section of a plate
girder.
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7.3.3 Ultimate Strength Under Combined Shearing Force
and Bending Moment

Plate girders are likely to be subjected to combined bending and shearing forces. For
plate girders with slender webs, the ultimate strength may be reached after the webs
buckle. The ultimate strength interactive relationship of such plate girders under com-
bined bending and shearing forces is often represented by a piecewise linear curve, as
shown in Figure 7.9 (ENV 1993-1-1 1992).

V

V – Vu

Vu – Vcr

Vu

2V
Vu

2

= 1+

+ = 0

M – Mfcr

Mu – Mfcr
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Mu – Mfcr

Vu0.5

0
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Vcr
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Mfcr

Mfcr

M

Mu M

Mfcr Mu M

(a)

(b)

Figure 7.9 A schematic of the ultimate strength relationship of plate girders under combined
bending and shearing forces: (a) simple post-critical buckling method basis; (b) tension field
method basis.
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It is more convenient to have a closed-form expression of the ultimate strength inter-
active relationship for plate girders under combined bending and shearing force. For this
purpose, the following formula may be used:

M
Mu

4

+
V
Vu

4

= 1 7 25

where Vu is the ultimate shear force, as defined in Section 7.3.1, and Mu is the ultimate
bending moment as defined in Section 7.3.2. The validity of Equation (7.25) has been
confirmed by comparison to test results with plate girders under combined bending
and shearing force (Fukumoto et al. 1985, Mikami et al. 1991). Equation (7.25) was found
to agree well with the lower limit of the test results, with relatedmodeling error given by a
mean of 0.856 and a coefficient of variation of 0.08 for σuf ≤ σuw and amean of 0.926 and a
coefficient of variation of 0.05 for σuf > σuw, where σuf is the ultimate strength of the com-
pression flange and σuw is the ultimate strength of the web.

7.3.4 Ultimate Strength Under Patch Load

Plate girders used in the field of civil engineering are sometimes subjected to patch loads,
as shown in Figure 7.10. The collapse strength of an unstiffened web subject to patch
(transverse) loads applied through a plate girder flange is governed by one of the follow-
ing three failure modes (ENV 1993-1-1 1992):

• Crushing of the web close to the flange, accompanied by plastic deformation of the
flange

• Crippling of the web in the form of localized buckling and crushing of the web close to
the flange, accompanied by plastic deformation of the flange

• Buckling of the web over most of the depth of the plate girder

Two types of load application are normally considered: (i) forces applied through one
flange and resisted by shear forces in the web and (ii) forces applied to one flange and
transferred through the web directly to the other flange. For the first load type, the capac-
ity of the web to lateral forces may be determined as the lesser value of the two strengths
due to crushing and crippling. For the other load type, the web capacity may be taken as
the lesser value of the two strengths due to crushing and buckling. The crippling strength

M
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V tw
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Figure 7.10 A plate girder with the unstiffened web under patch load.
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of a web with intermediate transverse stiffeners is similar to that of an unstiffened web,
with the increase due to the stiffeners.
Dogaki et al. (1992a) studied the ultimate strength of longitudinally stiffened plate gir-

ders under patch loading and concluded that the optimal location of the longitudinal
stiffener close to the plate girder flange under patch loading is about bw = 0.15hw (see
Figure 7.10). Dogaki et al. (1992b) then proposed an empirical expression of the ultimate
strength, Pu, of plate girders under (concentrated) patch loading by curve fitting based on
their own test results:

Pu
2VP

=
0 594
λ

+ 0 069 7 26

where VP is defined in Equation (7.5), λ= √ 2VP PE is the buckling parameter, and PE is
the elastic buckling strength of the plate girder web under patch loading, considering the
effects of the flexural and torsional rigidities of the flange.
For plate girders without longitudinal stiffeners under patch loading, Takimoto (1994)

proposed a closed-form expression of the ultimate strength, Pu:

Pu = 25t2wσYw + 4twtfσYf 1 +
c+ 2tf
2hw

7 27

The mean and coefficient of variation of the accuracy of Equation (7.27) when com-
pared to the test results for 143 specimens on plate girders under patch loading were
0.984 and 0.15, respectively. For more details on the ULS design of plate girder webs
to patch loading, Granath et al. (2000) or ENV 1993-1-1 (1992) may be referred to.

7.3.5 Ultimate Strength Under Combined Patch Load, Shearing Force,
and Bending Moment

An ultimate strength interactive relationship for the plate girders under combined patch
load, bending moment, and shearing force was proposed by Takimoto (1994) as follows:

P
Pu

2

+
M
Mu

4

+
V
Vu

4

= 1 7 28

where Vu is defined in Section 7.3.1, Mu is defined in Section 7.3.2, and Pu is defined in
Section 7.3.4.

7.4 Ultimate Strength of Box Columns

Plated structures with a box-type cross section are often used in marine and land-based
applications. Such structures are designed to sustain axial compression, bending
moment, shearing force, or their combination, as shown in Figure 7.11. When subjected
to predominantly axial compression, the structure is called a box column. This
section describes the ultimate strength formulations of box columns with or without dia-
phragms (or transverse bulkheads) under axial compression.
The ultimate strength of a box column may be obtained as the sum of the strengths of

the individual flanges or webs. In this case, the interactive effect between the webs and
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flanges may be negligible, and their edges are considered to be simply supported. For
short box columns, the ultimate strength is governed by local buckling of flanges or webs,
whereas, for slender box columns, it is affected by both the global buckling of the box
column and the local buckling of its components. The ultimate strength, σuL, of a short
box column under axial compression, considering the local buckling and collapse of
component elements, may therefore be obtained by

σuL =
1
At

4

i= 1

Aiσupi 7 29

where Ai and σupi are the cross-sectional area and the ultimate compressive strength of
the ith panel (i.e., flange or web panels), respectively, and At is the total cross-sectional
area.
The ultimate strength, σuG, of a long box column (without considering local buckling)

in the global collapse mode may be obtained by the plasticity correction of the corre-
sponding Euler buckling strength, σEG, using the Johnson–Ostenfeld formulation
method described in Equation (2.93). If the effect of initial imperfections is not consid-
ered, the following Euler global buckling stress, σEGmay be used for a box column simply
supported at both ends:

σEG =
π2EI
Ata2

7 30

where I is the moment of inertia of the cross section with regard to the weaker axis, L is
the length of the box column, and E is Young’s modulus.
For a box column with a “medium” length, the interactive effect between local and

overall buckling may play a significant role. In this case, the ultimate strength, σu, of
the box column may be estimated from the Johnson–Ostenfeld formulation method,
but by correcting the yield stress, σY, as follows (AISC 1969):

σu =
σEG for σEG ≤ 0 5cσY

cσY 1−cσY 4σEG for σEG > 0 5cσY
7 31a

where c is the knockdown factor applied to the yield stress, defined as follows:

c=
σuL
σY

7 31b
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Figure 7.11 Plated structures with a box-type cross section under axial compression, shearing
force, bending, torsion, or their combination.
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Alternatively, the ultimate strength of a box column considering the effect of local
buckling may be calculated using the reduced cross section associated with the effective
width of the plate elements (ENV 1993-1-1 1992). It is of interest to note that a “uniform”
box column may generally buckle in the global mode when the elastic buckling stress,
σEL, of the individual plate elements is greater than the global elastic buckling
stress, σEG, of the box column, and vice versa for the local buckling mode. The transition
from the local buckling mode to the global buckling mode may take place when σEL
equals σEG, namely,

σEL = σEG 7 32

For a square cross-sectional uniform box column without stiffeners simply supported
at both ends, for instance, we have

σEL =
4π2E

12 1−ν2
t
b

2

, σEG =
π2EI
AtL2

, At = 4bt, I =
2
3
b3t 7 33

where v is Poisson’s ratio.
Substitution of Equation (7.33) into Equation (7.32) yields

L
b
=

1−ν2

2
b
t

7 34a

From Equation (7.34a), it is considered that the global buckling modemay take place in
a square-section uniform box column (without stiffeners) that is simply supported at
both ends if the following condition is satisfied:

L
b
>

1−ν2

2
b
t

7 34b

The effects of initial imperfections on the ultimate strength of box columns can be
accounted for as described in Chapters 1 and 4. For the ultimate strength of welded
box columns accounting for the effects of initial imperfections, interested readers
may refer to Schafer & Pekoz (1998), AASHTO (2010), and Susanti et al. (2014), among
others.

7.5 Ultimate Strength of Box Girders

When a plated structure with a box-type cross section as shown in Figure 7.11 is sub-
jected to predominantly bending moment, it is termed a box girder. This section
describes the ultimate strength formulations of box girders with diaphragms (or trans-
verse bulkheads) under bending moment, shearing force, torsional moment, or their
combination.

7.5.1 Simple-Beam Theory Method

The simple-beam theory method is useful to analyze the strength of the beams because a
box girder under bending moments can be dealt with as a beam. In the simple-beam
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theory, the following assumptions (called the Bernoulli–
Euler hypothesis) are adopted (Hughes & Paik 2013):

• Plane cross section remains plane.

• The beam is essentially prismatic with no opening or
discontinuities.

• Other types of load effects, for example, transverse and
longitudinal deflections and distortions caused by shear
and/or torsion, do not affect the bending response, and
they may be dealt with separately.

• The material is homogeneous and elastic.

With the abovementioned assumptions, the longitudinal
strain εx of a beam deflected by the action of a bending
moment as illustrated in Figure 7.12 can be determined
as follows:

εx =
R+ z dθ−Rdθ

Rdθ
=
z
R

7 35

where R and dθ are the radius and infinitesimal angle of a
deflected beam element, respectively, as defined in
Figure 7.12. As the coordinate z is set to be zero at the hor-
izontal neutral axis of the beam cross section, it is obvious that
εx varies linearly in the vertical direction with regard to z.

The longitudinal (bending) stress σx with respect to the horizontal neutral axis of the
beam cross section can be determined in the linear elastic regime as follows:

σx =Eεx = E
z
R

7 36

Since a pure bending moment is applied without axial force, the following equilibrium
condition should be satisfied over the beam cross section:

σxdA= 0 or zdA= 0 7 37

The vertical bending moment is calculated by an integration of the first moment asso-
ciated with the longitudinal stress over the beam cross section as follows:

My = zσxdA=
EI
R

7 38

whereMy is the vertical bendingmoment about the horizontal neutral axis and I = z2dA

is the moment of inertia of the beam cross section.
In Equation (7.38), the radius R is eliminated using Equation (7.36) to compute the

bending stress of the beam at a height z from the horizontal neutral axis as follows:

σx =
My

I
z 7 39

R

z

dθ

Elongated length, (R + z) dθ

Figure 7.12 Schematic of
longitudinal strain in an
infinitesimal element of a
deflected beam.
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7.5.1.1 Maximum Bending Stress
According to the simple-beam theory, the bending stress at the cross section of a box
girder under a bending moment is calculated from Equation (7.39) as follows:

σ =
M
I
z 7 40

where σ is the bending stress,M is the applied bending moment, I is the moment of iner-
tia, and z is the distance from the neutral axis position of the beam cross section to the
location of the bending stress calculation in the direction of the depth of the box girder.
The maximum bending stress will develop at the outmost fiber of the cross section of

the box girder as shown in Figure 7.13a and can thus be obtained from Equation (7.40) as
follows:

σD =
M
ZD

at deck upper flange 7 41a

σB =
M
ZB

at bottom lower flange 7 41b

where σD and σB are the bending stresses at the deck (upper flange) and bottom (lower
flange), respectively, and ZD and ZB are the section moduli at the deck and bottom,
respectively.

7.5.1.2 Section Modulus
In Equation (7.41), the two components of the section modulus are defined as follows:

ZD =
I
zD

7 42a

ZB =
I
zB

7 42b

N.A.

σB

σD

D–g

(a)

gp
g

yy
Yielded

Yielded
z

z

D–gp

N.A.

(b)

Figure 7.13 Bending stress distribution in a box girder section in (a) linear elastic state and (b) full
plastic state (N.A., neutral axis).
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where zD and zB are the distances from the neutral axis position of the cross section to the
deck and bottom, respectively.
In Equation (7.42), zD and zB can be obtained as follows:

zD =D−g−
tD
2

7 43a

zB = g−
tB
2

7 43b

whereD is the depth of the box girder (= h in Figure 7.11), tD is the representative (equiv-
alent) thickness of the deck plate, tB is the representative (equivalent) thickness of the
bottom plate, and g is the distance from the baseline of the box girder to the neutral axis
position. The term tD/2 or tB/2 represents that the bending stress σD or σB is evaluated at
the mid-thickness of the deck or bottom plate.
In Equation (7.43), g can be calculated as follows:

g =

n

i= 1
aizi

n

i= 1
ai

7 44

where ai is the cross-sectional area of the ith structural element (portion), zi is the dis-
tance from the baseline to the neutral axis of the ith structural element (portion), and n is
the total number of members to be included in the cross-sectional property calculation.
The baseline is usually presumed to be located at the outer fiber of the bottom (lower
flange) plate. To automate the computation of Equation (7.44), the cross section of a
box girder can be idealized as an assembly of pure plate element (segment) models as
shown in Figure 2.2d but with one plate element for the stiffener flange.
The moment of inertia I for the box girder cross section in Equation (7.42) can be cal-

culated once g is determined from Equation (7.44) as follows:

I =
n

i= 1

aiz
2
i + ii −Ag2 7 45

where A=
n

i= 1
ai is the total area of the box girder cross section, ai, zi, g, and n are

defined in Equation (7.44), and ii is the moment of inertia for the ith structural element
(portion) about its own neutral axis.
Inclined or curved plates as shown in Figure 7.14 are sometimes used, for example, at

the corner of box girders. In this case, the neutral axis position and moment of inertia
about its own neutral axis are approximately determined by

i=
1
12

ad2, zo =
d
2

for an inclined plating 7 46a

i=
1
2
−

4
π2

ar2, zo =
π−2 r
π

for a curved plating 7 46b

where zo is the distance from the bottom to the neutral axis position, i is the moment of
inertia about its own neutral axis, a is the cross-sectional area of the inclined or curved
plating, d is the projected depth of the inclined plating, and r is the radius of the curvature
of the curved plating, as defined in Figure 7.14.
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7.5.1.3 First-Yield Bending Moment
The first-yield bending moment of a box girder can be a good indication of the structural
capacity (strength) where local buckling is not considered. The first-yield bending
moment is determined when the maximum bending stresses in Equation (7.41) reach
the yield stress of the material for the first time as follows:

MYD =ZDσYeqD at deck upper flange 7 47a

MYB =ZBσYeqB at bottom lower flange 7 47b

whereMYD andMYB are the first-yield bendingmoments at the deck and bottom, respec-
tively, and σYeqD and σYeqB are the representative (equivalent) yield stresses of the deck
and bottom plate panels, respectively.

7.5.1.4 First-Collapse Bending Moment
Another indication of the structural capacity is the first-failure (collapse) collapse bend-
ing moment when the compressed flange, that is, the deck plate panels in sagging
moment or the bottom plate panels in hogging moment, reaches the ultimate strength
in axial compression:

MfD =ZDσuD 7 48a

MfB =ZBσuB 7 48b

where MfD and MfB are the first-collapse bending moments at the deck or bottom plate
panels, respectively, and σuD and σuB are the ultimate strength of the deck or bottom
plate panels in axial compression. It is noted that yielding or collapse of structural mem-
bers except for the compressed flange is not considered in Equation (7.48).
Equation (7.48) can be used to predict the first-collapse bending moments of box gir-

ders in sagging or hogging conditions as follows:

Mfs =MfD =ZDσuD 7 49a

Mfh =MfB =ZBσuB 7 49b

where Mfs and Mfh are the first-failure (collapse) bending moments for sagging or hog-
ging, respectively.
It is noted that box girders can usually sustain further loading even after reaching the

first-yield or first-failure status because the structural failures can grow into the vertically

Area

a

d

1

12
i =

i =

r

+ 1
ar24

2 π 2

ad2

zo

(π – 2)r
zo = π

Figure 7.14 Inclined or curved plating in the box girder.
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positioned structures, such as side shell structures and/or longitudinal bulkheads, until
the box girders reach their ULS.

7.5.1.5 Full Plastic Bending Moment
It is sometimes of interest to know the full plastic bending capacity of a box girder cross
section, which can be used as an upper limit of the ultimate strength, as described in
Chapter 2. The neutral axis of the full plastic cross section above the baseline can be
determined, as shown in Figure 7.13b, as follows:

gp =

n

i= 1
aiσYizi

n

i=1
aiσYi

7 50

where gp is the distance from the baseline to the neutral axis position of the full plastic
cross section and σYi is the material yield stress of the ith structural element.
The full plastic bending moment MP is then determined as follows:

MP =
n

i=1

aiσYi zi−gp 7 51

7.5.1.6 Exercise for Cross-Sectional Property Calculations
An exercise for the calculations of the cross-sectional property and the first-yield or first-
collapse bending moment using the simple-beam theory method is now considered.
Figure 7.15 shows an example of a box girder with 4.5 m deep and 7.5 m wide. The spa-
cing between the transverse bulkheads (or diaphragms) is 8 m. The structure is made of
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Figure 7.15 An example of a box girder.
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mild steel with a yield stress of σY = 235MPa and an elastic modulus of E = 205.8 GPa.
Figure 7.16 shows a modeling technique for the box girder cross section in which the
plating between the stiffeners and the webs or flanges of the stiffeners are considered
as a rectangular plate element (segment). Tables 7.1 and 7.2 summarize the calculations
of the cross-sectional properties of the box girder. In this case, the neutral axis, the
moment of inertia, the section modulus, and the full plastic bending moment of the
box girder cross section can be calculated as follows:

Height of neutral axis from the baseline: g =
aizi
ai

=
1 8059
0 7676

= 2 353m

Total cross-sectional area: A= 0 768m2

Moment of inertia: I =
n

i= 1

aiz
2
i + ii −Ag2 = 6 3258 + 0 3039−4 2489 = 2 381m4

Distance from the neutral axis to the deck: zD =D−g−
tD
2
= 4 5−2 353−0 01 = 2.137m

Distance from the neutral axis to the bottom: zB = g−
tB
2
= 2 353−0 01 = 2.343 m

Section modulus at deck: ZD =
I
zD

=
2 3809
2 1372

= 1.114 m3

Section modulus at bottom: ZB =
I
zB

=
2 3809
2 3428

= 1.016m3

Distance from the baseline to the neutral axis of the full plastic cross section:

gp =

n

i= 1
aiσYizi

n

i=1
aiσYi

=

n

i= 1
aiσYizi

n

i=1
aiσYi

=
424 3838
180 3747

= 2 353m

Base line

CL

1

2

3

1875 mm 1875 mm

1250 mm1250 mm1250 mm

1
5
0
0
 m

m
1
5
0
0
 m

m
1
5
0
0
 m

m

5

9

10

1875 mm1875 mm

1250 mm 1250 mm 1250 mm

7500 mm

4

7

6

7

6

8

11

12

13

14

15

16

17

14

15

12

13

9

10

8

11

2

N.A

g

zi zi zi zi

4
5
0
0
 m

m

bf

tf
tw

hw

Figure 7.16 The pure plate element model for calculating the cross-sectional properties of a box girder.
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Full plastic bending moment: MP =
n

i= 1

aiσYi zi−gp = 294.758MNm, where it is cau-

tioned that any element (segments) having the full plastic neutral axis inside it should
further be separated into two segments. Element number 2 indicated in Table 7.2 is an
example of such a case.

The first-yield bending moment of the box girder is then calculated as follows:

At deck plate: MYD =ZDσYeqD = 1 114m3 × 235N mm2 = 261 790 × 106Nmm
At bottom plate: MYB =ZBσYeqB = 1 016m3 × 235N mm2 = 238 818 × 106Nmm

For calculation of the first-collapse bending moment of the box girder, the ultimate
compressive stress of the compressed flanges should be calculated. The ultimate strength
formulations described in Chapter 6 will be used for this purpose. Alternatively, a simpler
approach is to use the Paik–Thayamballi formulation, which is given as Equation (2.99).
Figure 7.17 shows the representative plate-stiffener combination models at the deck and
at the bottom of the box girder with a fully effective cross section. The ultimate compres-
sive stresses at the deck or bottom are then obtained as a function of the plate slenderness

Table 7.1 Summary of the cross-sectional property calculations of a box girder for the sectionmodulus.

No.
Segment
type

Number of
segment

Scantlings (mm)

ai
(m2) zi (m)

aizi
(m3)

aiz2i
(m4)

ii
(m4)

Breadth/
height Thickness

1 Plate 1 7500 20 0.150 0.010 0.002 0.000 0.000

2 Plate 2 4460 20 0.089 2.250 0.201 0.452 0.148

3 Plate 1 7500 20 0.150 4.490 0.674 3.024 0.000

4 Web 1 872 18 0.016 0.456 0.007 0.003 0.001

5 Flange 1 300 28 0.008 0.906 0.008 0.007 0.000

6 Web 2 872 18 0.016 0.456 0.007 0.003 0.001

7 Flange 2 300 28 0.008 0.906 0.008 0.007 0.000

8 Web 2 872 18 0.016 1.500 0.024 0.035 0.000

9 Flange 2 300 28 0.008 1.500 0.013 0.019 0.000

10 Web 2 872 18 0.016 3.000 0.047 0.141 0.000

11 Flange 2 300 28 0.008 3.000 0.025 0.076 0.000

12 Web 2 872 18 0.016 4.044 0.063 0.257 0.001

13 Flange 2 300 28 0.008 3.594 0.030 0.109 0.000

14 Web 2 872 18 0.016 4.044 0.063 0.257 0.001

15 Flange 2 300 28 0.008 3.594 0.030 0.109 0.000

16 Web 1 872 18 0.016 4.044 0.063 0.257 0.001

17 Flange 1 300 28 0.008 3.594 0.030 0.109 0.000

Total 0.768 1.806 6.326 0.304
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Table 7.2 Summary of the cross-sectional property calculations of a box girder for the full plastic
bending capacity.

No.
Segment
type

Number of
segment

ai
(m2) zi (m)

aizi
(m3)

aiσYi
(MN)

aiσYizi
(MNm)

aiσYi zi −gp
(MNm)

1 Plate 1 0.150 0.010 0.002 35.250 0.353 82.583

2 Plate 2 0.047 1.197 0.056 11.059 13.232 12.788

0.042 3.427 0.144 9.903 33.932 10.632

3 Plate 1 0.150 4.490 0.674 35.250 158.273 75.337

4 Web 1 0.016 0.456 0.007 3.689 1.682 6.996

5 Flange 1 0.008 0.906 0.008 1.974 1.788 2.856

6 Web 2 0.016 0.456 0.007 3.689 1.682 6.996

7 Flange 2 0.008 0.906 0.008 1.974 1.788 2.856

8 Web 2 0.016 1.500 0.024 3.689 5.533 3.146

9 Flange 2 0.008 1.500 0.013 1.974 2.961 1.683

10 Web 2 0.016 3.000 0.047 3.689 11.066 2.387

11 Flange 2 0.008 3.000 0.025 1.974 5.922 1.278

12 Web 2 0.016 4.044 0.063 3.689 14.917 6.238

13 Flange 2 0.008 3.594 0.030 1.974 7.095 2.450

14 Web 2 0.016 4.044 0.063 3.689 14.917 6.238

15 Flange 2 0.008 3.594 0.030 1.974 7.095 2.450

16 Web 1 0.016 4.044 0.063 3.689 14.917 6.238

17 Flange 1 0.008 3.594 0.030 1.974 7.095 2.450

Total 0.768 1.806 180.375 424.384 294.758

(a) (b)
1250 mm

300 mm

28 mm

20 mm

872 mm

18 mm

1875 mm

300 mm

28 mm

20 mm

872 mm

18 mm

Figure 7.17 The representative plate-stiffener combination models: (a) at the deck; (b) at the bottom.
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ratio β and the column slenderness ratio λ for a fully effective box girder cross section,
defined in Table 2.1, as follows:

At deck panels: β = 2 112, λ= 0 235, σuD = 172 712MPa
At bottom panels: β = 3 168, λ= 0 248, σuB = 138 619MPa

The first-failure bending moments in a sagging or hogging condition are then deter-
mined as follows:

In sagging condition: Mfs =ZDσuD = 1 114m3 × 172 712N mm2 = 175 518MNmm
In hogging condition: Mfh =ZBσuB = 1 016m3 × 138 619N mm2 = 140 871MNmm

7.5.2 The Caldwell Method

The simple-beam theory method cannot accommodate the local failure of structural
elements except for the flanges of the box girder at the outer fibers. Instead, if the bend-
ing stress distribution over the cross section of the box girder can be recognized at the
ULS, the presumed stresses are integrated across the cross section to calculate the cor-
responding ultimate bending moment. This method, called the presumed stress-based
method, accounts for the effect of local structural failure more precisely than the sim-
ple-beam theory method.
The pioneer of the presumed stress distribution-based method for calculating the ulti-

mate bending moments of a box girder and then a ship’s hull girder was Caldwell (1965).
He presumed a bending stress distribution over the cross section at the ULS under
vertical bending moments, as shown in Figure 7.18, in which all of the materials in com-
pression have reached their ultimate strength with buckling, and all of the materials in
tension have yielded. He then calculated the ultimate bending moments by integrating
the presumed bending stresses over the hull’s cross section. However, the stress distri-
bution used in the Caldwell method is too optimistic, resulting in overestimated calcula-
tions of the ultimate bending moments.

(b) 

DB

Collapsed

Yielded

N. A.

(a) 

N. A.

DB
Yielded

Collapsed

Figure 7.18 Caldwell’s presumption of the bending stress distribution at the ultimate limit state
under a vertical bending moment for a simplified cross section of a ship’s hull under sagging or
hogging (N.A., neutral axis): (a) sagging; (b) hogging (Caldwell 1965).
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7.5.3 The Original Paik–Mansour Method

Experimental studies of large-scale ship’s hull girdermodels (e.g., Dow 1991) and numer-
ical studies of full-scale ships (e.g., Rutherford & Caldwell 1990, Paik et al. 1996) have
demonstrated that the overall collapse of a ship’s hull girder under a vertical bending
moment is governed by the collapse of the compressed flange, although some degree
of reserve strength remains after the compressed flange has collapsed.
This is the case because, after the buckling of the compressed flange, the neutral axis of

the ship’s hull cross section moves toward the tensioned flange, and a further increase in
the applied bending moment is sustained until this flange yields. At later stages of this
process, the vertical structures around the compressed and tensioned flanges (e.g., the
longitudinal bulkheads or side shell structures) may also fail. In the vicinity of the final
neutral axis position, however, the vertical structures usually remain in a linear elastic
state until the overall collapse of the hull girder. Depending on the geometrical andmate-
rial properties of the hull’s cross section, these parts may of course fail, which corre-
sponds with Caldwell’s (1965) presumption.
Figure 7.19 shows an example of typical bending stresses across the hull girder cross

section of a single-hulled oil tanker at the ULS under a vertical hogging bendingmoment,
as obtained through numerical investigations (Paik et al. 1996). It is evident from this
figure that the compressed flange (the bottom panel) collapses, and the tensioned flange
(the deck panel) yields, until the ultimate strength has been reached, whereas the vertical
structures in the vicinity of the neutral axis position remain intact (linear elastic). Hence,
the approach based on Caldwell’s presumed bending stress distribution can result in the
strength of a ship’s hull against collapse being greatly overestimated.
Paik and Mansour (1995) subsequently suggested the bending stress distribution over

the hull cross section at the ULS that is shown in Figure 7.20. In the sagging condition,
regions 1 and 2 are under tension and regions 3 and 4 are under compression. Region 1

(+)

(–)

N.

A.

CL

Figure 7.19 Example of typical bending stress
distribution across the cross section of a ship’s hull
girder at the ultimate limit state under a hogging
bending moment (+, tension; –, compression),
obtained through numerical investigations (Paik
et al. 1996).
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represents the outer bottom panels, which have yielded to reach yield stress σYx , and
region 4 the upper deck panels and upper part of the vertical structures, which have
buckled and collapsed to reach ultimate stress σUx . Regions 2 and 3, however, remain
in a linear elastic or unfailed state, reaching an elastic stress of σEx .
In the hogging condition, regions 1 and 2 are under compression, and regions 3 and 4

are under tension. Region 1, which represents the outer bottom panels and the lower part
of the vertical structures, has buckled and collapsed to reach ultimate stress σUx , and
region 4, which represents the upper deck panels, has yielded to reach yield stress σYx .
Regions 2 and 3 remain in the linear elastic regime, reaching elastic stress σEx .
The height of region 4 (the upper part of the vertical structures) in the sagging con-

dition, or that of region 1 (the lower part of the vertical structures) in the hogging con-
dition, after buckling and collapse is assigned on the basis of the geometrical andmaterial
properties of the ship’s hull structure. Under a vertical bending moment, the summation
of axial forces over the entire cross section of the hull becomes zero:

σxdA= 0 7 52

where dA is the integration across the entire cross section of the hull.
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Figure 7.20 Paik and Mansour’s original presumption of the bending stress distribution across the
cross section of a ship’s hull at the ultimate limit state under sagging or hogging conditions (+, tension;
–, compression): (a) sagging condition; (b) hogging condition (the superscripts U, Y, and E denote the
ultimate strength, yielding, and elastic region, respectively) (Paik & Mansour 1995).

Ultimate Limit State Analysis and Design of Plated Structures360



The height of region 4 in the sagging condition or that of region 1 in the hogging con-
dition can be defined by solving Equation (7.52). The distance gu from the ship’s baseline
(reference position) to the horizontal neutral axis of the cross section of the ship’s hull at
the ULS can then be obtained as follows:

gu =

n

i= 1
σxi aizi

n

i=1
σxi ai

7 53

where zi is the distance from the baseline (reference position) to the horizontal neutral
axis of the ith structural component, σxi is the longitudinal stress of the ith structural
component following the presumed stress distribution, ai is the cross-sectional area
of the ith structural component, and n is the total number of structural components.
gu is denoted by gus in a sagging condition and by guh in a hogging condition.
The ultimate bending moment is then calculated as the first moment of the bending

stresses about the neutral axis position:

Mus =
n

i= 1

σxiai zi−gus 7 54a

Muh =
n

i=1

σxiai zi−guh 7 54b

where n is the total number of structural components andMus (negative value) andMuh

(positive value) are the ultimate vertical bending moment for sagging or hogging,
respectively.

7.5.4 The Modified Paik–Mansour Method

The original Paik–Mansour formulation method described in Section 7.5.3 does not
allow the expansion of the yielded area to the vertical members under tensile loads,
although it presumes that the tension flange, that is, the deck panels in the hogging con-
dition and the outer bottom panels in the sagging condition, has yielded at the ULS of the
hull girders subject to vertical bending moments.
However, depending on the geometric and/or material properties of the ship’s hull

cross sections, the vertical members close to the tension flange may also have yielded
until the hull girders reach the ULS. Therefore, the bending stress distribution at the
ULS presumed in the original Paik–Mansour method is now modified to that shown
in Figure 7.21, where hY is the height of the yielded area under axial tension and hC is
the height of the collapsed area under axial compression.
To determine the heights of yielded and collapsed regions, that is, hY and hC,

Equation (7.52) is insufficient because two unknowns are available. In this regard, the
following iteration process is required to determine hY and hC:

1) Develop the structural model with nodal points for the cross section using the plate-
stiffener combination elements and/or plate elements.

2) Calculate the ultimate axial compressive stresses of the individual elements.
3) Divide the depth into a number of segments (parts).
4) Keeping hY at a constant value starting from hY = 0, increase hC starting from hC = 0.
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5) Assign the linear elastic stresses of the individual elements in regions 2 and 3 linearly
between the average values of the ultimate stresses in the collapsed region (i.e., region
4 under sagging or region 1 under hogging) and the yield stresses in the yielded region
(i.e., region 1 under sagging or region 4 under hogging).

6) Calculate the total axial forces (positive sign) in tension and the total axial forces (neg-
ative sign) in compression across the entire cross section.

7) Repeat steps (4) to (6) varying hC together with hY until the difference between the
numerical values of these axial forces is acceptably small.

Because the stress distribution has been presumed and the heights of the yielded and
collapsed regions have been determined, the distance gu from the baseline (reference
position) to the horizontal neutral axis of the cross section of the box girder at the
ULS can be obtained from Equation (7.53). Also, the ultimate strength of the box girder
under vertical bending moment can be determined from Equation (7.54).

7.5.5 Interactive Relationship Between Vertical and Horizontal Bending

An ultimate interactive relationship between the vertical and horizontal bending
moments is considered as follows (Hughes & Paik 2013):
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= 1 7 55
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Figure 7.21 Modification of the Paik–Mansour presumption of the bending stress distribution
across the cross section of a box girder at the ultimate limit state under sagging or hogging
conditions (+, tension; –, compression) (superscripts U, Y, and E denote the ultimate strength,
yielding, and elastic region, respectively): (a) sagging; (b) hogging (Paik et al. 2013).
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where MV and MH are the applied vertical and horizontal bending moments, respec-
tively; MVu and MHu are the ultimate vertical and horizontal bending moments,
respectively; and c1 and c2 are coefficients, which may be taken as c1 = 1 85 and
c2 = 1 0. The ultimate horizontal bending moment can be determined in a manner sim-
ilar to that of the ultimate vertical bending moment, as described in Section 7.5.3 when
the bending moment is applied in the horizontal direction.

7.5.6 Interactive Relationship Between Combined Vertical or Horizontal
Bending and Shearing Force

The ultimate interactive relationships between the vertical bending moment and the
shearing force or between the horizontal bending moment and the shearing force are
considered as follows (Hughes & Paik 2013):

MV

MVu

c3

+
F
Fu

c4

= 1 7 56a

MH

MHu

c5

+
F
Fu

c6

= 1 7 56b

where MV and F are the applied vertical bending moment and shearing force, respec-
tively;MVu and Fu are the ultimate vertical bending moment and ultimate shearing force,
respectively; and c3, c4, c5, and c6 are coefficients, which may be taken as c3 = 2 0, c4 = 5 0,
c5 = 2 5, and c6 = 5 5. The ultimate shearing force can be calculated as follows:

Fu =
n

i=1

aiτui 7 56c

where ai is the cross-sectional area of the ith structural element, τui is the ultimate shear
stress of the ith structural element, and n is the total number of structural elements.

7.5.7 Interactive Relationship Between Combined Vertical Bending,
Horizontal Bending, and Shearing Force

An approach similar to that presented in Section 3.8 can be applied to derive the ultimate
interactive relationship among vertical bending MV, horizontal bending MH, and shear-
ing force F together with Equations (7.55) and (7.56) as follows (Hughes & Paik 2013):

MV

MVuF1

c1

+
MH

MHuF2

c2

= 1 7 57

where

F1 = 1−
F
Fu

c4 1 c3

, F2 = 1−
F
Fu

c6 1 c5

.

7.5.8 Effect of Torsional Moment

For a box girder with large deck openings, the analysis of warping stresses and
hatch opening deformations is an essential part of the structural response analysis.
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For a thin-walled beam with an open cross section, the torsional stiffness is much less
than that with a closed section. This implies that for a given level of torsion, the open
section may twist much more due to its low torsional rigidity.
In contrast to the uniform (i.e., St. Venant) torsion of solid beams and a rather special

class of warping-free thin-walled beams, nonuniform axial deformation (i.e., warping)
usually occurs in the case of thin-walled beams with open sections such that an initially
plane cross section will no longer remain plane. This would mean that torsion will
develop axial (warping) stresses as well as shear stresses when the warping displacements
are restrained as shown in Figure 7.22.
In actual structures, warping displacements are normally only partly restrained and

thus the analysis of warping stresses as well as hatch opening deformations is in principle
an essential part of the structural response analysis. When the cross sections are free to
warp, warping stresses normal to the cross section will not be introduced. However, at
cross-sectional discontinuities such as at the transition between the two neighboring
areas with respect to the diaphragm (or transverse bulkhead), and at heavy cross deck
beams, the warping deformations will be restrained to varying degrees. The restraint
at these locations induces warping stresses, which for container ships with large deck
openings are significant and so the warping stresses and the associated deformations
(e.g., hatch opening distortions) must be accounted for in design.
Related to the effect of torsion on vertical bending capacity, however, it has been shown

that torsion is not a very sensitive load component affecting the ultimate vertical bending
moment of a box girder as long as the magnitude of torsion is not predominant (Paik et al.
2001). However, it should also be noted that the ultimate bending strength of a box girder
with low torsional rigidity can be reduced significantly when torsion loads are large. Paik
et al. (2001) suggested the following formulations that may fit the ultimate hull strength
interaction relationship of a box girder with deck opening under combined torsionMT and
vertical bending MV:

MV

MVu

c7

+
MT

MTu

c8

= 1 7 58

where MVu is the ultimate vertical bending moment and MTu is the ultimate torsional
moment. c7 and c8 are coefficients, which may be taken as c7 = c8 = 3 1 for sagging
and c7 = c8 = 3 7 for hogging.

• No restraints

• Large warping displacements

• No axial stresses

• Built-in boundaries

• Small warping displacements

• Large axial stresses at the built-

 in ends

Figure 7.22 Warping displacements and stresses for an open cross-section thin-walled beam under
torsion due to end restraints.
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7.6 Effect of Age Related Structural Degradation

Aging plate assemblies may have suffered structural degradation such as corrosion and
fatigue cracks over time. For general corrosion that uniformly reduces the wall thickness
of structural members, the ultimate strength or effectiveness of primary strength mem-
bers can be evaluated by excluding the corrosion diminution (reduction in thickness).
For structural members with fatigue cracks, the cross-sectional area associated with
the cracking damage may in turn be reduced in strength calculations, as described in
Chapters 4 and 9. For applied examples in box girders with age related damage, inter-
ested readers may refer to Sharifi and Paik (2009, 2011, 2014), among others.

7.7 Effect of Accident Induced Structural Damage

The effect of accident-related structural damage such as local denting on the ultimate
strength of plate assemblies can be accounted for where the buckling and ultimate strength
of damaged plate elements can be evaluated as described in Chapters 4 and 10. When the
damage is significant enough in size or extent, the damaged parts may be excluded from
the calculations of effective plate width and the ultimate strength of individual members
involving the damage. Similar exclusion may be applied even for structural members sub-
ject to tension as long as they have suffered serious structural damage.
To facilitate the rapid planning of salvage and rescue operations of structures after

accidents, the residual ultimate strength of damaged structures must be assessed quickly

Definition of structure characteristics

Characterization of damage parameters

Selection of

damage scenarios

Sampling

technique

Definition of damage index

for selected damage scenarios

Calculation of residual strength

for selected damage scenarios

Development of the diagram between

residual strength versus damage index

Probabilistic

identification

of damage

parameters

Figure 7.23 Flow to establish the residual strength–damage index diagram (R–D diagram) proposed by
Paik et al. (2012).
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and accurately, together with the location and extent of the damage. Paik et al. (2012) pro-
posed the damage index-based method for the safety assessment of structures that have
suffered structural damage due to accidents, where a diagram relating the residual ultimate
strength performance to the damage index is established. This diagram is useful as a first-
cut assessment of a structure’s safety immediately after suffering structural damage.
Figure 7.23 shows the flow of the method for the development of the residual strength
versus damage index diagram (R-D diagram) proposed by Paik et al. (2012).
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8

Ultimate Strength of Ship Hull Structures

8.1 Introduction

Ship’s hull structure is much more complex in geometry and larger in size than other
types of plate assemblies described in Chapter 7. The ultimate strength behavior of a
ship’s hull girder is very unique, and thus this chapter describes not only the ultimate
strength but also the characteristics of hull girder loads. It is noted that the theories
and methodologies described in this chapter can be commonly applied to steel- and
aluminum-ship hull structures.

8.2 Characteristics of Ship’s Hull Structures

Figure 8.1 shows mid-ship cross sections of typical merchant ships or offshore installa-
tions. Table 8.1 indicates the cross-sectional properties of the vessels. It is found that
the vessel’s structural characteristics vary significantly depending on the cargo types
or missions, among other factors.
To understand the structural characteristics of merchant ship hull structures, some

important properties of existing bulk carrier structures are further surveyed in this
section as an illustrative example (Paik & Thayamballi 1998). These structural parameter
studies would be of value in judging, describing, and generalizing the nature of structural
failure behavior to be expected for given operational, extreme, and accidental load levels.
Figure 8.2a shows the relationship between ship length and deadweight for bulk carriers

with a large proportion of which are conventional. It is evident that the said relationship is
present and definite, with moderate degree of scatter. Typically the number of holds is
seven for the Panamax class and nine for the Capesize class, with some variability. There
are essentially three types of holds in such vessels insofar as the structure is concerned, that
is, ore holds, light holds, and ballast holds. When carrying dense cargo such as iron ore, an
alternate hold loading condition is common, with the light holds empty.
Figure 8.2b shows the relationship between ship length andmaximum hold length. It is

apparent from this figure that the maximum hold length tends to decrease with increase
in the ship length. It is of interest that the hold lengths in the Panamax are comparable to
the Capesize, but the Capesize hold areas and volumes are normally greater than those of
a Panamax (e.g., areas ~1.5 times for hold No.1, most forward, and 1.25 times in the case
of the other holds, in one particular set of vessels). Hence normally any postulated
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L = 313.0 m
B = 48.2 m
D = 25.2 m
F.S. = 5.1 m

(a)

L = 233.0 m
B = 42.0 m
D = 21.3 m
F.S. = 4.12 m

(b)

L  = 315.0 m
B  = 58.0 m
D  = 30.3 m
F.S. = 5.12 m

(c)

Figure 8.1 Schematic representation of mid-section: (a) a 254 000 DWT single hull tanker; (b) a 105 000
DWT double hull tanker with one center-longitudinal bulkhead; (c) a 313 000 DWT double hull
tanker with two side-longitudinal bulkheads; (d) a 170 000 DWT single-sided bulk carrier; (e) a 169 000
DWT double-sided bulk carrier; (f ) a 3 500 TEU container vessel; (g) a 5 500 TEU container vessel;
(h) a 9 000 TEU container vessel; (i) a 113 000 DWT FPSO (floating production storage offloading unit);
(j) a 165 000 DWT shuttle tanker (B, ship breadth; D, ship depth; DWT, deadweight; F.S., frame spacing;
L, ship length, TEU, twenty equivalent unit).
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(d)

L = 285.0 m
B = 50.0 m
D = 26.7 m
F.S.
Deck = 5.22 m
Side shell = 0.87 m
Bottom = 2.16 m

L = 274.8 m
B = 44.5 m
D = 23.0 m
F.S.
Deck = 5.16 m
Side Shell = 0.86 m
Bottom = 2.58 m

(e)

(f)

L = 230.0 m
B = 32.2 m
D = 21.5 m
F.S. = 3.27 m

Figure 8.1 (Continued )
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L = 268.0 m

B = 40.0 m

D = 24.2 m

F.S. = 3.62 m

(g)

L = 329.0 m

B = 45.3 m

D = 27.0 m

F.S. = 3.27 m

(h)

L = 230.6 m

B = 41.8 m

D = 22.9 m

F.S. = 3.5 m

(i)

(j)

L = 254.0 m
B = 46.0 m
D = 22.6 m
F.S. = 3.6 m

Figure 8.1 (Continued )
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Table 8.1 Hull cross-sectional properties of the 10 typical merchant ships or offshore installations.

Item SHT DHT#1 DHT#2 Bulk#1 Bulk#2 Cont#1 Cont#2 Cont#3 FPSO Shuttle

LBP (L) (m) 313.0 233.0 315.0 282.0 273.0 230.0 258.0 305.0 230.6 254.0

Breadth (B) (m) 48.2 42.0 58.0 50.0 44.5 32.2 40.0 45.3 41.8 46.0

Depth (D) (m) 25.2 21.3 30.3 26.7 23.0 21.5 24.2 27.0 22.9 22.6

Draught (d) (m) 19.0 12.2 22.0 19.3 15.0 12.5 12.7 13.5 14.15 15.0

Block coeff. (Cb) 0.833 0.833 0.823 0.826 0.8374 0.6839 0.6107 0.6503 0.8305 0.831

Design speed (knots) 15.0 16.25 15.5 15.15 15.9 24.9 26.3 26.6 15.4 15.7

DWT or TEU 254 000
DWT

105 000
DWT

313 000
DWT

170 000
DWT

169 000
DWT

3 500
TEU

5 500
TEU

9 000
TEU

113 000
DWT

165 000
DWT

Cross-sectional area (m2) 7.858 5.318 9.637 5.652 5.786 3.844 4.933 6.190 4.884 6.832

Height to neutral axis from
baseline (m)

12.173 9.188 12.972 11.188 10.057 8.724 9.270 11.614 10.219 10.568

I Vertical (m4) 863.693 359.480 1346.097 694.307 508.317 237.539 397.647 682.756 393.625 519.674

Horizontal (m4) 2050.443 1152.515 3855.641 1787.590 1530.954 648.522 1274.602 2120.311 1038.705 1651.479

Z Deck (m3) 66.301 29.679 77.236 44.354 39.274 18.334 26.635 44.376 31.040 43.191

Bottom (m3) 70.950 39.126 103.773 62.058 50.544 27.228 42.894 58.785 38.520 49.175

σY Deck HT32 HT32 HT32 HT40 HT36 HT36 HT36 HT36 HT32 HT32

Bottom HT32 HT32 HT32 HT32 HT32 HT32 HT32 HT32 HT32 HT32

MP Vertical moment (GNm) 22.615 11.930 32.481 20.650 15.857 8.881 12.179 18.976 12.451 15.669

Horizontal moment (GNm) 31.202 19.138 54.465 31.867 26.714 14.967 21.763 33.229 19.030 25.105

Notes: σY, yield stress; Bulk#1, single-sided bulk carrier; Bulk#2, double-sided bulk carrier; Cont#1, 3500 TEU container vessel; Cont#2, 5500 TEU container vessel; Cont#3, 9000
TEU container vessel; DHT#1, double hull tanker with one center-longitudinal bulkhead; DHT#2, double hull tanker with two longitudinal bulkheads; FPSO, floating, production,
storage, and offloading system; HT32, high tensile steel with a yield stress of 315MPa; HT36, high tensile steel with a yield stress of 355MPa; I, moment of inertia; MP, full plastic
bending moment; SHT, single hull tanker; Shuttle, shuttle tanker; Z, section modulus.



flooding of the Capesize hold No.1 is of more load consequence than flooding of the
Panamax hold No.1.
Figure 8.3 shows some important properties of conventional bulk carrier hull struc-

tures of Handymax class or larger. The bulk carrier double bottom height (and also width
of flat part of inner bottom) increases remarkably as the vessel becomes larger; see
Figure 8.3a. As shown in Figure 8.3b, the slenderness ratio of outer bottom plating
decreases (e.g., the bottom plate thickness increases) with increase in the vessel size.
The ratio of actual hull section modulus to class rule required section modulus decreases
as the vessel becomes larger (see Figure 8.3c), which implies that some vessels are built to
satisfy the rule requirements with little additional margin. Figure 8.3d indicates the usage
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Figure 8.2 (a) The relationship between ship length and deadweight; (b) the relationship between ship
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Ultimate Strength of Ship Hull Structures 375



of high tensile steel in conventional bulk carrier hull structures. More than 70% of the
hull structures in Panamax and Capesize bulk carriers can in some cases be of high ten-
sile steel. All statistics indicated are for a selected cross section of vessels.
Table 8.2 indicates typical ranges and average values of the aspect ratio and slenderness

ratio for bulk carrier plating between stiffeners. The plate aspect ratio in the bottom and
side shell is about 3.0 in way of longitudinal framing (and aspect ratios 30–40 in way of
transverse framing), while it is about 6.0 in the deck. It is also seen from Table 8.2 that
the slenderness ratio of longitudinal plating is less than 2.0, indicating that such plating
of bulk carriers is usually stocky in a buckling sense. It is noted that for long plates under
compression, if the plate slenderness ratio is less than about 1.9, buckling normally occurs
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Table 8.2 Structural characteristics of the plating between stiffeners in selected existing bulk carriers.

Structure

a/b b t σY E

Range Average Range Average

Outer bottom plate 2.9–3.4 3.2 1.6–2.1 1.9

Inner bottom plate 2.9–3.4 3.2 1.3–1.8 1.6

Bottom floor 2.0–2.9 2.6 2.3–3.0 2.4

Bottom girder 3.2–4.0 3.6 1.8–2.8 2.3

Side shell 3.2–3.3 3.3 2.0–2.2 1.6

Deck plate 4.7–6.7 5.7 1.0–2.0 1.6

Longitudinal bulkhead plate 3.2–3.3 3.3 2.2–2.4 2.3

Topside wing tank bottom plate 4.9–7.5 6.3 1.9–2.7 2.3

Topside wing tank web 1.0–1.6 1.3 2.2–2.9 2.5

Hopper bottom plate 1.9–3.7 2.8 1.6–2.5 1.9

Hopper web 1.0–1.6 1.3 2.0–2.7 2.5

Note: σY, yield strength; a, plate length; b, plate breadth; E, Young’s modulus; t, plate thickness.
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in the elastic–plastic or plastic regime, in which the buckled plate will have little residual
strengthmargin beyond first buckling, while thin plate elements with the plate slenderness
ratios greater than about 2.5 will normally first buckle in the elastic regime, with a fair
amount of post-buckling strength reserve until the ultimate limit state is reached.
Bending and torsional rigidities of stiffeners and support members in bulk carriers are

also important aspects. The rigidities of transverse members are usually larger than those
of longitudinal members. The bending rigidity of support members is large enough com-
pared with that of plate elements so that the relative lateral deformation of plate elements
along the edges could be ignored in calculating the plate buckling strength. However, the
normalized torsional rigidity of support members, that is, the ratio of torsional rigidity of
support members to the bending rigidity of plating between supporting members, is less
than about 1.0 for longitudinal stiffeners and less than about 2.0 for transverse frames. This
could indicate that although the ship plating has a finite amount of rotational restraints
along the edges implying that idealized boundary conditions, that is, simply supported
or clamped, never occur, there is still the possibility of flexural-torsional failure of stiffen-
ers, particularly in the longitudinal direction that needs to be controlled by design.
The various obvious generalizations of this section relate of course to strength and thus

are only indirectly indicative of the structural performance considering loads as well.
Also, it is noted that part of the conventional bulk carrier side structure is transversely
framed, for which the limiting rigidities and slenderness would be different from those
noted previously. In conventional bulk carriers, each side shell frame may not form part
of a continuous ring, that is, the transverse frame spacing in the topside tanks can be
different from that in the cargo hold, which in turn can be different from the frame spa-
cing in the double bottom, although the recently suggested double skin bulk carrier
design is a clear exception.

8.3 Lessons Learned from Accidents

In the past, there have been several vessel casualties including total losses including over-
all collapse of a ship’s hull. Figure 8.4a shows an example of such an accident to a ship. In
this case, a Capesize bulk carrier collapsed due to human error during discharge in port
of its 126 000 tons of iron ore cargo. While this 23-year-old 139 800 DWT ship did not
separate into two, the bottom of its mid-body reportedly touched the sea bed, and the
hull girder, in fact, collapsed. After having emptied the fore and aft holds among the five
cargo holds, buckling collapse took place in the vessel’s deck, while the central hold was
still full. It is clear that this incident was primarily a result of improper unloading of the
cargo from the ship. But it does serve to indicate that a ship, like any other structure, has a
finite strength, and whether for routine design purposes, damage investigations, or to
determine the ongoing effects of age related structural degradation, relevant procedures
to compute that strength accurately are a necessity.
Total losses by ship’s hull collapse have also occurred at sea as shown in Figure 8.4b.

Those include the sinking of the M.V. Derbyshire, which was a double side-hulled
Capesize bulk carrier of 281.94 m in length between the perpendiculars, 44.2 m in
the beam, and 25 m in depth (Faulkner 1998, Paik & Faulkner 2003, Paik et al. 2008,
Hughes & Paik 2013). Her maximum deadweight was 173 218 tons. She was 5 years
old at the time of the accident and was believed to have suffered almost no age related
degradation such as corrosion wastage. Another distinct characteristic of the ship is
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that she had a double-sided hull arrangement that aimed to prevent unintended water
ingress into the cargo holds from the failure of the side shell structures. On September
9, 1980, she sank in the northwest Pacific, some 400 miles south of Shikoku Island,
Japan, during typhoon Orchid while on a voyage from Canada to Japan carrying fine
iron ore concentrates. On her last voyage from the Sept Isles, Canada, to Yokohama,
Japan, she was carrying about 158 000 tons of fine ore concentrates distributed across
seven of her nine holds. Her estimated displacement as she approached Japan was
about 194 000 tons, indicating a mean draught of approximately 17 m. Just before sink-
ing, she was within the most dangerous ambit of typhoon Orchid, and the significant
wave height soon before her sinking was reportedly 14 m. There was no distress signal,
and only two sightings of oil upwelling were seen some days later to indicate the posi-
tion of the sunken craft. A damaged lifeboat from the ship was sighted, but this was not

Figure 8.4 Collapse of ship’s hull girder: (a) during unloading of cargo at port; (b) at sea.
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recovered and subsequently sank. This and the absence of a distress signal were taken
to imply that she sank very quickly.
Based on the lessons learned from the accidents, the possible causes of the ship’s total

losses can be categorized into three groups, namely, (i) loss of reserve buoyancy (or float-
ing capability), (ii) hull girder breakage, and (iii) loss of stability, initiated perhaps totally
or partly by unintended water ingress into cargo holds. Figure 8.5 shows total loss sce-
narios of a ship developed by Paik and Thayamballi (1998).
As an illustrative example with bulk carriers, a large proportion of the vessel incidents

reported were carrying iron ore or coal, the former being one of the denser types of cargo
and the latter being one of the more corrosive. It has been indicated that the age of most
vessels concerned was over 15 years, and so significant defects related to corrosion and
fatigue may have been present. Decrease of the residual strength and/or increase of the
applied hull girder loads in a flooding event may possibly lead to hull girder breakage
(Paik 1994, Faulkner 1998, Paik & Faulkner 2003, Paik et al. 2008). Related to this, there
is the possibility that part of the side shell forward could have been lost due to a com-
bination of circumstances, for example, excessive corrosion and cracking damages
together with perhaps the shifting of solid cargo due to roll in rough weather. This would
cause ingress of sea water into the cargo holds.Water ingress into the forward hold could
occur also through failed hatch covers.
In such postulated accident scenarios as indicated in Figure 8.5, even if the vessel could

initially survive with one of the compartments flooded, the ingress of sea water into a
cargo hold could amplify the applied loads and also otherwise lead to vessel loss by pro-
gressive flooding (particularly when the watertight transverse bulkheads are insufficient
to withstand the increased static and dynamic pressures). The relevant flooded load
components may be increased by pitch motion, whose severity can depend on the cargo
density and other characteristics of the vessel. Progressive flooding after the collapse of
corrugated bulkheads in a flooded condition is thought to be implicated in some of the

Side shell failure Hatch cover failure Corrosion Fatigue crack Local dent

Water ingress
Partial loss of

structure
Hold flooding

Transverse bulkhead

failure

Increase of hull

girder loads

Decrease of hull

girder strength

Loss of

stability

Progressive flooding to

adjacent holds

Loss of reserve buoyancy Hull girder collapse

Vessel loss

Figure 8.5 Total loss scenarios of bulk carriers developed by Paik and Thayamballi (1998).
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bulk carrier losses. Also, with progressive hold flooding, the vessel in some cases could
lose stability in rough seas, potentially leading to capsizing (Turan & Vassalos 1994).
From the point of view on a ship structural design, important lessons include, first,

abnormal waves not expected in the structural design can occur and amplify the max-
imum hull girder loads, which may reach or even exceed the corresponding design
values. Second, unintended water ingress into cargo holds, whichmay occur due to hatch
cover failure, can further amplify the hull girder loads. Third, the allowable working
stress design approach that was applied in the structural design of vessel hulls cannot
deal with this issue, and thus the ultimate limit state design method should be employed
to prevent hull girder collapse accidents.

8.4 Fundamentals of Vessel’s Hull Girder Collapse

A ship’s hull in the intact condition will sustain applied loads smaller than the design
loads, and, in normal seagoing and approved cargo loading conditions, it will not suffer
any structural damages such as buckling and collapse. However, the loads acting on the
ship’s hull are uncertain both due to the nature of rough seas and because of possibly
unusual loading/unloading of cargo, the latter due to human error. In rare cases, applied
loads may hence exceed design loads and the ship’s hull may collapse globally. Since
aging ships may have suffered structural deterioration due to corrosion and fatigue,
related weakening in their structural resistance may play a part as well.
Figure 8.6 shows illustrative examples of the progressive collapse behavior of the typ-

ical merchant ships or offshore installations, indicated in Figure 8.1 and Table 8.1, under
vertical bending moment until and after the ultimate limit state is reached, where the
level of initial imperfections is varied (Paik et al. 2002).
As applied loads increase beyond the design loads, structural members of the vessel’s

hull girder buckles in compression and yields in tension. The vessel’s hull girder can nor-
mally carry further loading beyond the onset of limited member buckling or yielding, but
the structural effectiveness of any such failed member clearly decreases, and its individ-
ual stiffness can even become “negative,” with their internal stress being redistributed to
adjacent intact members. The most highly compressed member will, deterministically
speaking, collapse earlier, and the stiffness of the overall hull girder decreases gradually.
As loads continue to increase, buckling and collapse of more structural members occur
progressively until the ultimate limit state is reached for the hull girder as a whole.
Figure 8.7 shows the change of the neutral axis position for a single hull tanker hull

girder as the bending moment increases. It is also apparent from this figure that there
is still some residual strength even after buckling collapse of the compression flange. This
is due to a shift of the neutral axis toward the tension flange, resulting from loss of effec-
tiveness of the collapsed compression flange. Of interest, as the bending moment
increases, the neutral axial position changes quickly and becomes stable, as shown in
Figure 8.7, because the neutral axis is calculated for partially effective hull cross
section after the bending moment is applied, while it is estimated for fully effective cross
section before loading. This implies that the section moduli calculated for fully effective
hull cross section may not always be a real indication of the ship hull sectional load resis-
tive properties. The ultimate hogging moment of the tanker hull is larger than the ulti-
mate sagging moment as usual.
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8. Yielding of upper deck plates

Note: * denotes that the related failure event starts.

10. Buckling collapse of side shell longl. between upper deck 

and 2nd deck*, upper deck plates and yielding of bottom 

girder plates*

11. Buckling collapse of upper deck longl.

12. Buckling collapse of bottom girder longl.

13. Yielding of outer bottom longl. and outer bottom plates 

(ultimate limit state)

14. Yielding of side shell plates between upper deck and 

second deck

9. Buckling collapse of side shell plates between upper deck

and 2nd deck*
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When the structural safety of a ship’s hull is considered, the ultimate hull girder
strength must then be accurately evaluated. It is also helpful in this regard if one can
derive simple expressions for calculation of the hull ultimate strength so that these
can be used for the ready formulation of failure functions to be used in reliability analysis
and for use in the early stages of structural design.
Most classification society criteria and procedures for ship structural design have been

based on the first yield of hull structures together with buckling checks for structural
components (i.e., not for the whole hull structure). These methods have proven them-
selves to be effective for intact vessels in normal seas and under loading conditions. How-
ever, their applicability to assess the survivability of vessels in damaged or accidental
situations, that is, deterioration due to corrosion, fatigue, collisions, grounding, or over-
loading, is somewhat less certain. In these cases, it is necessary to account more precisely
for the interacting effects between yielding, buckling, and, sometimes, crushing and frac-
ture of local components and the related effects on the global behavior of the structural
system.
While service proven, the traditional design criteria and associated linear elastic stress

calculations do not necessarily define the true ultimate limit state that is the limiting con-
dition beyond which a ship’s hull will fail to perform its function. Neither do such pro-
cedures help understand the likely sequence of local failure prior to reaching the ultimate
limit state. It is of course important to determine the true ultimate strength if one is to
obtain consistent measures of safety that can form a fairer basis for comparisons of ves-
sels of different sizes and types. An ability to better assess the truemargin of safety should
also inevitably lead to improvements in regulations and design requirements.
A consequence of present day design procedures is that in some vessels the ultimate

hogging moment is not always greater than the ultimate sagging moment even if the
section modulus at bottom is larger than that at deck. This is the case in some bulk car-
riers where the deck panels are sturdier than the bottom panels. One might of course
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Figure 8.7 The change of the neutral axis due to structural failure for a 254 000 DWT single hull tanker.
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have (incorrectly) presumed that, as long as the section modulus at bottom is greater
than that at deck, the ultimate hull girder strength in hogging will be greater than that
in sagging. But this is not always true. Such differences will of course be better detected
and corrected if one undertakes ultimate strength-based design.
This indicates the disadvantage of the conventional structural design procedures for

vessels based on the allowable stress. The ultimate limit state design procedure can avoid
such difficulties and facilitate the determination of the real safety margin of the structure.
In the ultimate limit state design of ship hulls using Equation (1.17), the capacity is taken
to be the relevant ultimate strength, while the demand is given in terms of the hull girder
loads that may be calculated by the design rules of classification societies or by direct
methods. This chapter presents relevant approaches to calculate the ship hull girder
loads and the related ultimate strength.

8.5 Characteristics of Ship Structural Loads

Ship structures are subjected to various types of loads, which may be grouped according
to their characteristics in time: static loads, low-frequency dynamic loads, high-
frequency dynamic loads, and impact loads (Hughes & Paik 2013).
Static loads are those that arise from the ship’s weight and buoyancy. Low-frequency

dynamic loads occur at frequencies that are sufficiently low compared to the frequencies
of the vibratory response of the ship’s hull (and its parts, as the case may be) that the
resulting dynamic effects on the structural response are relatively small. Such loads
include hull pressure variations induced by waves or oscillatory ship motions and inertial
reaction forces from the acceleration of themass of the ship and its cargo or ballast water.
High-frequency dynamic loads have frequencies that approach or exceed the lowest nat-
ural frequency of the hull girder. A typical example is wave-induced “springing” (flexural
vibration of the hull girder), whichmay occur when the natural period of the hull girder is
close to the period of the shorter components of the encountered waves. Because steady-
state springing occurs at a higher frequency than that of ordinary wave-induced bending,
it increases the number of stress cycles during the ship’s lifetime, thus possibly increasing
the fatigue damage to the hull girder. Impact loads are those with a duration even shorter
than the period of high-frequency dynamic loads. Examples of impact loads are slam-
ming and green water impact on deck. Slamming causes a sudden upward acceleration
and deflection of the bow and excites hull girder flexural vibration in the first two or three
modes, typically with a period in the range of 0.5–2 s. This transient slam-induced vibra-
tion is termed “whipping.”
In ship structural analysis and design, the most common loads are the static and low-

frequency dynamic loads; the latter are usually treated as static or quasi-static loads.
High-frequency dynamic loads can be important in specific design cases, such as the long
and slender Great Lakes vessels. The local effect of impact loads, particularly pressure,
must usually be considered in some manner.
Because the characteristics of ship structural loads vary significantly depending on

loading, operating conditions, and sea states, all potential conditions during the ship’s
lifetime must be taken into account in the analysis and design of ship structures. There-
fore, flooding and damaged conditions should also be considered.
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8.6 Calculations of Ship’s Hull Girder Loads

The important components of hull girder loads are vertical bending, horizontal bending,
sectional shear, and torsional moment, as shown in Figure 8.8. These arise from the dis-
tribution of local pressures, including sea and cargo loads. The basic theory to calculate
hull girder loads may be found in textbooks such as that by Hughes and Paik (2013). For
calculation of the design hull girder loads of merchant ships, the classification societies
provide simplified formulas or guidelines, with a direct calculation of hull girder loads
from first principles usually recommended in cases that involve unusual structures,
patterns of loading, or operational conditions.
As the most important hull girder load component, the total vertical bending moment

Mt for a ship’s hull is defined as the extreme algebraic sum of the still-water momentMsw

and the wave-induced moment Mw as follows:

Mt =Msw +Mw 8 1

where Msw is taken as the maximum value of the still-water bending moment from the
worst load condition on the ship, considering both hogging and sagging. For merchant
ships, the design value ofMsw may be taken as the maximum allowable still-water bend-
ing moment approved by a ship classification society. Mw is taken as the extreme wave-
induced bending moment that the ship is likely to encounter during its lifetime.
To assess the safety and reliability of damaged ship structures, the hydrodynamic

“strip” theory (so-called because the hull is idealized as a series of short prismatic sec-
tions, or girthwise “strips”) may be used to determine Mw. For long-term prediction
of wave-induced loads, loads that are likely to be exceeded only once during the vessel’s
design lifetime are considered, including all sea states that may be encountered, whereas
short-term prediction is carried out based on a ship encountering a storm of a specific
persistence or duration (e.g., 3 h).
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Figure 8.8 Hull girder sectional load
components.
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Conventionally, a long-term analysis has normally been used to determineMw for the
design of newly built ships, whereas a short-term analysis is typically necessary to predict
Mw for ships in specific sea conditions, such as for damaged ships. In calculating Mw, a
second-order strip theory may be used in which it is necessary to distinguish between
sagging and hogging wave-induced bending moments.
To approximately account for the correlation between still-water and wave-induced

bending moments, the following type of equation can be used to calculate the total bend-
ing moment:

Mt = kswMsw + kwMw 8 2

where ksw and kw are the load combination factors for still-water and wave-induced
bending moments, respectively, which account for the nonsimultaneous occurrence
of extreme still-water and wave-induced loads.
To consider dynamic load effects, the total bending moment may be given by

Mt = kswMsw + kw Mw + kdMd 8 3

where kd is the load combination factor related to the dynamic bending moment, Md,
that arises from either slamming or whipping.Md is taken as the extreme dynamic bend-
ing moment in the same wave condition (e.g., sea state) as the wave-induced bending
moment, whereas the effects of ship hull flexibility are accounted for in the computation
ofMd. In very high sea states,Md is normally ignored because the possibility of whipping
is usually low. To consider the hull girder effects of slamming in oceangoing merchant
ships, it has been suggested thatMd = 0.15Mw be used for tankers in sagging, butMd = 0
for those in hogging (Mansour & Thayamballi 1994).
Although the external pressure loads imposed on the ship’s hull in seaways can be cal-

culated in terms of sea water heads, the internal pressure loads must be determined for
each fully loaded cargo hold and ballast tank, as caused by the dominant ship motions
(pitch and roll) and the resulting accelerations. The relative phasing of all such dynamic
loads is important in defining the total load.

8.6.1 Still-Water Loads

A detailed distribution of the still-water moment along the ship’s length can be calcu-
lated by a double integration of the difference between the weight force and the buoyancy
force, using simple beam theory.
The sectional shear force F(x1) at location x1 is estimated by the integral of the load

curve, which represents the difference between the weight and buoyancy curves, namely,

F x1 =
x1

0
f x dx 8 4

where f(x) = b(x) −w(x) is the net load per unit length in still water, b(x) is the buoyancy
per unit length, and w(x) is the weight per unit length.
The bendingmomentM(x1) at location x1 is estimated as the integral of the shear curve

indicated in Equation (8.4) as follows:

M x1 =
x1

0
F x dx 8 5
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8.6.2 Long-Term Still-Water and Wave-Induced Loads: IACS Unified Formulas

Ship classification societies have over time established their own individual design guide-
lines based on their own studies and experience. This resulted in a variety of different
requirements for ship hull girder structural design. The International Association of
Classification Societies (IACS) has now unified these requirements in the case of the hull
girder longitudinal strength.
This unification is important because the longitudinal strength of a ship governs

basic scantlings of the primary strength members, such as the strength decks, side shells,
bottom structures, and longitudinal bulkheads, thereby having a great effect on the hull
weight, cargo deadweight, and ship price. The unified standard for a ship’s longitudinal
strength was approved by the IACS in May 1989, and it is now implemented as the
longitudinal strength requirement of most classification societies.
In the IACS unified requirements (IACS 2012), the design still-water vertical bending

moment Msw is calculated as usual, by considering all appropriate loading conditions,
while the following formulation is given as a guide:

Msw =
+ 0 015C1L2B 8 167−Cb kNm for hogging

−0 065C1L2B Cb + 0 7 kNm for sagging
8 6

where L is the ship length (m), B is the ship breadth (m), and Cb is the block coefficient.
The design wave-induced vertical bending moment, Mw, is given by unified formulas

to represent a once-in-25-years occurrence under north Atlantic wave conditions. With
the hogging moment taken as positive and the sagging moment taken as negative, the
applicable formulas are as follows:

Mw =
+ 0 19C1C2L2BCb kNm for hogging

−0 11C1C2L2B Cb + 0 7 kNm for sagging
8 7

The coefficient C1 in Equations (8.6) and (8.7) is determined as a function of vessel
length (m) as follows:

C1 =

0 0792L for L ≤ 90

10 75− 300−L 100 1 5 for 90 ≤ L ≤ 300

10 75 for 300 < L ≤ 350

10 75− L−350 150 1 5 for 350 < L ≤ 500

8 8

The coefficientC2 in Equation (8.7) is taken as 1.0 around themid-ship location, that is,
between 0.4L and 0.65L measured from the after-perpendicular of the ship; a value less
than 1.0 is used to represent the distribution at the other locations.

8.6.3 Long-Term Wave-Induced Loads: Direct Calculations

Using a direct method such as strip theory or panel theory, detailed information on the
values and distribution of long-term wave-induced loads along the ship’s length can be
estimated for the anticipated environmental conditions.
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The calculation of the hull girder loads in waves requires information related to the
time-variant distribution of fluid forces over the wetted surface of the ship’s hull together
with the distribution of the inertia forces. The time-variant fluid forces depend on the
wave-induced motions of the water and the corresponding motions of the ship. The dis-
tribution of inertial forces is estimated by multiplying the local mass of the ship with the
local absolute value of acceleration.
The shear force and bending moment are then obtained at any instant by computing

the first and second integrals of the distribution of the sectional force per unit length
along the ship’s length, respectively. The wave-induced sectional shear force Fw(x1) at
location x1 is then given by

Fw x1 =
x1

0
fw x dx 8 9

where fw(x) = df(x) − di(x) is the net load per unit length in waves, df(x) is the time-variant
fluid force per unit length, and di(x) is the inertial force per unit length.
The wave-induced bending moment is then obtained by the integral of the wave-

induced shear force as follows:

Mw x1 =
x1

0
Fw x dx 8 10

To obtain a part of the time-variant fluid forces and the inertial forces, the wave-
induced motions of the ship should be analyzed in advance of the loads themselves.
The solutions for these ship motions and the resulting forces are normally obtained with
the so-called strip theory. Related procedures may be found in most classification society
guidance and in standard textbooks (Jensen 2001, Hughes & Paik 2013). The total hull
girder loads are then obtained by a relevant sum of the still-water and wave-induced
loads, as previously noted.

8.6.4 Short-Term Wave-Induced Loads: Simplified Direct Calculations Using
Parametric Seakeeping Tables

The calculations of the extreme wave-induced loads of a ship during a short-term sea
state may also be calculated using direct methods. In many cases and within predefined
ranges of validity, time savings in this regard can be achieved by use of parametric
seakeeping tables considering variations in ship size, significant wave height, and ship
speed, such as those developed by Loukakis and Chryssostomidis (1975). The Louka-
kis–Chryssostomidis seakeeping tables are designed to efficiently determine the
root-mean-square (rms) value of the wave-induced bending moment given the values
of significant wave height (Hs), B/T ratio (where B is the ship’s beam and T is its draught),
L/B ratio (where L is the ship’s length), ship operating speed (V), block coefficient (Cb),
and sea-state persistence time.
The most probable extreme value of the wave-induced loads,Mw, that is, mode, which

we may refer to as a mean for convenience, and its standard deviation, σw, can then be
computed based on upcrossing analysis as follows:

Mw = 2λ0 ln N +
0 5772

2λ0 ln N
ρgL4 × 10−16 GNm 8 11a
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σw =
π

6

λ0
2 ln N

ρgL4 × 10−16 GNm 8 11b

where √λ0 is the rms value of the short-term wave-induced bending moment process,
ρ is the density, g is the acceleration of gravity, and N is the expected number of
wave-bending peaks, which is usually estimated as N = S 13Hs × 3600, where Hs is
the significant wave height (m) and S is the storm persistence time (h). Alternatively,
if a wave peak normally occurs every 6–10 s and in a 3-hour storm, for example,
N = 3 × 60 × 60/10≈ 1000.
Figures 8.9 and 8.10 show the variation of the wave-induced bending moments for

selected vessels in a storm during 3 h (short-term) persistence time as obtained by
the simplified direct method with various effective wave heights or ship speeds. The
IACS design wave-induced moment values are also compared. It is apparent from
Figure 8.9 that the wave-induced bending moment can theoretically be forced to exceed
the IACS design value if the significant wave height is continually increased and the ves-
sel’s speed is kept high, which of course are unrealistic scenarios. Figure 8.10 shows that
the wave-induced bending moments increase nearly linearly with the increase in the
ship’s speed. Furthermore, the figures represent that for the present hypothetical ships,
the wave-induced bending moment should never exceed the IACS design values for rea-
sonable ship speeds and significant wave heights.

8.7 Minimum Section Modulus Requirement

Since the section modulus of a ship is indicative of the ship’s longitudinal strength,
all classification societies have established relevant requirements so that the section mod-
ulus should be greater than a prescribed value.
The simple beam theory method together with the allowable working stress method

indicated in Equation (1.16) is useful to establish the requirement for the minimum
section modulus:

σ =
M
Z

< σa 8 12

whereM is the applied bendingmoment, Z is the sectionmodulus, and σa is the allowable
stress.
Because the design bending moments have been defined as the sum of the still-water

and wave-induced bending moments and, because the allowable stress is assumed,
Equation (8.12) gives the following requirement to satisfy for steel ship structures:

Zmin >
k

σa × 106
Msw +Mw m3 8 13

whereZmin is theminimum sectionmodulus and k is the high tensile steel factor, which is
defined as indicated in Table 8.3. In Equation (8.12) or (8.13), the allowable stress σa may
be 190MPa for the net thickness without a corrosion margin or 175MPa for the gross
thickness with a corrosion margin (Hughes & Paik 2013).
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Figure 8.9 Variation of wave-induced bending moments plotted versus the significant wave height
for (a) a 254 000 DWT oil tanker; (b) a 105 000 DWT oil tanker and (c) a 170 000 DWT bulk carrier,
as obtained by the Loukakis–Chryssostomidis seakeeping table method.



8.8 Determination of Ultimate Hull Girder Strength

The same methods used for box girders described in Section 7.5 can be used to calculate
the ultimate strength of ship’s hull girders. To compute the cross-sectional property
calculations such as the section modulus, a ship’s hull girder may be idealized as an assem-
bly of pure plate element (segment) models as illustrated in Figure 2.2d although the stiff-
ener flange can bemodeled using one plate element. The modified Paik–Mansourmethod
described in Section 7.5.4 can be used to calculate the ultimate hull girder strength where
the structure may be idealized as an assembly of the plate–stiffener combinationmodels as
illustrated in Figure 2.2a. The ultimate compressive strength of the plate–stiffener combi-
nation models can be predicted by the Euler column buckling strength with the plasticity
correction using the Johnson–Ostenfeld formulation method described in Section 2.9.5.1,
when initial imperfections are insignificant or by the Perry–Robertson formulation
method described in Section 2.9.5.2, or the Paik–Thayamballi empirical formulation
method described in Section 2.9.5.3, when initial imperfections are significant.
Figure 8.11a shows an illustrative example of a bulk carrier’s hull girder cross-sectional

model as an assembly of plate–stiffener combination models. Figure 8.11b and c shows
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Figure 8.10 Variation of wave-induced bending moments plotted versus the ship speed for a 254 000
DWT oil tanker, as obtained by the Loukakis–Chryssostomidis seakeeping table method.

Table 8.3 High tensile steel factor for gross scantlings with a corrosion margin.

Steel type Yield stress, σY (MPa) k Allowable stress, σa = 175 k (MPa) σa/σY

AH24 235 1.00 175.0 0.745

AH27 265 0.93 188.17 0.710

AH32 315 0.78 224.36 0.713

AH36 355 0.74 236.49 0.666

AH40 390 0.72 243.06 0.623
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Figure 8.11 (a) Structural modeling for a bulk carrier’s hull girder using both plate–stiffener
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the results of the ultimate strength behavior comparison for the bulk carrier’s hull
girder subject to a vertical sagging or hogging bending moment by comparison to
various computations including the nonlinear finite element method described in
Chapter 12, ALPS/HULL (2017) intelligent supersize finite element method described
in Chapter 13, and IACS common structural rules method (IACS 2012). Table 8.4
presents the heights of the collapsed and yielded parts, as determined by the original
and modified Paik–Mansour methods described in Sections 7.5.3 and 7.5.4.
It is apparent from these results that the pure hogging bending moment condition

cannot be achieved for this case with the original Paik–Mansour method, as it does
not permit the expansion of the yielded part except for the tension flange. However,
the modified Paik–Mansour method is able to achieve this condition because the tension
flange is allowed to expand, with hY = 13 7mm. It is however considered that the original
Paik–Mansour method may also be useful for those structures in that the expansion of
the yielded region in the tension side is insignificant, considering that the original Paik–
Mansour method gives the ultimate strength formulations in a closed form and does not
need an iteration process as described in Section 7.5.3.

8.9 Safety Assessment of Ships

Table 8.5 indicates safety measure calculations for the 10 typical merchant ships or
offshore installations, described in Section 8.2 and Table 8.1, under vertical bending
moments alone with average level of initial imperfections but without structural damage.
The total bending moment is calculated from Equation (8.2) when ksw = kw = 1 0, while
Msw andMw are determined from the IACS unified formula. Zmin is also computed from
Equation (8.13). Mu is the ultimate vertical moment of the ship with an average level of
initial imperfections, which was computed by the ALPS/HULL intelligent supersize
finite element method described in Chapter 13.
For the safety measure calculations based on the ultimate strength, the partial safety

factor of 1.0 is adopted in this regard. As evident fromTable 8.5, the safety measure based
on section modulus (allowable stress design approach) has greater margin at bottom
than at deck for all of the vessels considered. In some vessels such as bulk carriers
and container vessels, however, the safety measure based on ultimate hull strength
(ultimate limit state design approach) has lesser margin in hogging than in sagging.

Table 8.4 Heights of the collapsed and yielded parts of the bulk carrier’s hull girder under vertical
bending moment, obtained by the original or modified Paik–Mansour method described in
Section 7.5.3 or 7.5.4.

Method

Hogging (mm) Sagging (mm)

hC hY hC hY

Original P-M – – 17 935.0 0.0

Modified P-M 1 654.1 13.7 17 935.0 0.0
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Table 8.5 Safety measure calculations for the 10 typical merchant ships or offshore installations.

Item SHT DHT#1 DHT#2 Bulk#1 Bulk#2 Cont#1 Cont#2 Cont#3 FPSO Shuttle

Z (m3)
Deck 66.301 29.679 77.236 44.354 39.274 18.334 26.635 44.376 31.040 43.191

Bottom 70.950 39.126 103.773 62.058 50.544 27.228 42.894 58.785 38.520 49.175

Zmin (m
3)

Deck 60.699 27.814 73.494 44.040 38.950 17.252 26.327 44.042 26.991 36.992

Bottom 60.699 27.814 73.494 50.516 42.196 18.689 28.521 47.712 26.991 36.992

Z
Zmin

Deck 1.092 1.067 1.051 1.007 1.008 1.063 1.012 1.008 1.150 1.168

Bottom 1.169 1.407 1.412 1.228 1.198 1.457 1.504 1.232 1.427 1.329

Msw (GNm)
Sag −5.058 −2.318 −6.125 −4.210 −3.516 −1.557 −2.377 −3.976 −2.249 −3.083

Hog 5.584 2.559 6.815 4.673 3.868 1.943 3.162 5.107 2.488 3.409

Mw (GNm)
Sag −8.560 −3.923 −10.365 −7.124 −5.951 −2.636 −4.022 −6.729 −3.806 −5.217

Hog 8.034 3.682 9.674 6.661 5.599 2.250 3.237 5.597 3.568 4.891

Mt (GNm)
Sag −13.618 −6.240 −16.489 −11.334 −9.467 −4.193 −6.399 −10.705 −6.056 −8.300

Hog 13.618 6.240 16.489 11.334 9.467 4.193 6.399 10.705 6.056 8.300

Mu (GNm)
Sag −16.767 −6.899 −19.136 −14.281 −12.165 −6.800 −9.571 −16.599 −7.282 −11.280

Hog 15.826 8.485 23.566 14.434 12.027 5.953 9.049 13.075 8.760 11.404

Mu

Mt

Sag 1.231 1.106 1.161 1.260 1.285 1.622 1.496 1.551 1.202 1.359

Hog 1.162 1.360 1.429 1.274 1.270 1.420 1.414 1.221 1.446 1.374

Note: Zmin =minimum required section modulus, Equation (8.13),Mt =Msw +Mw;Mu = ultimate vertical moment of vessel hulls with average level of initial imperfections,
but without structural damage, as obtained by ALPS/HULL intelligent supersize finite element method.



8.10 Effect of Lateral Pressure Loads

It is essential to account for the effect of lateral pressure loads on the ultimate hull girder
strength. Kim et al. (2013b) investigated the progressive hull collapse behavior of a
Suezmax-class double-hull oil tanker, with a length of L= 264m, a breadth of
B= 48m, a depth of D= 23 2m, a draught of d = 16m, and a block coefficient of
Cb = 0 843, subject to vertical bending moments, with a focus on the effects of lateral
pressure loads. Two typical loading conditions are considered, namely, the full-load
and ballasted conditions, together with two types of vessel conditions such as anchored
(static lateral pressure) and operating conditions (static + dynamic lateral pressure) on
the basis of CSR (IACS 2012), as shown in Figures 8.12 and 8.13.
Figure 8.14 shows the progressive hull collapse behavior of the ship in the full-load

condition and in the ballasted condition, respectively, obtained by the nonlinear
finite element method, as described in Chapter 12. It is apparent from Figure 8.14 that
dynamic lateral pressure loads give rise to the greater effect on the ultimate hull girder
strength behavior than static effect. The reduction of ultimate hull girder strength arising
from these loads in either the full-load condition or ballasted condition together with
lateral pressure was less than 10% in this specific case.
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cargo tank static pressure
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(a)

Figure 8.12 Lateral pressure distribution of a Suezmax-class tanker in full-load condition: (a) static
pressure; (b) dynamic pressure; (c) combined (static + dynamic) pressure (IACS 2012).
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Figure 8.12 (Continued )
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Figure 8.13 Lateral pressure distribution of a Suezmax-class tanker in ballast condition: (a) static
pressure; (b) dynamic pressure; (c) combined (static + dynamic) pressure (IACS 2012).
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Figure 8.14 The progressive collapse behavior of a Suezmax-class tanker hull under vertical bending
moment accounting for the effect of lateral pressure loads: (a) hogging in the full-load condition;
(b) sagging in the full-load condition; (c) hogging in the ballasted condition; (d) sagging in the ballast
condition.
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8.11 Ultimate Strength Interactive Relationships Between
Combined Hull Girder Loads

8.11.1 Combined Vertical and Horizontal Bending

In some vessels subject to predominantly vertical bending moments at sea, the effect of
horizontal moment is significant, and thus it is important to evaluate the effect of hor-
izontal bending moment on the ultimate vertical bending moment of a ship’s hull girder.
Figure 8.15 shows the progressive collapse behavior of some selected hull girders such

as a 313 000 DWT double hull tanker with two longitudinal bulkheads, a 170 000 DWT

–3 –2 –1 0 1 2 3

–30

–20

–10

0

10

20

30
Hogging

Sagging

Curvature × 10–7 (1/mm)

Curvature × 10–7 (1/mm)

V
er

ti
ca

l 
m

o
m

en
t 

×
 1

0
3
 (

M
N

m
)

Double-hull tanker

with two longitudinal bulkheads

1

2

3

4
5

1

2

3

4

5

1

2

3

4

5

= 0.5

= 0.8

= 1.0

(a)

–20

–10

0

10

20
Hogging

Sagging

V
er

ti
ca

l 
m

o
m

en
t 

×
 1

0
3
 (

M
N

m
) 1

2

3

4
5

1
2

3

4

5

Single sided bulk carrier

(b)

–3 –2 –1 0 1 2 3

θH

θV
= 0.0

= 0.25
θH

θV

θH

θV

θH

θV

θH

θV

1

2

3

4

5

= 0.5

= 0.8

= 1.0

θH

θV
= 0.0

= 0.25
θH

θV

θH

θV

θH

θV

θH

θV

θV, θH = Angles of cross-sectional plane

 for vertical or horizontal

 moments

θV, θH = Angles of cross-sectional plane

 for vertical or horizontal moments

Figure 8.15 Progressive collapse behavior of ship’s hull girders under combined vertical and
horizontal bending moments obtained by ALPS/HULL intelligent supersize finite element method:
(a) a 313 000 DWT double hull tanker with two longitudinal bulkheads; (b) a 170 000 DWT single-sided
bulk carrier; (c) a 9 000 TEU container vessel.
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single-sided bulk carrier, and a 9 000 TEU container vessel, described in Section 8.2.
Figure 8.16 represents the ultimate hull girder interaction relationship of typical
merchant ships or offshore installations, described in Section 8.2, between vertical
and horizontal bending moments, obtained by the ALPS/HULL intelligent supersize
finite element method described in Chapter 13, accounting for the effects of initial
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Figure 8.15 (Continued )
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Figure 8.16 Ultimate hull girder strength interactive relationship between vertical and horizontal
bending moments obtained by the ALPS/HULL intelligent supersize finite element method.
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imperfections. It is evident that the effect of horizontal moment on the ultimate hull
girder strength is of significance, and Equation (7.55) can be used to predict the ultimate
hull girder strength under combined vertical and horizontal bending moments. It is
noted that the horizontal bending moment is typically not the maximum when the ver-
tical moment is the maximum, and thus a relevant consideration for load combination is
necessary in performing a design check using the results of Figure 8.16.

8.11.2 Combined Vertical Bending and Shearing Force

The hull girder collapse under combined vertical bending moment and shearing forces
can be evaluated using Equation (7.56a). Figure 8.17 shows the ultimate hull girder
strength interaction relation of typical merchant ships or offshore installations, described
in Section 8.2, under combined vertical bending moment and shear forces. The ultimate
hull girder strengths predicted from Equation (7.56a) are compared with ALPS/HULL
intelligent supersize finite element method solutions as described in Chapter 13. It is
considered that Equation (7.56a) is in reasonably good agreement with more refined
method solutions.

8.11.3 Combined Horizontal Bending and Shearing Force

The hull girder collapse under combined horizontal bending moment and shearing
forces can be evaluated using Equation (7.56b). Figure 8.18 shows the ultimate hull girder
strength interactive relationship of typical merchant ships or offshore installations,
described in Section 8.2, under combined horizontal bending moment and shear forces.
The ultimate hull girder strengths predicted from Equation (7.56b) are compared with
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ALPS/HULL intelligent supersize finite element method solutions, taking into account
the effects of initial imperfections, as described in Chapter 13. It is considered that
Equation (7.56b) is in reasonably good agreement with more refined method solutions.

8.11.4 Combined Vertical Bending, Horizontal Bending, and Shearing Force

Applying an approach similar to that presented in Section 3.8, an interactive relationship
involving the three load components, namely, vertical bending, horizontal bending, and
shearing forces can be derived based on three sets of the interactive relationships
between two load components each, that is, MV−MH relationship, MV−F relationship,
andMH−F relationship. Figure 8.19 shows a schematic representation of the process for
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deriving the interaction relationship between three load components. The resulting
interaction equation is then given by

Γu =
MV

MVuFVR

c1

+
MH

MHuFHR

c2

−1 = 0 8 14

where FVR = 1− F Fu
c4 1 c3 , FHR = 1− F Fu

c6 1 c5 , c1 and c2 are the coefficients
defined in Equation (7.55), and c3–c6 are the coefficients defined in Equation (7.56). Γu thus
represents the ship hull collapse function, where FVR and FHR indicate reduction factors
due to shearing force. If the value of Γu is less than zero, that is, Γu < 0, then the ship hull
is considered to be in a collapse-free condition, but it will possibly collapse if Γu ≥ 0.

8.11.5 Effect of Torsional Moment

In vessel hull structures, warping displacements are normally only partly restrained, and
thus the analysis of warping stresses as well as hatch opening deformations is in principle
an essential part of the structural response analyses of vessels. Related to the effect of
torsion on the bending moment capacity, however, it has been realized that torsion is
not a very sensitive load component affecting the ultimate vertical bending moment
of ship hulls as long as the magnitude of torsion is not predominant (Paik et al.
2001). However, it should also be noted that the ultimate bending strength of ship hulls
with low torsional rigidity can be reduced significantly when torsional moments are
large. Figure 8.20 shows the ultimate hull girder strength interaction relation of container
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Figure 8.20 Ultimate strength interactive relationship for a container vessel under combined vertical
bending and torsional moments obtained by the ALPS/HULL intelligent supersize finite element method.
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vessels under combined vertical bending and torsional moments obtained by the
ALPS/HULL intelligent supersize finite element method described in Chapter 13. It is
apparent that Equation (7.58) can be used to predict the ultimate hull girder strength
in this case.

8.12 Shakedown Limit State Associated with Hull
Girder Collapse

One of the hull girder collapse accidents is the MOL COMFORT accident of an 8000
TEU containership occurred on June 17, 2013. Extensive investigations of the causes
associated with the accident have been undertaken (ClassNK 2014), but some uncer-
tainty still exists (Koh & Paik 2016). Exiting methodologies for calculating the ultimate
hull girder strength presume that the hull girder loads are applied monotonically.
However, hull girder loads are likely to be cyclic in accordance with wave actions,
and furthermore several hull girder loads could be extreme even though they may not
lead to hull girder collapse. In this case, load effects in local regions may well exceed yield
stress resulting in plastic behavior.
Shakedown occurs when a structure responds steadily under cyclic loadings within

appropriate limits after one or a few cycles of loading. Shakedown theorems have been
developed to examine the plastic behavior of continua and structures that are subjected
to cyclic loadings of relatively large ranges. Elastic shakedown means that a structure
always responds elastically after initial plastic flow during earlier loading cycles. Elastic
shakedown limits can be used to assess the safe range of the cyclic loading of a structure.
The term “shakedown” was coined by Gruning in 1929. Melan (1938) described a more
general theorem referred to as static shakedown, and Koiter (1956) subsequently pre-
sented a kinematic shakedown theorem. These theorems were summarized by Williams
(2005) as follows:

•Melan’s static shakedown theorem (lower bound) states that

if any system of self-equilibrating residual stresses can be found which, in combi-
nation with the stresses due to the cyclic load, do not exceed yield at any time, then
elastic shakedown will take place.

• Koiter’s kinematical shakedown theorem (upper bound) states that

if any kinematically acceptable mechanism of incremental plastic collapse can be
found in which the rate of work done by the elastic stresses due to the load exceeds
the rate of plastic dissipation, then incremental collapse will take place.

Jones (1975) noted that “these theorems can be used to predict the magnitude of the
shakedown load but they do not provide any information on the number of load cycles
required to reach a shakedown state.” In general, the shakedown theorem can be used
directly to determine whether any shakedown state exists in a structure and, if it does
exist, to define the shakedown load range.
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Figure 8.21 presents the different forms of structural responses under cyclic loadings
with different load ranges. If the load is lower than the first yield load of the structure,
then the response will be wholly elastic as shown in Figure 8.21a. In this situation, the
structure may eventually fail after a large number of load cycles due to high-cycle fatigue,
which is of interest for the design service life of the structure. When the cyclic load falls
between the first yield and the static ultimate load, three types of elastic–plastic behavior
may occur as shown in Figure 8.21b elastic shakedown, (c) plastic shakedown, and (d)
ratchetting. In the elastic shakedown case (b), plastic flow occurs in the first or initial
few cycles, which produces a self-equilibrating residual stress or residual strain in the
structure, such that subsequently the structure exhibits only an elastic response. At
higher load case (c), each loading cycle leads to both the elastic and plastic deformations
of the structure. The display of a steady state of noncumulative cyclic plasticity can be
called plastic shakedown. Structures exhibiting plastic shakedown will fail after a finite
number of loading cycles due to low-cycle fatigue (Abdel-Karim 2005). Under larger
load case (d), each loading cycle generates net increments of plastic deformation, which
accumulates until the incremental collapse of the structure occurs.
The unloading and reloading processes, together with any residual stress distribution for

the elastic shakedown state of a beam, are described in the literature (Hodge 1959, Konig
1971, Sawczuk 1974, Jones 1975, Borkowske &Kleiber 1980,Williams 2005). It is apparent
that under cyclic loading, in addition to high-cycle fatigue due to exhaustion of the service
life in the case corresponding to Figure 8.21a, a structure may fail under a loading that is
lower than the ultimate monotonic loading, as marked by the black point in Figure 8.21d.
In general practice, therefore, a structure is theoretically safe up to the elastic shakedown
limit for its entire service life. In other words, the corresponding elastic shakedown limit
can be treated as a kind of cyclic load-carrying capacity of the structure.
Shakedown theorems were first applied to ships’ hull girders by Jones (1975), who

modeled a ship as a beam without taking the limitation of buckling into account. His
results showed that the vertical bending moments associated with an elastic shakedown
limit are always lower or at most equal to the static ultimate vertical bending moments.
He suggested that the shakedown limit should be used as a basis for failure evaluation
rather than the ultimate strength as described in Section 8.8.

Load

Ultimate strength

Elastic limit

(a) (b) (c) (d)

Deformation

Figure 8.21 Structural responses under cyclic loadings with different ranges: (a) elastic; (b) elastic
shakedown; (c) plastic shakedown (cyclic collapse); (d) ratchetting (incremental collapse).
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The shakedown phenomenon was developed for infinitesimal displacements, as in
classical beam theory, and is discussed further by Jones (1976). However, the phenom-
enon of pseudo-shakedown was introduced in Jones (1973) for a rigid, perfectly plastic
rectangular plate subjected to repeated dynamic pressure pulses. Pseudo-shakedown
may develop only in a rigid-plastic structure that is subjected to identical repeated loads
producing stable finite deflections (e.g., axially restrained beams, circular, rectangular,
and arbitrarily shaped plates, and axially restrained cylindrical shells). This phenomenon
has been observed for the repeated wave impact of ship bows (Yuhara 1975) and analyzed
successfully with a pseudo-shakedown analysis (Jones 1977). Some more details about
the pseudo-shakedown phenomenon can be found in Jones (1997).
Jones (1975) applied these theorems to calculate the elastic shakedown limit of a ship’s

hull girder without considering any residual bending moment by idealizing the ship as a
beam with free ends. Zhang et al. (2016) extended these theorems to calculate the elastic
shakedown of a ship’s hull girder that takes local buckling effects into account.

8.13 Effect of Age Related Structural Degradation

Aging ship hull structures may have suffered structural degradation such as corrosion
and fatigue cracks over time. As general corrosion uniformly reduces the wall thickness
of structural members, the ultimate strength or effectiveness of primary strength mem-
bers can be evaluated by excluding the corrosion diminution (reduction in thickness).
For structural members with fatigue cracks, the cross-sectional area associated with
the cracking damage may in turn be reduced in strength calculations, as described in
Chapters 4 and 9.
Age related damage is essentially time dependent, and subsequently the ultimate hull

girder strength with age related damage is also time dependent. Paik et al. (2003) inves-
tigated the time-dependent ultimate hull girder strengths of selected vessels. Figure 8.22
shows the effects of age related damages on the ultimate hull girder strength of a 105 000
DWT double hull oil tanker over time. It is apparent from Figure 8.22 that the ultimate
hull girder strength decreases as the vessel gets older because the corrosion depth and
cracking size (length) grow over time.
To efficiently keep the ship’s safety and reliability higher than a critical level, a proper

and cost-effective scheme of repair and maintenance must be established, and repair
strategies of heavily damaged members should be considered. The classification society
rules usually require keeping the longitudinal strength of an aging ship at the level of
higher than 90% of the initial state of new building. While the rule requirement is in fact
based on the ship’s section modulus, it may also be applied for establishing repair
schemes so that the ultimate hull girder strength of an aging ship must be greater than
90% of the original ship even later in life.
The renewal criterion of any structural member is based on the member’s ultimate

strength rather than the plate thickness. This is because the latter approach, which is
based on the percentage of member thickness loss, cannot reveal the effects of fatigue
cracking or local dent damage and even pit corrosion, while it may properly handle
the thickness reduction due to uniform corrosion. On the other hand, the former
approach, which is based on member’s ultimate strength, is adequate to measure the
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reduced strength of damaged structures. In the former approach, therefore, any struc-
tural member category will be repaired if the percentage of its ultimate strength loss
due to age related degradation and/or mechanical denting exceeds a critical value.
Figure 8.23 shows the time-dependent ultimate hull girder strength of a 105 000 DWT

double hull oil tanker after repair of heavily damaged structural members so that the
ultimate hull girder strength must always be greater than 90% of the original state.
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Figure 8.22 Time-dependent ultimate hull girder strength of a 105 000 DWT double hull oil tanker with
age related deterioration in (a) hogging and (b) sagging.
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It is apparent from Figure 8.23 that the structural safety of aging vessels can be controlled
by proper repair and maintenance strategies and repair criteria based on the member’s
ultimate strength can be better controlled.
For more applied examples in ship hulls with age related damage, interested readers

may refer to Paik (1994), Paik et al. (1998a, 2003), and Kim et al. (2012, 2015a), among
others.
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Figure 8.23 Repair and the resulting time-dependent ultimate hull girder strength of a 105 000 DWT
double oil tanker with age related deterioration in (a) hogging and (b) sagging.
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8.14 Effect of Accident Induced Structural Damage

The various approaches to plate assemblies described in Chapter 7may also be applied to
account for the effect of accident-related structural damage such as local denting on the
ultimate strength of ship hull structures, where the buckling and ultimate strength of
damaged plate elements can be evaluated as described in Chapters 4 and 10. The
damaged parts may be excluded from the calculations of effective plate width and the
ultimate strength of individual members involving the damage when the damage is sig-
nificant enough in size or extent. Even for structural members subject to tension, similar
exclusion may be applied as long as they have suffered serious structural damage.
Figure 8.24 shows an illustrative example of a 307 000 DWT double hull tanker

hull cross section with collision or grounding-induced damages. Figure 8.25 shows a

CL

Neutral axis, intact

Grounding damage region

Collision damage 

region

Figure 8.24 A 307 000 DWT double hull oil tanker’s hull cross section with collision or grounding
damage.

Figure 8.25 A nonlinear finite element method model for the progressive hull collapse analysis of a
double hull oil tanker with grounding damage.
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nonlinear finite element method model for the ship with grounding damage. While the
grounding damage is present in bottom structures, the collision damage exists from the
upper side shell to a known or predefined extent. In the analysis, the damaged members
in both tension and compression are excluded. The residual strength ratio can be defined
as the ratio of the strength measure of the damaged ship to that of the intact ship based
on either the section modulus or the ultimate hull girder strength. Figure 8.26 shows the
variation of the residual strength ratio as a function of such grounding or collision dam-
age amount. The ultimate hull girder strength with grounding or collision damages is
computed by the ALPS/HULL intelligent supersize finite element method described
in Chapter 13. These results are obtained subject to the assumption that the damaged
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Figure 8.26 Effect of accident induced damage on the residual strength ratio for a 307 000 DWT double
hull oil tanker with (a) grounding damage and (b) collision damage.
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neutral axis is parallel to the original and should thus be viewed as notional, especially for
any significant amount of damage. It is apparent from Figure 8.26 that the accident
induced damages can significantly reduce the safety measure of ship’s hulls.
As described in Section 7.7, it is highly desirable to assess the residual ultimate strength

of damaged ship structures quickly and accurately to facilitate the rapid planning of sal-
vage and rescue operations immediately after accidents where the location and extent of
the damage is known. Paik et al. (2012) proposed a method using the residual strength–
damage index diagram (R-D diagram), which is established in advance. Figure 8.27 shows
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Figure 8.27 The residual ultimate strength-grounding damage index diagrams for (a) a VLCC class
double hull oil tanker; (b) a Suezmax-class double-hull oil tanker; (c) an Aframax-class double-hull oil
tanker and (d) a Panamax-class double-hull oil tanker.
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an example of such R-D diagrams associated with the residual ultimate hull girder
strength with grounding damage for various sizes of double hull oil tankers, established
by Paik et al. (2012). Youssef et al. (2017) established the R-D diagram for a ship damaged
by collisions.
Formore applied examples in ship hulls with accident-related damage, interested read-

ers may refer to Paik et al. (1998b, 2012), Kim et al. (2013a, 2013c, 2014a, 2014b, 2015b),
and Youssef et al. (2014, 2016, 2017), among others.
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9

Structural Fracture Mechanics

9.1 Fundamentals of Structural Fracture Mechanics

Under the action of repeated loading, fatigue cracks may form in the stress concentration
areas of a structure. Initial defects may form in the structure during the fabrication pro-
cedure and may conceivably remain undetected over time. Cracks may initiate and prop-
agate from such defects. In addition to propagation under repeated cyclic loading, cracks
may also grow in an unstable manner under monotonically increasing extreme loads, a
circumstance that can conceivably lead to catastrophic failure of the structure. This pos-
sibility is of course tempered by the ductility of the material involved and the presence of
reduced stress intensity regions in a complex structure that may serve to arrest cracks,
even in an otherwise monolithic structure.
For residual strength assessment of aging structures under extreme loads, it is thus

often necessary to account for a known (existing or premised) crack as a parameter of
influence. This chapter is primarily concerned with the limit state assessment of plated
structures with existing crack damage and under monotonic extreme loading. The prop-
agation of a crack under cyclic loading is also briefly treated, because such technology
may be necessary to predict the size of a crack subject to cyclic loading, at any given point
in time, beginning with a known initial crack size.
Structural fracture modes associated with cracks may be classified into three groups:

brittle fracture, ductile fracture, and rupture (Machida 1984). When the strain at which a
material fractures is very low, it is called brittle fracture. In structures made of ductile
material with adequate fracture toughness, however, the fracture strain can be compar-
atively large. When the material is broken by necking associated with large plastic flow, it
is called rupture. Ductile fracture is an intermediate failure mode between brittle fracture
and rupture.
The progress of ductile fracture from an existing sharp-tipped crack may be separated

into four regimes: blunting of the initially sharp crack tip, initial crack growth, stable
crack growth, and unstable crack propagation (Shih et al. 1977). The ductile fracture
characteristics generally depend on the material’s toughness, but it can also be affected
by the loading rate and by environmental factors such as corrosion and temperature. For
high-toughness materials, the crack tip may be significantly blunted and the stable crack
growth regime can be substantial before fracture. For low-toughness materials, however,
there is likely to be relatively little crack tip blunting, and unstable crack extension can
occur even without a stable crack growth regime.
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In the rare situation in which the structure has been weakened by large cracks or large-
scale plasticity associated with cracks, resulting in a decrease in structural stiffness, large
deformations are likely to develop. Figure 9.1 shows a schematic representation of the
nonlinear behavior of cracked structures under monotonic loading. It is noted that,
for similar structures, the stiffness and ultimate strength of cracked structures are, as
expected, less than those of structures without cracks.
Fracture behavior for ductile materials is quite different from that of brittle materials.

Ductile materials generally exhibit slow stable crack growth accompanied by consider-
able plastic deformation. In other words, they resist crack growth during crack extension.
The study of the fracture behavior of materials, components, and structures is now
known as structural fracture mechanics. Structural fracture mechanics is hence the engi-
neering discipline that can be used to quantify the conditions under which a load-bearing
structure can fail due to the enlargement of a crack.
It is commonly agreed that the modern era of structural fracture mechanics originated

with the work of Griffith (1920), who resolved the infinite crack tip stress dilemma inher-
ent in the use of the theory of elasticity for cracked structures. However, for some time
the study of fracture remained of scientific interest only. One reason for this was the
apparent non-applicability of the Griffith theory to engineering materials (i.e., metals)
whose fracture resistance values are typically orders of magnitude greater than that of
brittle materials such as glass.
The next major contributions to the subject were made independently by Irwin (1948)

and Orowan (1948), who extended Griffith’s approach to metals by including the energy
dissipated by local plastic flow. During this same period, Mott (1948) extended Griffith’s
theory to rapidly propagating cracks.
Irwin (1956) developed the concept of energy release rate and related it to Griffith’s

theory. Using the approach of Westergaard (1939), who developed a method to analyze
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Figure 9.1 A schematic representation of the cracking damage effect on the ultimate strength
behavior of plated structures.
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stresses and displacements ahead of a sharp crack, Irwin (1957) showed that the stresses
and displacements near the crack tip could be described with a single parameter that was
related to the energy release rate. This crack tip-characterizing parameter is the stress
intensity factor. During the same period, Williams (1957) also calculated the stress dis-
tribution at the crack tip but used a somewhat different technique from the Irwin
approach. Both results were essentially identical.
Linear elastic fracture mechanics (LEFM) is generally found to be accurate for brittle

materials. Direct application of LEFM to ductile materials has been found to yield
overly conservative predictions. In the 1960s, it was realized that LEFM is not applica-
ble when large-scale yielding at the crack tip precedes failure. To accommodate the
effect of yielding at the crack tip, several researchers proposed approximate methods,
mostly by correcting and expanding on LEFM (Dugdale 1960, Wells 1961, 1963, Bare-
nblatt 1962). Although Dugdale (1960) proposed an idealized model based on a narrow
strip of yielded material at the crack tip, Wells (1961, 1963) suggested displacement of
the crack faces as an alternative fracture criterion when large-scale plasticity occurs at
the crack tip. The Wells parameter is now known as the crack tip opening displace-
ment (CTOD).
Rice (1968) introduced another parameter to characterize the nonlinear material

behavior ahead of a crack tip. He generalized the energy release rate to nonlinear
materials by idealizing plastic deformation as nonlinear elastic. The resulting
parameter is the J-integral. During this same period, Hutchinson (1968) and Rice
and Rosengren (1968) showed that the J-integral could be used to represent the
characteristics of crack tip stress fields in the nonlinear elastic range of material
behavior.
To apply fracture mechanics to structural design, a mathematical relationship between

material toughness, stress, and flaw size must be established. Although these relation-
ships for linear elastic problems had been available for some time, Shih and Hutchinson
(1976) were perhaps the first to provide the theoretical framework to establish such a
relationship for nonlinear problems. Shih (1981) also established a relationship between
the J-integral and CTOD.
For an elaborate summary of early structural fracture mechanics research under-

taken from 1913 to 1965, readers may refer to Barsom (1987). A comprehensive his-
torical overview of structural fracture mechanics from 1960 to 1980 was provided by
Anderson (1995). The details of structural fracture mechanics can be found in text-
books by Machida (1984), Kanninen and Popelar (1985), Broek (1986), Anderson
(1995), Lotsberg (2016), and others. Many handbooks are also available for practical
applications (e.g., Sih 1973, Tada et al. 1973, Rooke and Cartwright 1976, Mura-
kami 1987).
This chapter describes the fundamentals of structural fracture mechanics, with the

eventual aim of application to ductile structures. A simplified procedure for analysis
of the limit state capacity of plated structures with premised cracks under monotonic
extreme loads is presented. The ultimate limit state (ULS) criterion is still expressed
by Equation (1.17). However, in this case, the “capacity” represents the ultimate strength
of the cracked structure under monotonic extreme loads, and the “demand” indicates the
extreme working stress or load. Any mathematical details omitted in this chapter may be
found in the reference material noted earlier.
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9.2 Basic Concepts for Structural Fracture Mechanics Analysis

Figure 9.2 represents a schematic of appropriate approaches for the fracture analysis of a
cracked structure as a function of the material’s fracture toughness. It is apparent from
Figure 9.2 that for low-toughness materials, brittle fracture is predominant and LEFM is
valid. For very high-toughness materials, however, rupture is dominant because of the
large-scale plasticity that precedes structural collapse. In this case, limit-load analysis
is more relevant. There is a transition between brittle fracture and rupture with an inter-
mediate fracture toughness, which is termed the ductile fracture regime; in this case,
nonlinear fracture mechanics concepts, now generally termed elastic–plastic fracture
mechanics (EPFM), will be more relevant to assess the structure’s failure characteristics.
Inthis section, thesevariousbasicconceptsof structural fracturemechanicsaredescribed.

9.2.1 Energy-Based Concept

In the Griffith energy concept, fracture is considered to take place if the crack-growth-
related energy exceeds the material’s resistance to fracture. Mathematically, the follow-
ing criterion must be satisfied for fracture to occur:

G ≥GC 9 1

where G is the strain energy release rate or, alternatively, the crack driving force and GC

represents the material’s resistance to crack growth.
For a cracked infinite plate under tensile stress σ, as shown in Figure 9.3, it can be

shown that G and GC are given by

G =
πσ2a
E

9 2a

Fracture toughness

RuptureDuctile fractureBrittle

fracture

EPFM

σf = Failure stress

LEFM LLA

σf

σ

Figure 9.2 A schematic of appropriate approaches for fracture analysis as a function of material
fracture toughness (LEFM, linear elastic fracture mechanics; EPFM, elastic–plastic fracture mechanics;
LLA, limit-load analysis).
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GC =
π σ2f a
E

9 2b

where E is Young’s modulus, a is the half crack length, and σf is the failure stress.
It can be surmised from Equation (9.2) that the failure stress, σf, is proportional to 1/√a

for a constant value ofGC, implying that the failure stress decreases in that manner as the
flaw grows.

9.2.2 Stress Intensity Factor Concept

For a cracked body with a linear elastic material as shown in Figure 9.4, stress compo-
nents near the crack tip in the xy plane may be shown to be given by

σx =
KI

2πr
cos

θ

2
1−sin

θ

2
sin

3θ
2

9 3a

σy =
KI

2πr
cos

θ

2
1 + sin

θ

2
sin

3θ
2

9 3b

τxy =
KI

2πr
cos

θ

2
sin

θ

2
cos

3θ
2

9 3c

where KI is the mode I stress intensity factor. Mode I is the direct opening mode for a
crack; crack modes are addressed later.
The dimensions of the stress intensity factor are given by [stress] × [length]1/2 =

[force] × [length]−3/2 (e.g., kgf/mm3/2, MN/m3/2). It is evident from Equation (9.3) that
each stress component is proportional to the stress intensity factor.
For the cracked plate shown in Figure 9.3, the mode I stress intensity factor is given by

KI = σ πa 9 4

σ

σ

a

y
r

x
θ

–a

Figure 9.3 A cracked infinite plate under tensile
loading.

Structural Fracture Mechanics 425



From Equations (9.2a) and (9.4), one can obtain a relationship between KI and G if
necessary. In today’s LEFM, it is considered that the fracture occurs when the following
criterion is satisfied:

K ≥KC 9 5

where K is the stress intensity factor and KC is the critical stress intensity factor, which
represents a measure of the material’s resistance. It can be shown that the critical value of
the stress intensity factor is related to the critical value of the crack driving force by the
following equations:

KC = EGC forplane stress 9 6a

KC = 1−v2 EGC forplane strain 9 6b

Standard test procedures exist for obtaining the mode I plane strain fracture tough-
ness. Table 9.1 indicates a limited collection of such fracture toughness data for maraging
steels according to Broek (1986). It can be seen from Table 9.1 that the KIC values are
between 50 and 350 kg/mm3/2 for materials with a high yield strength, whereas those
with a low yield strength have fracture toughness of the order of 500 kg/mm3/2 or more.
Depending on the materials’ yield stress, the required specimen thickness may be on the
order of 2–20 mm, but test specimens thinner than about 10mm may not normally be
useable because of buckling. In any event, because the combination of a high toughness
and a low yield stress leads to extremely high values of (KIC/σY)

2, where σY is the material
yield stress, the required specimen thickness for a standard test may reach the order of
1 m, as indicated in Table 9.1.

B

Y

Z

Crack tip

Xσz

σy

σx r

τxz

τyz

τxy

θ

Figure 9.4 Local coordinate system and the resulting stress components for a cracked body
(B = plate thickness).
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In today’s practice, it is normally required that the following equation be satisfied for a
through-thickness crack in a plate of thickness B, if plane strain conditions are to be
assured at the crack tip in a static test:

B ≥ 2 5
KIC

σY

2

9 7

Apart from the fact that it is not practical to perform a valid KIC test on most ductile
materials, it is also not useful because materials with a thickness in the order of 1 m will
never be used. This shows one of the limitations of LEFM, which is that it is readily appli-
cable only to materials with a ratio of modulus to yield stress that is roughly lower than
200–250 at room temperature. Of course, LEFM may apply to low-strength steels at
lower temperatures and/or higher loading rates, conditions under which the same mate-
rial may behave in an appreciably more brittle manner. Such cases may or may not be of
interest in specific applications that involve through-thickness cracks. In cases in which it
can be used, once the crack situation (e.g., through-thickness crack in an infinite plate),
fracture toughness, and applied loading details are known, the critical crack size at failure
can be calculated with LEFM.

9.3 More on LEFM and the Modes of Crack Extension

In previous sections, we have based the discussion on mode I (direct tensile opening
mode) through-thickness crack in an infinite plate. In this section, the concept and appli-
cations of the stress intensity factor as a representative parameter in LEFM are further
described, also considering modes of crack extension other than mode I.
The stress intensity factor, K, is determined as a function of the crack size, geometric

properties, and loading conditions. An investigation of crack tip stress and displacement
fields and their relationship to K is important because these fields are typically those that
govern the fracture process at the crack tip.

Table 9.1 Illustrative collection of fracture toughness data for maraging steels (Broek 1986).

Material Condition σY (kg/mm2) KIC (kg/mm3/2) Bmin (mm)

300 900 F 3 h 200 182 2.1

300 850 F 3 h 170 300 7.8

250 900 F 3 h 181 238 4.3

D6AC steel Heat treated 152 210 4.8

Heat treated 150 311 10.7

Forging 150 178–280 –

4340 steel Hardened 185 150 1.7

A533B Reactor steel 35 630 810

Carbon steel Low strength 24 >700 2150

Note: Bmin =minimum thickness required for the KIC test specimen.
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A cracked body as shown in Figure 9.4 is now considered. The crack plane lies in the xz
plane, and the crack front is parallel to the y axis. In this case, three basic fracture modes
are relevant, as depicted by Figure 9.5. Mode I is the opening or tensile mode in which the
crack faces separate symmetrically with respect to the xy and xz planes. In mode II, the
sliding or in-plane shearing mode, the crack faces slide relative to each other symmet-
rically about the xy plane but asymmetrically with respect to the xz plane. In the tearing
or anti-plane or out-of-plane shearing mode, mode III, the crack faces also slide relative
to each other but asymmetrically with respect to the xy and xz planes.
For plane problems with homogeneous, isotropic, and linear elastic materials, the

stress intensity factors that correspond to the three modes are given as follows (see Kan-
ninen & Popelar 1985, among others):

KI = lim
r 0

σy θ = 0 2πr 9 8a

KII = lim
r 0

τxy θ = 0 2πr 9 8b

KIII = lim
r 0

τyz θ = 0 2πr 9 8c

where r and θ are defined in Figure 9.4 and σy, τxy, and τyz are stress components defined
in Figure 9.4.
An elastic body with a crack length of 2a and under uniform tensile stress, σ, is

considered, although much of the treatment in Equations (9.9)–(9.12) is, in fact, more
general and is applicable to arbitrary types of loading and crack geometry. The local

(a) (b)

(c)

Figure 9.5 Three basic loadingmodes for a cracked body: (a) mode I, openingmode; (b) mode II, sliding
mode (or in-plane shear mode); (c) mode III, tearing mode (or out-of-plane shear mode).
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coordinate system of the body is defined as shown in Figure 9.4. The stresses and dis-
placements at the crack tip may be given as follows (Machida 1984):

σx

σy

τxy

=
KI

2πr
cos

θ

2

1−sin θ 2 sin 3θ 2

1 + sin θ 2 sin 3θ 2

sin θ 2 cos 3θ 2

9 9a

τxz = τyz = 0 9 9b

σz =
v σx + σy forplane strain state

0 forplane stress state
9 9c

u

v

w

=
KI

2μ
r
2π

cos θ 2 κ−1 + 2sin2 θ 2

sin θ 2 κ + 1−2cos2 θ 2

0

9 9d

where κ = 3 − 4v for the plane strain state and κ = (3 − v)/(1 + v) for the plane stress state,
KI = σ√(πa), a is the crack length, μ = E/[2(1 + v)], E is the elastic modulus, v is Poisson’s
ratio, and u, v, and w are the translational displacements in the x, y, and z directions,
respectively.
It is evident from Equation (9.9) that the stress or displacement components at the

crack tip include a common parameter, KI. The relative displacements used represent
a distance between the two crack surfaces. This type of displacement is called mode
I or the opening mode, as shown in Figure 9.5a.
A cracked body under shear stress τ is now considered. In this case, the stress and dis-

placement components are given as follows:

σx

σy

τxy

=
KII

2πr

−sin θ 2 2 + cos θ 2 cos 3θ 2

sin θ 2 cos θ 2 cos 3θ 2

cos θ 2 1−sin θ 2 cos 3θ 2

9 10a

τxz = τyz = 0 9 10b

σz =
v σx + σy forplane strain state

0 forplane stress state
9 10c

u

v

w

=
KII

2μ
r
2π

sin θ 2 3−v 1 + v + 1+ 2cos2 θ 2

−cos θ 2 3−v 1 + v −1−2sin2 θ 2

0

9 10d

where KII = τ√(πa). In this case, the displacements follow mode II, or the in-plane shear
mode, as shown in Figure 9.5b.
When the body is subjected to uniform shear stress, s, in the direction normal to the xy

plane, the stress and displacement components are given by

τxz

τyz
=

KIII

2πr

−sin θ 2

cos θ 2
9 11a

σx = σy = σz = τxy = 0 9 11b
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w=
2KIII

μ

r
2π

sin
θ

2
9 11c

u= v= 0 9 11d

where KIII = s√πa. In this case, the displacements follow mode III, or the anti-plane (or
out-of-plane) shear mode, as shown in Figure 9.5c.
For an angled crack, similar expressions of stresses and displacements can be relevant

(Anderson 1995). When the three modes noted earlier are combined, the stress or dis-
placement components may be given as a sum of those for each mode as follows
(Machida 1984):

σij r, θ =
1

2πr
KIf

I
ij +KIIf

II
ij +KIIIf

III
ij 9 12a

ui r, θ =
1
2μ

r
2π

KIg
I
i +KIIg

II
i + 4KIIIg

III
i 9 12b

where f Iij , f
II
ij , f

III
ij are the stress functions of θ for modes I, II, and III, respectively, as defined

in Equations (9.9)–(9.11), and g Ii ,g
II
i ,g

III
i are the displacement functions of θ for modes I, II,

and III, respectively, as defined in Equations (9.9)–(9.11).
It is apparent that the K parameters are independent of the coordinate system but are

affected by geometric properties and loading conditions (e.g., crack size, dimensions of
the structure); they can hence be used as the measure of crack extension resistance at the
crack tip as long as the structure remains in the linear elastic regime.

9.3.1 Useful K Solutions

In relation to LEFM, calculations of the stress intensity factor involve the largest part of
the work. Generally speaking, analytical approaches and numerical approaches can be
used to determine the stress intensity factors, and many essentially exploit the relation-
ships between K and the crack tip stress field previously described. Some useful K solu-
tions are now described below.
For plates with typical types of cracks under tensile stress as shown in Figure 9.6, the K

value for mode I is approximately given as follows (Broek 1986):

1) Center crack, see Figure 9.6a:

KI = Fσ πa 9 13a

where

F = sec
πa
b

1 2

2) Crack on one side, see Figure 9.6b:

KI = Fσ πa 9 13b

where

F = 30 38
a
b

4
−21 71

a
b

3
+ 10 55

a
b

2
−0 23

a
b

+ 1 12
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3) Crack on both sides, see Figure 9.6c:

KI = Fσ πa 9 13c

where

F = 15 44
a
b

3
−4 78

a
b

2
+ 0 43

a
b

+ 1 12

If the plate width were infinite, the solution in the first of the aforementioned three
cases would revert to the classical exact solution, namely, KI = σ√(πa) because F = 1 in
this case.

9.3.2 Fracture Toughness Testing

Recall that fracture occurs if the K value of the structure reaches the critical K value, KC,
namely,

K ≥KC 9 14

where KC is sometimes called the fracture toughness, which is typically determined
experimentally for a given material, crack, and loading situation. Under plane strain con-
ditions, the notation KIC is used. The fracture toughness parameter, KC or KIC, must be
obtained by testing. Widely accepted test methods exist for KIC, as noted in Section 9.2.2.

σ σ σ

σ σ σ

b

(a) (b) (c)

2a a a a

b b

Figure 9.6 Typical crack locations in a plate under tensile stress: (a) center crack; (b) crack on one
side; (c) crack on both sides.
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In such testing, KC is determined once the ultimate fracture loads (or failure loads) and
the crack sizes are obtained for amechanical test specimen with the stress intensity factor
known. In general, the fracture toughness, KC, is affected by strain rate, temperature, and
plate thickness. As the plate thickness decreases, the KC value tends to significantly
increase because the crack tip stress state approaches the plane stress case, and essen-
tially mode II or III based on shear fracture, andmixtures of these withmode I fracture, is
more likely to occur than pure mode I fracture.
For thicker plates, mode I fracture associated with the plane strain state is more likely

to occur. In this case, the fracture toughness, KC, is no longer a function of the plate
thickness. Figure 9.7 shows a schematic representation of the critical K value at the crack
tip versus the plate thickness. For a given plate thickness, in contrast to through-
thickness cracks, surface cracks may sometimes exhibit plane strain behavior because
of the related conditions at the crack tip.
It is noted that the critical stress intensity value given in this section, which is used as a

material parameter to define the fracture toughness, should strictly speaking be referred
to as the static fracture toughness because it relates to fracture under static loading.
Other fracture toughness measures are useful in other situations, such as dynamic frac-
ture toughness and crack arrest toughness, descriptions of which are beyond the scope of
the present book; interested readers are referred, for example, to Broek (1986).

9.4 Elastic–Plastic Fracture Mechanics

As is apparent from Equation (9.13) in LEFM, the failure stress, σf = KIC/F√(πa), at the
crack tip becomes infinite when the crack size, a, approaches zero. This is unrealistic
because in real structures that behave in a ductile manner, the crack tip is likely to yield,
and strictly speaking, LEFM may not be valid. For a body with relatively large flaws,
LEFM may, of course, be dealt with approximately using the K values to an extent, as

Plate thickness

Plane strain state

Plane stress state

C
ri

ti
ca

l 
K

C

KIC

(KC)max

Figure 9.7 A schematic representation of the critical KI value versus the plate thickness, B.
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long as the plastic zone at the crack tip is small. The better alternative in this regard is to
use the concepts of EPFM. As is now presented, the concepts of CTOD or the J-integral
accommodate the effect of yielding at the crack tip in a more rigorous manner. These
types of procedures are also variously called nonlinear fracture mechanics or post-yield
fracture mechanics, in addition to EPFM.

9.4.1 Crack Tip Opening Displacement

Beyond the general yield condition, plastic deformation is likely to occur at the crack tip.
The crack may propagate if the plastic strain at the crack tip exceeds a critical value. The
change in the stress at the yielded crack tip may be small when the effect of strain hard-
ening is neglected, and fracture will occur after large plastic deformation occurs at the
crack tip. To account for limited amounts of crack tip yielding as an extension of LEFM,
Dugdale (1960), Wells (1961, 1963), and Barenblatt (1962) independently introduced
cohesive yield strip zones extending from the crack tip to account for the inelastic
response of real materials in this region.
The CTOD concept as it is now used emanated from these early treatments. The plas-

tic deformation at the crack tip can be measured in terms of the CTOD. Wells (1961,
1963) considered that fracture occurs if the CTOD exceeds a critical value. In LEFM,
the crack opening displacement (COD) is given by (see Figure 9.8)

COD=2v=
4σ
E

a2−x2 9 15a

The maximum COD occurs at the center of the crack, that is, at x = 0, as follows:

CODmax =
4σa
E

9 15b

9.4.1.1 The Irwin Approach
Equation (9.15) is the elastic solution of crack problems, whereas most engineeringmate-
rials deform plastically. Strictly speaking, Equation (9.15) cannot be applied to the crack
problems that involve plastic deformations at the crack tip. The size (distance) of the
crack tip plastic zone can be approximately calculated by

KI

2π r∗p
= σY or r∗p =

K2
I

2π σ2Y
=
σ2a
2 σ2Y

9 16a

COD CTOD

2a
2ae = 2a + 2r*p

y

v

x

Figure 9.8 Crack opening displacement and CTOD.
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where σY is the material yield stress and r∗p is the size of the crack tip plastic zone as
shown in Figure 9.9.
Irwin (1956) assumed that due to the occurrence of plasticity, the equivalent crack tip

size becomes longer than the physical size. In this regard, the COD is given by applying
the plastic zone correction as follows:

COD=
4σ
E

a+ r∗p
2
−x2 9 16b

The CTOD is then found for x = a as follows:

CTOD δ=
4σ
E

a+ r∗p
2
−a2≈

4σ
E

2ar∗p =
4
π

K2
I

EσY
9 16c

Measurement of CTOD is not straightforward, but it can be obtained from Equation
(9.16c) by using the K value. By substituting Equation (9.16c) into Equation (9.16b), the
following relationship between COD and CTOD is approximately obtained by regarding

r∗p
2
as infinitesimal, namely,

COD=
4σ
E

a2−x2 +
E
4σ

2

δ2 9 16d

In testing, the COD can be measured easily so that the CTOD is determined from
Equation (9.16d) in terms of the maximum COD, that is, at x = 0.
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d d2a

d d2a

2b

d
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Figure 9.9 A schematic representation of the Dugdale approach (the shaded areas represent the
plastic zones): (a) actual plastic zone; (b) idealized plastic zone; (c) stress equilibrium.

Ultimate Limit State Analysis and Design of Plated Structures434



9.4.1.2 The Dugdale Approach
Dugdale (1960) treated yielding at the crack tip by replacing the yielded region with the
equivalent elastic (unyielded) crack model.
As shown in Figure 9.9a, the crack tip is likely to yield, and the yielding may expand

around the crack tip. In the Dugdale approach, however, yielding is assumed to be limited
inside a region along the straight line of the crack, as shown in Figure 9.9b. This situation
is considered equivalent to a virtual elastic structure with a crack length of 2b = 2a + 2d,
including the yielded region, and the yielded region is subjected to a “negative” internal
pressure (“tensile” stress) equal to the yield stress, σY, on the crack surfaces, which tends
to “close” the virtual crack strip yielding zone opening caused by the external stress, as
shown in Figure 9.9c. In this case, the K value at the tip of the virtual elastic crack must be
zero, and hence the following applies:

Kσ +KY = 0 9 17a

where Kσ is the K value due to applied stress σ and KY is the K value due to the closure
yield stress, which is taken as KY = −σY.
The extent of the plastic region, d, can be calculated using Equation (9.17a) as follows:

d = b−a= a sec
πσ

2σY
−1 9 17b

where σY is the material yield stress.
The CTOD value, δ, at x = amay approximately be considered as the CTOD of the real

structure, namely,

δ=
8aσY
πE

ln sec
πσ

2σY
9 17c

When σ σY, that is, representing small-scale yielding, Equation (9.17c) may be sim-
plified to

δ=
πσ2a
EσY

=
GI

σY
=

K2
I

EσY
=

J
σY

9 17d

where G is as defined in Equation (9.2a) and J is the J-integral value as defined in
Section 9.4.2.
When the finite element model is applied for EPFM analysis to obtain the CTOD for a

structure, the COD value at the crack tip is often approximately taken as the extrapolated
value, as shown in Figure 9.10 (Machida 1984).

9.4.1.3 CTOD Design Curve
The CTOD concept is now increasingly applied to fracture control of structural materi-
als. It is also used as a quality control measure in the offshore industry. In applying the
CTOD concept, it is considered that ductile fracture under a limited amount of crack tip
plasticity occurs if the CTOD, δ, reaches the critical COD value, δC. The critical value
involved may be determined by established test procedures as a function of factors such
as the material properties, the plate thickness, and the crack type.
However, consistent application of the procedure to a real structure necessitates EPFM

analysis tomodel crack tip behavior, for which special-purpose finite elementsmay be used.
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Because of this consideration, the CTOD has held greater attraction as a quality control
aid; the larger the CTOD for amaterial, the greater its toughness, so to speak. CTOD values
for some applications in this regard have been recommended based on successful
experience.
The nondimensionalized critical CTOD value, Φ, is normally defined by

Φ=
δC

2πεYa
9 18

where δC is the critical CTOD value, εY is the elastic yield strain, and a is the half crack
length.
To facilitate the applicability of the CTOD to real steel structural design, Burdekin and

Dawes (1971) and Dawes (1974) proposed the semiempirical expression of the normal-
ized critical CTOD value as a function of the failure strain, εf, as follows:

Φ=
εf εY

2 for εf εY ≤ 0 5

εf εY −0 25 for εf εY > 0 5
9 19

Although Equation (9.19) is primarily based on correlation test data for steel plates
loaded in tension, it is generally called the CTOD design curve and was in fact fitted
to the data to obtain “lower bound” or pessimistic predictions of fracture behavior.
Figure 9.11 plots Equation (9.19). In the CTOD design curve approach, a relevant
point associated with the applied strain and crack size in a structure along with the crit-
ical CTOD value for the material can be plotted in the figure. If the point lies above the
design curve, it is considered that the structure is safe; otherwise, fracture is predicted
to occur.
To apply the CTOD design curve approach to a complex structure, the British Stan-

dards document (BS 1980) suggests that the CTOD measure be based on the maximum
total strain in the structural cross section, εmax, which is estimated by

εmax =
1
E
Kt Sm + Sb + Ss 9 20

v: Nodal displacement

Crack

2

v

δ

Figure 9.10 Extrapolation of the COD value at the crack tip in finite element analysis.
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where Kt is the elastic stress concentration factor, Sm is the primary membrane stress, Sb
is the primary bending stress, Ss is the secondary stress including thermal or residual
stresses, and E is Young’s modulus.

9.4.2 Other EPFM Measures: J-Integral and Crack Growth Resistance Curve

9.4.2.1 The J-Integral
The concept of the J-integral is useful in the analysis of ductile fracture mechanics
involving small-scale plasticity at the crack tip in a somewhat rigorous way. The basic
work on the J-integral was contributed from a theoretical point of view, primarily by Rice
(1968) and by Hutchinson (1968). They envisaged a path-independent integral, called the
J-integral, calculated along a contour around the tip of the crack, as a parameter that
characterized the fracture behavior at the crack tip. The path independence of the
integral followed from the principles of energy conservation, and the integral is in theory
a nonlinear but elastic concept. Rice showed that the J-integral, when taken around a
crack tip, was also equivalent to the change in potential energy for a virtual crack
extension.
Without going into detail, within the context of LEFM, the following relationship

between the stress intensity factor and the J-integral can be shown to exist, namely,

J =G 9 21

Hence, within the range of validity of LEFM, the four fracture parameters thus far
introduced are all interrelated. For instance, for plane strain conditions in the “opening”
mode (i.e., mode I), it can be shown that

G = J =
1−v2

E
K2
I = δσY 9 22
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Figure 9.11 The CTOD design curve.
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In view of Equation (9.22), the issue of which of the four basic parameters involved in
LEFM is the “most basic” is of little consequence. However, it turns out that it is con-
siderably more important that J is potentially a better parameter to use when it becomes
necessary to select the basis of nonlinear fracture mechanics for elastic–plastic
conditions.
In seeking a fracture criterion that could predict fracture for both small- and large-

scale plasticities, Begley and Landes (1972) recognized that the J-integral provides three
distinct attractive features that make it useful for its intended purpose: (i) for linear elas-
tic behavior, it is identical to G; (ii) for elastic–plastic behavior, it characterizes the crack
tip region and hence would be expected to be equally valid under nonlinear conditions;
and (iii) it can be evaluated experimentally in a convenient manner. This last feature fol-
lows from the path-independent property of the J-integral and its energy release rate
interpretation.
The successful application of the J-integral to a case involving crack tip plasticity

depends on two factors: (i) the ability to calculate the integral for a specific crack situation
in a structure, which is evident in part from its path-independent property, although a
specific detailed analysis may be needed and (ii) the ability tomeasure the critical value of
the J-integral using an appropriate testing method, which will involve crack tip plasticity.
Regarding the second factor, recall that we no longer have a convenient relationship
between, say, J and K, as we did in LEFM. Without going into detail, the latter aspect
is facilitated by the fact that J can be determined from the load versus displacement dia-
gram for crack extension in a specific case, subject to the limitations of the deformation
theory of plasticity. For a complete explanation, interested readers may consult
Broek (1986).
As an illustration, consider the calculation of the J-integral in an example case in which

crack tip plasticity is involved, and the needed experimental results are available for a
plate with cracks under tensile loading, as shown in Figure 9.12a. The J-integral value
in the elastic–plastic case may be shown to be approximated by

J =G +
2
bB

u

0
Pdu−

1
2
Pu 9 23

where G is the strain energy release rate, B is the plate thickness, and
u

0
Pdu−1

2
Pu is

represented by the shaded area of the force–displacement curve shown in Figure 9.12b.
In Equation (9.23), G is normally given as a function of the K parameter. For mode

I fracture, the strain energy release rate, GI, is given by

GI =
κ + 1
8μ

K2
I 9 24

where κ and μ are defined in Equation (9.9).
For combined fracture modes, G is given by

G =
κ + 1
8μ

K2
I +K

2
II +

1
2μ

K2
III =

1
E∗ K2

I +K
2
II +

1
2μ

K2
III 9 25

where E∗ = E/(1 − v2) for plane strain state, E∗ = E for plane stress state, and μ is defined in
Equation (9.9).
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In applying the J-integral criterion to EPFM, it is then considered that fracture occurs if
the J-integral value of the structure reaches a critical J-integral value, JC, namely,

J ≥ JC 9 26

9.4.2.2 The Crack Growth Resistance Curve
The concepts described in the previous sections lead to fracture indices that are appli-
cable at the tip of a crack that is not propagating. For high-toughness materials, however,
the structure may not reach the ULS immediately after satisfaction of the fracture criteria
noted in the previous sections. This is to imply that even after initial crack extension,
further substantial stable crack growth can occur until the ULS is reached as a result
of unstable crack propagation. This might be true even under plane strain conditions
at the crack tip. The concept of the crack growth resistance, termed R (resistance), asso-
ciated with the potential energy required for crack extension is then useful to assess the
characteristics of stable crack growth and to predict the circumstances of failure. The
curve that represents the variation of R as a function of incremental crack extension
is called the crack growth resistance curve (or R curve).
The use of the J-integral as the crack driving force parameter in a resistance curve

approach was broached soon after the establishment of the J-integral as an elastic–plastic
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Figure 9.12 (a) Cracked plates under axial tensile loading; (b) the force-displacement curve of the plate
with cracks under tensile loading.
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fracture parameter by Begley and Landes (1972), but it was the work of Paris and his cow-
orkers (1979) that led to the acceptance of this concept. In essence, the crack growth
resistance curve concept was simply reformulated as JR = JR(Δa), where Δa denotes
the extent of stable crack growth. Fracture instability then occurs when dJ/da exceeds
dJR/da. Paris et al. formalized this concept by defining the parameters

T
E
σ20

dJ
da

9 27a

TR
E
σ20

dJR
da

9 27b

where σ0 is the material’s flow stress. The dimensionless parameter, T, is known as the
tearingmodulus, with its critical value TR = TR(Δa) taken to be a property of the material.
The Paris et al. concept is illustrated in Figure 9.13, and Figure 9.13a shows a typical

J–resistance curve. It is important to recognize that all such relationships have a finite
range of applicability. The limit is denoted by the value (Δa)lim, which can be estimated
from the ω parameter introduced by Hutchinson and Paris (1979), which is defined by

ω=
b
J
dJ
da

9 28

where b denotes the smallest relevant dimension from the crack tip to the boundary of
the cracked component.
Hutchinson and Paris showed that ω 1 for the theory to be valid, whereupon some

value of (Δa)lim will designate the largest amount of crack growth (and J-integral value)
for which the theory is valid. Assuming that the fracture instability point would occur
before (Δa)lim is reached, its determination can be readily found via the J–T diagram
shown in Figure 9.13b. Clearly, to use this approach, one requires the J–resistance curve

Applied

curve

(a) (b)

Material curve

Onset of

fracture

instability

J

Jlim

JIC

JR

Jlim

JIC

Onset of crack growth

T(Δa)lim Δa

Figure 9.13 A schematic representation of the tearing modulus prediction of fracture instability: (a) the
J–resistance curve; (b) the J–T diagram.
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(and some means to accurately determine its slope) and estimates of J and T for the
crack/structure/load conditions of interest.
The J–resistance curve will be unique only for limited amounts of stable crack growth;

otherwise, the curves would exhibit geometry dependence. To overcome this deficiency,
the J–resistance curve that properly reflects the degree of plastic constraint at the crack
tip must be used. The triaxiality that is known to determine the degree of plastic con-
straint varies significantly as the primary loading on the remaining ligament changes
from tension to bending. Thus, for extended amounts of crack extension, at least two
fracture parameters would in principle be required to characterize the intensity of the
deformation and the triaxiality.
For more elaborate descriptions, interested readers may refer to Machida (1984),

Broek (1986), and Anderson (1995), among others.

9.5 Fatigue Crack Growth Rate and Its Relationship
to the Stress Intensity Factor

Distinct from the stable crack extension or growth thus far described, the rate of cyclic
growth of a fatigue crack inmode I (direct tensile openingmode) has also been correlated
to fracture mechanics parameters such as the stress intensity factor or the energy release
rate. This is useful for predicting the growth of a known initial crack when subject to
cyclic loading.
Figure 9.14 illustrates the schematic variation in the crack size versus time in a cyclic

loading (fatigue) situation, as obtained by the integration of Equation (9.29). The initial
crack size, a0, may be detected by nondestructive examination or close-up surveys with
any certainty. The critical crack size, ac, at failure, usually under the tensile maximum

Failure

Timets

ac

ts = Service life 
a0 = Initial crack size
aa = Allowable crack size
ac = Critical crack size

a

aa

a0

0

Figure 9.14 A schematic of the crack size variation versus time.
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stress, can be computed from LEFM concepts where applicable, or estimated by other
means, including the need to avoid severing important structural member ligaments.
The maximum “allowable” crack size, aa, may then be defined by dividing the critical
crack size by a safety factor. In this regard, the service life of a structure can be consist-
ently defined as the time during which the crack size grows from its initial size to the
maximum allowable size.
In the LEFM approach, it has been recognized that the fatigue crack growth rate can be

related to the cyclic elastic stress field at the tip of a long crack subjected to low to inter-
mediate levels of cyclic stress (Paris et al. 1961). Later, investigators found that the crack
growth rate curve is not necessarily linear for all the ranges of ΔK on a log-log scale. The
general crack growth rate behavior for mode I cracks in metals is usually as shown in
Figure 9.15.
The sigmoidal shape of the crack growth curve in Figure 9.15 suggests a subdivision

into three regions. In region I, the crack growth rate goes asymptotically to zero as ΔK
approaches a threshold value ΔKth. This means that for stress intensities below ΔKth, no
crack growth occurs, that is, there is a fatigue limit.
A crack growth relationship for the threshold region was proposed by Donahue et al.

(1972) as follows:

da
dN

=C ΔK −ΔKth
m 9 29

The linear region of the log–log plot (i.e., region II) in Figure 9.15 follows a power law
(Paris & Erdogan 1960) as given by

da
dN

=C ΔK m 9 30

where da/dN represents the crack growth per cycle,ΔK is the stress intensity range at the
crack tip being considered, and C andm are material constants, obtained on the basis of
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L
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m
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Figure 9.15 Crack growth rate curve shows the three regions.
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test data. According to Equation (9.30), the fatigue crack growth rate, da/dN, depends
only on ΔK and is not sensitive to the R ratio as defined in Equation (9.31) in region
II. Equation (9.30) is often called the Paris–Erdogan law (or the Paris law).
Region III crack growth exhibits a rapidly increasing growth rate toward “infinity” as

the crack size increases, representing either ductile tearing and/or brittle fracture. This
behavior led to the relationship proposed by Forman et al. (1967), namely,

da
dN

=
C ΔK m

1−R KC−ΔK
9 31

where KC is the fracture toughness of the material and R is the K ratio defined by
R = Kmin/Kmax.
Crack growth rate relationships that attempt to combine the behavior at high, inter-

mediate, and low ΔK values also exist. Table 9.2 contains a sample collection of these
relationships. Given an initial crack size, when the crack growth rate is known, the crack
length at any instant of a structure’s life can be calculated via integration if the fatigue
loading history is also known. For further details, readers are referred to Broek
(1986), among others. Then, given the crack size and other related details, one can study
the effects of a fatigue crack on the ultimate strength, as described in the following
section.

9.6 Buckling Strength of Cracked Plate Panels

9.6.1 Fundamentals

The buckling behavior of cracked plates has been studied in the literature (e.g., Stahl &
Keer 1972, Roy et al. 1990, Shaw & Huang 1990, Riks et al. 1992, Lui 2001, Satish
Kumar & Paik 2004, among others). With the elastic buckling stress known, the critical
buckling stress may be determined by the plasticity correction using the Johnson–
Ostenfeld formulation method, as described in Section 2.9.5.1.

Table 9.2 Crack growth relationships covering all regions.

Crack growth relation Proposer

da
dN

=C
ΔK −ΔKth

KC−Kmax

m

,
ΔKth =A 1−R γ

0 5 < γ < 1 0

Priddle (1976), Schijve (1979)

da
dN

=C
ΔK
1−R n

m

, m= 4, n= 0 5
Walker (1970)

da
dN

=
A
EσY

ΔK −ΔKth
2 1 +

ΔK
KIC−Kmax

McEvily and Groeger (1977)

ΔKth =
1−R
1 +R

2

ΔK 0

da
dN

=
C 1 + β m ΔK −ΔKth

n

KC− 1 + β ΔK
, β =

Kmax +Kmin

Kmax−Kmin

Erdogan (1963)
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Satish Kumar and Paik (2004) calculated the elastic buckling loads of cracked plates
using the hierarchical trigonometric functions proposed by Beslin and Nicolas (1997),
where the plates have edge cracks or central cracks with varying the crack size in
2c/b = 0.1–0.5, in which 2c is the crack length, and b is the plate breadth, and they
are subjected to uniaxial compressive loads, biaxial compressive loads, or in-plane
shear loads.
The plate is discretized into several elements (each of dimension ai, bi, and hi) based on

crack location as shown in Figure 9.16a. Each element is represented by nondimensional
(ξ–η) coordinate system as shown in Figure 9.16b, such that the location of the element
corresponds to −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1.
The equilibrium equation of the ith element in the x–y coordinate system is given as

follows:

∂4wi

∂x4
+ 2

∂4wi

∂x2∂y2
+
∂4wi

∂y4
+
Nx

D
∂2wi

∂x2
+
Ny

D
∂2wi

∂y2
+ 2

Nxy

D
∂2wi

∂x∂y
= 0 9 32

where w is the lateral deflection of the plate; D is the flexural rigidity of the plate that is
defined as Et3 12 1−ν2 where E is the elastic modulus, t is the plate thickness, and ν is
the Poisson ratio; and Nx, Ny, and Nxy are axial loads in the x or y direction and shear
loads, respectively.
Equation (9.32) can be transformed in the ξ–η coordinate system for the ith element as

follows:

2Db
a3

1

−1

1

−1
w, 2ξξ +

a
b

4
wi, 2ηη + 2νwi

, ξξw
i
, ηη + 2 1−ν wi, 2ξη dξdη

+
1

−1

1

−1

b
2a

Nxw
i, 2ξ +

a
2b

Nyw
i, 2η +Nxyw

i
, ξη dξdη= 0

9 33

where a is the plate length and b is the plate breadth.

ai

b i i i + 1

i + 2 i + 3

ξ

η

C
ra

ck

(a) (b)

Figure 9.16 (a) Discretization of the plate with vertical edge crack into four elements; (b) ith plate
element in (ξ–η) coordinate system.

Ultimate Limit State Analysis and Design of Plated Structures444



The local displacement of the ith element is expressed using hierarchical trigonometric
functions as follows:

wi ξi,ηi =
Mi

m= 1

Ni

n= 1

qimnφm ξi φn ηi 9 34

where φm(ξ
i) and φn(η

i) are the trial functions, qmn is the amplitude of displacement,Mi

and Ni are the number of functions in x- and y-directions, respectively. The trigonomet-
ric set {φm(ξ

i)}is defined as follows:

φm ξ = sin amξ+ bm sin cmξ+ dm 9 35

where coefficients am, bm, cm, and dm are given in Table 9.3.
The given functions enable the assembly of elements using displacement and slope

compatibility across the boundaries of the connecting elements. Interested readers
may consult Barrette et al. (2000). The various boundary conditions of the plate can
be satisfied by selectively choosing the first four trigonometric functions (Beslin &
Nicolas 1997).
Applying the Rayleigh–Ritz method, the element stiffness matrix of the ith element can

be obtained as follows:

K i
p = K i

pmnrs =
4Dibi

a3
I22mrI

00
ns +

ai

bi

4

I00mrI
22
ns + ν

i ai

bi

2

+ I20mrI
02
ns + I

02
mrI

20
ns + 2 1−νi

ai

bi
I11mrI

11
ns

9 36

The geometric stiffness matrix of the ith element is then given as follows:

K i
Gp = Ki

Gpmnrs = Nx
bi

ai
I11mrI

00
ns +Ny

ai

bi
I00mrI

11
ns +Nxy I10mrI

01
ns + I

01
mrI

10
ns

9 37a

where Iαβmr is defined by the integrals as follows:

Iαβmr =
+1

−1

−dαφm ξ

dξα
−dβφr ξ

dξβ
dξ 9 37b

Table 9.3 Coefficients am, bm, cm, and dm relative to trigonometric
set φm ξ = sin amξ+ bm sin cmξ+ dm .

m am bm cm dm

1 π/4 3π/4 π/4 3π/4

2 π/4 3π/4 π/2 3π/2

3 π/4 −3π/4 π/4 −3π/4

4 π/4 −3π/4 π/2 −3π/2

>4 π/2(m − 4) π/2(m − 4) π/2 π/2(m − 4)
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The assembly of the stiffness and geometric stiffness matrices is carried out using the
displacement and slope compatibility conditions (Barrette et al. 2000). Using the varia-
tional principle to the entire cracked plate, the eigenvalue problem is given as follows:

K −λk KG = 0 9 38

where [K] and [KG] are the global stiffness matrix and the global geometric stiffness
matrix of the cracked plate, respectively, and λk is the buckling load.
Equation (9.38) can be used to determine the buckling loads of cracked plates. The

finite element method solutions are also obtained using the discrete Kirchhoff–Mindlin
triangular (DKMT) element (Satish Kumar & Mukhopadhyay 2000) to validate the ana-
lytical solutions. The DKMT element is capable to analyze both thin and thick plates due
to its numerical flexibility by eliminating the effects of transverse shear in thin plates.
The dimensions of the plates to be analyzed are a × b × t = 1000mm× 1000mm× 10mm

in case of square plate and a × b × t = 2000 mm × 1000 mm × 10 mm in case of rectan-
gular plate with aspect ratio of 2. The material properties are E = 205.8 GPa and ν = 0.3.
The plate is simply supported at all four edges. The buckling loads are presented in a
nondimensionalized form in terms of buckling parameter, λ =Nxb

2/(π2D) for axial
compression, or λ =Nxyb

2/(π2D) for edge shear.

9.6.2 A Plate with Edge Crack in Uniaxial Compression

Elastic buckling of a simply supported plate under uniaxial compressive loads is consid-
ered when the plate has vertical edge crack or horizontal edge crack. The plate is divided
into 2 × 2 elements. Figure 9.17a and b show the variation of buckling loads of a square
plate (a/b = 1) with vertical and horizontal edge cracks, respectively. Figure 9.17c shows
the buckling behavior of a rectangular plate (a/b = 2) with varying crack size.
Twelve trigonometric functions (each in x- and y- directions) are used in the present

computation. The results using the proposedmethod are found to comparewell with those
obtained using the finite element method. Table 9.4 shows the nondimensionalized buck-
ling factors of the first fivemodes for a square plate with vertical edge crack. The analysis is
carried out using eight trigonometric functions and also using 12 trigonometric functions.
When the crack size is very small (i.e., 2c/b ≤ 0.2), the buckling strength of the plate is the
same as that of intact (uncracked) plate. However, when 2c/b > 0.3, the plate witnessed
reduction in buckling strengths. The decrease is found to be significant at higher modes.
It is observed that the loads are estimated accurately with eight trigonometric func-

tions, and there is no significant improvement with increased number of functions.
The present analysis is carried out with 2 × 2 mesh irrespective of plate size. In the con-
ventional finite element method, the analysis requires variable number of elements based
on plate size. Therefore, the present method provides an efficient solution with a few
number of elements and equations, eliminating the rigors involved in modeling the
cracked plates.

9.6.3 A Plate with Central Crack in Uniaxial Compression

Figure 9.18a and b show the variation of buckling parameter of a plate with horizontal
and vertical central cracks, respectively, under uniaxial compressive loads. The plate is
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Figure 9.17 Variation of buckling parameter of a plate under uniaxial compressive loads: (a) a/b = 1
with vertical edge crack; (b) a/b = 1 with horizontal edge crack; (c) a/b = 2 with vertical edge crack.



divided into 2 × 3 elements due to the presence of a central crack. The buckling factors
are computed using 12 trigonometric functions.
The elastic buckling load is found to reduce with increase in crack size. At higher

modes, the reduction is noticed to be significant in case of plate with horizontal central
crack. The results obtained by the proposed method compare excellently with those
obtained using the finite element method. Table 9.5 shows the buckling loads of a plate
with vertical central crack. The loads are computed using 8 and 12 trigonometric func-
tions in each element of the plate. The results are found to converge with eight trigono-
metric functions.

Table 9.4 Nondimensionalized buckling loads, λ of the plate (a/b = 1) with vertical edge crack
under axial compressive loads.

Crack size, 2c/b Mode FEM Theory (8 × 8) Theory (12 × 12)

0.1 1 4.01 4.04 4.01

2 6.26 6.26 6.25

3 11.15 11.11 11.11

4 16.01 16.00 15.94

5 18.21 18.09 18.06

0.2 1 4.00 4.01 3.99

2 6.26 6.25 6.25

3 11.07 11.02 11.03

4 15.99 15.99 15.98

5 18.20 18.09 18.07

0.3 1 3.94 3.95 3.91

2 6.26 6.25 6.25

3 10.53 10.57 10.24

4 15.84 15.83 15.69

5 16.42 16.55 15.84

0.4 1 3.76 3.79 3.75

2 6.26 6.25 6.25

3 9.14 9.27 9.11

4 14.74 14.74 14.66

5 15.06 14.98 14.92

0.5 1 3.44 3.50 3.45

2 6.25 6.24 6.24

3 7.82 7.97 7.84

4 12.77 12.63 12.53

5 14.49 14.40 14.39
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9.6.4 A Plate with Edge or Central Crack in Edge Shear

Figure 9.19a and b shows the variation of elastic shear buckling parameter of a square
plate (a/b = 1) with vertical edge or central crack. The plate is divided into 2 × 2 elements
to estimate the buckling load. The buckling parameters are computed using 12 trigono-
metric functions in each element in x- and y-directions. The results are found to compare
excellently with those obtained by the finite element method. The increase in the number
of trigonometric functions did not show any influence in convergence. Figure 9.19c
shows the variation of buckling parameter in a rectangular plate (a/b = 2) with vertical
edge crack under in-plane shear load.
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Figure 9.18 Variation of buckling parameter of a plate under uniaxial compressive loads: (a) a/b = 1
with vertical central crack; (b) a/b = 1 with horizontal central crack.
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9.6.5 A Plate with Vertical Edge Crack in Biaxial Compression

A simply supported square plate with vertical edge crack as shown in Figure 9.20 is ana-
lyzed under biaxial compressive loads, where the crack size is varied with 2c/b = 0.3 and
0.5. The plate is divided into 2 × 2 elements, and the analysis is carried out using 8 trig-
onometric functions and also 12 trigonometric functions. Table 9.6 indicates the buck-
ling parameter by comparison with the analytical solutions and the finite element
method solutions. There is no significant variation in the results obtained using 8 trig-
onometric functions and those obtained using 12 functions. The buckling loads are
found to decrease with increase in crack size as expected.

9.7 Ultimate Strength of Cracked Plate Panels

9.7.1 Fundamentals

It is well recognized that plated structures may have suffered age related deterioration
such as fatigue cracking damage over time. The theories and methodologies described
earlier have primarily focused on how to characterize the initiation and propagation
of fatigue cracks due to repeated loading. As the cracking damage can reduce the ulti-
mate strength of a structure under monotonic extreme loading as illustrated in
Figure 9.1, it should be dealt with as a parameter of influence in the residual ultimate
strength calculations of a cracked structure associated with Equation (1.17).

Table 9.5 Nondimensionalized buckling loads, λ of the plate (a/b = 1) with vertical central crack under
uniaxial compressive loads.

Crack size, 2c/b Mode FEM Theory (8 × 8) Theory (12 × 12)

0.1 1 3.99 4.01 3.99

2 6.26 6.24 6.23

3 11.02 11.04 11.00

4 16.01 16.04 16.01

5 18.21 18.13 18.11

0.3 1 3.64 3.71 3.63

2 6.26 6.25 6.25

3 9.14 9.37 9.07

4 16.00 16.01 16.00

5 18.20 18.09 18.06

0.5 1 2.98 3.15 3.03

2 6.24 6.24 6.23

3 7.35 7.62 7.45

4 15.90 15.89 15.86

5 16.60 17.16 16.66
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Figure 9.19 Variation of buckling parameter of a plate under edge shear: (a) a/b = 1 with vertical edge
crack; (b) a/b = 1 with vertical central crack; (c) a/b = 2 with vertical edge crack.



Fatigue cracking is often observed in a stiffened
plate structure along the weld intersection between
the plating and stiffeners. The orientations of such
cracking may be classified into three groups,
namely, vertical, horizontal, and angular types, as
shown in Figure 9.21a. The structure can of course
be subjected to compressive “extreme” loads aris-
ing from axial compression or edge shear as shown
in Figure 9.21a or tensile “extreme” loads as shown
in Figure 9.21b.
In monotonic tensile loading, the crack size

(length) may further increase (propagate) in a sta-
ble or unstable manner until the structure reaches
the ULS, and therefore the ultimate tensile
strength of a cracked structure must be less than
that of an uncracked (intact) structure. On the
other hand, a crack in a plate panel under mono-
tonic compressive loading may close in the beginning, but it may open if buckling result-
ing in lateral deflection occurs. It is also possible that some lateral deflection may take
place, because of either fabrication related initial deflections or additional local out-of-
plane loading (lateral pressure). In cases with lateral deflection, the crack can open and
reduce the plate panel collapse strength as out-of-plane deformation increases in com-
pressive loading. It may therefore be pessimistically assumed that the effect of the crack-
ing damage on the panel ultimate compressive strength is similar to that on the panel
ultimate tensile strength.
In contrast to the methods described in the previous sections, therefore, one may pos-

tulate a simpler and intuitive model to predict the residual ultimate strength of a struc-
ture with premised cracks if one presupposes a very ductile material. For a plate panel

2c

500

a = 1000 mm

b
=

1
0
0
0

m
m

Figure 9.20 A square plate with
vertical edge crack under biaxial
compressive loads.

Table 9.6 Nondimensionalized buckling loads, λ of the plate (a/b = 1) with vertical central crack
under biaxial compressive loads.

Crack size, 2c/b Mode FEM Theory (8 × 8) Theory (12 × 12)

0.3 1 1.97 1.98 1.96

2 4.89 4.89 4.83

3 5.01 5.00 5.00

4 7.99 7.97 7.97

5 9.20 9.22 9.63

0.5 1 1.77 1.79 1.77

2 4.56 4.56 4.54

3 4.97 4.96 4.95

4 6.35 6.28 6.22

5 7.20 7.31 7.22
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with a premised crack as shown in Figure 9.22, one may predict the ultimate strength on
the basis of the reduced cross-sectional area, taking into account the loss of load-carrying
material due to the crack damage. In this case, the ultimate strength of a plate panel with
existing cracks and under monotonic extreme axial loading may be approximately
obtained by (Paik et al. 2005, Paik & Satish Kumar 2006, Paik 2008, 2009)

σu =
Ao−Ac

Ao
σuo 9 39

t

b

b

b

b
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σXσX
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Figure 9.21 (a) Three types of fatigue cracking damage in compressive loads; (b) a stiffened panel
with existing crack in tensile loads.
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Figure 9.22 A schematic of a plate with
existing crack.
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where σu and σuo are the ultimate strengths of the cracked and original (uncracked) plate
panel, Ao is the original (uncracked) cross-sectional area, and Ac is the cross-sectional
areas associated with crack damage, projected to the loading direction.
The ultimate strength of a plate with cracking damage can then be calculated as

follows:

σxu =
Axo−Axc

Axo
σxuo 9 40a

σyu =
Ayo−Ayc

Ayo
σyuo 9 40b

where Axo = bt, Axc = tcsin θ, Ayo = at, Ayc = tccos θ, and t is the plate thickness.
For edge shear loading, the ultimate shear strength of a cracked plate may be given by

(Paik et al. 2003)

τu =
1
2

Axo−Axc

Axo
+
Ayo−Ayc

Ayo
τuo 9 40c

where τu and τuo are the ultimate shear strengths of a cracked or uncracked plate.
The crack damage model of Equation (9.39) can be applied to the ultimate strength

calculations of a stiffened panel with cracking damage in longitudinal axial tension, as
shown in Figure 9.21b, as follows:

σu =
b−cp tσYp + hw−cs twσYs

bt + hwtw
9 41

where cp is the projected crack length for the plating, cs is the projected crack length for
the stiffener, σYp = σY is the yield strength of the plating, and σYs is the yield strength
of the stiffener.

9.7.2 A Cracked Plate in Axial Tension

The applicability of Equation (9.39) may be verified by comparison to experiments on
plates with an existing crack in axial tensile loads (Paik et al. 2005). In the structural
testing related to residual strength, a small hole is first created mechanically at either
the center or the edge of the plate, and axial fatigue loading is then applied in the plane
of the plate until a crack of a desired size is achieved. The aim of this process is to
embody the fatigue crack-like damage in the plate. Finally, controlled displacements
that correspond to different levels of monotonic uniaxial tensile loads are applied
and are progressively increased in a quasi-static condition until the cracked plate is
split into two pieces, as shown in Figure 9.23. Because of the thin plates and the
quasi-static loading rates involved, the overall test plate behavior in these room tem-
perature tests carried out under controlled displacement conditions essentially
remains ductile.
Figure 9.24 shows the variation of the ultimate tensile strength of plates as a function

of the crack length as obtained by the experiments and by the simplified model noted
earlier, that is, reducing the cross-sectional area to account for the crack damage.
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It is evident that the simplified model provides adequate results at some pessimistic side.
However, there is an apparent tendency for the experimental data points to lie above the
simplified model prediction, as shown in Figure 9.23, and the degree of deviation seems
to increase with the plate thickness. This perhaps is a manifestation of tearing and/or
strain hardening.
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0.8

σ u
/σ
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0.6 Experiment:

: Simplified model

: t = 1.6 mm
: t = 2.0 mm
: t = 2.2 mm0.4
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0.0

0.00 0.05 0.10

Normalized crack size (cp/b)
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Figure 9.24 Variation of the ultimate tensile strength as a function of the crack length, as obtained
by experiment and by the simplified model, with σY being the measured yield stress.

(a) (b)

Figure 9.23 A typical pattern of the crack extension immediately before the plate is split into two
pieces in axial tension.
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In some of the aforementioned tests, carried out under monotonically increasing ten-
sile loads, the size and location of the artificial cracks and the plate thickness were varied.
Some additional insights so obtained are as follows:

1) As the crack length increases, the ultimate tensile strength and the elongation to fail-
ure decrease significantly because the cross-sectional area is reduced by the crack and
also because the initial crack grows as the tensile load increases, that is, a certain
amount of tearing occurs.

2) As the plate thickness increases, the elongation slightly increases. Although more
data may be necessary to generalize results for thin plates to relatively thicker plates,
the effect of plate thickness on strength is approximately supposed to be proportional
to thickness.

3) The effect of the crack location on the ultimate tensile strength of the overall test
plates is not significant under the controlled displacement conditions used.

9.7.3 A Cracked Stiffened Panel in Axial Tension

To validate the applicability of the simplified model for a stiffened panel with an existing
crack under axial tensile loads, the nonlinear finite element solutions are compared with
the predictions fromEquation (9.41). The panel dimensions, with the nomenclature shown
in Figure 9.21b, are a = 1600mm, b = 400mm, t = 15mm, hw = 150mm, and tw = 12mm,
and thematerial properties are σYp = σYs = 249.7MPa, E = 202.2 GPa, and v = 0.3. Two sets
of crack lengths are considered, namely, 2cp = 50mm or 150mm at the plating (i.e., cp =
25 mm or 75mm on each side of the stiffener) and cs = 25mm or 75mm at the stiffener.
In the nonlinear finite element method analysis under displacement control, two types

of panel material models are used: (i) the stress–strain relationship of the panel material
obtained by the tensile coupon test is used, meaning that the effects of strain hardening,
necking, and ductile fracture are considered to the extent possible, and (ii) the elastic–
perfectly plastic material model is used by neglecting the effect of strain hardening but
taking into account ductile fracture. For all analyses, the effects of crack extension by
tearing are taken into consideration as the external tensile loads monotonically increase.
Figure 9.25 shows a typically deformed shape immediately before the panel is entirely

fractured. Figure 9.26 shows the nonlinear finite element method solutions for the aver-
age stress–strain relation for the stiffened panel under monotonically applied axial ten-
sile loads until the panel is broken into two pieces.
Applying the simplified model indicated in Equation (9.41), the ultimate tensile strength

of the stiffened panel can be predicted by Pu = (b − 2cp)tσYp + (hw − cs)twσYs = 3183.7 kN or
σu = 230.7MPa for cp = cs = 25mm, and Pu = 2659.3 kN or σu = 192.7MPa for cp = cs =
75 mm. Table 9.7 compares the solutions by the simplified model with the nonlinear finite
element method solutions. Although the ultimate strengths predicted by the simplified
model are between 74 and 78%of the nonlinear finite elementmethod solutions formaterial
model (i) noted earlier, they are between 91 and 94% of the nonlinear finite elementmethod
solutions formaterialmodel (ii). The pessimismof the simplifiedmodel of Equation (9.41) is
partly because the effect of strainhardening is neglected andperhaps partly alsodue to stable
crackextension. It is evident, at least in these illustrative cases, that the simplifiedcrackmodel
can be useful to predict the ultimate tensile strength of stiffened panels with existing crack
damage, but on the pessimistic side.
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Figure 9.26 The elastic–plastic behavior of a stiffened panel with premised cracks and under
monotonic tensile loads.

Figure 9.25 Deformed shape immediately before the entire fracture of the stiffened panel under
monotonic tensile loads, as obtained by the nonlinear finite element method.

Table 9.7 Comparison of the simplified model solutions with FEA.

cp (mm) cs (mm)

σu (MPa)

A
B

Effect of strain hardening(A) (B)

25 25 230.7 311.4 0.741 Included

246.8 0.935 Not included

75 75 192.7 247.8 0.778 Included

212.9 0.905 Not included

Note: (A), simplified model; (B), FEM. The simplified model does not account for the effect of strain hardening.



9.7.4 A Cracked Plate in Axial Compression

The applicability of Equation (9.39) for a cracked plate under axial compressive loads is
validated by an experiment performed by Paik et al. (2005). The tests were undertaken on
box column models with premised cracks, as shown in Figure 9.27. The test structure is
fabricated by tack welding with four sheets of similar steel plates as an assembly. A set of
the same through-thickness cracking is artificially made in each of the four plates of the
test structure.
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Figure 9.27 The ultimate strength test setup of the box type plated structure with cracking
damage and under axial compressive loads: (a) a schematic view of the test setup; (b) a photo of
the test setup; (c) a schematic of the test structure.
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Figure 9.28 shows a schematic of the test structure with cracking damage and under
axial compressive loads, which includes the structural dimensions. Three types of crack
locations are considered, namely, VC-Center, VC-Edge(1), and VC-Edge(2). The VC-
Center represents that the crack is located at the plate center. VC-Edge(1) and VC-
Edge(2) have the edge cracking where VC-Edge(1) has a crack on one side of the plate
and VC-Edge(2) has a crack on each side of the plate. It is considered that the ultimate
strength behavior of a plate with cracking damage may also be affected by the size of gap
between crack faces, denoted by G. Therefore, two types of crack gap sizes, namely, 0.3
and 3.0 mm, are considered in the test. The crack with the smaller gap (i.e., 0.3 mm) is
made by wire cutting method, while it is made by plasma cutting for crack of 3.0 mm gap.
The material of the test structure is mild steel. Figure 9.29 shows the engineering stress
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Figure 9.28 Various crack locations in the test structure: (a) vertical crack-center (VC-Center); (b) vertical
crack-edge(1) (VC-Edge(1)); (c) vertical crack-edge(2) (VC-Edge(2)).
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versus engineering strain curves of the material as obtained by tensile coupon test.
Table 9.8 indicates the maximum initial deflections measured for each of the four plates
in the test structure and Table 9.9 identifies the test models.
Figure 9.30 shows the average axial compressive stress–strain curves of the test struc-

tures with varying the crack sizes or locations obtained by the experiment. An average
value of the ultimate compressive strength of the four individual plates making up the

Table 9.8 Maximum initial deflection measured for each of the four plates in the test structure.

Crack type A1 (mm) A2 (mm) A3 (mm) A4 (mm) Average

Intact-1 1.15 1.88 2.81 1.26 1.78

Intact-2 1.10 0.80 0.96 1.80 1.17

VC-Center-0.3-15-1 1.71 2.73 0.68 1.93 1.76

VC-Center-0.3-15-2 2.10 1.50 1.50 1.52 1.66

VC-Center-0.3-30-1 0.50 1.15 0.95 0.79 0.85

VC-Center-0.3-30-2 1.41 1.05 0.90 0.65 1.00

VC-Center-3.0-50 1.95 0.34 0.90 0.53 0.93

VC-Edge(1)-3.0-15 1.06 2.03 1.20 2.21 1.63

VC-Edge(1)-3.0-30 0.58 1.59 1.60 3.38 1.79

VC-Edge(1)-3.0-50 2.40 1.70 0.58 1.76 1.61

VC-Edge(2)-0.3-30 2.1 1.75 3.10 2.28 2.31

VC-Edge(2)-3.0-30 0.83 0.35 1.38 1.1 0.92

VC-Edge(2)-3.0-50 0.80 1.68 0.70 0.80 1.00

Note:A1, maximum initial deflection of plate 1; A2, maximum initial deflection of plate 2; A3, maximum initial
deflection of plate 3; A4, maximum initial deflection of plate 4.

Table 9.9 Identification number of the test structures with cracking damage.

Location
of crack

Gap of crack,
G (mm)

Size of crack

0.15b 0.3b 0.5b

Center 0.3 VC-Center-0.3-
15

VC-Center-0.3-
30

–

3.0 – – VC-Center-3.0-
50

Edge (one side) 0.3 – – –

3.0 VC-Edge(1)-3.0-
15

VC-Edge(1)-3.0-
30

VC-Edge(1)-3.0-
50

Edge (both
side)

0.3 – VC-Edge(2)-0.3-
30

–

3.0 – VC-Edge(2)-3.0-
30

VC-Edge-3.0-50
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test structure is then calculated by the applied loads divided by the total cross-sectional
area of the structure. Table 9.10 summarizes the ultimate strength of cracked plates with
varying crack size and location, obtained from the experiment.
The ultimate strength predictions for the test structures are made using

Equation (9.39). Figure 9.31a shows the ultimate compressive strength reduction char-
acteristics of plates due to varying crack size, obtained from the experiment. In
Figure 9.31b, a comparison of the ultimate compressive strength of cracked plates is
made between the experiment and the simplified formula of Equation (9.39).
Figure 9.32 shows a sample finite element model for a plate with edge crack at one side
and under axial compressive loads. Figure 9.33 compares the predictions of
Equation (9.39) with the experimental results and nonlinear finite element method solu-
tions for a plate with a single crack or multiple cracks. It is apparent that Equation (9.39)
reasonably well predicts the ultimate compressive strength of cracked plates at some-
what pessimistic side.
Interested readers may also refer to Paik (2008, 2009), Wang et al. (2009), Shi and

Wang (2012), Rahbar-Ranji and Zarookian (2014), Underwood et al. (2015), Wang
et al. (2015), Cui et al. (2016, 2017), and Shi et al. (2017), among others.

9.7.5 A Cracked Plate in Edge Shear

To validate the applicability of the simplified model, nonlinear finite element method
solutions are compared with the predictions from Equation (9.40c). Figure 9.34
shows the variation of the ultimate shear strength of a cracked plate as a function of
the crack length as obtained by the nonlinear finite element method solutions and by
the simplified model of Equation (9.40c), that is, reducing the cross-sectional area to
account for the crack damage. It is evident from Figure 9.34 that the simplified model
provides adequate results at some pessimistic side although there is an apparent

Table 9.10 Ultimate strength of cracked plates obtained by the experiment.

Crack type σxu (MPa) σxu/σY σxu/σxuo

Intact 105.3 0.429 1.0

VC-Center-0.3-15 102.27 0.417 0.971

VC-Center-0.3-30 102.89 0.419 0.977

VC-Center-3.0-50 92.65 0.377 0.880

VC-Edge(1)-3.0-15 93.38 0.380 0.887

VC-Edge(1)-3.0-30 90.55 0.369 0.860

VC-Edge(1)-3.0-50 84.40 0.344 0.802

VC-Edge(2)-0.3-30 94.11 0.383 0.894

VC-Edge(2)-3.0-30 68.60 0.279 0.651

VC-Edge(2)-3.0-50 53.64 0.219 0.509

Note: σxuo and σxu are the ultimate compressive strength of the intact or cracked structures.
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Figure 9.32 A sample finite element mesh in a plate with one edge crack and under axial compression.
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tendency for the nonlinear finite element method solutions to lie above the simplified
model prediction.
For the ultimate shear strength of a stiffened panel with multiple cracks, interested

readers may refer to Wang et al. (2015), among others.
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10

Structural Impact Mechanics

10.1 Fundamentals of Structural Impact Mechanics

Structures can be subjected to dynamic or impact loads during service. Any loading that
gives rise to a time-dependent structural response is in this chapter termed dynamic or
impact loading. Three types of dynamic or impact loadings are normally considered:
impact, dynamic pressure, and impulsive loading (Jones 2012).
In some cases, objects may be dropped from a crane, for instance, onto the deck plating

of an offshore platform. The striking mass dropped from a height, h, is often large and
travels at a relatively low velocity, V0 = √(2gh), which may be around 10–15 m/s. In other
cases, a mass,W, may be struck at much higher velocities as a result of a gas explosion on
a land-based structure or an offshore platform. This class of loading is typically called
impact, and the total impact energy of a striking mass with an initial velocity, V0, is given
by the sum of the initial kinetic energy (WV 2

0 2) plus the additional potential energy of
the striking mass traveling through the permanent displacement of the struck structure.
Water impacts and explosive events (blast) that give rise to a pressure–time history act-
ing on the exposed area of a structure are termed “dynamic pressure.” When the mag-
nitude of the dynamic pressure is great and the duration is very short, the dynamic
pressure can be idealized as impulsive loading.
Themechanical properties of steels or aluminum alloys are significantly affected by the

loading speed or strain rate, ε, which is defined as a relevant ratio of the loading speed to
the structural displacement measured between two reference points, that is, ε= dε dt,
where ε is the strain and t is time. Table 10.1 indicates a classification of dynamic or
impact loading modes as a function of the strain rate.
Three major differences between static/quasistatic and dynamic/impact loading cases

are usually evident. The first difference regards the stress field. In an impact loading sit-
uation, tensile stresses can occur even under compressive far-field loading, and stress
concentrations can occur even without notches. The second difference is that the
dynamic/impact structural behavior can vary as a function of the strain rate. The first
and second aspects always interact. The third difference regards the failure pattern.
Under impact loading, brittle fracture is a greater possibility for steels or aluminum alloys
that are predominantly ductile under static/quasistatic loading because the energy
absorption capacity by ductile yielding decreases at high strain rates after an increase
in the yield strength but a decrease in the fracture strain.
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When the externally applied dynamic (e.g., kinetic) energy is great, a dynamic plas-
tic structural problem cannot be adequately solved using quasistatic analysis meth-
ods based on “equivalent” static loading and considering dynamic magnification
factors. The general procedure for analysis of the dynamic plastic behavior of struc-
tures in such cases is similar to that used for the static behavior, except that a kin-
ematically admissible velocity field that represents the structure’s motion should be
considered in the dynamic problems instead of a statically admissible deformation
field. The dynamic governing differential equations, which involve an inertial term
in addition to the static equilibrium-related terms, will then be solved to satisfy
the initial and boundary conditions. The characteristics of the static collapse mode
are often helpful for establishment of a kinematically admissible velocity field. Solu-
tions are then found that satisfy the yield condition associated with the presumed
velocity field.
It can be said with reasonable certainty that the elastic effects may be disregarded when

the external dynamic energy (e.g., kinetic energy) is significantly greater than the max-
imum amount of strain energy that can be absorbed in a wholly elastic manner, provided
that the duration of an impact loading pulse is sufficiently short compared with the struc-
ture’s natural elastic period. This implies that an approximation using rigid-perfectly
plastic material (instead of elastic–perfectly plastic material or elastic–plastic material
including strain hardening and necking) may be used to examine the dynamic plastic
response (Johnson 1972, Jones 1997, 2012).
The limit state design of plated structures under impact loading can also be undertaken

following Equation (1.17). The design procedure in this case is, however, better formu-
lated in terms of energy-related parameters, unlike the design of structures for static or
quasistatic loading, which is based on the load effects and the corresponding load-
carrying capacities. For instance, the demand in Equation (1.17) may be defined as
the design loss of kinetic energy, whereas the capacity may be the strain energy absorp-
tion capability in the limit state design of plated structures under impact loads. This
chapter describes the fundamentals of structural impact mechanics. It is noted that
the theories and methodologies described in this chapter can be commonly applied to
both steel- and aluminum-plated structures.

Table 10.1 Dynamic modes of loading versus the strain rate (Hayashi & Tanaka 1988).

Strain rate
ε (1/s) <10−5 10−5 to 10−1 10−1 to 101.5 101.5 to 104 >104

Dynamic
loading
mode

Creep Static or
quasistatic

Dynamic Impact Hypervelocity
impact

Examples Constant
loading
machine

Dead or live
loading on a
ship hull
girder

Impulse pressure
effects on high-speed
craft, wave breaking
loads

Explosion,
ship
collision

Bombing
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10.2 Load Effects Due to Impact

The load effects (i.e., stresses) of structures under static or quasistatic loading are nor-
mally calculated via the classical theory of structural mechanics or linear elastic finite
element analysis. Under impact loading, however, the methods for the analysis of load
effects are entirely different from those for static loading.
This section describes some related considerations. Essentially, under dynamic load-

ing, a structure not only deforms but can also vibrate, implying that the load effects are
time dependent and that dynamic amplification of load effects is possible. Because in
many cases the response is transient, many structures can tolerate dynamic loads that
far exceed the same magnitude of static loads. Both simplified and more sophisticated
methods exist for calculation of the structural response under dynamic loading.
Finite element methods are useful for calculation of the dynamic structural response,
taking account of material and geometric nonlinearities, including plasticity and buck-
ling. When using simplified methods, the local strength aspects themselves are often
characterized using methods based on plastic theory.
Now consider the case of a rigid body with a mass, W, that falls freely as shown in

Figure 10.1, resulting in axial impact loading to an elastic rod. The kinetic energy loss,
Ek, for the falling body is given by

Ek =Wg h+ δ 10 1a

where g is the acceleration of gravity, h is the initial height of the falling object, and δ is the
displacement.
The strain energy, Es, absorbed by the elastic rod is calculated by

Es =
EA
2

δ

L

2

10 1b

where A is the cross-sectional area, L is the initial length of the elastic rod, and E is
Young’s modulus.

L

δ

W

h

Figure 10.1 Impact by freefall.
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By the principle of energy conservation, Ek = Es, and thus the displacement, δ, is deter-
mined. Therefore, the impact stress, σ, can be obtained as follows:

σ =
Eδ
L

=
Wg
A

1 + 1 +
2EAh
WgL

10 2

The impact stress is time variant in nature. During contact of the falling object with the
bottom plate, the falling object will be subjected to reaction forces from the rod and grav-
itational forces. The governing differential equation for the motion of the falling object is
given by neglecting the effect of the rod mass as follows:

W
d2x
dt2

=Wg−Aσ =Wg−
EAx
L

10 3

where x represents the displacement of the rod. If the origin of the time, t, is taken as the
time at which the falling object first contacts the bottom plate, the initial conditions for
the impact are given by

x= 0,
dx
dt

=V0 at t = 0 10 4

where V0 = √(2gh) is the velocity of freefall.
The solution of Equation (10.3) is then obtained by considering the initial conditions,

Equation (10.4), as follows:

x=
WgL
EA

1−cos ϕ+
2EAh
WgL

sin ϕ 10 5

where ϕ = [EA/(WL)]1/2t.
Therefore, the time-variant impact stress, σ, is given using Equation (10.5) as follows:

σ =
Ex
L

=
Wg
A

1 + 1 +
2EAh
WgL

sin
EA
WL

t−T 10 6

where

T =
WL
EA

arctan
WgL
2EAh

It is realized from Equation (10.6) that the impact stress develops in a sinusoidal form
with regard to time and takes the maximum value equal to Equation (10.2) at the time, t0,
which is defined by

t0 =
π

2
WL
EA

+T 10 7

It has been assumed here that impact loads may be transferred to the fixed end of the
rod immediately after the falling object strikes the bottom plate, and the rod would then
deform in a uniform manner along its length. Also, the effect of the stress wave propa-
gation is neglected. For higher-speed impact loading, however, the latter assumptionmay

Ultimate Limit State Analysis and Design of Plated Structures474



not be appropriate because the propagation, reflection, refraction, and interference of the
stress wave may play important roles.
Related to the effects of the stress wave propagation, a simple example is now consid-

ered as studied by Hayashi and Tanaka (1988). When a rigid body with a velocity of V0

strikes a column in the length direction, as shown in Figure 10.2, the resulting time-
variant impact stress is estimated with consideration of the effects of stress wave
propagation.
Denote the propagation velocity of the stress wave and the velocity of a particle within

the impacted body by Vp and Vm, respectively. The stress wave propagates from point
B to point C, whereas point B deforms to point B at time t = t∗. In this case, the strain,
ε, of the column at t = t∗ can be given, with the compressive strain taken as positive as
follows:

ε=
BB
BC

=
Vm

Vp
10 8

During the strike, the momentum imparted to the struck body is given by ρ0AVpt
∗Vm

because the part B C of the column with cross-sectional area A moves with velocity Vm

for the period of t∗, and the pulse that acts on the column during the same period is cal-
culated by Aσt∗. Because of the equilibrium between the two quantities, that is,
ρ0AVpt

∗Vm =Aσt∗, the impact stress, σ, is obtained by

σ = ρ0VmVp 10 9a

where ρ0 is the density of the column before it is struck.
Using the strain given by Equation (10.8), the impact stress is also given by

σ = Eε=E
Vm

Vp
10 9b

A

A

A C

B

B

B΄

σ

σ

V0

Vm

Vm

Vpt*

Vmt*

t = 0

t = t*

Figure 10.2 An example to illustrate the effects
of impact stress wave propagation.
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The propagation velocity of the stress wave can then be obtained from Equations
(10.9a) and (10.9b) as follows:

Vp =
E
ρ0

1 2

10 10

Substitution of Equation (10.10) into Equation (10.9b) yields

σ = Eρ0
1 2Vm 10 11

In the aforementioned, it is noted that the particle velocity, Vm, does not necessarily equal
the initial velocity, V0, of the striking body. It is apparent that Equation (10.11) takes an
entirely different expression from that of Equation (10.6) because Equation (10.11) repre-
sents the impact stress propagation immediately after striking, whereas Equation (10.6)
indicates the stress after the stress wave ceases.
For a more elaborate treatment of the stress wave effects in structural members under

impact loading, interested readers may refer to Karagiozova and Jones (1998), Kolsky
(1963), or Hayashi and Tanaka (1988), among others.
It is not always straightforward to calculate the load effects of structures under impact

loading because propagation of the stress wave can play an important role. In the context
of Equation (1.17), therefore, an easier alternative is to use the loss of kinetic energy
instead of the load effects as the measure of “demand,” whereas the energy absorption
capability is used as the measure of “capacity.”

10.3 Material Constitutive Equation of Structural Materials
Under Impact Loading

The stresses in structural materials under a given magnitude of impact loading in the
elastic–plastic regime increase as the strain rate increases. The mechanism of plastic
deformation under impact loading in such a case may be classified into four regions,
as shown in Figure 10.3 (Perzyna 1974, Rosenfield & Hahn 1974).
In region I, the yield (or flow) stress is not affected by the strain rate or temperature. In

region II, the yield (or flow) stress increases as the strain rate increases. In region III, that
is, at low temperatures, the effect of the strain rate on the yield (or flow) stress becomes
more moderate. Region III is distinguished from region II by a boundary known as the
twinning mode of the plastic deformation mechanism due to the low temperature. In
region IV, the yield (or flow) stress is extremely sensitive to the strain rate.
Figure 10.4 shows a sample relationship between the dynamic shear yield stress and the

shear strain rate for mild steels, varying the strain rate and temperature (Campbell &
Ferguson 1970).

10.3.1 The Malvern Constitutive Equation

The stress–strain relationship for structural steels under impact loading in a one-
dimensional form, which is typically applied in region II, may be given by (Malvern 1969)
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σ = f ε + c1 ln 1 + c2εp 10 12

where σ = f(ε) is the stress–strain relationship of material under static loading, εp is the
plastic strain rate, and c1 and c2 are material constants.
The plastic strain rate can then be obtained from Equation (10.12) as follows:

εp =
1
c2

exp
σ− f ε

c1
−1 10 13

It is realized from Equation (10.13) that the plastic strain rate represents the effect of
the excess stress between the dynamic stress, σ, and the static stress, f(ε). As the simplest
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Figure 10.4 Variation of the dynamic shear yield stress of mild steel as a function of shear strain
rate and temperature (symbols denote experimental results after Campbell & Ferguson 1970).
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expression, the excess stress may sometimes be expressed with a linear function as
follows:

Eεp = c3 σ− f ε 10 14

where E is the elastic modulus and c3 is the material constant.
Because the elastic component, εe, of the strain rate has a linear relationship with the

corresponding stress σ, that is, Eεp = σ, and the total strain is a sum of the elastic and
plastic components, the following equation is obtained:

Eε=E εe + εp = σ + c3 σ− f ε 10 15

Equation (10.15) is sometimes called the Malvern constitutive equation and is widely
used for the response analysis of structures under impact loading, primarily representing
region II in Figure 10.3. The dynamic yield strength and fracture strain are thus the two
primary influential parameters in analysis of the crashworthiness of structures under
impact loading. The dynamic effect on the material properties is associated with the
strain rate, as previously noted.

10.3.2 Dynamic Yield Strength: The Cowper–Symonds Equation

The dynamic yield strength of the material may be expressed as follows (Karagiozova &
Jones 1997):

σYd
σY

= f ε g ε 10 16

where σY and σYd are the static or dynamic yield stresses, respectively, f ε is a function of
the strain rate sensitivity effect, g(ε) is a material strain-hardening function, and ε is the
strain rate.
If the effect of strain hardening is neglected, g ε = 1 can be assumed. The strain rate

sensitivity parameter, f ε , is often given using the Cowper–Symonds equation
(Cowper & Symonds 1957) as follows:

σYd
σY

= 1 0 +
ε

C

1 q

10 17

where C and q are coefficients to be determined based on test data, as indicated in
Table 10.2.
Figure 10.5 plots the Cowper–Symonds equation together with the relevant coeffi-

cients for mild or high-tensile steels when g(ε) = 1. Figure 10.6 shows the effects of both
the strain rate and the temperature on the yield strength of a higher-tensile steel. It is
evident from this figure that the material yield strength increases as the strain rate
increases and the temperature decreases. Also, for higher-tensile steel, the percentage
increase of σYd/σY is less than that formild steel. Figure 10.7 shows the effects of the strain
rate and low temperature on the dynamic yield stress for mild steel, high-tensile steel,
aluminum alloy, and stainless steel (Paik et al. 2017); the references shown are within
the figure after Paik et al. (2017).
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Toyosada et al. (1987)

High tensile steel:

Fujii et al. (1985)
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Figure 10.5 Dynamic yield strength (normalized by the static yield strength) plotted versus strain
rate for mild and high-tensile steels (references shown within the figure after Paik et al. 1999).

Table 10.2 Sample coefficients for the Cowper–Symonds constitutive equation associated with the
dynamic yield stress.

Material C (1/s) q Reference

Mild steel 40.4 5 Cowper and Symonds (1957)

High-tensile steel 3200 5 Paik and Chung (1999)

Aluminum alloy 6500 4 Bodner and Symonds (1962)

10.39 × 1010 10.55 Hsu and Jones (2004)

610.4 3.6 Paik et al. (2017)

α-Titanium (Ti 50A) 120 9 Symonds and Chon (1974)

Stainless steel 100 10 Forrestal and Sagartz (1978)

3000 2.8 Paik et al. (2017) for room temperature

35.9 1.5 Paik et al. (2017) for low temperature
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10.3.3 Dynamic Fracture Strain

Both crushing effects and the yield strength increase as the loading speed increases,
whereas any fracture or tearing of steel (and the welded regions) in a structure tends
to occur earlier. The following approximate formula, which is the inverse of the Cow-
per–Symonds equation for the dynamic yield stress, is then useful for estimation of
the dynamic fracture strain as a function of the strain rate (Jones 1989), namely,

εFd
εF

= ξ 1 0 +
ε

C

1 q −1

10 18

where εF and εFd are the static and dynamic fracture strains, respectively, and ξ is the ratio
of the total energies to rupture for dynamic and static uniaxial loadings.
If the energy to failure is assumed to be invariant, that is, independent of ε, then it may

be taken that ξ = 1. Figure 10.8 plots Equation (10.18) with three sets of the coefficients
together with experimental results for mild steels when ξ = 1. The expression in
Equation (10.18) represents the decrease of the dynamic fracture strain with the increase
in the strain rate, but the coefficients for the dynamic fracture strain differ from those for
the dynamic yield strength. It is again evident that the strain rate is a primary parameter
that affects the impact mechanics.
Figure 10.9 shows the effects of the strain rate and low temperature on the dynamic

fracture strain for mild steel, high-tensile steel, aluminum alloy, and stainless steel
(Paik et al. 2017); the references shown are within the figure after Paik et al. (2017). Fig-
ures 10.8 and 10.9 also show the best coefficients of the Cowper–Symonds equation for
different materials associated with the dynamic fracture strain. It is evident that the coef-
ficients for dynamic fracture strain differ from those for dynamic yield stress.
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Figure 10.6 Effects of strain rate and temperature on the yield strength of a higher-tensile steel
(Toyosada et al. 1987).
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10.3.4 Strain-Hardening Effects

Two mathematical descriptions are relevant for the strain-hardening phenomenon, that
is, the Hollomon equation (1945) and the Ludwik equation (1909). The Hollomon equa-
tion is a power law relationship between the true stress and the true plastic strain given by

σ =Kεnp 10 19

High-tensile steel (room temp.)

: Taylor and Quinney (1932)

: Brown and Vincent Iron (1941)

: Manjoine (1944)

: Smith and Vigness (1956)

: Baron (1956)
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: Paik et al. (1999)

: Fujii et al. (1985)
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Figure 10.7 Effects of strain rates and room or low temperature on dynamic yield stress of (a) mild and
high-tensile steel and (b) stainless steel 304L (Paik et al. 2017).
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where σ is the true stress, εp is the true plastic strain, K is the material coefficient, and n is
the strain-hardening exponent.
The Ludwik equation is similar to the Hollomon equation, but it includes the yield

strength as follows:

σ = σY +Kεnp 10 20

where σY is the yield strength of material.
While the strain-hardening exponent n usually lies in the range of 0.2–0.5, it can be

expressed as follows:

n=
d log σ

d log ε
=
ε

σ

dσ
dε

10 21

Equation (10.21) can be evaluated from the slope of a log σ − log ε plot, and it allows
a determination of the rate of the strain hardening at a given (true) stress and (true) strain
as follows:

dσ
dε

= n
σ

ε
10 22

Figure 10.10 shows the test results associated with the material coefficient K and the
strain-hardening exponent n for carbon steels (grade E) at low temperatures, where the
thickness of tensile coupon specimens is 16 mm (Park 2015).

10.3.5 Inertial Effects

Inertial effects must sometimes be considered for the impact response of plated struc-
tures (Reid & Reddy 1983, Harrigan et al. 1999, Paik & Chung 1999, Karagiozova et al.
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Figure 10.8 Dynamic fracture strain (normalized by the static fracture strain) versus the strain rate
for mild steels.
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2000). Due to inertial effects and stress wave propagation phenomena within the struc-
tures during impact loading, the strain distribution (or deformation pattern) at any
moment in time would be nonhomogeneous. It is typically considered that the inertial
effects become more important when the strain rate is greater than about 0.1 s−1.
To investigate the characteristics of inertial effects, Paik and Chung (1999) carried out

a series of experiments on crushing square steel tubes and observed that as the maximum
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Figure 10.9 Effects of strain rates and room or low temperature on the dynamic fracture strain of
(a) mild and high-tensile steel and (b) stainless steel 304L (Paik et al. 2017).
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crushing indentation increased (indicating that the mass of the striking body and/or
the impact speed increased, thus increasing the initial kinetic energy involved), the iner-
tial effects also increased, but these effects could be ignored for strain rates of less than
about 50 s−1.

10.3.6 Friction Effects

During an impact loading process, the influence of friction would normally be great
when there is a relative velocity between the struck body and the indentor (or the striking
body). This situation is often seen in ship grounding incidents when a ship with forward
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Figure 10.10 Variation of (a) the material coefficient K and (b) the strain-hardening exponent n, of
the Hollomon equation for carbon steels (grade E) at low temperatures (symbol, test data; line,
trend line) (Park 2015).
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speed runs onto a rock pinnacle. In structural engineering problems where an object
slides across a surface, the frictional force can be defined as product of the friction con-
stant of the twomaterials and the normal force. The friction constant depends on various
factors such as impact velocity, contact area, surface grain feature, moisture (wet or dry),
and temperature.

10.4 Ultimate Strength of Beams Under Impact Lateral Loads

In the quasistatic case, it is considered that a beam under lateral load, q, collapses if a plastic
hingemechanism is formed at q = qc as described in Section 2.8. A beammade from a rigid-
perfectly plasticmaterial is assumed to remain rigid as long as the external lateral load is less
than the static collapse lateral load, qc. Hence static equilibrium cannot be achieved in the
collapsed beam if the effects of strain-hardening or large deformations are neglected.
In contrast, when an external load larger than qc is applied suddenly or impulsively, the

beam deforms plastically and inertial forces are generated. If the external load pulse con-
tinues for a sufficient duration, the beam’s lateral deflection will become excessive. How-
ever, if the external load pulse is removed soon enough or decays to a sufficiently small
value after a certain time, part of the kinetic energy will be absorbed by the beam after
permanent plastic deformations.
The governing differential equation of a plate-beam combination under dynamic lat-

eral load, q, may be expressed by (Jones 2012)

EIe
∂4w
∂x4

= q−m
∂2w
∂t2

10 23

where m = ρA is the mass per unit length of beam, ρ is the density of the material, t is
time, EIe is the bending rigidity of the effective section beam, and A is the beam’s
cross-sectional area.
The elastic strain energy in a beam can be given from Equation (2.68) as follows:

U =
Vol

σ2x
2E

dVol 10 24a

The maximum possible amount of the elastic strain energy that a beam can absorb is
obtained when σx reaches the equivalent yield stress, σYeq, in the entire volume of the
beam, namely,

Umax =
σ2YeqLA

2E
10 24b

where σYeq accounts for the effect of different yield stresses of the plating and stiffener, as
indicated in Table 2.1, and L is the span of the beam.
Because local plastic deformations occur at smaller values of elastic strain energy,

Equation (10.24b) represents the upper limit of the strain energy absorbed. The initial
kinetic energy absorbed by the beam under a uniformly distributed impulsive velocity,
V0, may approximately be given by

Ek =
1
2
ρLAV 2

0 10 25a
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For a beam struck by a total mass W with an initial
velocity V0, the initial kinetic energy is given by

Ek =
1
2
WV 2

0 10 25b

It appears that the rigid-perfectly plastic material
approach may be relevant when the ratio of the initial
kinetic energy to the maximum amount of the strain
energy is greater than about 10, namely (Jones 1989),

Ek
Umax

> 10 10 26

Figure 10.11 shows a schematic of a rectangular-type
load pulse. The lateral pressure, p0 (p0 = q0/b for a
plate–beam combination model), is dynamically
applied at the beginning and is kept constant for a duration τ, after which the load is
removed. The rectangular pressure pulse is often termed “impulsive loading” when
p0/pc 1 (pc = qc/b for a plate–beam combination) (i.e., η = p0/pc ∞) and τ 0. In
this situation, the following condition must be satisfied from the conservation of linear
momentum at t 0:

I =
τ

0
p t dt = p0τ = μV0 10 27

where I is the pulse and μ is the mass per unit area.
It has been noted that the elastic effects are not important when the duration is suf-

ficiently shorter than the corresponding elastic natural period, namely,

τ

T
1 10 28a

where T is the fundamental period of elastic vibration, which may be taken as follows:

T =
2L2

π

m
EIe

1 2

for a beam simply supported at both ends 10 28b

T =
2πL2

4 73 2

m
EIe

1 2

for a beam clamped at both ends 10 28c

The maximum permanent lateral deflections, wp, of clamped beams under dynamic
lateral loading with an initial impact velocity, V0, may be calculated for rectangular cross
sections with breadth B and thickness H, to account for the large-deflection effect, as
follows (Jones 1997):

wp

H
=
1
2

1+
λ

2α

1 2

−1 for impact loading α 1 10 29a

wp

H
=
1
2

1+
3λ
4

1 2

−1 for impulsive loading 10 29b

t0

p

p0

τ

Figure 10.11 A schematic of a
rectangular-shaped
pressure pulse.
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where λ= μV 2
0 L

2 16MpH , α= μL 2W ,Mp = σ0BH2 4,W is the impact mass, and σ0
is the flow stress (refer to Section 10.8.1).
For plate–stiffener combination cross sections under dynamic loading, interested

readers may refer to Schubak et al. (1989), Nurick et al. (1994), and Nurick and Jones
(1995), among others.

10.5 Ultimate Strength of Columns Under Impact Axial
Compressive Loads

The governing differential equation of the small-deformation theory for a column with ini-
tial deflection under impact axial compressive loading, P, may be expressed by (Jones 2012)

EI
∂4w
∂x4

+P
∂2 w+w0

∂x2
= −m

∂2w
∂t2

10 30

For a column simply supported at both ends, the lateral deflection functions may be
assumed as follows:

w0 = δ0 sin
πx
L
, w= δ t sin

πx
L

10 31

where w0 is the initial deflection, w is the added deflection due to applied loading, and δ0
and δ are the initial and added deflection amplitudes, respectively.
Substitution of Equation (10.31) into Equation (10.30) results in

d2δ t
dt2

+C1δ t =C2 10 32

where

C1 =
π

L

2 PE
m

1−
P
PE

, C2 =
π

L

2 P
m
δ0

PE = π2EIe/L
2 is the Euler buckling load.

It is obvious that the second-order differential equation, Equation (10.32), has a differ-
ent form of solution depending on the sign of the coefficient C1: if P < PE then C1 > 0, and
if P > PE then C1 < 0.

10.5.1 Oscillatory Response

When P < PE, the coefficient C1 is positive, and thus Equation (10.32) has the solution as
follows:

δ t =
C2

C1
1−cos C1t 10 33

On substituting Equation (10.33) into Equation (10.31), the added deflection of the col-
umn is given, considering that the initial lateral velocity is zero (i.e., dδ/dt = 0 at t = 0) and
that the added deflection is zero (i.e., δ = 0) at t = 0:

w=B1 τ δ0 sin
πx
L

10 34
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where

B1 τ =
P PE

1−P PE
1−cos 1−

P
PE

1 2

τ

τ = 2πt/T = [π4EIe/(mL4)]1/2 t = non-dimensional time, where T is as defined in
Equation (10.28).
Figure 10.12 plots Equation (10.34) at x = L/2, showing the variations of the maximum

added deflections of the column versus non-dimensional time. It is seen from
Figure 10.12 that the added deflection of a column under a dynamic axial compressive
load, P, less than PE varies cyclically with time, but the dynamic buckling phenomenon
does not occur. The added deflection increases significantly as P approaches PE and the
period of oscillation becomes infinite at P = PE.

10.5.2 Dynamic Buckling Response

If P > PE, then C1 < 0. In this case, the second-order differential equation, Equation (10.32),
involves hyperbolic functions. For convenience, Equation (10.32) may be rewritten as
follows:

d2δ t
dt2

−C∗
1δ t =C2 10 35

where

C∗
1 =

π

L
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Figure 10.12 Oscillation of the added deflection of a column under dynamic axial compressive
load, P, less than PE versus time, as obtained from Equation (9.30) at x = L/2.
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The solution of the differential equation, Equation (10.31), is given by

δ t =
C2

C∗
1
cosh C∗

1 t −1 10 36

The added deflection of the column is then obtained by substituting Equation (10.36)
into Equation (10.31) as follows:

w=B2 τ δ0 sin
πx
L

10 37

where

B2 τ =
P PE

P PE−1
cosh

P
PE

−1
1 2

τ −1

Figure 10.13 plots Equation (10.37) at x = L/2. It is evident from Figure 10.13 that the
column-added deflection significantly increases over time and becomes very large at a
certain point in time. This phenomenon is sometimes called dynamic buckling.

10.6 Ultimate Strength of Plates Under Impact Lateral
Pressure Loads

10.6.1 Analytical Formulations: Small-Deflection Theory

In a quasistatic loading condition, a plate under lateral pressure collapses if the applied
pressure is greater than the collapse pressure load, pc, as described in Chapter 4.
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Figure 10.13 Dynamic buckling of a column under dynamic axial compressive load P larger than
PE, as obtained from Equation (10.37) at x = L/2.
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When the plate is subjected to impact pressure pulses applied for a short period, how-
ever, it may withstand the loads even if the initial peak pressure is greater than pc.
The plate under such a pressure pulse initially deforms, but the mass of the plate has a

certain amount of kinetic energy when the pressure is removed. This kinetic energy is
then absorbed by the structure, which deforms accordingly. The motion of the plate
ceases when all kinetic energies are dissipated as strain energy. In this process, the plate
response is time dependent, and the inertial forces may play an important role in equi-
librium equations.
The governing differential equations for the dynamic behavior of an element of a rec-

tangular plate are given by accounting for the effects of inertial forces as follows (for the
symbols used, Figure 10.14 may be referred to unless otherwise specified later):

∂Qx

∂x
+
∂Qy

∂y
+ p= μ

∂2w
∂t2

10 38a

∂Myx

∂y
+
∂Mx

∂x
−Qx = 0 10 38b

∂Mxy

∂x
−
∂My

∂y
+Qy = 0 10 38c

dx

+

dy

My
H

pdxdy Qx
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Mxy

Myx

Qydx

Myx dx
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Figure 10.14 An infinitesimal element, dx dy, of a rectangular plate (H is the plate thickness).
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where p is the applied pressure that is a function of t (time), Qx and Qy are the transverse
shear forces, μ = ρH is the mass of the plate per unit area,H is the plate thickness, and ρ is
the material density. Also, bending moments per unit length,Mx andMy, and the twist-
ing moment per unit length, Mxy(= −Myx), are given by

Mx = −D
∂2w
∂x2

+ v
∂2w
∂y2

10 38d

My = −D
∂2w
∂y2

+ v
∂2w
∂x2

10 38e

Mxy = −Myx =D 1−v
∂2w
∂x∂y

10 38f

where D = EH3/[12(1 − v2)] is the plate bending rigidity, E is Young’s modulus, and v is
Poisson’s ratio.
Eliminating Qx and Qy from Equations (10.38a) to (10.38c) and considering Equation

(10.38f), we have

∂2Mx

∂x2
−2

∂2Mxy

∂x∂y
+
∂2My

∂y2
= −p+ μ

∂2w
∂t2

10 38g

Substitution of Equations (10.38d)–(10.38f) into Equation (10.38g) yields

∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

=
1
D

p−μ
∂2w
∂t2

10 38h

Jones (2012) solved the governing differential equation, Equation (10.38g), for a simply
supported square plate of a/b = 1 when a uniformly distributed pressure pulse with an
initial value of p0 was applied for duration τ, following the pulse profile as shown in
Figure 10.11. When p0 is less than twice the static collapse pressure, which is equal to
24Mp/b

2, the response has two phases: the first phase coincides with the period of appli-
cation of the pressure, and the second starts when the pressure is removed and ends
when the kinetic energy of the plate becomes zero. The maximum permanent deflection,
wp, at the center of the plate is in this case given by

wp =
pcτ2

μ
η η−1 for pc ≤ p0 ≤ 2pc 10 39

where η = p0/pc, pc = 24Mp/b
2, Mp = σ0H

2/4, and σ0 is the flow stress.
As noted earlier, Equation (10.39) has been derived considering the dynamic pressure

profile shown in Figure 10.11. It has been shown that the resulting cross-sectional forces
(i.e., bending moments Mx, My) are “admissible,” in the sense that the Tresca-type yield
criterion, as indicated in Equation (1.31b), is not violated and also remain stationary.
However, when the initial peak pressure, p0, shown in Figure 10.11 is more than twice
the static collapse pressure, the two-phase response is not statically admissible because
the assumed velocity profile results in a violation of the assumed yield criterion. In this
case, it is assumed that the response has three phases: the first coincides with the appli-
cation of the pressure pulse, the second is characterized bymoving hinge lines, and in the
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third phase, the plastic hinges become stationary. At the end of the third phase, the max-
imum lateral deflection of the square plate is given by

wp =
pcτ2

4μ
η 3η−2 for p0 > 2pc 10 40

For both the two-phase response and the three-phase response noted earlier, the
response time, T, is found to be equal to ητ.

10.6.2 Analytical Formulations: Large-Deflection Theory

Equations (10.39) and (10.40) were derived under the assumption that the lateral deflec-
tions are not sufficiently large to cause any change to the plate’s geometry, and the sup-
ports do not provide any resistance to the axial movement of the plate edges. However,
when the deflections are relatively large and the supports resist the axial movement of the
plate edges, membrane stresses develop, and the structure provides further resistance
against the applied pressure. The resistance is experienced regardless of whether the
pressure is applied statically or dynamically.
Jones (2012) proposes the rigid-plastic approach to compute the permanent deflection

of beams and rectangular plates loaded by a pressure pulse, p(t), taking into account the
large-deflection effect. According to the Jones approach, if bending moments and mem-
brane forces are developed within the plate, resulting from the axial restraint of the sup-
ports, the lateral deflection, w, obeys the following equation:

A
p−μw wdA=

r

m= 1 ℓm

M +Nw θmdℓm 10 41

where μ is the mass of the plate per unit area, r is the number of hinge lines, ℓm is the
length of the hinge line, θm is the relative angular rotation across a hinge line, and N
and M are the membrane and bending forces, respectively, that act along the
hinge lines. It has been assumed that the material is rigid perfectly plastic, and
the loaded plate is divided into a number of rigid sections separated by straight-line
hinges.
If it is further assumed that (i) the plate is clamped along its four edges, (ii) the material

obeys the Tresca-type yield criterion, and (iii) shear forces do not affect yielding, then the
maximum permanent deflection, wp, of the plate is given by

wp =H
3−ξ0 1 + 2η η−1 1−cosγτ −1

2 1 + ξ0−2 ξ0−1
10 42

where

ξ0 = α 3 + α2−α , γ2 =
96Mp

μb2H 3−2ξ0
1−ξ0 +

1
2−ξ0

, α=
b
a

a is the plate length, b is the plate breadth,Mp = σ0H
2/4, σ0 is the flow stress,H is the plate

thickness, and η is as defined in Equation (10.39).
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If the load is impulsive, that is, p ∞ and τ 0, Equation (10.42) can be rewritten as
follows:

wp =H
3−ξ0 1 + λα2 6 3−2ξ0 1−ξ0 + 1 2−ξ0 −1

2 1 + ξ0−2 ξ0−1
10 43

where λ= ρV 2
0 a

2 σ0H2 . The velocity,V0, is calculated from the relationship p0τ = μV0 = I,
where I is the pulse, refer to Equation (10.27).
Using the same approach, similar equations can be derived for simply supported plates.

In this case, the maximum permanent deflection is given by

wp =H
3−ξ0 1 + 2η η−1 1−cosγτ −1

4 1 + ξ0−2 ξ0−1
10 44

To account for the effect of the strain rate on yield stress, Symonds and Jones (1972)
suggested a correction factor, f, that will be multiplied by the flow stress, σ0, in either
Equation (10.43) or (10.44), namely,

f = 1+
H2λ3 2

6Ca3
σ0
μ

1 q

10 45

where C and q are as defined in Equation (10.17) or Table 10.2.
Yu andChen (1992) showed that in a case of intense impulse, it is essential to consider the

effect of traveling hinges, that is, to update the mode of the assumed collapse mechanism
during the response. A similar approach was developed by Shen (1997) for the dynamic
response of a thin rectangular plate struck transversely (laterally) by a wedge. Chen
(1993) applied the rigid-plastic theory to derive closed-form expressions to predict the per-
manent deflections of rectangular plates under impulsive loads, using two types of deflec-
tion patterns: roof-shaped and sinusoidal patterns. It was shown that the sinusoidal shape
function gives larger permanent deflections than the roof-shaped deformation function.
The insights noted earlier are based on the assumption that the material is rigid per-

fectly plastic, that is, that neither elastic deformations nor strain-hardening effects occur.
This may cause overestimation of permanent deflections, whereas the influence of strain
rate sensitivity, which tends to reduce the permanent deflections, may be accounted for
with the Cowper–Symonds formula, Equation (10.17).

10.6.3 Empirical Formulations

Based on existing experimental data for plates under impact lateral pressure loading,
numerous empirical formulations were derived by curve fitting for prediction of the per-
manent lateral deflection of clamped rectangular plates as follows (Nurick &Martin 1989):

wp

H
= 0 471ϕr + 0 001 10 46a

(and Saitoh et al. (1995)):

wp

H
= 0 593ϕr + 1 38 10 46b

where ϕr = I 2H2 baρσ0 , ρ is the density of the material, and I is the pulse.
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10.7 Ultimate Strength of Stiffened Panels Under Impact
Lateral Loads

The literature on the collapse behavior of stiffened panels subjected to impact lateral
loads is very meager because of the complexity of the structural response phenomena
involved. There are, however, a few closed-form formulas or analytical methods available
that may help to predict stress levels or deflections of stiffened panels under impact lat-
eral loads (Schubak et al. 1989, Nurick et al. 1994, 1995, Nurick & Jones 1995). The
effects of impact loading on the elastic–plastic structural response of stiffened panels
have mainly been investigated experimentally (Jones et al. 1991, Saitoh et al. 1995) or
numerically (Smith 1989, Rudrapatna et al. 2000).
A simple formula to predict the damage to a stiffened panel under impact lateral loads

was derived by Woisin (1979). He suggested that in the case of ship–ship collisions, the
energy absorbed by the impacted and damaged plating in MJ equals 0 5 i hit

2
i , where hi

(m) is the height of the broken or heavily deformed side shell plating or longitudinal bulk-
head of constant thickness ti (cm). The Woisin formula was derived on the basis of his
own test results obtained using relatively large-scale collision test models. Woisin (1990)
later modified his formula and suggested that the energy absorbed by a damaged plate
under impact is better represented by 0.2 Σi hitidi, where di (m) is the distance between
horizontal structural elements such as decks or stringers.
Jones et al. (1991) carried out a series of impact tests on steel and aluminum grillages

(or cross-stiffened panels). The impactor had a mass of 3 kg and an impact speed
between 3 and 7m/s. They also predicted deformations using a quasistatic analysis,
which showed fair agreement with the test results. The conclusion drawn from the study
of Jones et al. (1991) strengthens the opinion that relatively low-velocity impact may be
treated in a quasistatic manner as long as the strain-hardening effect is taken into
account.

10.8 Crushing Strength of Plate
Assemblies

10.8.1 Fundamentals of Crushing Behavior

Consider a plated structure under predominantly com-
pressive loads as shown in Figure 10.15. Figure 10.16
represents a typical history of the resulting load versus
displacement curve. As the compressive load increases,
the structure eventually reaches the ultimate strength,
which is the first peak in Figure 10.16. If the displace-
ment continues to increase, the internal load will
decrease rapidly. During the unloading process, some
parts of the structure may bend or stretch. A lobe
emerges, and the walls begin to fold. As the deforma-
tion continues, walls make contact with each other,
which ends the first fold and initiates a new fold.

Figure 10.15 A plated structure
under predominantly axial
compressive loads.
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The internal load increases until the adjacent walls buckle. The structure begins to fold in a
manner similar to the previous one. This process repeats itself until the entire structure is
completely crushed. The completely folded structure then behaves as a rigid body until
gross yielding occurs by compression. Each trough–peak pair in Figure 10.16 is associated
with the formation of one structural fold.
Figure 10.17 shows a crushed tube after cutting off half of the structure. It is apparent

that many folds form during the crushing process. The formation of these folds results in
large axial compressive displacements. The folds usually develop sequentially from one
end of the tube, so the phenomenon is known as progressive crushing. A ship’s bow may
possibly be designed to be crushable to achieve high energy absorption capacity in a col-
lision accident.
In a usual loading condition in which the deformation is relatively small, the designer’s

primary concern is the structure’s ultimate strength, or the initial peak load in
Figure 10.16. In an accidental loading condition, however, the energy absorption

Axial shortening

Pm = Mean crushing load

Pm

P

Figure 10.16 Crushing response of a thin-walled structure under predominantly compressive loads.

Figure 10.17 A plated structure crushed under axial compressive loads and cut at its midsection.
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capability is the more likely concern. The peak load of the structure is not always of pri-
mary interest, and the analysis of the detailed crushing behavior is not an easy task.
As long as the energy absorption capacity is of primary concern, a convenient alterna-

tive is to predict the structure’s “mean crushing load,” which represents a mean value of
fluctuating loads as shown in Figure 10.16. With this mean crushing load and the crush-
ing displacement known, the absorbed energy can be calculated by multiplying these two
values, which are approximately equal to the area below the corresponding load–
displacement curve.
The insights gained from experiments on crushing thin-walled structures lead to an

approximation widely applied in theoretical computations of the mean crushing
strength: one structural fold forms at a time (Alexander 1960) so that one such fold
can be analyzed independently. The influence of adjacent structures is therefore
neglected. By means of the rigid-plastic theory, the mean crushing strength of structural
elements can be estimated based on the kinematically admissible folding mechanisms.
The response of complex plated structures is then calculated from the assemblage of
such individual elements.
For the solution of crushing problems of thin-walled structures, in which a plane stress

state can be assumed and thematerial is oftenmodeled as a perfectly plastic material with
a well-defined flow stress, σ0, the classical theorem of upper bound plasticity is com-
monly used. Under this theorem, if the work rate of a structural system under the applied
loads during any kinematically admissible collapse of the structure becomes equal to the
corresponding internal energy dissipation rate, this system under the applied loads will
be at the point of collapse.
The analytical approach to calculate the crushing strength is typically based on the

introduction of rigid-plastic collapse mechanisms into the basic structural unit. Two
lines of thought currently exist regarding the modeling technique for a structure
(Paik & Wierzbicki 1997). One technique, the intersecting unit method (Amdahl
1983, Wierzbicki 1983, Pedersen et al. 1993), aims to model a structure as an assembly
of typical intersecting units, such as L, T, Y, and X (or cruciform) sections. The other
technique, the individual plate unit method (Murray 1983, Paik & Pedersen 1995), aims
to model a structure as a collection of individual plate units. The intersecting unit
method allows for several possible crushing mechanisms, and crushing occurs in the
mode that gives the lowest crushing strength.
For a complex plated structure under accidental crushing loads, the reaction force ver-

sus crushing displacement relationship is obtained by computing the mean crushing
loads and the corresponding crushed distance as the striking body crushes into the struck
body. The mean crushing strength may be obtained as a sum of the mean crushing
strengths for individual elements. The structure’s energy absorption capability is then
calculated by integrating the area below the reaction force versus crushing displacement
curve. In the following two sections, we present some useful analytical expressions for
the mean crushing strength characteristics of individual plate units and intersecting
elements.
Although the derivation of all mean crushing strength formulations noted later is

undertaken in a static loading condition, the effect of impact loading can be approxi-
mately accounted for with the use of the dynamic yield stress, which accommodates
the effects of strain rate sensitivity using Equation (10.16) in place of the static yield
stress. Strain-hardening effects may also be approximately included by using the
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so-called flow stress, σ0, which is defined as the
average of the yield stress, σY, and the ultimate
tensile stress, σT, given by σ0 = (σY + σT)/2.

10.8.2 A Plate

A plated structure may be regarded as an assem-
bly of individual plate elements, as shown in
Figure 10.18. When thin-walled structures made
up of such elements are subjected to axial com-
pressive loads in one of the plate directions, as
shown in Figure 10.15, the other (unloaded)
edges of the plate elements are usually con-
nected with those of the surrounding structures.
When at least two such plate edges meet, they
can restrain each other and may even remain
straight. Depending on the condition at the plate
edges, the structure may have two different
folding modes, as shown in Figures 10.19 and
10.20 (Murray 1983, Paik & Pedersen 1995):
mode I, in which one unloaded edge remains
straight and the other is free to deform, and

b
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a
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𝜎xav
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Figure 10.18 Geometry, boundary, and
loading of a rectangular plate element.

H

H

A

x

B

C D

𝛼 𝛼
y

kH b – kH

I

II

Figure 10.19 A schematic for the “one edge straight/one edge free” folding mechanism (mode I).
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Figure 10.20 A schematic for the “both edges straight” folding mechanism (mode II).
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mode II, in which both unloaded edges remain straight or the bending deformation of the
edges is small.
For the folding mechanisms shown in Figures 10.19 and 10.20, the plastic energy is

mainly dissipated by in-plane deformations in triangular regions and the horizontal/ver-
tical hinge lines. The contributions from plastic bending in the plastic hinges and mem-
brane stretching in these triangular regions may be summed and then divided by the
effective crushing length to yield the mean crushing strength. Using such a procedure
based on the rigid-plastic theory, Paik and Pedersen (1995) derived the following formu-
lations for the mean crushing strength of unstiffened plate elements, namely,

σxm
σ0

=
1
ηx

1 0046
t
b
+ 0 1332

t
b

for mode I 10 47a

σxm
σ0

=
1
ηx

1 4206
t
b
+ 0 2665

t
b

for mode II 10 47b

where σxm is the mean crushing strength (stress) in the x direction, σ0 is the flow stress
(σ0 = σY is taken when the strain-hardening effect is ignored), t is the plate thickness, b is
the plate width along the loaded edge, and ηx is the normalized effective crushing length,
taken as 0.728.
For a continuous plated structure, the use of the mean crushing strength formula for

mode II, that is, Equation (10.47b), may be more relevant because the unloaded plate
edges may in such cases remain straight.

10.8.3 A Stiffened Panel

Many engineering structures use stiffened panels. In terms of energy absorption capacity, a
stiffened panel with stiffeners in the longitudinal direction parallel to the compressive load-
ing direction can be approximately replaced by an unstiffened plate with equivalent wall
thickness (Paik&Wierzbicki 1997). The equivalentwall thickness is an increased thickness
that accounts for the cross-sectional area of both the plate and the stiffeners as follows:

txeq = t +
Asx

b
10 48

where txeq is the equivalent wall thickness of a stiffened panel in the x direction, Asx is the
cross-sectional area of the stiffeners in the x direction, and b is the spacing of the lon-
gitudinal stiffeners.
The contribution from transverse stiffeners in such cases can be neglected. The pres-

ence of longitudinal stiffeners in the direction of compressive loading usually has a sig-
nificant effect (i.e., reduces) the effective crushing length because the stiffeners work
against and thus disturb the folding process. Based on the crushing test data for thin-
walled structures with stiffeners, Paik et al. (1996) derived an empirical formula by curve
fitting to predict the effective crushing length as follows:

ηx =

0 728 for 0 < txeq b≤ 0 0336

704 49 txeq b
2
−81 22txeq b+ 2 66 for 0 0336 < txeq b < 0 055

0 324 for 0 055 ≤ txeq b

10 49
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Because Equation (10.49) is based on the crushing test data for stiffened square tubes, it
may be available for a stiffened panel with the unloaded edges simply supported. The
longitudinal mean crushing strength, σxm, of a stiffened panel with longitudinal stiffeners
is then predicted from Equations (10.47) but using the applicable effective crushing
length and the equivalent wall thickness for the stiffened panel as follows:

σxm
σ0

=
1
ηx

1 0046
txeq
b

+ 0 1332
txeq
b

formode I 10 50a

σxm
σ0

=
1
ηx

1 4206
txeq
b

+ 0 2665
txeq
b

formode II 10 50b

A similar expression may be relevant for prediction of the transverse mean crushing
strength, σym, of a stiffened panel as follows:

σym
σ0

=
1
ηy

1 0046
tyeq
a

+ 0 1332
tyeq
a

formode I 10 51a

σym
σ0

=
1
ηy

1 4206
tyeq
a

+ 0 2665
tyeq
a

formode II 10 51b

where

ηy =

0 728 for 0 < tyeq a ≤ 0 0336

704 49 tyeq a
2
−81 22tyeq a+ 2 66 for 0 0336 < tyeq a < 0 055

0 324 for 0 055 ≤ tyeq a

tyeq = t +Asy/a is the equivalent wall thickness of a stiffened panel in the y direction, Asy is
the cross-sectional area of the stiffeners in the y direction, and a is the spacing of the
transverse stiffeners.
Under shearing force, the plate element can crush. In this case, it is assumed that the

mean crushing strength, τm, of an unstiffened or stiffened panel equals the shear flow
stress as follows:

τm = τ0 =
σ0
3

10 52

In combined loads, the following interactive relationship for crushing is suggested as a
function of the average stresses acting on the panel element (Paik & Pedersen 1996):

fc =
σxav
σxm

2

+
σyav
σym

2

+
τav
τm

2

−1 = 0 10 53

where fc is the crushing function and σxav, σyav, and τav are average stress components.

10.8.4 An Inclined Plate

When the thin-walled structure with inclined sides is subjected to axial compressive
loads as shown in Figure 10.21, the mean crushing strength may approximately be
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calculated from Equations (10.47) or (10.50) but con-
sidering the effect of inclination as follows:

σ∗xm =
1

cos θ
σxm 10 54

where σ∗xm is the mean crushing strength for inclined
loading and θ is the angle between the structure and
the loading direction.
As previously noted, the dynamic loading effect may

be approximately accounted for by replacing the flow
or yield stress with the dynamic flow or yield stress,
which is determined from Equation (10.16) or (10.17).

10.8.5 L-, T-, and X-Shaped Plate Assemblies

In contrast to the modeling presented in Section 10.8.2,
a thin-walled structure may also be modeled as an

assembly of intersecting elements such as L-, T-, or X-shaped elements (Paik &Wierzbicki
1997), as shown in Figure 10.22.
For L-shaped intersecting elements, two basic folding modes are relevant: the so-called

quasi-inextensional and extensional modes, as shown in Figure 10.23 (Abramowicz &
Wierzbicki 1989). The former mode consists of four trapezoidal elements that undergo
rigid-body motions and are separated by plastic hinges. The horizontal plastic hinges are
stationary. The vertical plastic hinges travel in the plate elements. These hinges are
formed where the material is bent and re-bent.

θ

Figure 10.21 A plated structure
under axial compressive loads
in the vertical direction, with sides
inclined at an angle.
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Figure 10.22 Intersecting plate element modeling of plated structures: (a) L-shape; (b) T-shape;
(c) X-shape.
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Although the structure may tend to follow an inextensional deformation mode, there
may inevitably be extensions in some areas of the plate, as shown in Figure 10.23b. In this
specific case, the extensional deformations in the circumferential directions are accom-
modated in a local zone of the vertical hinges. The extensional folding mode also consists
of four trapezoidal elements that bend about the horizontal plastic hinges. As the vertical
plastic hingesmoves, the shape of the four elements distorts, and thematerial is stretched
around the vertical connection.
Although an L-shaped structure under crushing loads involves either a quasi-

inextensional or extensional mode, complex intersecting elements with T- or X-shapes
exhibit many more different folding patterns. These complicated symmetric and asym-
metric andmixed folding patternsmay be the results of different combinations of the two
basic folding modes earlier. Any one such particular combination is generally triggered
by the geometry of the structure, the shape of the initial buckling mode, and the initial
imperfections.
Ohtsubo and Suzuki (1994), among others, derived themean crushing strength formu-

lations for L-, T-, and X-shaped intersecting elements as follows:

σm
σ0

=
1 5165

η

t
b

2 3

for L-shaped elements 10 55a

σm
σ0

=
1 1573

η

t
b

2 3

for T-shaped elements 10 55b

σm
σ0

=
1
η

1 2499
t
b
+ 0 2493

t
b

for X-shaped elements 10 55c

where σm is themean crushing strength and η is the normalized effective crushing length,
which may be taken as η = 0.728 for the unstiffened elements.
The effects of stiffeners, dynamic loading, or inclined loading may approximately be

accounted for, as previously presented in Section 10.8.2.

(a) (b)

Figure 10.23 Schematic representation of the two basic folding modes for the L-shaped
intersecting plate assembly: (a) quasi-inextensional mode; (b) extensional mode.
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10.9 Tearing Strength of Plates and Stiffened Panels

10.9.1 Fundamentals of Tearing Behavior

When a ship with a forward speed runs aground on a rock, its bottom may be torn from
the initial impact. If the kinetic energy is not entirely spent during the initial impact, the
ship will run atop the rock for a distance. As a result, the grounding damage on the bot-
tom can become a long gash that extends tens or even hundreds of meters in length.
Similarly, when a ship collides with the side structure of another ship, the deck struc-

ture of the struck ship may be cut and penetrated by the striking bow. Steel is torn,
separated, and bent in a manner similar to a ship bottom in a grounding accident.
The plate tearing also plays an important role in absorbing impact energy in a collision
accident.
For purposes of investigating structural strength under such conditions, many experi-

ments were undertaken in the 1980s by dropping a heavy wedge into a vertical or near-
vertical steel plate in a drop-hammer rig (Vaughan 1980, Woisin 1982, Jones & Jouri
1987). Quasistatic tests were also carried out in the 1990s when wedges were pushed very
slowly into plates (Lu & Calladine 1990, Wierzbicki & Thomas 1993, Paik 1994).
A quasistatic test has the advantage of continuous recording of various features.
Figure 10.24 shows a schematic of a cutting test setup in which a sharp wedge is pushed

into a steel plate. The wedge in such a case is generally made to be rigid so that the impact
energy is entirely absorbed by the steel plate. As the wedge is pushed into the plate, the
plate buckles and bends out of plane. The load increases to a peak and then declines, but
there is no separation of the material. Eventually, as the wedge pushes further, cutting
commences, and loading picks up again. The plate is torn apart in front of the wedge
tip in the transverse direction. The separatedmaterial then bends over, forming two curls
or flaps. The wedge keeps pushing the curved plate flaps, which roll up in the wake of the
wedge. Near the wedge tip, the plate also develops a global deformation pattern, where
the plate deforms out of the plane and separates. Under some circumstances, the plate
may bend in the opposite direction, and the curls reverse. Figure 10.25 shows plates cut
by wedges, representing tearing and curling of the plate.
In such a process, there are several distinct mechanisms by

which the energy is absorbed, namely, tearing, bending, and
friction. In the vicinity of the wedge tip, the material is
stretched transversely; the stress state there is mainly a result
of membrane stretching. In the wake of the wedge, the plate
bends out of plane; the stress state there is primarily due to
plastic bending. As the wedge moves, its side makes contact
with the plate, and friction builds up and consumes a portion
of the energy.
The following sections present analytical and empirical

formulations for the relationship between the tearing
force, F, and penetration, ℓ. All these formulations are
derived in a quasistatic loading condition, but the dynamic
effect may approximately be accounted for by including
the effects of strain rate sensitivity on the material yield
stress.

F, l

t

2θ

α

Figure 10.24 A schematic
of a cutting test setup
for a plate.
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10.9.2 Analytical Formulations

There are two distinct plastic deformation processes in play: near-tip tearing and global
bending in the far field. Figure 10.26 shows a schematic of the plate damage, including
tearing and curling considered by Wierzbicki and Thomas (1993).
The work involved in the bending of the two curls or flaps in the far field includes con-

tributions from both a continuous velocity field and a discontinuous velocity field. The
integration of the continuous deformation field is performed over the plastically deform-
ing zone, whereas the contribution from a discontinuous field is summed over a finite
number of straight-line segments. These discontinuous velocity fields are related to local
plastic hinges.
The calculation of plastic membrane work near the crack tip can be based on either a

traditional rigid-plastic approach or a fracture mechanics approach. In the rigid-plastic
approach, such as that of Ohtsubo and Wang (1995), the membrane work to stretch the
material is integrated over a continuous plastically deforming field. The extent of this
membrane stretched plate may be determined using a criterion based on critical rupture
strain (Zhang 2002). The fracture mechanics approach (e.g., Wierzbicki & Thomas 1993,
Simonsen & Wierzbicki 1998) describes the local stress state using relevant parameters,
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Figure 10.25 (a) A typical picture of tearing and curling of a plate upon being cut by a wedge
(Thomas 1992); (b) a schematic of the analytical model on plate cutting by a rigid wedge (Zhang 2002).
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Figure 10.26 A schematic of the damage of a plate cut by a wedge.
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such as the crack tip opening displacement (CTOD), and calculates the work required to
propagate the crack as a function of the CTOD parameter (see Chapter 9).
Membrane stretching and curl bending are not independent; they are related through

a single geometric parameter. This parameter is denoted by R, as depicted in Figure 10.26,
which represents the instantaneous bending or rolling radius of the cylindrical flaps in the
wake of the wedge. Specifically, the far-field bending work is inversely proportional to R,
whereas the membrane work in the near-tip zone increases with the rolling radius.
The analytical expression for the plate tearing force versus the cutting length derived

by Ohtsubo andWang (1995), among others, using the rigid-plastic method is as follows:

F = 1 51σ0t
1 5l0 5 sinθ 0 5 1 +

μ

tan θ
10 56

where σ0 is the flow stress, t is the plate thickness, l is the tearing length, 2θ is the spread-
ing angle of the wedge, and μ is the friction coefficient.
Using the fracture mechanics approach, Wierzbicki and Thomas (1993), among

others, derived the following expression:

F = 1 67σ0 δt
0 2t1 6l0 4 1

cosθ 0 8 tanθ 0 4 +
μ

tanθ 0 6 10 57

where δt is the CTOD parameter as described in Chapter 9.
Considering the critical rupture strain tomembrane stretching, Zhang (2002) derived a

semi-analytical expression as follows:

F = 1 942σ0t
1 5l0 5ε0 25

f tanθ 0 5 1 +
μ

tanθ
10 58

where εf is the critical rupture strain.
Such analytical formulations noted earlier accommodate the coefficient of friction and

the wedge’s spreading angle as parameters of influence. In most laboratory experiments,
there is no sign of a crack extending in front of the wedge tip, and local necking of the
plate material is observed in that area before the material is separated. It is thus generally
recognized that the material in front of the wedge may be torn apart rather than cut by
the wedge, yet such a mechanism is very difficult to include precisely in an analytical
model. The material separation in front of the wedge is due to ductile failure. The
rigid-plastic analysis approach describes a local deformation zone near the wedge tip,
whereas the fracture mechanics approach explains the mechanism that drives the crack.
Both approaches calculate the internal energy absorbed in the local area in the vicinity of
the wedge tip, and the two estimates can be similar. In fact, the tearing force depends very
weakly on the value of δt, the CTOD parameter, because the exponent involved is 0.2, as
per Equation (10.57).
Once the relationship between the tearing force, F, and the cutting length, ℓ, is known

as the wedge is pushed into the plate, the strain energy,W, that is absorbed until ℓ = ℓm is
reached can be calculated by integrating the area below the F–ℓ curve as follows:

W =
ℓm

0
Fdℓ 10 59

Ultimate Limit State Analysis and Design of Plated Structures504



10.9.3 Empirical Formulations

Based onmechanical test results, empirical formulations for the tearing force may also be
derived via dimensional analysis. The tearing force, F, depends on the wedge’s geometric
parameters, the thickness of the plate, and the tearing length. It also depends on the
material yield stress, because plastic deformation is evident in the process of penetration.
The parameter of Young’s modulus is not included because deep penetration is con-
cerned, whereas elastic deformation is limited to the stage up to the initial buckling.
If the dimensions of the problem are taken as the tearing load and tearing length, there

are two different dimensionless parameters involved. If two other parameters, that is, the
plate thickness and the yielding stress, are included, the problem involves four variables.
The so-called Buckingham’s Pi rule (Buckingham 1914, Jones 2012) tells us that a four-
variable problem has two independent dimensionless groups. One such expression that
satisfies the rule is

F
σ0t2

=C
ℓ

t

n

10 60

where F is the tearing force, σ0 is the flow stress, t is the plate thickness, ℓ is the tearing
length, andC and n are constants. The value of C depends on many factors, including the
geometry of the wedge and the parameters for friction. The value of n reflects the inter-
dependence of the major energy absorption mechanisms.
Based on curve fitting of their test results for unstiffened high tensile steel plates cut by a

rigid wedge, Lu and Calladine (1990) found that the value of n is between 0.2 and 0.4. The
thickness of their test plates was in the range of 0.7 and 2mm, and α = 0 and 2θ = 20 and
40 . They further simplified the expression by using a single value of n = 0.3 and worked out
the corresponding best-fitting values for C. Their resulting empirical relation is as follows:

F =Cσ0t
1 7
ℓ
0 3 for 5≤

ℓ

t
≤ 150 10 61

where C is a constant that is dependent on the materials or test conditions.
Paik (1994) performed a series of cutting tests on high tensile steel panels with longi-

tudinal stiffeners. Paik’s test panels were 3.4–7.8 mm thick, and α = 0 and 2θ = 15, 30, 45,
and 60 . This test series demonstrated a dependence of the value C in Equation (10.60) on
thewedge’s geometrical parameter in such a case. A least-squares best fit to the experimen-
tal data provides the following expression:

F = 1 5Cσ0t
1 5
eq ℓ

0 5 10 62a

where teq is the equivalent plate thickness, as defined in Equation (10.44), and C is a
parameter that accounts for the influences of a wedge’s geometry, which is a function
of the spreading angle of the wedge:

C = 1 112−1 156θ + 3 760θ2 10 62b

where θ is as defined in Figure 10.24 (in rad).
It is noted that although Equation (10.61) is used for unstiffened plates, Equation (10.62)

will be used for longitudinally stiffened panels. Although Equations (10.61) and (10.62) are
based on the test results for relatively thin panels, they may be approximately applied to
thicker plates.
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Figure 10.27 compares between the plate tearing force expressions for a given case. In
this comparison, a mild steel plate with t = 8mm and σ0 = 270MPa is considered to be
cut by a rigid wedge. The coefficient of friction is assumed to be 0.25, and the
critical rupture strain is taken as εf = 0.25. Although the Paik formula is basically
applicable to cutting of longitudinally stiffened panels, it is applied with teq = t in this
calculation.
It is seen from Figure 10.27 that good agreement between all methods is achieved when

the wedge angle is relatively small, that is, 2θ = 40 , whereas some differences appear
when the wedge angle is relatively large, that is, 2θ = 90 . For the case of a larger wedge
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Figure 10.27 A comparison of cutting forces calculated by different methods for wedge angle of
(a) 2θ = 40 and (b) 2θ = 90 , undertaken by Zhang (2002).
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angle that has a relatively large wedge width far behind the wedge tip in comparison with
stiffener spacing, the Paik formula predicts larger tearing forces because it is mainly
derived on the basis of longitudinally stiffened panels, whereas the rest of the formulas
are only based on unstiffened plates.

10.9.4 Concertina Tearing

When a stiffened panel is cut by a wedge, the plate may crack in the vicinity of stiffening
members. Two or more cracking lines advance with the wedge; there is no crack directly
in front of the wedge tip, and the plate is folded like an accordion. This type of tearing
process is sometimes termed “concertina tearing.” Figure 10.28 shows a photo of con-
certina tearing on a stiffened panel cut by a wedge.
Concertina tearing is similar to the usual tearing process in the sense that the material

is separated. It is also similar to the crushing of plating in the sense that the structure is
folded. Applying the rigid-plastic theory,Wierzbicki (1995) derived an analytical formula
of the mean concertina tearing load for a steel plate. In this approach, the length of the
folds is treated as a parameter in the relationship between the tearing load and the
indentation, thus linking membrane stretching and bending at the plastic hinges.
The mean concertina tearing load formula is then derived by minimizing the load with
regard to this parameter. The Wierzbicki formula of the mean concertina tearing load is
given by

Fm =
1
λ

3 25σ0b
0 33t1 67 + 2Rt 10 63

where Fm is the mean concertina tearing load, σ0 is the flow stress, t is the plate thickness,
b is the width of the folded plate, λ is the factor for effective crushing length, and R is the
fracture parameter.

Figure 10.28 A concertina tearing.
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10.10 Impact Perforation of Plates

The perforation of structural members by various objects has been of interest to the engi-
neering community for over 300 years and to the military establishment for even longer
(Johnson 2001, Blyth & Atkins 2002). This apparently simple topic is, in fact, a complex
one because of the plethora of variables.
The striking mass (missile, striker or projectile) is characterized by many parameters

including its shape, mass, impact velocity, structural strength, and hardness, though, for
simplicity, the mass is often taken as rigid. The geometrical shapes range from military
weapons having highly specified shapes to amorphous objects, which emanate from acci-
dental explosions of pressure vessels or are dropped onto structures. The impact velo-
cities can embrace several orders of magnitude and might elicit a range of markedly
different responses. The target itself can have different geometries and be made from
a wide range of materials, some ductile, others not, and having various strain-hardening
and strain rate sensitive characteristics. The mass could strike at an oblique angle at any
location on a plate, for example, near a hard point, impact velocities, etc. Thus, exper-
imental data is available only for small subsets of the entire field that contains, as a con-
sequence, many lacunae.
However, empirical equations have been developed largely on the basis of limited

experimental data. These equations are strictly restricted to the range of applicability
of the experimental test parameters, but they are often used outside these restrictions
in design situations and for hazard assessments. It is clear that empirical equations
are valuable for securing quick estimates for the perforation energies of plating. In
the fullness of time, numerical schemes have been developed as design tools, but they
do require considerable input from experimental tests on the strain rate, temperature,
and failure characteristics of the target and missile materials (Borvik et al. 2009, Rusinek
et al. 2009).
Impact velocities associated with missiles are higher than about 100m/s. The perfo-

ration of plating in the lower velocity range is associated with dropped objects and large
relatively slow moving fragments from explosive and other dynamic incidents. It is
recognized that the impact perforation of thick and thin plates needs to be distinguished
at high velocities (e.g., hypervelocity impact (Anderson 2001)), for which local effects,
including possible temperature related phenomena, dominate global effects, which are
often neglected entirely.
To discriminate more clearly between thin and thick plates, Backman and Goldsmith

(1978) have examined the number of elastic wave transversals, n, through a target thick-
ness, H, during the single traverse of an elastic wave along the length, L, of a missile as
follows:

n=
Ct

Cm

L
H

10 64

whereCt andCm are the elastic wave speeds in the target andmissile, respectively, L is the
length of projectile, and H is the plate thickness.
If n 1, then it is assumed that the elastic stress state in a target underneath the mis-

sile would be uniform across the target thickness before an elastic stress wave reaches the
end of themissile. In this case, such a target could be considered as thin. An actual impact
problem with inelastic behavior and perforation would be much more complex than this
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simplified analysis, but Backman and Goldsmith (1978) suggested that plate impact pro-
blems with n > 5, approximately, could be regarded as thin, those with n < 1 as thick, and
1 < n < 5 for plates having an intermediate thickness.
Equation (10.64) is independent of the impact velocity, Vo, which is an important

parameter in a dynamic problem. However, Johnson (1972) has introduced the damage
number, Φ, as follows:

Φ=
ρ V 2

o

σ
10 65

where ρ is the density of plate material, σ is the mean dynamic flow stress, and Vo is the
impact velocity.
By rearranging Equation (10.65) as ρV 2

o = σΦ, it is evident that Φ gives an estimate of
the order of the strain in the region where severe plastic deformation occurs.
Equation (10.65) might be used to suggest the phenomenon, which most likely governs
the response of a particular impact problem. Another way to characterize a missile-plate
response is to compare the time it takes for a plastic hinge to travel across a plate (th) with
the time taken for a perforation failure to develop (tp). A rough estimate tp = 2H/Vo is
assumed for the perforation time of a projectile traveling with an impact velocity Vo,
and an average velocity Vo/2, to travel one plate thickness H. A rigid-perfectly plastic
analysis for a circular plate of radius R struck at the center by a mass with a cylindrical
body and a flat face is developed in reference (Liu & Jones 1996), but a numerical analysis
is required to obtain the hinge speed and, therefore, the time th.
This is also true for a similar analysis by Florence (1977) for the dynamic pressure load

acting over a central circular area of a circular plate. Thus, an estimate is made for th by
evaluating the time taken for a plastic hinge to travel across a simply supported circular
plate, which is loaded impulsively over the entire plate. This expression when divided by
tp gives

th
tp

=
Φ
6

R
H

2

10 66

where R is the radius of a circular plate.
Equation (10.66) indicates that if th tp, then the entire plate would participate in the

perforation process, that is, the global deformations of a plate would be important
throughout the response. On the other hand, if th tp, then the perforation process
would be highly localized with insufficient time for global effects to develop.
For an example of a steel plate, th/tp = 0.033 gives Φ= 2× 10−3 when R/H = 10 with

ρ = 7850 kg/m3, σ = 392.5MPa, and Vo = 10m/s. This suggests that global effects (e.g.,
membrane forces) would be an important aspect of the response because they would have
developed well before perforation had occurred. If Vo = 100m/s for the same plate, then
th/tp = 3.33, so that Equation (10.66) suggests that both local and global effects would be
important during the perforation process. AtVo = 1000m/s, th/tp = 333, which implies that
the perforation for this plate is highly localized, because there is insufficient time for any
global deformations to develop, and for the disturbance to be transmitted away from the
vicinity of the impact site through the action of the plastic hinge movement.
For another example of an aluminum alloy plate, th/tp = 0.016 gives Φ= 10−3 when

R/H = 10 with ρ = 2720 kg/m3, σ = 272MPa, and Vo = 10 m/s. If Vo = 100m/s for the
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same plate, then th/tp = 1.6, so that Equation (10.66) suggests that both local and global
effects would be important during the perforation process. At Vo = 1000m/s, th/tp = 166,
which also implies that the perforation for this plate is highly localized.
The perforation velocity is taken as the average between the maximum velocity that

does not cause a projectile to pass through a plate and the minimum recorded velocity,
which causes perforation of a plate. The threshold value of the perforation velocity is the
limiting case with no residual, or exit, velocity of a projectile after perforation. However,
in some experimental studies, perforation is taken to occur when the distal side of a plate
is cracked.
The low-velocity behavior is related to impact velocities causing perforation up to

about 20m/s, which can be regarded as a quasistatic response for which global effects
are significant. This topic is of interest for drop weight loading incidents and for the effect
of large fragments emanating from explosive failures of pipelines and pressure vessels.
For high-impact velocities, say, above about 300 m/s, then local effects generally domi-
nate the response with less important global effects. In moderate-impact velocities in the
approximate intermediate velocity range 20–300 m/s, both global and local effects con-
trol the response. The influence of global effects decreases as the impact velocity
increases within this range, as indicated by the predictions of Equation (10.66) for th/tp.
For more elaborate descriptions, interested readers may refer to Backman and Gold-

smith (1978), Goldsmith (1999), Corbett et al. (1996), and Jones and Paik (2012, 2013),
among others. Several existing and recently developed empirical equations are compared
with some recent experimental results reported for mild steel and stainless steel plates in
Jones and Paik (2012) and for aluminum plates in Jones and Paik (2013).

10.11 Impact Fracture of Plates and Stiffened Panels
at Cold Temperature

Plated structures are likely to be subjected to impact loads at cold temperature. Paik et al.
(2011) investigated the effects of low temperature (−40 C and −60 C) on the crushing
response of steel-plated structures. Dipaolo and Tom (2009) examined the same topic
at −45 C. McGregor et al. (1993) studied the crushing characteristics of aluminum-
plated structures and found that the average crushing force of hexagonal aluminum
box sections increased as the temperature decreased (from room temperature to
−40 C). With respect to impact loads at low temperatures, Min et al. (2012) conducted
an experiment associated with the plastic deformation of steel-plated structures sub-
jected to impact loads (~5–5.5 m/s) and performed comparative studies through numer-
ical analysis, where the experiment was conducted at −30 C and −50 C. Manjunath and
Surendran (2013) studied dynamic fracture toughness of aluminum 6063 with multilayer
composite patching at lower temperatures. Kim et al. (2016) performed an experimental
and numerical study to examine the nonlinear impact response of steel-plated structures
in an Arctic environment (at −60 C), involving buckling, yielding, crushing, and brittle
fracture.
Figure 10.29 shows selected pictures representing the brittle fracture response of a

cross-stiffened steel panel (with two flat-bar stiffeners) under centrally concentrated
impact loading at −60 C, obtained by a dropped-object test (Kim et al. 2016).
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It is apparent from this figure that a metal structure exposed to cold temperature can
suffer brittle fracture failure under impact loading in contrast to a structure at room tem-
perature that may show ductile fracture or rupture. It is also observed that the aspects of
crack propagation are quite complex in association with the welding line or in an arbi-
trary direction. Figure 10.29 also shows the local buckling (flexural-torsional buckling)
failure that has occurred in the stiffeners.

10.12 Ultimate Strength of Plates Under Impact Axial
Compressive Loads

Paik and Thayamballi (2003) provided an experimental data on the ultimate strength of
steel plates under impact axial compressive loads. A series of impact collapse tests were
carried out on a steel square plate (a× b× t = 500mm× 500mm× 1.6 mm with a yield
stress (σY) of 251.8MPa and Young’s modulus (E) of 198.5 GPa) under axial compressive
loads, varying the loading speedVo in the range of 0.05–400 mm/s, which corresponds to
strain rates in the range of 10−4 to 0.8 s−1. where the strain rate ε is approximately deter-
mined as ε=Vo a. Based on the test data, the effect of loading speed (or strain rate) on
the plate ultimate strength was investigated. Relevant useful formulations to predict the
impact ultimate compressive strength of plates were also derived.

Figure 10.29 Impact fracture response of a steel-stiffened panel at cold temperature (Kim et al. 2016).
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Figure 10.30 shows the ultimate strength behavior of the plate under impact axial
compressive load, varying the loading speed. Figure 10.31 shows the impact ultimate
compressive strength of the plate as a function of the strain rate. It is interesting to note
that the impact ultimate compressive strength of a plate may be calculated using the
dynamic yield strength of material that can be defined from the Cowper–Symonds equa-
tion described in Section 10.3.2. For a direct calculation, Paik and Thayamballi (2003)
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Figure 10.30 The ultimate strength behavior of a steel plate under impact compressive load,
plotted versus (a) the end shortening and (b) the lateral deflection, as obtained by the experiment
(Paik & Thayamballi 2003).
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derived an empirical formulation that is similar to the Cowper–Symonds equation in
expression, Equation (10.17), as follows:

σud
σu

= 1 0 +
ε

D

1 q

= 1 0 +
Vo

aD

1 q

10 67

where σud is the dynamic ultimate compressive strength of a plate, σu is the quasistatic
ultimate compressive strength of a plate, ε=Vo a, Vo is the loading speed, a is the plate
length, and D and q are the coefficients that are taken as D= 5 41s−1 and q = 2 21 for a
steel plate. Figure 10.31 confirms the validity of Equation (10.67).

10.13 Ultimate Strength of Dented Plates

Plated structures may suffer mechanical damage in many ways. In offshore platforms,
local denting damage occurs in deck plate panels subjected to impacts due to objects
dropped from a crane. Inner bottom plate panels of cargo holds of bulk carriers often
suffer mechanical damage by mishandled loading or unloading of cargoes; iron ore cargo
strikes the plate panels during loading, and excavator hits the inner bottom plate panels
in unloading of bulk cargoes such as coal or iron ore. While such mechanical damage
may involve various features such as denting, cracking, residual stresses or strains due
to plastic deformation, and coating damage, the load-carrying capacity of dented plate
panels can be reduced.
As shown in Figure 10.32, local denting damage of plate panels on striking or being

struck by an obstacle may depend on the shape and sharpness of the obstruction, among
other factors such as mass and impact velocity. The formation of impact damage can be
not only localized dent together with global deformation but also perforation or tearing,
the latter being described in Section 10.10.
Figure 10.33 defines the geometric parameters for two types of typical dent shapes,

namely, spherical shape and conical shape. The center of the localized dent is located
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Figure 10.31 The impact ultimate compressive strength of a steel plate, plotted versus the strain rate.
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in s in the x coordinate and h in the y coordinate. In general, denting causes both local
dent and global deflection as shown in Figures 10.34 and 10.35. It is considered that the
latter type of damage (global deflection) may affect the plate collapse behavior as if post-
weld initial deflection does. In fact, global deflection due to denting will be inherently
superposed by welding induced initial deflections. In this regard, global deflection by
denting may be treated as a type of welding induced initial deflection in the plate
strength calculations.

(a) (b)

Figure 10.32 A schematic of local denting damage for a plate struck by (a) a spherical obstacle
and (b) a conical obstacle.

a

b dd dd
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Figure 10.33 Geometric parameters of local denting damage.
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Figure 10.34 A schematic of spherical shape of denting damage: (a) the welding induced initial
deflection; (b) the global deformation by denting; (c) the local spherical dent; (d) the combined initial
deflection and denting damage.
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10.13.1 A Dented Plate in Axial Compression

Paik et al. (2003) investigated the ultimate strength behavior of plates under axial com-
pressive loads using the nonlinear finite element method, where the plate is 2400 mm
long and 800 mm wide, while the plate thickness t is varied. The material of the plate
is high tensile steel with a yield strength of σY = 352.8MPa, an elastic modulus of
E = 205.8 GPa, and Poisson ratio’s of ν = 0.3. The plate is considered to have the welding
induced initial deflection (buckling mode component) of w0pl = 0 1β2t where
β = b t σY E is the plate slenderness ratio. The plate is assumed to be simply sup-
ported at all four edges.
Figure 10.36 shows selected illustrations of a plate with spherical shape or conical

shape of local denting damage. Figure 10.37 shows the deformed shape of the plate with
or without denting immediately after the ultimate strength is reached in axial compres-
sion. Figure 10.38 shows membrane stress distribution inside the plate at the ultimate
limit state. It is observed from these figures that the deflected patterns and membrane
stress distributions of dented plates are similar to those of un-dented (intact) plates as
long as dent damage is limited to some local region.
Figures 10.39 and 10.40 show the nonlinear finite element method solutions for the

effects of dent parameters (dent depth, diameter, and location) and plate aspects (thick-
ness and aspect ratio) on the ultimate compressive strength behavior of dented plates. It
is found that the ultimate compressive strength decreases significantly as the depth and/
or diameter of local denting increases. Also, it is apparent that the collapse behavior for
spherical dent is similar to that for conical dent, while the former case is more likely to
reduce the load-carrying capacity than the latter as long as the depth and diameter of
denting are the same. It is also observed that the plate falls in the worst situation in terms
of the load-carrying capacity when the local denting is located at the plate center rather
than other places.
It is evident that the size (depth, diameter) and location of local denting are generally

quite sensitive to the normalized ultimate compressive strength, while the influence of
the dent depth on the plate ultimate compressive strength is not significant as long as the
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a a
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Figure 10.35 A schematic of conical shape of denting damage: (a) the welding induced initial
deflection; (b) the global deformation by denting; (c) the local spherical dent; (d) the combined initial
deflection and denting damage.
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dent diameter is small. Also, since the plate collapse behavior for spherical dent is similar
to that for conical dent and the former is slightly worse than the latter, the spherical
dent may be taken as a representative of local dent shape for the purpose of the plate
ultimate strength prediction, regardless of the actual shape of denting. It is seen from
Figure 10.40f that as the dent location becomes closer to the unloaded plate edges the
ultimate strength is decreased by 20%, compared with that of the dent located at the plate
center.
As described in Section 4.12, the ultimate compressive strength of a dented plate

may be predicted by an empirical formulation based on the strength reduction
factor approach, that is, Rxu = σxu σxuo, where Rxu is the strength reduction factor. In this
case, the plate thickness and the aspect ratio are not influential parameters to the
strength reduction factor because they are already implemented in the determination
of σxuo:

σxu
σxuo

=C3 C1 ln
Dd

t
+C2 10 68a

X
YZ

x

z
y

(a)

x

z
y

X
YZ

(b)

Figure 10.36 Selected illustrations of a plate
with (a) the spherical shape of local
denting and (b) the conical shape of local
denting.
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where σxu and σxuo are the ultimate compressive strengths of dented or un-dented
(intact) plates, respectively, and C1, C2, and C3 are coefficients that are empirically deter-
mined by curve fitting of the computed results, when dd b < 1, as follows:

C1 = −0 042
dd
b

2

−0 105
dd
b

+ 0 015 10 68b

C2 = −0 138
dd
b

2

−0 302
dd
b

+ 1 042 10 68c

x

(b)

z
y

x

z
y

X

Y
Z

(a)

X

Y

Z

Figure 10.37 Deflected shape of a plate with or
without denting at the ultimate limit state under
axial compressive loads: (a) an un-dented plate;
(b) a dented plate with spherical type.
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C3 = −1 44
H
b

2

+ 1 74
H
b

+ 0 49 10 68d

with H = h for h ≤
b
2
and H = b−h for h >

b
2
.

Figure 10.41 confirms that Equation (10.68) gives reasonably accurate results for the
plate ultimate strength reduction factor compared with the nonlinear finite element
method solutions. It is interesting to note that the ultimate compressive strength of a
dented plate with large dent depth is close to that of a perforated plate described in
Section 4.10, as shown in Figure 10.41c.
Interested readers may also refer to Saad-Eldeen et al. (2015, 2016), Raviprakash et al.

(2012), Xu and Guedes Soares (2013, 2015), and Li et al. (2014), among others. For a
dented plate in axial tension, Li et al. (2015) may be referred to.

10.13.2 A Dented Plate in Edge Shear

Paik (2005) investigated the ultimate strength behavior of a dented plate in edge shear
using the nonlinear finite element method. The same plate presented in Section 10.13.1
is used. Figure 10.42 shows the deformed shape of a plate with or without local dent
immediately after the ultimate strength is reached in edge shear.
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Figure 10.38 Membrane stress distribution with or without denting at the ultimate limit state
under axial compressive loads for (a) an un-dented plate and (b) a dented plate with spherical type.
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Figure 10.41 The validity of the empirical formulation for the ultimate compressive strength
prediction of a dented plate, plotted versus (a) the dent depth; (b) the dent location and (c) the dent
diameter.
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Figure 10.43 shows the ultimate shear strength behavior of a plate with spherical or
conical shape of local denting, varying the dent size (i.e., depth and diameter) and loca-
tion. It is found that the ultimate shear strength decreases significantly as the depth and/
or diameter of local denting increases. Also, it is apparent that the collapse behavior for
spherical dent is similar to that for conical dent, while the former case is more likely to
reduce the load-carrying capacity than the latter as long as the depth and diameter of
denting are the same. Similar to the plate in axial compression, the plate falls in the worst
situation in terms of the load-carrying capacity when the local denting is located at the
plate center rather than other places.
Figure 10.44 shows the effect of dent parameters (dent depth, diameter, and location)

and plate aspects (thickness and aspect ratio) on the ultimate shear strength of a dented
plate. Similar to the plate in axial compression, the size (depth, diameter) and location of
local denting are generally quite sensitive to the normalized ultimate shear strength,
while the influence of the dent depth on the plate ultimate shear strength is not signif-
icant as long as the dent diameter is small. Also, as the plate collapse behavior for
spherical dent is similar to that for conical dent and the former is slightly worse than
the latter, the spherical dent may be taken as a representative of local dent shape for
the purpose of the plate ultimate shear strength prediction, regardless of the actual shape
of denting.
As described in Section 4.12, the ultimate shear strength of a dented plate may be

predicted by an empirical formulation based on the strength reduction factor
approach, that is, Rτ = τu τuo, where Rτ is the strength reduction factor. In this
case, the plate thickness and the aspect ratio are not influential parameters to the
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Figure 10.42 Deformed shape and membrane stress distribution of a plate immediately after the
ultimate limit state is reached in edge shear: (a) without dent; (b) with the central dent; (c) with the
side dent.
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Figure 10.43 The ultimate shear strength behavior of a dented plate, plotted versus (a) Dd/t = 2;
(b) Dd/t = 4; (c) Dd/t = 10 and (d) the dent location.
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Figure 10.45 The validity of the empirical formulation for the ultimate shear strength prediction
of a dented plate, plotted versus (a) the dent depth and (b) the dent diameter.
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strength reduction factor because they are already implemented in the determination
of τuo:

τu
τuo

=
C1

Dd

t

2

−C2
Dd

t
+ 1 for 1 <

Dd

t
≤ 10

100C1−10C2 + 1 for 10 >
Dd

t

10 69a

where τu and τuo are the ultimate shear strengths of dented or un-dented (intact) plates,
respectively, and C1 and C2 are the coefficients that may be empirically determined by
regression analysis of the computed results as follows:

C1 = 0 0129
dd
b

0 26

−0 0076 10 69b

C2 = 0 1888
dd
b

0 49

−0 07 10 69c

Figure 10.45 confirms that Equation (10.69) gives reasonably accurate results of the
plate ultimate shear strength at somewhat pessimistic side, compared with the nonlinear
finite element solutions. It is also interesting to note that the ultimate shear strength of a
dented plate with large dent depth is close to that of a perforated plate described in
Section 4.10.
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11

The Incremental Galerkin Method

11.1 Features of the Incremental Galerkin Method

This chapter describes the incremental Galerkin method, which is a semi-analytical
method for analysis of the elastic–plastic large-deflection behavior of steel or aluminum
plates and stiffened panels up to their ultimate limit state (ULS). This method is designed
to accommodate the geometric nonlinearity associated with buckling via an analytical
procedure, whereas a numerical procedure accounts for the material nonlinearity asso-
ciated with plasticity (Paik et al. 2001, Paik & Kang 2005).
Themethod is unique in its use to analytically formulate the incremental forms of non-

linear governing differential equations for elastic large-deflection plate theory. After sol-
ving these incremental governing differential equations using the Galerkin approach
(Fletcher 1984), a set of easily solved linear first-order simultaneous equations for the
unknowns is obtained, which facilitates a reduction in the computational effort.
It is normally difficult, but not impossible, to formulate the nonlinear governing dif-

ferential equations to represent both geometric andmaterial nonlinearities for plates and
stiffened panels. A major source of difficulty is that an analytical treatment of plasticity
with increases in the applied loads is quite cumbersome. An easier alternative is to deal
with the progress of the plasticity numerically.
The benefits of this method are to provide excellent solution accuracy with great sav-

ings in computational effort and to handle in the analysis the combined loading for all
potential load components, including biaxial compression or tension, biaxial in-plane
bending, edge shear, and lateral pressure loads. The effects of initial imperfections in
the form of initial deflection and welding induced residual stresses are also considered.
The present theory can be applied to both steel and aluminum plate panels.

11.2 Structural Idealizations of Plates and Stiffened Panels

In this section, some of themore important basic hypotheses used to formulate the incre-
mental Galerkin method for computation of the elastic–plastic large-deflection behavior
of plate and stiffened panels are described:

1) The plate panel is made of isotropic homogeneous steel or aluminum alloys with
Young’s modulus of E and Poisson’s ratio of ν. For a stiffened panel, Young’s
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modulus of the plate part between stiffeners is the same as that of the stiffeners, but
the yield stress of the plate part can differ from that of the stiffeners.

2) The length and breadth of the plate are a and b, respectively, as shown in
Figure 11.1a. The plate thickness is t.

3) The spacing of the stiffeners or the breadth of the plating between stiffeners can dif-
fer as shown in Figure 11.1b.

4) The edge of the panel can be simply supported, clamped, or some combination of
the two.
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b

(a)

(b)
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σbx

σby
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τ

τ
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σby

σbxσx
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a1 a2

b2

b3

b1

B Stiffeners

y
x

a3

Figure 11.1 Application of combined in-plane and out-of-plane loads in (a) a plate and (b) a
stiffened panel.
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5) The panel is normally subjected to combined loads. Several potential load compo-
nents act on the panel: biaxial compression or tension, edge shear, biaxial in-plane
bending moment, and lateral pressure loads, as shown in Figure 11.1.

6) The applied loads are increased incrementally.
7) The shape of the initial deflection in the plate panel is normally complex, but it can

be expressed with a Fourier series function. For a stiffened panel, the plate part
between stiffeners may have the same set of local plate initial deflections, whereas
the stiffeners may have a different set of global column-type initial deflections.

8) Due to the welding along the panel edges and at the intersections between the lower
part of the stiffener web and parent plate, the panel has welding induced residual
stresses. These can develop in the plate part in both x and y directions, as welding
is normally carried out in these two directions. As shown in Figure 11.2, the distri-
bution of welding induced residual stresses for the plate part between stiffeners is
idealized to be composed of two stress blocks, that is, compressive and tensile

x

y
(a)

(b)

σry

σrx

Comp.

Tens.

σ0

σ0

Tens.

σrxσry

Stiffeners

σrs

x

y

x

z

Figure 11.2 Idealized welding induced
residual stress distribution inside (a) the
plating and (b) the stiffeners.
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residual stress blocks, as described in Section 1.7. It is assumed that the stiffener
webs have uniform compressive residual stresses “equivalent” to that shown in
Figure 11.2.

9) For evaluation of the plasticity, it is assumed that the panel is composed of a number
of membrane fibers in the x and y directions. Each membrane fiber is considered to
have a number of layers in the z direction, as shown in Figure 11.3.

10) It is recognized that the strength of welded aluminum alloys in the softened zone
may be recovered by natural aging over a period of time (Lancaster 2003), but
the ultimate strength of welded aluminum alloy panels may be reduced by
softening phenomenon in the heat-affected zone as far as the material strength is
not recovered. The effect of softening is accounted for using the technique noted
in item 9.

11.3 Analysis of the Elastic–Plastic Large-Deflection Behavior
of Plates

11.3.1 The Traditional Approach

As described in Chapter 4, the elastic large-deflection behavior of plates with initial
deflections is governed by two differential equations: one that represents the equilibrium
condition and one that represents the compatibility condition (Marguerre 1938). These
equations are as follows:

Φ=D
∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t
∂2F
∂y2

∂2 w+w0

∂x2
+
∂2F
∂x2

∂2 w+w0

∂y2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y
+
p
t

= 0

11 1a

x

z
y

(a)

x

z
y

(b)

Figure 11.3 Example subdivision of mesh regions used for the treatment of plasticity for (a) a plate and
(b) a stiffened panel (note that geometric nonlinearity is handled analytically).
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∂4F
∂x4

+ 2
∂4F

∂x2∂y2
+
∂4F
∂y4

−E
∂2w
∂y∂x

2

−
∂2w
∂x2

∂2w
∂y2

+ 2
∂2w0

∂x∂y
∂2w
∂x∂y

−
∂2w0

∂x2
∂2w
∂y2

−
∂2w
∂x2

∂2w0

∂y2
= 0

11 1b

where D = Et3/[12(1 − v2)] and the lateral pressure p can be varying over the plate as
p = p(x,y).
By using Airy’s stress function, F, the stress components at a certain location inside the

plate may be calculated as follows:

σx =
∂2F
∂y2

−
Ez

1−v2
∂2w
∂x2

+ v
∂2w
∂y2

11 2a

σy =
∂2F
∂x2

−
Ez

1−v2
∂2w
∂y2

+ v
∂2w
∂x2

11 2b

τ = τxy = −
∂2F
∂x∂y

−
Ez

2 1 + v
∂2w
∂x∂y

11 2c

Also, the corresponding strain components at a certain location inside the plate are
given by

εx =
∂u
∂x

+
1
2

∂w
∂x

2

+
∂w
∂x

∂w0

∂x
−z

∂2w
∂x2

11 3a

εy =
∂v
∂y

+
1
2

∂w
∂y

2

+
∂w
∂y

∂w0

∂y
−z

∂2w
∂y2

11 3b

γxy =
∂u
∂y

+
∂v
∂x

+
∂w
∂x

∂w
∂y

+
∂w0

∂x
∂w
∂y

+
∂w
∂x

∂w0

∂y
−2z

∂2w
∂x∂y

11 3c

where u and v are the axial displacements in the x and y directions, respectively.
Each strain component noted previously is expressed as a function of stress compo-

nents as follows:

εx =
1
E

σx−vσy 11 4a

εy =
1
E

σy−vσx 11 4b

γxy =
2 1 + v

E
τxy 11 4c

In solving the nonlinear governing differential equations, Equations (11.1a) and
(11.1b), by the Galerkin method, the added deflection, w, and initial deflection, w0,
can be assumed as follows:

w=
m=1 n= 1

Amnfm x gn y 11 5a

w0 =
m= 1 n=1

A0mnfm x gn y 11 5b
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where fm(x) and gn(y) are functions that satisfy the boundary conditions for the plate and
Amn and A0mn are the unknown and known deflection coefficients, respectively.
Upon substituting Equations (11.5a) and (11.5b) into Equation (11.1b) and solving for

the stress function, F, the particular solution, FP, may be expressed as follows:

FP =
r = 1 s= 1

Krspr x qs y 11 6

where Krs are the coefficients of second-order functions with regard to the unknown
deflection coefficients Amn.
Including the applied loading, the complete stress function, F, may be given by

F = FH +
r =1 s=1

Krspr x qs y 11 7

where FH is the homogeneous solution of the stress function that satisfies the applied
loading condition.
To compute the unknown coefficients Amn, one may use the Galerkin method for the

equilibrium equation, Equation (11.1a), resulting in the following equation:

Φfr x gs y dVol = 0, r = 1,2,3,…, s= 1,2,3,… 11 8

Substituting Equations (11.5a), (11.5b), and (11.7) into Equation (11.8) and performing
the integration over the whole volume of the plate, a set of third-order simultaneous
equations with regard to the unknown coefficients, Amn, is obtained.
Solving the simultaneous equations to obtain the coefficients Amn normally requires an

iteration process. As the solution of each coefficient should be unique, one must cor-
rectly select one of the three solutions obtained for each coefficient. Unfortunately, it
is not always easy to solve a set of such third-order simultaneous equations, especially
when the number of unknown coefficients, Amn, becomes large.

11.3.2 The Incremental Approach

An incremental approach is possible to more efficiently solve the nonlinear governing
differential equations for plates subjected to combined loads (Ueda et al. 1987). First,
the incremental forms of the governing differential equations for plates must be formu-
lated. After analytically solving these incremental governing differential equations using
the Galerkin method, a set of linear (i.e., first-order) simultaneous equations for the
unknowns (which can be easily solved) is obtained. Such a method normally drastically
reduces the computational effort. Another benefit is that the solution is uniquely deter-
mined, unlike the traditional approach described in Section 11.3.1.
In the following section, the incremental forms of governing differential equations for

plates are derived. First, it is assumed that the load is applied incrementally. At the end of
the (i − 1)th load increment step, the deflection and stress functions can be denoted bywi

−1 and Fi−1, respectively. In the same manner, the deflection and stress functions at the
end of the ith load increment step are denoted by wi and Fi, respectively.
Therefore, the equilibrium equation, Equation (11.1a), and the compatibility equation,

Equation (11.1b), at the end of the (i − 1)th load increment step are written as follows:
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Φi−1 =D
∂4wi−1

∂x4
+ 2

∂4wi−1

∂x2∂y2
+
∂4wi−1

∂y4
− t

∂2Fi−1
∂y2

∂2 wi−1 +w0

∂x2

+
∂2Fi−1
∂x2

∂2 wi−1 +w0

∂y2
−2

∂2Fi−1
∂x∂y

∂2 wi−1 +w0

∂x∂y
+
pi−1
t

= 0

11 9a

∂4Fi−1
∂x4

+ 2
∂4Fi−1
∂x2∂y2

+
∂4Fi−1
∂y4

−E
∂2wi−1

∂y∂x

2

−
∂2wi−1

∂x2
∂2wi−1

∂y2

+ 2
∂2w0

∂x∂y
∂2wi−1

∂x∂y
−
∂2w0

∂x2
∂2wi−1

∂y2
−
∂2wi−1

∂x2
∂2w0

∂y2
= 0

11 9b

In the same manner, Equations (11.1a) and (11.1b) at the ith load increment step are
given by

Φi =D
∂4wi

∂x4
+ 2

∂4wi

∂x2∂y2
+
∂4wi

∂y4
− t

∂2Fi
∂y2

∂2 wi +w0

∂x2

+
∂2Fi
∂x2

∂2 wi +w0

∂y2
−2

∂2Fi
∂x∂y

∂2 wi +w0

∂x∂y
+
pi
t

= 0

11 10a

∂4Fi
∂x4

+ 2
∂4Fi

∂x2∂y2
+
∂4Fi
∂y4

−E
∂2wi

∂y∂x

2

−
∂2wi

∂x2
∂2wi

∂y2

+ 2
∂2w0

∂x∂y
∂2wi

∂x∂y
−
∂2w0

∂x2
∂2wi

∂y2
−
∂2wi

∂x2
∂2w0

∂y2
= 0

11 10b

It is assumed that the added deflection, wi, and stress function, Fi, at the end of the ith
load increment step are calculated by

wi =wi−1 +Δw 11 11a

Fi = Fi−1 +ΔF 11 11b

where Δw and ΔF are the increments of the deflection and stress functions, respectively,
and the prefix Δ indicates the increment for the variable.
Substituting Equations (11.11a) and (11.11b) into Equations (11.10a) and (11.10b) and

subtracting Equation (11.9a) from Equation (11.10a) or Equation (11.9b) from
Equation (11.10b), respectively, the necessary incremental forms of governing differen-
tial equations emerge as follows:

ΔΦ=D
∂4Δw
∂x4

+ 2
∂4Δw
∂x2∂y2

+
∂4Δw
∂y4

− t
∂2Fi−1
∂y2

∂2Δw
∂x2

+
∂2ΔF
∂y2

∂2 wi−1 +w0

∂x2

+
∂2Fi−1
∂x2

∂2Δw
∂y2

+
∂2ΔF
∂x2

∂2 wi−1 +w0

∂y2
−2

∂2Fi−1
∂x∂y

∂2Δw
∂x∂y

−2
∂2ΔF
∂x∂y

∂2 wi−1 +w0

∂x∂y
+
Δp
t

= 0

11 12a
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∂4ΔF
∂x4

+ 2
∂4ΔF
∂x2∂y2

+
∂4ΔF
∂y4

−E 2
∂2 wi−1 +w0

∂x∂y
∂2Δw
∂x∂y

−
∂2 wi−1 +w0

∂x2
∂2Δw
∂y2

−
∂2Δw
∂x2

∂2 wi−1 +w0

∂y2
= 0

11 12b

where the terms of very small quantities with an order higher than second order of the
increments Δw and ΔF have been neglected.
At the end of the (i − 1)th load increment step, the deflection, wi−1, and the stress func-

tion, Fi−1, are obtained as follows:

wi−1 =
m= 1 n= 1

Ai−1
mn fm x gn y 11 13a

Fi−1 = F
i−1
H +

i=1 j= 1

Ki−1
ij pi x qj y 11 13b

where Ai−1
mn and Ki−1

ij are the known coefficients and Fi−1
H is a homogeneous solution for

the stress function that satisfies the applied loading condition. The welding induced
residual stresses can be included in the stress function, Fi−1

H , as initial stress terms.
The deflection increment,Δw, associated with the load increment at the ith step can be

assumed as follows:

Δw=
k =1 l = 1

ΔAklfk x gl y 11 14

where ΔAkl is the unknown added deflection increment.
Substituting Equations (11.5b), (11.11a), and (11.14) into Equation (11.12b), the stress

function increment, ΔF, can be obtained by

ΔF =ΔFH +
i= 1 j= 1

ΔKijpi x qj y 11 15

where ΔKij are linear (i.e., first-order) functions in the unknown coefficients and ΔAkl.
ΔFH is a homogeneous solution for the stress function increment that satisfies the
applied loading condition.
To compute the unknown coefficients, ΔAkl, the Galerkin method can then be applied

to Equation (11.12a):

ΔΦfr x gs y dVol = 0, r = 1,2,3,…, s= 1,2,3,… 11 16

Substituting Equation (11.5b) and Equations (11.13)–(11.15) into Equation (11.16) and
performing the integration over the entire volume of the plate, a set of linear simultane-
ous equations for the unknown coefficients,ΔAkl, is obtained. Solving these linear simul-
taneous equations is normally easy. Having obtained ΔAkl, one can then calculate Δw,
that is, from Equation (11.14); ΔF, that is, from Equation (11.15); wi(=wi−1 +Δw), that
is, from Equation (11.11a); and Fi(= Fi−1 +ΔF), that is, from Equation (11.11b), at the end
of the ith load increment step.
The elastic large-deflection behavior of the plate can be obtained by repeating the pre-

ceding procedure with increases in the applied loads. In this process, it is apparent that
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the load increments must be small to obtain more accurate solutions by avoiding non-
equilibrating forces. As the computational effort required for this procedure is normally
small, using smaller load increments does not usually lead to any severe penalties, unlike
the usual nonlinear numerical methods.

11.3.3 Application to the Plates Simply Supported at Four Edges

The incremental Galerkin method can be applied to the nonlinear analysis of plates sub-
ject to various edge conditions: clamped, simply supported, or their combination. In the
following, the formulations of the incremental Galerkin method for plates simply sup-
ported at all (four) edges are described in detail.
The simply supported edge conditions for the plate should satisfy

w= 0,
∂2w
∂y2

+ v
∂2w
∂x2

= 0 at y= 0,b 11 17a

∂2w
∂y2

= 0 at y= 0,b 11 17b

w= 0,
∂2w
∂x2

+ v
∂2w
∂y2

= 0 at x= 0,a 11 17c

∂2w
∂y2

= 0 at x= 0,a 11 17d

The Fourier series deflection functions that must satisfy the boundary conditions can
be assumed as follows:

w0 =
m= 1 n=1

A0mnsin
mπx
a

sin
nπy
b

11 18a

wi−1 =
m= 1 n= 1

Ai−1
mn sin

mπx
a

sin
nπy
b

11 18b

Δw=
k = 1 l =1

ΔAkl sin
kπx
a

sin
lπy
b

11 18c

whereA0mn =A0
mn andAi−1

mn are the known coefficients andΔAkl are the unknown coef-
ficients to be calculated for the external load increments.
The condition of combined load application—biaxial loads, biaxial in-plane bending,

edge shear, and lateral pressure loads—gives

b

0

∂2F
∂y2

tdy=Px at x= 0,a 11 19a

b

0

∂2F
∂y2

t y−
b
2

dy=Mx at x= 0,a 11 19b

a

0

∂2F
∂x2

tdx=Py at x= 0,b 11 19c
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a

0

∂2F
∂x2

t x−
a
2

dx=My at x= 0,b 11 19d

∂2F
∂x∂y

= −τ at all boundaries 11 19e

where Px and Py are the axial loads in the x and y directions, respectively, andMx andMy

are the in-plane bending moments in the x and y directions, respectively.
For the sake of simplicity in expressing the various functions, the following abbrevia-

tions are used from this point:

sx m = sin
mπx
a

, sy n = sin
nπy
b

, cx m = cos
mπx
a

, cy n = cos
nπy
b

To get the stress function increment, ΔF, substituting Equations (11.18a)–(11.18c)
into Equation (11.12b) yields

∂4ΔF
∂x4

+ 2
∂4ΔF
∂x2∂y2

+
∂4ΔF
∂y4

=
Eπ4

4a2b2 m n k l

ΔAklA
i−1
mn

× − kn−ml 2cx m−k cy n− l + kn+ml 2cx m−k cy n+ l

+ kn+ml 2cx m+ k cy n− l − kn−ml 2cx m+ k cy n+ l

11 20

A particular solution, ΔFP, for the stress function increment can then be obtained as
follows:

ΔFP =
m n k l

B1 m, n, k, l cx m−k cy n− l

+B2 m, n, k, l cx m−k cy n+ l +B3 m, n, k, l cx m+ k cy n− l

+B4 m, n, k, l cx m+ k cy n+ l

11 21

Substituting Equation (11.21) into Equation (11.20) by using ΔF =ΔFP yields the coef-
ficients B1–B4 as follows:

B1 m, n, k, l =
Eα2π4

4
ΔAklA

i−1
mn

− kn−ml 2

m−k 2 + α2 n− l 2 2 11 22a

B2 m, n, k, l =
Eα2π4

4
ΔAklA

i−1
mn

kn+ml 2

m−k 2 + α2 n+ l 2 2 11 22b

B3 m, n, k, l =
Eα2

4
ΔAklA

i−1
mn

kn−ml 2

m+ k 2 + α2 n− l 2 11 22c

B4 m, n, k, l =
Eα2

4
ΔAklA

i−1
mn

− kn−ml 2

m+ k 2 + α2 n+ l 2 11 22d

where α = a/b.
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Substituting Equations (11.22a)–(11.22d) into Equation (11.21), ΔFP can be written in
a more simplified form as follows:

ΔFP =
Eα2π4

4 m n k l

ΔAklA
i−1
mn

×
2

r =1

2

s= 1

−1 r + s+ 1h1 −1 rk, −1 rl cx m+ −1 rk n+ −1 sl

11 23

where

h1 ω1,ω2 =
−nω1 +mω2

2

m+ω1
2 + α2 n+ω2

2 2

h1 = 0 if m +ω1 = 0 and n +ω2 = 0.
By considering the condition of load application, the homogeneous solution, ΔFH, for

the stress function increment is given by

ΔFH =ΔPx
y2

2bt
+ΔPy

x2

2at
−ΔMx

y2 2y−3b
b3t

−ΔMy
x2 2x−3a

a3t
−Δτxyxy 11 24

The overall stress function increment may then be expressed by the sum of the par-
ticular and homogeneous solutions as follows:

ΔF =ΔFP +ΔFH 11 25

In the same manner, to obtain the stress function, Fi−1
P , at the end of the (i − 1)th load

increment step, Equations (11.18a)–(11.18c) can be substituted into Equation (11.18b),
resulting in the following equation:

∂4Fi−1
∂x4

+ 2
∂4Fi−1
∂x2∂y2

+
∂4Fi−1
∂y4

=
Eπ4

4a2b2 m n k l

Ai−1
mn A

i−1
kl −A0

mnA
0
kl

× ml kn−ml cx m−k cy n− l +ml kn+ml cx m−k cy n+ l

+ml kn+ml cx m+ k cy n− l +ml kn−ml cx m+ k cy n+ l

11 26

A particular solution, Fi−1
P , for the stress function, Fi−1(≡ Fi−1), can then be given by

Fi−1
P =

m n k l

C1 m, n, k, l cx m−k cy n− l

+C2 m, n, k, l cx m−k cy n+ l +C3 m, n, k, l cx m+ k cy n− l

+C4 m, n, k, l cx m+ k cy n+ l

11 27

The coefficients C1–C4 of Equation (11.27) can be determined by substituting
Equation (11.27) into Equation (11.26) as Fi−1 = Fi−1

P :

C1 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −A0

mnA
0
kl

ml kn−ml

m−k 2 + n− l 2 α2
2 11 28a
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C2 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −A0

mnA
0
kl

ml kn+ml

m−k 2 + n+ l 2 α2
2 11 28b

C3 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −A0

mnA
0
kl

ml kn+ml

m+ k 2 + n− l 2 α2
2 11 28c

C4 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −A0

mnA
0
kl

ml kn−ml

m+ k 2 + n+ l 2 α2
2 11 28d

By substituting Equations (11.28a)–(11.28d) into Equation (11.27), Fi−1
P can be rewrit-

ten as follows:

Fi−1
P =

Eπ4

4α2 m n k l

Ai−1
mn A

i−1
kl −A0

mnA
0
kl

×
2

r = 1

2

s= 1

−1 r + sh2 −1 rk, −1 r l cx m+ −1 rk cy n+ −1 sl

11 29

where

h2 ω1,ω2 =
mω2 nω1−mω2

m+ω1
2 + n+ω2

2 α2
2

h2 = 0 if m +ω1 = 0 and n +ω2 = 0.
The homogeneous solution, Fi−1

H , can be expressed by considering the condition of
load application as follows:

Fi−1
H =Pi−1

x
y2

2bt
+ σrx

y2

2
+Pi−1

y
x2

2at
+ σry

x2

2

−Mi−1
x

y2 2y−3b
b3t

−Mi−1
y

x2 2x−3a
a3t

−τi−1xy xy

11 30

where σrx and σry are the welding induced residual stresses, as described in Section 1.7,
that are included as initial stress terms.
Therefore, the stress function, Fi−1, at the end of the (i − 1)th load increment step can

be obtained by the sum of Equations (11.27) and (11.28) as follows:

F i−1 = Fi−1
P + Fi−1

H 11 31

A numerical technique can be used to efficiently calculate Equation (11.16). With the
panel subdivided (meshed) into a number of regions in the x, y, and z directions,
Equation (11.16) may then be expressed by

u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

ΔΦ x, y, z sx r sy s dxdydz = 0, r = 1,2,3,…, s= 1,2,3,…

11 32

where u, v, and w indicate the summation for mesh regions in the x, y, and z direc-
tions, respectively.
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Substitution of Equation (11.12a) into Equation (11.32) yields the following expression,
given in detail:

u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

E
1−v2

∂4Δw
∂x4

+ 2
∂4Δw
∂x2∂y2

+
∂4Δw
∂y4

z2

−
∂2Fi−1
∂y2

∂2Δw
∂x2

+
∂2ΔF
∂y2

∂2wi−1

∂x2
−2

∂2Fi−1
∂x∂y

∂2Δw
∂x∂y

−2
∂2ΔF
∂x∂y

∂2wi−1

∂x2
+
∂2Fi−1
∂x2

∂2Δw
∂y2

+
∂2ΔF
∂x2

∂2wi−1

∂y2
sx r sy s dxdydz

−
u v

au+ 1

au

bv+ 1

bv

Δpsx r sy s dxdy= 0

11 33

where D=
u

t 2

− t 2
Ezdz 1−v2 and t =

w

t 2

− t 2
dz have been used. The lateral pres-

sure loads are also considered as distributed on the surface of the plate, and the related
integration is performed in the two directions in the xy plane; that is, no integration asso-
ciated with the lateral pressure loads is undertaken for the z direction.
The integration of Equation (11.33) eventually results in a set of linear (i.e., first-order)

simultaneous equations for the unknown coefficients, ΔAkl. The equations can be writ-
ten in matrix form as follows:

ΔP = PO + KB + KM ΔA 11 34

where {ΔP} are the external load increments, [PO] is the stiffness matrix associated with
initial stress (including welding induced residual stresses), [KB] is the bending stiffness
matrix, [KM] is the stiffness matrix due tomembrane action, and {ΔA} are unknown coef-
ficients of deflection amplitudes.

11.3.4 Treatment of Plasticity

Thus far, the differential equations that govern the elastic large-deflection behavior of
plates have been formulated and solved analytically, but the effects of plasticity have
not been included. It is normally not straightforward to formulate governing
differential equations to simultaneously represent both geometric and material nonli-
nearities, although it is not impossible for plates. As previously noted, a major source
of difficulty is that an analytical treatment of plasticity with increases in the applied loads
is very difficult. An easier alternative is to deal with the progress of the plasticity
numerically.
In the incremental Galerkin method, therefore, the progress of plasticity with

increases in the applied loads is treated with a numerical approach. For this purpose,
the plate is subdivided into a number of mesh regions in the three directions, similar to
the conventional finite element method, as shown in Figure 11.3a. The average mem-
brane stress components for each mesh region can be calculated at every load incre-
ment step. Yielding for each mesh region is checked with the relevant yield criteria,
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such as the von Mises yield condition, as defined in Equation (1.31c), neglecting the
strain-hardening effect:

σ2x−σxσy + σ
2
y + 3τ

2 ≥ σ2Y 11 35

It is assumed that a plate element bounded by support members along its four edges is
composed of a number of membrane strings (or fibers) in the plate length and breadth
directions. Each fiber has a number of layers in the thickness direction. The membrane
stresses for each region can be analytically calculated at every step of the load increments,
and yielding at local regions of the plating can also be checked analytically. If any local
region in the fiber yields, the fiber (i.e., string) will be cut so that the related membrane
action is no longer available, resulting in a larger deflection. For the approximate eval-
uation of plasticity, it is assumed that the plate is composed of a number of membrane
fibers in the x and y directions. Each membrane fiber is considered to have a number of
layers in the z direction, as shown in Figure 11.3a.
As the applied loads increase, the stiffness matrices for the plate are redefined by con-

sidering the progress of plasticity. In Equation (11.34), the stiffness matrix associated
with external loads should be calculated for the plate’s whole volume regardless of
the plasticity. However, the bending stiffness will be reduced by the plasticity if any mesh
region yields. In the calculation (i.e., integration) of the bending stiffness matrix, there-
fore, the contribution to the yielded regions is removed.
As the plate is composed of a number ofmembrane strings (or fibers) in the two (i.e., x, y)

directions, where each fiber has a number of layers in the z direction, the end condition for
each fiber also satisfies the plate edge condition. In fact, due to the membrane action of the
fibers, the occurrence of additional plate deflection may to some extent be disturbed, with
further increases in the applied loads. However, if any local region in the fiber yields, the
fiber (i.e., string) will be cut such that the membrane action is no longer available.
In calculating (and integrating) the stiffness matrix due to membrane action, there-

fore, the entire fiber associated with yielded regions is not included. It should be
noted that a mesh region inside the plate may be common to two fibers, that is, in
the x (i.e., length) and y (i.e., breadth) directions. In this case, the contribution from
the two fibers (i.e., strings) should be removed in the calculation of the stiffness
matrix associated with the membrane effects. The plate’s stiffness will be progres-
sively reduced by the large deflection and local yielding. The plate can be considered
to have reached the ultimate strength when the plate stiffness eventually becomes
zero (or negative).

11.4 Analysis of the Elastic–Plastic Large-Deflection Behavior
of Stiffened Panels

11.4.1 The Traditional Approach

The elastic large-deflection response of stiffened panels with initial deflections is gov-
erned by two differential equations: one that represents the equilibrium condition and
one that represents the compatibility condition. These equations are as follows:
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Φ=D
∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

− t
∂2F
∂y2

∂2 w+w0

∂x2
+
∂2F
∂x2

∂2 w+w0

∂y2
−2

∂2F
∂x∂y

∂2 w+w0

∂x∂y

+
nsx

ii= 1

EIii
∂4w
∂x4

−Aii
∂2F
∂y2

−ν
∂2F
∂x2

∂2 w+w0

∂x2
y= yii

+
nsy

jj=1

EIjj
∂4w
∂y4

−Ajj
∂2F
∂x2

−ν
∂2F
∂y2

∂2 w+w0

∂y2
x= xjj

−p= 0

11 36a

∂4F
∂x4

+ 2
∂4F

∂x2∂y2
+
∂4F
∂y4

−E
∂2w
∂y∂x

2

−
∂2w
∂x2

∂2w
∂y2

+ 2
∂2w0

∂x∂y
∂2w
∂x∂y

−
∂2w0

∂x2
∂2w
∂y2

−
∂2w
∂x2

∂2w0

∂y2
= 0

11 36b

whereD and p are defined in Equation (11.1). Iii is moment of inertia for the iith stiffener
in the x direction and Ijj is moment of inertia for the jjth stiffener in the y direction.
By using Airy’s stress function, the stress components at a certain position inside the

panel may be expressed as follows:

σx =
∂2F
∂y2

−
Ez

1−ν2
∂2w
∂x2

+ ν
∂2w
∂y2

11 37a

σy =
∂2F
∂x2

−
Ez

1−ν2
∂2w
∂y2

+ ν
∂2w
∂x2

11 37b

τ = τxy = −
∂2F
∂x∂y

−
Ez

2 1 + ν
∂2w
∂x∂y

11 37c

In solving Equations (11.36a) and (11.36b), by the Galerkin method, the added deflec-
tion w and initial deflection w0 can be assumed as follows:

w=
m=1 n= 1

Amnfm x gn y 11 38a

w0 =
m= 1 n=1

A0mnfm x gn y 11 38b

where fm(x) and gn(y) are functions that satisfy the boundary conditions for the panel and
Amn and A0mn are unknown and known deflection coefficients, respectively.
Upon substituting Equations (11.38a) and (11.38b) into Equation (11.36b) and solving for

the stress function F, the particular solution of F denoted by FP may be expressed as follows:

FP =
r =1 s=1

Krspr x qs y 11 39

where Krs are the coefficient of second-order functions with regard to the unknown
deflection coefficients Amn.
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Including the condition of load application, the complete stress function F may be
given by

F = FH +
r =1 s=1

Krspr x qs y 11 40

where FH is a homogeneous solution of the stress function that satisfies the applied load-
ing condition.
To compute the unknown coefficients Amn, one may use the Galerkin method for the

equilibrium Equation (11.36a), resulting in the following equation:

Φfr x gs y dVol = 0, r = 1,2,3,…, s= 1,2,3,… 11 41

Substituting Equations (11.38a), (11.38b), and (11.40) into Equation (11.41) and per-
forming the integration over the whole volume of the panel, a set of third-order simul-
taneous equations with regard to the unknown coefficients Amn is obtained.
Solving the simultaneous equations to obtain the coefficients Amn normally requires an

iteration process. As the solution of each coefficient should be unique, one must cor-
rectly select one of the three solutions obtained for each coefficient. Unfortunately, it
is not always easy to solve a set of such third-order simultaneous equations, especially
when the number of unknown coefficients Amn becomes large.

11.4.2 The Incremental Approach

The incremental forms of the governing differential equations for stiffened panels are
derived. As the equilibrium equation for unstiffened plates readily results from that
for stiffened panels by setting the properties of the stiffeners to zero, the derivation
begins with the traditional governing differential equations for stiffened steel panels.
First, it is assumed that the load is applied incrementally. At the end of the i−1 th load

increment step, the deflection and stress function can be denoted by wi−1 and Fi−1,
respectively. In the same manner, the deflection and stress function at the end of the
ith load increment step are denoted by wi and Fi, respectively.
The equilibrium equation, Equation (11.36a), and the compatibility equation,

Equation (11.36b), are written at the end of the i−1 th load increment step as follows:

Φi−1 =D
∂4wi−1

∂x4
+ 2

∂4wi−1

∂x2∂y2
+
∂4wi−1

∂y4

− t
∂2Fi−1
∂y2

∂2 wi−1 +w0

∂x2
+
∂2Fi−1
∂x2

∂2 wi−1 +w0

∂y2
−2

∂2Fi−1
∂x∂y

∂2 wi−1 +w0

∂x∂y

+
nsx

ii= 1

EIii
∂4wi−1

∂x4
−Aii

∂2Fi−1
∂y2

−ν
∂2Fi−1
∂x2

∂2 wi−1 +w0

∂x2
y= yii

+
nsy

jj= 1

EIjj
∂4wi−1

∂y4
−Ajj

∂2Fi−1
∂x2

−ν
∂2Fi−1
∂y2

∂2 wi−1 +w0

∂y2
x= xjj

−pi−1 = 0

11 42a
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∂4Fi−1
∂x4

+ 2
∂4Fi−1
∂x2∂y2

+
∂4Fi−1
∂y4

−E
∂2wi−1

∂y∂x

2

−
∂2wi−1

∂x2
∂2wi−1

∂y2
+ 2

∂2w0

∂x∂y
∂2wi−1

∂x∂y

−
∂2w0

∂x2
∂2wi−1

∂y2
−
∂2wi−1

∂x2
∂2w0

∂y2
= 0

11 42b

In the samemanner, the equilibrium equation and the compatibility equation are writ-
ten at the ith load increment step as follows:

Φi =D
∂4wi

∂x4
+ 2

∂4wi

∂x2∂y2
+
∂4wi

∂y4

− t
∂2Fi
∂y2

∂2 wi +w0

∂x2
+
∂2Fi
∂x2

∂2 wi +w0

∂y2
−2

∂2Fi
∂x∂y

∂2 wi +w0

∂x∂y

+
nsx

ii=1

EIii
∂4wi

∂x4
−Aii

∂2Fi
∂y2

−ν
∂2Fi
∂x2

∂2 wi +w0

∂x2
y= yii

+
nsy

jj= 1

EIjj
∂4wi

∂y4
−Ajj

∂2Fi
∂x2

−ν
∂2Fi
∂y2

∂2 wi +w0

∂y2
x= xjj

−pi = 0

11 43a

∂4Fi
∂x4

+ 2
∂4Fi

∂x2∂y2
+
∂4Fi
∂y4

−E
∂2wi

∂y∂x

2

−
∂2wi

∂x2
∂2wi

∂y2
+ 2

∂2w0

∂x∂y
∂2wi

∂x∂y

−
∂2w0

∂x2
∂2wi

∂y2
−
∂2wi

∂x2
∂2w0

∂y2
= 0

11 43b

It is assumed that the accumulated (total) deflectionwi and stress function Fi at the end
of the ith load increment step are calculated by

wi =wi−1 +Δw 11 44a

Fi = Fi−1 +ΔF 11 44b

whereΔw andΔF are the increments of deflection or stress function, respectively, where
the prefix Δ indicates the increment for the variable.
Substituting Equations (11.44a) and (11.44b) into Equations (11.43a) and (11.43b) and

subtracting Equation (11.42a) from Equation (11.43a) or Equation (11.42b) from
Equation (11.43b), respectively, the necessary incremental forms of the governing differ-
ential equations emerge as follows:

ΔΦ=D
∂4Δw
∂x4

+ 2
∂4Δw
∂x2∂y2

+
∂4Δw
∂y4

− t
∂2Fi−1
∂y2

∂2Δw
∂x2

+
∂2ΔF
∂y2

∂2 wi−1 +w0

∂x2

+
∂2Fi−1
∂x2

∂2Δw
∂y2

+
∂2ΔF
∂x2

∂2 wi−1 +w0

∂y2
−2

∂2Fi−1
∂x∂y

∂2Δw
∂x∂y

−2
∂2ΔF
∂x∂y

∂2 wi−1 +w0

∂x∂y
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+
nsx

ii= 1

EIii
∂4Δw
∂x4

−Aii
∂2Fi−1
∂y2

−ν
∂2Fi−1
∂x2

∂2Δw
∂x2

−Aii
∂2ΔF
∂y2

−ν
∂2ΔF
∂x2

∂2 wi−1 +w0

∂x2
y= yii

+
nsy

jj= 1

EIjj
∂4Δw
∂y4

−Ajj
∂2Fi−1
∂x2

−ν
∂2Fi−1
∂y2

∂2Δw
∂y2

−Ajj
∂2ΔF
∂x2

−ν
∂2ΔF
∂y2

∂2 wi−1 +w0

∂y2
x= xjj

−Δp= 0

11 45a

∂4ΔF
∂x4

+ 2
∂4ΔF
∂x2∂y2

+
∂4ΔF
∂y4

−E 2
∂2 wi−1 +w0

∂x∂y
∂2Δw
∂x∂y

−
∂2 wi−1 +w0

∂x2
∂2Δw
∂y2

−
∂2Δw
∂x2

∂2 wi−1 +w0

∂y2
= 0

11 45b

where the terms of very small quantities with an order higher than the second order of
increments Δw and ΔF are neglected.
At the end of the i−1 th load increment step, the deflection wi−1 and the stress func-

tion Fi−1 are obtained as follows:

wi−1 =
m= 1 n= 1

Ai−1
mn fm x gn y 11 46a

Fi−1 = F
i−1
H +

i=1 j= 1

Ki−1
ij pi x qj y 11 46b

where Ai−1
mn and Ki−1

ij are the known coefficients and Fi−1
H is a homogeneous solution for

the stress function that satisfies the applied loading condition. The welding induced
residual stresses can be included in the stress function Fi−1

H as initial stress terms.
(The welding residual stresses are also set to zero when welding is not used in
fabrication.)
The added deflection increment Δw associated with the load increment at the ith step

can be assumed as follows:

Δw=
k =1 l = 1

ΔAklfk x gl y 11 47

where ΔAkl is the unknown added deflection increment.
Substituting Equations (11.38b), (11.46a), and (11.47) into Equation (11.45b), the stress

function increment ΔF can be obtained by

ΔF =ΔFH +
i= 1 j= 1

ΔKijpi x qj y 11 48

where ΔKij are linear (i.e., first-order) functions in the unknown coefficients ΔAkl and
ΔFH is a homogeneous solution for the stress function increment that satisfies the
applied loading condition.
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To compute the unknown coefficients ΔAkl, the Galerkin method can then be applied
to Equation (11.43a):

ΔΦfr x gs y dVol = 0, r = 1,2,3,…, s= 1,2,3,… 11 49

Substituting Equation (11.38b) and Equations (11.46)–(11.48) into Equation (11.49)
and performing the integration over the whole volume of the panel, a set of linear simul-
taneous equations for the unknown coefficients ΔAkl is obtained. Solving these linear
simultaneous equations is normally easy. Having obtained ΔAkl, one can then calculate
Δw, that is, from Equation (11.47); ΔF, that is, from Equation (11.48); wi =wi−1 +Δw ,
that is, from Equation (11.44a); and Fi = Fi−1 +ΔF , that is, from Equation (11.44b), at
the end of the and ith load increment step.
The elastic large-deflection response for the panel can be obtained by repeating the

preceding procedure with increases in the applied loads. In this process, it is apparent
that the load increments must be small to obtain more accurate solutions by avoiding
non-equilibrating forces. As the computational effort required for this procedure is nor-
mally very small, the use of smaller load increments does not lead to any severe penalties,
unlike the usual numerical methods.

11.4.3 Application to the Stiffened Panels Simply Supported at Four Edges

In this section, the incremental Galerkinmethod is applied to analysis of the elastic large-
deflection behavior of stiffened panels simply supported at four edges. The simply sup-
ported edge conditions for the panel should satisfy the following conditions:

w= 0,
∂2w
∂y2

+ ν
∂2w
∂x2

= 0, at y= 0,b 11 50a

∂2w
∂y2

= 0 at x= xjj and y= 0,b 11 50b

w= 0,
∂2w
∂x2

+ ν
∂2w
∂y2

= 0 at x= 0,a 11 50c

∂2w
∂x2

= 0 at y= yii and x= 0,a 11 50d

The Fourier series deflection functions that need to satisfy the boundary conditions
can be assumed as follows:

w0 =
m= 1 n=1

Aomnsin
mπx
a

sin
nπy
b

11 51a

wi−1 =
m= 1 n= 1

Ai−1
mn sin

mπx
a

sin
nπy
b

11 51b

Δw=
k = 1 l =1

ΔAklsin
kπx
a

sin
lπy
b

11 51c

whereAomn =Ao
mn andAi−1

mn are the known coefficients andΔAkl are the unknown coef-
ficients to be calculated for the external load increments.
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The condition of combined load application—biaxial loads, biaxial in-plane bending,
edge shear, and lateral pressure loads—gives

b

0

∂2F
∂y2

tdy+
ii= 1

Aii
∂2F
∂y2

−ν
∂2F
∂x2

y= yii

=Px at x= 0,a 11 52a

b

0

∂2F
∂y2

t y−
b
2

dy+
ii= 1

Aii
∂2F
∂y2

−ν
∂2F
∂x2

y= yii

yii−
b
2

=Mx at x= 0,a

11 52b

a

0

∂2F
∂x2

tdx+
jj= 1

Ajj
∂2F
∂x2

−ν
∂2F
∂y2

x= xjj

=Py at x= 0,b 11 52c

a

0

∂2F
∂x2

t x−
a
2

dx+
jj= 1

Ajj
∂2F
∂x2

−ν
∂2F
∂y2

x= xjj

xjj−
a
2

=My at x= 0,b 11 52d

∂2F
∂x∂y

= −τ at all boundaries 11 52e

where the axial loads and in-plane bendingmoments are sustained by the stiffener and by
the plate part. For the sake of simplicity in expressing the various functions, the following
abbreviations are used from this point:

sx m = sin
mπx
a

, sy n = sin
nπy
b

, cx m = cos
mπx
a

, cy n = cos
nπy
b

To obtain the stress function increment ΔF, substituting Equation (11.51) into
Equation (11.45b) yields

∂4ΔF
∂x4

+ 2
∂4ΔF
∂x2∂y2

+
∂4ΔF
∂y4

=
Eπ4

4a2b2 m n k l

ΔAklA
i−1
mn

× − kn−ml 2cx m−k cy n− l + kn+ml 2cx m−k cy n+ l

+ kn+ml 2cx m+ k cy n− l − kn−ml 2cx m+ k cy n+ l

11 53

A particular solution for the stress function increment, denoted by ΔFP, is assumed as
follows:

ΔFP =
m n k l

B1 m, n, k, l cx m−k cy n− l +B2 m, n, k, l cx m−k cy n+ l

+B3 m, n, k, l cx m+ k cy n− l +B4 m, n, k, l cx m+ k cy n+ l

11 54
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Substituting Equation (11.54) into the left side of Equation (11.53) by using ΔF =ΔFP
yields the coefficients B1 B4 as follows:

B1 m, n, k, l =
Eα2π4

4
ΔAklA

i−1
mn

− kn−ml 2

m−k 2 + α2 n− l 2 2

B2 m, n, k, l =
Eα2π4

4
ΔAklA

i−1
mn

kn+ml 2

m−k 2 + α2 n+ l 2 2

B3 m, n, k, l =
Eα2

4
ΔAklA

i−1
mn

kn−ml 2

m+ k 2 + α2 n− l 2

B4 m, n, k, l =
Eα2

4
ΔAklA

i−1
mn

− kn−ml 2

m+ k 2 + α2 n+ l 2

11 55

Substituting Equation (11.55) into Equation (11.54), the particular solution for the
stress function increment can be written in a more simplified form as follows:

ΔFP =
Eα2π4

4 m n k l

ΔAklA
i−1
mn ×

2

r = 1

2

s= 1

−1 r + s+ 1 h1 −1 rk, −1 rl cx m+ −1 rk n+ −1 sl

11 56

where h1 ω1,ω2 = −nω1 +mω2
2 m+ω1

2 + α2 n+ω2
2 2

, h1 = 0 if m+ω1 = 0
and n+ω2 = 0.
By considering the condition of load application, the homogeneous solution for the

stress function increment denoted by ΔFH is given by

ΔFH =
1
c

ΔPx 1 +
Asy

at
+ΔPy

νAsx

at
y2

2bt
+
1
c

ΔPy 1 +
Asx

bt
+ΔPx

νAsy

by
x2

2at

−ΔMx
Zpx

Zpx +Zsx

y2 2y−3b
b3t

−ΔMy
Zpy

Zpy +Zsy

x2 2x−3a
a3t

−Δτxyxy

11 57

where c= 1 +
Asx

bt
1 +

Asy

at
−ν2

AsxAsy

abt2
, Zpx =

b2t
6
, Zpy =

a2t
6
, Zsx =

nsx

ii= 1

Aii

yii−
b
2

2 2
b
, Zsy =

nsy

jj=1

Ajj xjj−
a
2

2 2
a
.

The overall stress function increment may then be expressed by the sum of the par-
ticular and homogeneous solutions as follows:

ΔF =ΔFP +ΔFH 11 58
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In the same manner, to obtain the stress function at the end of the i−1 th load incre-
ment step, denoted by Fi−1

P , Equation (11.51) is substituted into the compatibility equa-
tion at the end of the i−1 th load increment step, resulting in the following equation:

∂4Fi−1
∂x4

+ 2
∂4Fi−1
∂x2∂y2

+
∂4Fi−1
∂y4

=
Eπ4

4a2b2 m n k l

Ai−1
mn A

i−1
kl −Ao

mnA
o
kl ×

ml kn−ml cx m−k cy n− l

+ml kn+ml cx m−k cy n+ l

+ml kn+ml cx m+ k cy n− l

+ml kn−ml cx m+ k cy n+ l

11 59

A particular solution for the stress function Fi−1 = F i−1 , denoted by Fi−1
P , can then be

given by

Fi−1
P =

m n k l

C1 m, n, k, l cx m−k cy n− l +C2 m, n, k, l cx m−k cy n+ l

+C3 m, n, k, l cx m+ k cy n− l +C4 m, n, k, l cx m+ k cy n+ l

11 60

The coefficients C1 C4 of Equation (11.60) can be determined by substituting
Equation (11.60) into Equation (11.59) as follows:

C1 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −Ao

mnA
o
kl

ml kn−ml

m−k 2 + n− l 2 α2
2

C2 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −Ao

mnA
o
kl

ml kn+ml

m−k 2 + n+ l 2 α2
2

C3 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −Ao

mnA
o
kl

ml kn+ml

m+ k 2 + n− l 2 α2
2

C4 m, n, k, l =
Eπ4

4α2
Ai−1
mn A

i−1
kl −Ao

mnA
o
kl

ml kn−ml

m+ k 2 + n+ l 2 α2
2 11 61

The particular solution for the stress function F i−1 is then written by substituting the
coefficients of Equation (11.61) into Equation (11.60) as follows:

Fi−1
P =

Eπ4

4α2 m n k l

Ai−1
mn A

i−1
kl −Ao

mnA
o
kl

×
2

r = 1

2

s= 1

−1 r + sh2 −1 rk, −1 r l cx m+ −1 rk cy n+ −1 sl

11 62

where h2 ω1,ω2 =mω2 nω1−mω2 m+ω1
2 + n+ω2

2 α2
2
, h2 = 0 if m+ω1 = 0

and n+ω2 = 0.
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The homogeneous solution for the stress function F i−1, denoted by Fi−1
H , can be writ-

ten by considering the condition of load application as follows:

Fi−1
H =

1
c

Pi−1
x 1 +

Asy

at
+Pi−1

y
νAsx

at
y2

2bt
+ σrx

y2

2
+

nsx

ii=1

σrsx
y2

2 y= yii

+
1
c

Pi−1
y 1 +

Asx

bt
+Pi−1

x

νAsy

bt
x2

2at
+ σry

x2

2
+

nsy

jj=1

σrsy
x2

2 x= xjj

−Mi−1
x

Zpx

Zpx +Zsx

y2 2y−3b
b3t

−Mi−1
y

Zpy

Zpy +Zsy

x2 2x−3a
a3t

−τi−1xy xy

11 63

where the welding induced residual stresses are included as initial stress terms. There-
fore, the stress function F i−1 at the end of the i−1 th load increment step can be
obtained by the sum of Equations (11.62) and (11.63) as follows:

F i−1 = Fi−1
P + Fi−1

H 11 64

To efficiently calculate Equation (11.49), a numerical technique can be used. With the
panel subdivided (meshed) into a number of regions in the x, y, and z directions,
Equation (11.49) may be expressed by

u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

ΔΦ x, y, z sx r sy s dxdydz = 0, r = 1,2,3,…, s= 1,2,3,…

11 65

where u, v, and w indicate the summation for mesh regions in the x, y, and z direc-
tions, respectively.
Substituting Equation (11.45a) into Equation (11.65) yields the following expression,

given in detail:

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

E
1−ν2

∂4Δw
∂x4

+ 2
∂4Δw
∂x2∂y2

+
∂4Δw
∂y4

z2

−
∂2Fi−1
∂y2

∂2Δw
∂x2

+
∂2ΔF
∂y2

∂2wi−1

∂x2
−2

∂2Fi−1
∂x∂y

∂2Δw
∂x∂y

−2
∂2ΔF
∂x∂y

∂2wi−1

∂x2
+
∂2Fi−1
∂x2

∂2Δw
∂y2

+
∂2ΔF
∂x2

∂2wi−1

∂y2
sx r sy s dxdydz

+
nsx

ii= 1 u w

au+ 1

au

tw+ 1

tw

E
∂2Δw
∂x4

z2

− tii
∂2Fi−1
∂y2

−ν
∂2Fi−1
∂x2

∂2Δw
∂x2

−
∂2ΔF
∂y2

−ν
∂2ΔF
∂x2

∂2wi−1

∂x2 y= yii

sx r sy s dxdz

+
nsy

jj= 1 v w

bv+ 1

bv

tw+ 1

tw

E
∂4Δw
∂y4

z2
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− tjj
∂2Fi−1
∂x2

−ν
∂2Fi−1
∂y2

∂2Δw
∂y2

−
∂2ΔF
∂x2

−ν
∂2ΔF
∂y2

∂2wi−1

∂y2 x= xjj

sx r sy s dydz

−
u v

au+ 1

au

bv + 1

bv

Δpsx r sy s dxdy= 0

11 66

where D=
w

t 2

− t 2

E
1−ν2

zdz and t =
w

t 2

− t 2
dz are used. The lateral pressure loads

are considered as distributed on the surface of the panel, and the related integration
is performed in the two directions in the xy plane, that is, no integration associated with
the lateral pressure loads is undertaken for the z direction.
The integration of Equation (11.66) eventually results in a set of linear (i.e., first-order)

simultaneous equations for the unknown coefficientsΔAkl. The equations can be written
in matrix form as follows:

ΔP + ΔPS = PO + POS + KB + KBS + KM + KMS ΔA 11 67

where

{ΔP} = external load increments applied to the plate part
{ΔPS} = external load increments applied to the stiffeners
[PO] = stiffness matrix associated with initial stress for the plate part (including welding

induced residual stresses)
[POS] = stiffness matrix associated with initial stress for the stiffeners (including welding

induced residual stresses)
[KB] = bending stiffness matrix for the plate part
[KBS] = bending stiffness matrix for the stiffeners
[KM] = stiffness matrix due to membrane action for the plate part
[KMS] = stiffness matrix due to membrane action for the stiffeners
{ΔA} = unknown coefficients

The quantities of various matrices or vectors in Equation (11.67), that is, in the elastic
regime, are given in detail as follows.

External Load Increment Vector for the Plate Part

ΔP = ΔP1,ΔP2,…,ΔPNi ,…,ΔPNx ×Ny 11 68a

where each component of the vector {ΔP} in Equation (11.68a) can be calculated by

ΔPNi =ΔpHO i, j +
π2

a2b2

Nx

m= 1

Ny

n= 1

Ai−1
mn m2b2H1 i, j,m, n Δσs−νΔσby

+ n2a2H1 i, j,m, n Δσy−νΔσbx + 2m2bH2 i, j,m, n Δσbx

+ 2n2aH3 i, j,m, n Δσby−mnabH4 i, j,m, n Δτ

for i = 1,2,…, Nx, j = 1,2,…, Ny, Ni = (i − 1)∙Nx + j.
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Stiffness Matrix Associated with Initial Stress for the Plate Part

PO =

PO 1,1 PO 1,2 PO 1,Nj PO 1,Nx ×Ny

PO 2,1 PO 2,2 PO 2,Nj PO 2,Nx ×Ny

PO Ni,1 PO Ni,2 PO Ni,Nj PO Ni,Nx ×Ny

PO Nx ×Ny,1 PO Nx ×Ny,2 PO Nx ×Ny,Nj PO Nx ×Ny,Nx ×Ny

11 68b

where each component of the matrix [PO] in Equation (11.68b) can be calculated by

PO Ni,Nj =
m2π2

a2
−H1 i, j,m, n σi−1x +H1 i, j,m, n σi−1bx

+
m2π2

a2
−H1 i, j,m, n σi−1y +H1 i, j,m, n σi−1by

−
2π2

a2 b2
m2bH2 i, j,m, n σi−1bx + n2aH3 i, j,m, n σi−1by

+
mnπ2

ab
H4 i, j,m, n τ i−1

for i, m = 1, 2, …, Nx, j, n = 1,2, …, Ny, Ni = (i − 1) ∙Nx + j, Nj = (m − 1) ∙Nx + n.

Bending Stiffness Matrix for the Plate Part

KB =

KB 1,1 KB 1,2 KB 1,Nj KB 1,Nx ×Ny

KB 2,1 KB 2,2 KB 2,Nj KB 2,Nx ×Ny

KB Ni,1 KB Ni,2 KB Ni,Nj KB Ni,Nx ×Ny

KB Nx ×Ny,1 KB Nx ×Ny,2 KB Nx ×Ny,Nj KB Nx ×Ny,Nx ×Ny

11 68c

where each component of the matrix [KB] in Equation (11.68c) can be calculated by

KB Ni,Nj =
Eπ4

a4 i−ν2
m2 + α2n2

2
GO i, j,m, n

for i,m= 1,2,…,Nx, j,n= 1,2,…,Ny, Ni = i−1 Nx + j, Nj = m−1 Nx + n

The Incremental Galerkin Method 563



Stiffness Matrix Due to Membrane Action for the Plate Part

KM =

KM 1,1 KM 1,2 KM 1,Nj KM 1,Nx ×Ny

KM 2,1 KM 2,2 KM 2,Nj KM 2,Nx ×Ny

KM Ni,1 KM Ni,2 KM Ni,Nj KM Ni,Nx ×Ny

KM Nx ×Ny,1 KM Nx ×Ny,2 KM Nx ×Ny,Nj KM Nx ×Ny,Nx ×Ny

11 68d

where each component of the matrix [KM] in Equation (11.68d) can be calculated by

KM Ni,Nj =
Eα2π4

4a2b2

Nx

m= 1

Ny

n=1

Nx

k =1

Ny

l = 1

Ai−1
mn A

i−1
kl

× rn−sm k2 n+ s 2 + l2 m+ r 2 G1 i, j,m, n, k, l, r, s

+ rn−sm k2 n−s 2 + l2 m−r 2 G2 i, j,m, n, k, l, r, s

− rn+ sm k2 n−s 2 + l2 m+ r 2 G3 i, j,m, n, k, l, r, s

− rn+ sm k2 n+ s 2 + l2 m−r 2 G4 i, j,m, n, k, l, r, s

−2kl rn−sm m+ r n+ s G5 i, j,m, n, k, l, r, s

−2kl rn−sm m−r n−s G6 i, j,m, n, k, l, r, s

+ 2kl rn+ sm m+ r n−s G7 i, j,m, n, k, l, r, s

−2kl rn−sm m−r n+ s G8 i, j,m, n, k, l, r, s

− Ai−1
mn A

i−1
kl −A0

mnA
0
kl

× ml r2 n+ l 2 + s2 m+ k 2 G9 i, j,m, n, k, l, r, s

+ml r2 n− l 2 + s2 m−k 2 G10 i, j,m, n, k, l, r, s

+ml r2 n− l 2 + s2 m+ k 2 G11 i, j,m, n, k, l, r, s

+ml r2 n+ l 2 + s2 m−k 2 G12 i, j,m, n, k, l, r, s

−2mlrs m+ k n+ l G13 i, j,m, n, k, l, r, s

−2mlrs m−k n− l G14 i, j,m, n, k, l, r, s

−2mlrs m+ k n− l G15 i, j,m, n, k, l, r, s

−2mlrs m−k n+ l G16 i, j,m, n, k, l, r, s

for i,r = 1,2,…,Nx, j,s= 1,2,…,Ny, Ni = i−1 Nx + j, Nj = r−1 Nx + s
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Unknown Coefficient Vector

ΔA = ΔA1,ΔA2,…,ΔANi ,…,ΔANx ×Ny 11 68e

External Load Increment Vector for Stiffeners

ΔPS = ΔPS1,ΔPS2,…,ΔPSNi ,…,ΔPSNx ×Ny 11 68f

where each component of the vector {ΔPS} in Equation (11.68f) can be calculated by

ΔPSNi =
π2

a2

mm

ii= 1

Nx

m= 1

Ny

n=1

Ai−1
mn m

2Q1 i, j,m, n Δσx−νΔσy

+
π2

b2

nn

jj= 1

Nx

m=1

Ny

n= 1

Ai−1
mn n

2Q2 i, j,m, n Δσy−νΔσx

for i= 1,2,…,Nx, j= 1,2,…,Ny, Ni = i−1 Nx + j

Stiffness Matrix Associated with Initial Stress for Stiffeners

POS =

POS 1,1 POS 1,2 POS 1,Nj POS 1,Nx ×Ny

POS 2,1 POS 2,2 POS 2,Nj POS 2,Nx ×Ny

POS Ni,1 POS Ni,2 POS Ni,Nj POS Ni,Nx ×Ny

POS Nx ×Ny,1 POS Nx ×Ny,2 POS Nx ×Ny,Nj POS Nx ×Ny,Nx ×Ny

11 68g

where each component of the matrix [POS] in Equation (11.68g) can be calculated by

POS Ni,Nj =
π2

a2

mn

ii= 1

Ai−1
mn m

2Q1 i, j,m, n σi−1x −νσi−1y

+
π2

b2

nn

jj= 1

Ai−1
mn n

2Q2 i, j,m, n σi−1y −νσi−1x

for i,m= 1,2,…,Nx, j,n= 1,2,…,Ny, Ni = i−1 Nx + j, Nj = m−1 Nx + n
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Bending Stiffness Matrix for Stiffeners

KBS =

KBS 1,1 KBS 1,2 KBS 1,Nj KBS 1,Nx ×Ny

KBS 2,1 KBS 2,2 KBS 2,Nj KBS 2,Nx ×Ny

KBS Ni,1 KBS Ni,2 KBS Ni,Nj KBS Ni,Nx ×Ny

KBS Nx ×Ny,1 KBS Nx ×Ny,2 KBS Nx ×Ny,Nj KBS Nx ×Ny,Nx ×Ny

11 68h

where each component of the matrix [KBS] in Equation (11.68h) can be calculated by

KBS Ni,Nj =
mm

ii= 1

Eπ4

a4
m4Q3 i, j,m, n +

nn

jj=1

Eπ4

b4
n4Q4 i, j,m, n

for i,m= 1,2,…,Nx, j,n= 1,2,…,Ny, Ni = i−1 Nx + j, Nj = m−1 Nx + n

Stiffness Matrix Due to Membrane Action for Stiffeners

KMS =

KMS 1,1 KMS 1,2 KMS 1,Nj KMS 1,Nx ×Ny

KMS 2,1 KMS 2,2 KMS 2,Nj KMS 2,Nx ×Ny

KMS Ni,1 KMS Ni,2 KMS Ni,Nj KMS Ni,Nx ×Ny

KMS Nx ×Ny,1 KMS Nx ×Ny,2 KMS Nx ×Ny,Nj KMS Nx ×Ny,Nx ×Ny

11 68i

where each component of the matrix [KMS] in Equation (11.68i) can be calculated by

KMS Ni,Nj =
Eπ4

4a2b2

mm

ii= 1

Nx

m= 1

Ny

n=1

Nx

k =1

Ny

l = 1

Ai−1
mn A

i−1
kl

× k2 rn−sm α2 n+ s 2−ν m+ r 2 R1 i, j,m, n, k, l, r, s

+ k2 rn−sm α2 n−s 2−ν m−r 2 R2 i, j,m, n, k, l, r, s

−k2 rn+ sm α2 n−s 2−ν m+ r 2 R3 i, j,m, n, k, l, r, s

−k2 rn+ sm α2 n+ s 2−ν m−r 2 R4 i, j,m, n, k, l, r, s

+ Ai−1
mn A

i−1
kl −A0

mnA
0
kl

× −mlr2 α2 n+ l 2−ν m+ k 2 R5 i, j,m, n, k, l, r, s
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−mlr2 α2 n− l 2−ν m−k 2 R6 i, j,m, n, k, l, r, s

−mlr2 α2 n− l 2−ν m+ k 2 R7 i, j,m, n, k, l, r, s

−mlr2 α2 n+ l 2−ν m−k 2 R8 i, j,m, n, k, l, r, s

+
Eπ4

4a2b2

nn

jj= 1

Nx

m= 1

Ny

n= 1

Nx

k = 1

Ny

l =1

Ai−1
mn A

i−1
kl

× l2 rn−sm m+ r 2−να2 n+ s 2 R9 i, j,m, n, k, l, r, s

+ l2 rn−sm m−r 2−να2 n−s 2 R10 i, j,m, n, k, l, r, s

− l2 rn+ sm m+ r 2−να2 n−s 2 R11 i, j,m, n, k, l, r, s

− l2 rn+ sm m−r 2−να2 n+ s 2 R12 i, j,m, n, k, l, r, s

+ Ai−1
mn A

i−1
kl −A0

mnA
0
kl

× −mls2 m+ k 2−να2 n+ l 2 R13 i, j,m, n, k, l, r, s

−mls2 m−k 2−να2 n+ l 2 R14 i, j,m, n, k, l, r, s

−mls2 m+ k 2−να2 n− l 2 R15 i, j,m, n, k, l, r, s

−mls2 m−k 2−να2 n− l 2 R16 i, j,m, n, k, l, r, s

for i,r = 1,2,…,Nx, j,s= 1,2,…,Ny, Ni = i−1 Nx + j, Nj = r−1 Nx + s
Finally, the coefficients G, H, Q, and R used in the preceding equations are given as

follows:

H0 i, j =
u v

au+ 1

au

bv+ 1

bv

sx i sy j dxdy

H1 i, j,m, n =
u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

sx m sy n sx i sy j dxdydz

H2 i, j,m, n =
u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

y sx m sy n sx i sy j dxdydz

H3 i, j,m, n =
u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

x sx m sy n sx i sy j dxdydz

H4 i, j,m, n =
u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

cx m cy n sx i sy j dxdydz

H1 i, j,m, n =
u v w

au+ 1

au

bv+ 1

bv

tw+ 1

tw

sx m sy n sx i sy j dxdydz
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G1 i, j,m, n, k, l, r, s =
rn−sm

m+ r 2 + α2 n+ s 2 2

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

cx m+ r cy n+ s sx k sy l sx i sy j dxdydz

G2 i, j,m, n, k, l, r, s =
rn−sm

m−r 2 + α2 n−s 2 2

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

cx m−r cy n−s sx k sy l sx i sy j dxdydz

G3 i, j,m, n, k, l, r, s =
rn+ sm

m+ r 2 + α2 n−s 2 2

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

cx m+ r cy n−s sx k sy l sx i sy j dxdydz

G4 i, j,m, n, k, l, r, s =
rn+ sm

m−r 2 + α2 n+ s 2 2

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

cx m−r cy n+ s sx k sy l sx i sy j dxdydz

G5 i, j,m, n, k, l, r, s =
rn−sm

m+ r 2 + α2 n+ s 2 2

u v w

au+ 1

au

bv + 1

bv

tw+ 1

tw

sx m+ r sy n+ s cx k cy l sx i sy j dxdydz
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11.4.4 Treatment of Plasticity

In a manner similar to that of the plates, the progress of plasticity with increases in the
applied loads is treated numerically. As shown in Figure 11.3, the stiffened panel is sub-
divided into a number of mesh regions in the three directions, similar to the conventional
finite element method. The average membrane stress components for each mesh region
can be calculated at every load increment step. Yielding for each mesh region is checked
for both the plate part and the stiffeners with the following yield criteria:
For the plate part:

σ2x−σxσy + σ
2
y + 3τ

2 ≥ σ2Y 11 69a

For the stiffeners:

σsx ≥ σYs, σsy ≥ σYs 11 69b

where σsx and σsy are the normal stresses of the stiffeners in the x or y direction, respec-
tively, and σY and σYs are the yield stresses of the plating or stiffeners, respectively. For the
softened zone, a reduced yield strength of material shall be used.
As the applied loads increase, the stiffness matrices for the panel are redefined by con-

sidering the progress of plasticity. In Equation (11.67), the stiffness matrix associated
with external loads should be calculated for the whole volume of the panel regardless
of the plasticity. However, the bending stiffness will be reduced by the plasticity if any
mesh region yields. In the calculation (i.e., integration) of the bending stiffness matrix,
therefore, the contribution to the yielded regions is removed. The stiffness for the panel
will be progressively reduced by large deflection and local yielding as the applied loads
increase. The panel can be considered to have reached the ULS when the panel stiffness
eventually becomes zero (or negative).

11.5 Applied Examples

The incremental Galerkin method formulations were implemented in the computer pro-
gram ALPS/SPINE (2017). The process described in the previous sections to include
plasticity effects is carried out numerically within the computer program. In this regard,
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this method could perhaps be better classified as a semi-analytical (or a semi-numerical)
approach. Also, the user of the computer program can adopt an option so that only the
elastic large-deflection analysis, that is, without consideration of plasticity, can be under-
taken. The program automatically stops if the determinant of the total stiffness matrix for
the whole stiffened panel reaches zero (or is negative).
In the following, applied examples for plates and stiffened panels are shown with vary-

ing dimensions of plate panels, load applications, and initial imperfections (Paik et al.
2001, Paik & Kang 2005). The boundary conditions of the plates and the stiffened panels
are considered simply supported at all (four) edges. The plate panels are made of steel
and have a Young’s modulus (E) of 205.8 GPa and a Poisson’s ratio (v) of 0.3.

11.5.1 A Rectangular Plate Under Longitudinal Axial Compression

Elastic–plastic large-deflection analyses for simply supported plates subject to uniaxial
compression are carried out until the ultimate strength is reached, varying the plate
aspect ratio. Figure 11.4 shows the average compressive stress versus deflection curves
for a rectangular plate with a/b = 3, where the initial and added deflection functions of
Equation (11.18) are assumed to consist of two terms, with m = 1 and 3, while n = 1, as
follows:

w0 = A011 sin
πx
a

+A031 sin
3πx
a

sin
πy
b
, w= A11 sin

πx
a

+A31 sin
3πx
a

sin
πy
b

It is apparent from Figure 11.4 that at the beginning of loading, one half-wave mode is
predominant. However, with an increase in the applied loads, the plating collapses with a
half-wave number of three, which correctly corresponds to the buckling mode of the
plate with an aspect ratio of a/b = 3. Figure 11.5 shows the variation in the ultimate
strength for the plates plotted versus the aspect ratio. A comparison of the ALPS/SPINE
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Figure 11.4 Average compressive stress versus deflection curves of a simply supported rectangular
plate subject to longitudinal axial compression.
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solutions for this case is made against an empirical formula developed by curve fitting
based on nonlinear finite element analysis (FEA) (Ohtsubo & Yoshida 1985).

11.5.2 A Rectangular Plate Under Transverse Axial Compression

A long steel plate (of aspect ratio a/b = 3) subject to uniaxial transverse compression is
considered. Figure 11.6 shows the plate’s load versus deflection curves. From the begin-
ning of the load application, the two deflection terms increase together, but one half-
wave mode is always clearly predominant.
Figure 11.7 shows the deformed shape of the plate at the ULS. It is apparent from

Figure 11.7 that the plate deflection pattern is not sinusoidal but has a “bathtub” (or bulb)
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Figure 11.5 Comparison of ultimate strength results for steel plates subject to uniaxial longitudinal
compression (i = 2, 3, 4, 5 for a/b = 2, 3, 4, 5, respectively).
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Figure 11.6 Average compressive stress versus deflection curves for a simply supported rectangular
plate subject to transverse axial compression.
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shape around the edges. Figure 11.8 shows the progressive expansion of the plastic region
at the top layer of the plate. Figure 11.9 shows the variation of the ultimate transverse
compressive strength for the plates plotted against the plate aspect ratio. The nonlinear
FEA results of Ohtsubo and Yoshida (1985) are also compared in the figure. The figure
indicates that good agreement is achieved between the SPINE and nonlinear finite
element method solutions.

11.5.3 A Rectangular Plate Under Edge Shear

The elastic–plastic large-deflection response of a square plate under edge shear up to the
ultimate strength is now analyzed using the ALPS/SPINE method. The initial and added
deflection functions in this case are assumed as follows:

w0 =
3
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3
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A0mnsin
mπx
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sin
nπy
b

, w=
3

m=1
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nπy
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σy
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Figure 11.7 A so-called “bathtub”-shaped deflection of a simply supported rectangular plate under
transverse axial compression at the ULS, as obtained by ALPS/SPINE, a/b = 3.
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σy/σY = 0.467

σy/σY = 0.475

Figure 11.8 Progressive expansion of the plastic region at the top layer of a simply supported
rectangular plate (a/b = 3) under transverse axial compression, as obtained by ALPS/SPINE.
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where A0mn = 0 is taken except for A011 = 0.1β2t and A033 = 0.05β2t.
Figure 11.10 shows the load versus deflection curves for the square plate subject to

edge shear. Figure 11.11 shows the deformed shape of the plate under edge shear at
the ULS. Figure 11.12 shows the progressive expansion of the plastic region at the top
layer of the plate under edge shear.

11.5.4 A Rectangular Plate Under In-Plane Bending

The elastic–plastic large-deflection response of a square plate under in-plane bending
moment is now analyzed with the ALPS/SPINEmethod. The initial and added deflection
functions for this case are assumed as follows:
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b

where A0mn = 0 is taken except for A011 =A055 = 0.1β2t.
Figure 11.13 shows the load versus deflection curve for the square plate under in-plane

bending in one direction.

11.5.5 A Rectangular Plate Under Lateral Pressure Loads

The elastic–plastic large-deflection response of a square plate under uniformly distrib-
uted lateral pressure loads up to the ultimate strength is now analyzed using the ALPS/
SPINEmethod. The plate deflection function is assumed with only one half wave, that is,
m = n = 1. Figure 11.14 shows the load versus deflection curves of the simply supported
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Figure 11.9 Variation of the ultimate strength of a simply supported rectangular plate subject to
uniaxial transverse compression (i = 2, 3, 4, 5, for a/b = 2, 3, 4, 5).
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Figure 11.10 Mean stress versus deflection curves for a simply supported square plate subject to
edge shear.
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Figure 11.11 Deformed shape of a simply supported square plate under edge shear at the ULS.

τxy/τY = 0.815 τxy/τY = 0.892 τxy/τY = 0.944

Figure 11.12 Progressive expansion of the plastic region at the top layer of a simply supported square
plate under edge shear.
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square plate under lateral pressure load. Figure 11.14 shows that the plate deflection is to
some extent resisted by membrane action in the beginning, but progressively increases
due to plasticity. Figure 11.15 shows the progressive expansion of the plastic region at the
top layer of a square plate under lateral pressure load at the ULS.

11.5.6 A Rectangular Plate Under Combined Transverse Axial Compression
and Edge Shear

The elastic–plastic large-deflection responseof a rectangular plate (with aspect ratioa/b = 2)
subject tocombinedtransverseaxial compressionandedgeshear isnowanalyzed,varyingthe
slenderness ratio. The initial deflection for the plate is given by the following:
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Figure 11.13 Mean stress versus deflection curve for a simply supported square plate subject to in-
plane bending.
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Figure 11.14 Lateral pressure load versus deflection curve for a simply supported square plate.
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w0 =A011 sin
πx
a
sin

πy
b

+A021 sin
2πx
a

sin
πy
b

where A011 = 0.1β2t, A021 = 0.05β2t, and β = b t σY E.
The added deflection function for this case requires some special consideration. As the

deflection pattern may be complex when the edge shear is a predominant load compo-
nent, more deflection terms should be used. The added deflection function for the pres-
ent calculations may thus be assumed to consist of five half-wave terms in the x direction
and three half-wave terms in the y direction as follows:

w=
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m=1

3

n= 1

Amnsin
mπx
a
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nπy
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In the analysis, the loading ratio that defines the proportion of axial compressive stres-
ses to edge shear stresses is kept constant for each calculation point until the ultimate
strength is reached. Figure 11.16 shows the resulting ultimate strength interactive rela-
tionship for the plate aspect ratio of a/b = 2 in the case of combined transverse compres-
sion and edge shear. In the same figure, the corresponding nonlinear FEA solutions
obtained by Ohtsubo and Yoshida (1985) are compared with the ALPS/SPINE results.
Good agreement is apparent.

11.5.7 A Rectangular Plate Under Other Types of Combined Load
Applications

The ALPS/SPINE method can be applied for steel or aluminum plates under any com-
bination of the six load components: longitudinal axial compression or tension, trans-
verse axial compression/tension, longitudinal in-plane bending, transverse in-plane
bending, edge shear, and lateral pressure. Figures 11.17 and 11.18 show the ultimate
strength interactive relationship of steel plates under combined in-plane bending and
edge shear and under all six load components, respectively.

11.5.8 A Stiffened Panel with Flat-Bar Stiffeners Under Uniaxial Compression

A steel square panel stiffened by one flat-bar stiffener in the longitudinal direction sub-
jected to uniaxial compression is considered. The number of mesh regions for the plate

p = 42 tonf/m2 p = 47 tonf/m2 p = 51 tonf/m2

Figure 11.15 Progressive expansion of the plastic region at the top layer of a simply supported square
plate under lateral pressure load.
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part alone is taken as 11 × 11× 9 in the x, y, and z directions, respectively, and for the
stiffener it is taken as 9 in the z (i.e., the stiffener web height) direction. The initial
and added deflection functions are assumed by
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b
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Figure 11.16 Ultimate strength interactive relationship for a simply supported rectangular plate
subject to combined transverse compression and edge shear.
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Figure 11.17 Ultimate strength interactive relationship for a simply supported square plate subject
to combined in-plane longitudinal bending and edge shear.
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Figure 11.19 shows the variation in the ultimate compressive strength of the stiffened
steel panel with increases in the stiffener web height. The results obtained by others are
compared in the figure. In the finite strip method calculations of Ohtsubo et al. (1978),
unloaded edges were assumed to remain straight, the same condition as in the SPINE
analyses. However, in the FEA of Ueda et al. (1976), the unloaded edges were assumed
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Figure 11.18 Ultimate strength interactive relationship for a simply supported square plate subject to
combined biaxial compression, edge shear, biaxial in-plane bending, and lateral pressure loading.
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Figure 11.19 Comparison of ultimate strengths for a stiffened panel with one flat-bar stiffener subject
to uniaxial compression.
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tomove freely in the plane direction (even though they would be simply supported). Niho
(1978) predicted the ultimate strength for the stiffened panel by applying rigid-plastic
theory to account for the large-deflection effects. The plates are stiffened with one-sided
stiffeners. The neutral plane of the stiffened plate no longer coincides with the neutral
plane of the plate. The effects of eccentricity are not accounted for in the present analysis.
It is apparent from Figure 11.19 that the ultimate compressive strength increases as the
stiffener web height increases; however, it appears that a critical threshold value of the
stiffener web height separates into two distinct collapse modes: overall and local collapse.

11.5.9 A Stiffened Panel with Three Stiffeners Under Combined Axial
Compression and Lateral Pressure Loads

A rectangular steel panel stiffened by three T-sections in the longitudinal direction is
analyzed. The panel is subjected to combined uniaxial longitudinal (or transverse) com-
pression and lateral pressure loads. The initial and added deflection functions with the
odd numbers of half waves are assumed as follows:

w0 =A011 sin
πx
a
sin

πy
b

+A039 sin
3πx
a

sin
9πy
b

w=
2

m= 1

5

n= 1

A 2m−1 2n−1 sin
2m−1 πx

a
sin

2n−1 πy
b

where the even numbers of half waves are not included because the panel is subjected to
predominantly lateral pressure loads and in this case only the odd numbers of half waves
play a dominant role in the large-deflection response.
Figure 11.20 shows ALPS/SPINE results for the variation of the ultimate compressive

strength for the panel with increases in the magnitude of lateral pressure loads.
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Figure 11.20 Comparison of ultimate strength results for a stiffened panel with three T-stiffeners
subject to combined uniaxial longitudinal compression and lateral pressure loads.
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Conventional nonlinear finite element results obtained by Yao et al. (1997) are compared
in the figure. Yao et al. (1997) calculated the ultimate strength of the panels in this case
using the plate-stiffener combination model, that is, using one stiffener with attached
plating as representative of the stiffened panel as described in Chapter 2. In contrast,
the SPINE program analyzes the nonlinear behavior of the stiffened panel as a whole.
It is apparent from Figure 11.20 that the ultimate compressive strength of the panel

decreases almost linearly in a general sense as themagnitude of lateral pressure increases.
However, it can also be observed from the ALPS/SPINE results shown in Figure 11.20
that the ultimate longitudinal compressive strength can increase slightly if themagnitude
of lateral pressure is comparatively small. With further increases in the lateral pressure
loads, the ultimate strength in compression decreases, which is thought to be due to the
lateral pressure loads disturbing the inception of buckling of a long plate for the theo-
retical longitudinal buckling mode in longitudinal compression because of an imposed
transverse shell type of curvature when the magnitude of lateral pressure is relatively
small. As the magnitude of the lateral pressure increases, the theoretical longitudinal
buckling mode appears to remain suppressed.
As long as the magnitudes of the increases in lateral pressure loads are not very large,

the buckling strength of a long plating (between the stiffeners) under axial compression
may increase because the buckling mode is different from the deflection pattern due
to lateral pressure loads alone and because more energy is normally needed to buckle
when lateral pressure loading disturbs occurrence of buckling. In contrast, for a wide
(and square) plate, lateral pressure loads always decrease the ultimate strength
because the buckling mode of plating corresponds to the deflection pattern due to lateral
pressure loads alone, and in this case bifurcation (buckling) does not occur because the
plate deflects from the beginning of loading. The panel reaches its ultimate strength with
one half-wave mode in the transverse direction, which is imposed by the action of lateral
pressure loads themselves.

11.5.10 A Very Large Crude Oil Carrier’s Deck Structure Under Combined
Axial Compression and Lateral Pressure

The incremental Galerkin method is used to investigate the ultimate strength character-
istics of a cross-stiffened VLCC (very large crude oil carrier) deck structure under lon-
gitudinal axial compression and lateral pressure, the latter caused by an imposed vacuum
to hypothetically reduce oil outflow in ship collision and/or grounding accidents.
Of course, in this case, no corresponding test data or FEA results are available for
comparison, whereas the solutions of the ALPS/SPINE (2017) method are described
in Chapters 4 and 6.
Figure 11.21 indicates the relevant information for the VLCC deck stiffened panel used

for the example. Figure 11.22 shows the elastic–plastic large-deflection behavior of the
structure under lateral pressure loading alone until the ultimate strength is reached, as
obtained by the ALPS/SPINE incremental Galerkin method. Figure 11.23 presents the
ALPS/ULSAP (2017) and ALPS/SPINE predictions for the ultimate strength interactive
relationship.
Two kinds of structural modeling with regard to the extent of calculation are consid-

ered for the ALPS/ULSAP ultimate strength predictions: one for an entire structure and
one for a longitudinally stiffened panel between two adjacent transverse frames. The real
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Figure 11.21 A cross-stiffened VLCC deck structure under combined axial compression and lateral
vacuum pressure (in mm).
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Figure 11.22 The elastic–plastic large deflection behavior of a cross-stiffened VLCC deck structure
subject to lateral pressure load, as obtained by the ALPS/SPINE incremental Galerkin method (w, lateral
deflection at the center of the structure).
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ultimate strength is taken as the smaller of the two results. The latter calculation model
significantly overestimates the ultimate strength compared with the former, particularly
when the magnitude of lateral pressure loads is large because the ultimate strength char-
acteristics of cross-stiffened structures depend on the dimensions of the transverse
frames and those of the longitudinal stiffeners.
When a larger magnitude of lateral pressure loads is applied, the relatively weak trans-

verse frames in the grillage can fail to support the related panel, and therefore the latter
type of modeling, that is, only for stiffened panels between two adjacent transverse
frames that are assumed to remain straight or not to fail, may provide quite optimistic
ultimate strength predictions of the grillage.
The mode III predictions based on stiffener-induced failure, using the Perry–Robertson

formulation method as described in Chapter 6, are also shown for comparison, although
they are not included in the ALPS/ULSAP ultimate strength computations. The upper
limit of the “critical” lateral pressure is found to be at a waterhead of about 30m. The real
deck ultimate strength is then represented by the thicker solid line of Figure 11.23 inside
the upper limit of the critical lateral pressure.
It is apparent from Figure 11.23 that the lateral pressure may not in this particular case

affect the compressive collapse up to about 5 psi (0.035MPa or a sea waterhead of 3.5 m),
but it then significantly reduces the panel ultimate compressive strength for larger mag-
nitudes of lateral pressure. It is also evident that, under these large vacuum pressures,
mode I failure for the entire cross-stiffened structure is indicated. This suggests extreme
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Figure 11.23 Variation of the ultimate axial compressive strength for a cross-stiffened VLCC deck
structure plotted against the net lateral pressure, with predictions based on ALPS/SPINE and ALPS/
ULSAP methods.
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caution in the potential use of an imposed vacuum as a means of reducing oil outflow,
unless the structure is explicitly designed for the performance needed under such con-
ditions with little or no prior experience. It is again important to realize that the ultimate
strength calculation model for a cross-stiffened structure must account for the entire
extent, that is, including transverse frames and longitudinal stiffeners. This case illus-
trates a possible use of the ALPS/SPINE and ALPS/ULSAP methods, although a purely
hypothetical one.
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12

The Nonlinear Finite Element Method

12.1 Introduction

The finite element method (Zienkiewicz 1977) is one of the most powerful approaches
available for analyzing the nonlinear behavior of structures. In a general case, the method
requires considerable computational effort, mostly because of the large number of
unknowns that must be addressed in the solution procedure and also because of the fairly
complicated numerical integration procedures used, especially to obtain the nonlinear
stiffness matrices for the finite elements as they deform.
A comprehensive discussion of nonlinear finite element method analysis would

require a full book or more (Wriggers 2008, Belytschko et al. 2014, Borst et al. 2014,
Kim 2014, Reddy 2015). It is important to realize that nonlinear finite element method
solutions can be completely incorrect if the structural modeling techniques are inade-
quate in their idealization of a real problem. Several textbooks have dealt with nonlinear
finite element method theories, but few have included tips and techniques for the mod-
eling of this method (Paik & Hughes 2007, Hughes & Paik 2013).
This chapter focuses on techniques to develop successful models of nonlinear finite

element methods for analyzing nonlinear structural consequences. Some illustrative
examples of nonlinear finite element method modeling are presented for analysis of ulti-
mate strength and structural crashworthiness; the former is associated with extreme
loads, whereas the latter is associated with accidental actions such as collisions, ground-
ing, fire, and explosions. It is noted that the nonlinear finite element method can of
course be commonly applied to steel- and aluminum-plated structures.

12.2 Extent of the Analysis

Figure 12.1 shows a typical plated structure with strong, small support members—a ship
hull structure under construction at shipyard. It is desirable to consider the entire struc-
ture in the analysis, but if the time or resources for structural modeling and computation
are limited, finite element method modeling may consider only a part of the target struc-
ture. In this case, it must be realized that an artificial boundary is formed for the target
structure, and the solution will only be satisfactory if the boundary conditions (loads,
supports, etc.) are idealized appropriately.
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The extent of the analysis is typically removed from the target structure with respect to
the symmetric envelope in terms of structural deformations and failure modes. Some
illustrative examples are shown in Figure 12.2 for plates and stiffened plate structures
and in Figure 12.3 for ship hull structures.

12.3 Types of Finite Elements

Many finite element types are available, but it can be difficult to establish specific guide-
lines for which types are best for a given application. For nonlinear analysis of plated
structures, rectangular plate-shell elements are more appropriate than triangular ele-
ments because the former make it easier to define the membrane stress components
inside each element when the Cartesian coordinate system is applied. This practice is
also true for linear structural mechanics and analysis (Paik & Hughes 2007).
Therefore, four-noded plate-shell elements are generally used for nonlinear analysis of

plated structures associated with their ultimate limit states and structural crashworthi-
ness. The nodal points in the plate thickness direction are located in the mid-thickness of
each element, which indicates that no element mesh is assigned to the thickness layers.
To reflect the nonlinear behavior more accurately, plate-shell elements should be used
for the webs, flanges, and plating. However, beam elements can be more efficient when
modeling these supportingmembers, or at least the flanges, although they are not recom-
mended for more precise analysis.

12.4 Mesh Size of Finite Elements

Although finer mesh modeling results in more accurate solutions, it may not be the
best practice. A similar degree of accuracy can be attained with coarser mesh
modeling, which requires considerably less computational cost. A convergence study

Figure 12.1 A typical example of a plated structure.
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Figure 12.2 (a) Quarter model for a rectangular plate under uniaxial compression; (b) one-bay
plate–stiffener combination model for a stiffened plate structure under uniaxial compression; (c) two-
bay plate–stiffener combination model for a stiffened plate structure under uniaxial compression;
(d) one-bay stiffened panel model for a stiffened plate structure under uniaxial compression; (e) two-
bay/one-span stiffened panel model for a stiffened plate structure under uniaxial compression;
(f ) two-bay/two-span stiffened panel model for a stiffened plate structure under uniaxial compression.



(or patch test) is usually performed to determine the best size of finite element
mesh based on a compromise between computational cost and accuracy. Sample
applications of the corresponding nonlinear analysis are carried out with a variety
of element mesh sizes to search for the largest size that provides a sufficient level
of accuracy.
Figure 12.4 shows a schematic of the convergence study where the relation between the

load-carrying capacity of a structure and the number of finite elements is investigated.
Greater number of finite elements indicates the application of finer mesh sizes. It is
emphasized that the load-carrying capacity tends to converge to a value with a decrease
in the mesh size or with an increase in the number of elements when “nonconforming”
finite elements (Shi 2002) are used. The best size of the finite element mesh can then
be selected in association with the converged value of the load-carrying capacity as
shown in Figure 12.4. Such a convergence study can provide best practice nonlinear finite
element method modeling for determining the relevant mesh size. In some cases where
nonconforming element is not convergent, some mechanical consideration and compu-
tational experiences will be helpful to resolve the issue (Taylor et al. 1986, Irons & Raz-
zaque 1972).
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It is however emphasized that a convergence study itself requires considerable com-
putational effort. Therefore, guidance is required to define the finite element mesh size
without the need for such a study. For the ultimate strength analysis of stiffened plate
structures that involve an elastic–plastic large deflection response, at least eight four-
noded plate-shell elements are required to model the plating between the small support
members (e.g., the longitudinal stiffeners), as shown in Figure 12.5. The size of these
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Trans. 

bulkhead
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bulkhead
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Trans. 
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Trans. 

bulkhead
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Figure 12.3 Extent of the analysis for the progressive ship’s hull girder collapse analysis: (a) entire
hull model; (b) three-cargo-hold model; (c) two-cargo-hold model; (d) one-cargo-hold model;
(e) two-bay sliced hull cross-section model; (f ) one-bay sliced hull cross-section model.
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plate-shell elements is assigned in the plate length direction to ensure that each finite
element’s aspect ratio is almost unity, which is desirable. There are likely to be at least
six elements in the web height direction and at least four elements across the (full) flange
breadth when four-noded plate-shell elements are used.
In analysis of structural crashworthiness that involves the crushing or folding of thin

walls, at least eight four-noded plate-shell elements are required to reflect the folding
behavior of the single crushing length of a plate, as shown in Figure 12.6 and described
in Chapter 10. Theoretical formulations of the plate crushing length for thin-walled
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Figure 12.4 The convergence study (or
patch test) associated with the load-carrying
capacity versus the mesh size (or the
number of elements) using
“nonconforming” finite elements.

Trans. floor

Figure 12.5 Mesh size for plating, stiffener webs, and flanges in a stiffened plate structure used
for the ultimate limit state analysis.
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structures under crushing loads are available. For example, Wierzbicki and Abramowicz
(1983) derived the following plate crushing length formula, as described in Chapter 10:

H = 0 983b2 3t1 3 12 1

where b is the plate breadth, t is the plate thickness, and H is the half-fold length.
Therefore, the mesh size of a single finite element for plate crashworthiness analysis

can be determined as the crushing length, as predicted by Equation (12.1), divided by
eight, that is, the mesh size should be smaller than H/8. The element size should again
be determined to ensure that the element aspect ratio is almost unity.
Figure 12.7 shows an example of the structural crashworthiness analysis model asso-

ciated with collisions between a striking ship’s bow and a struck ship’s side, where the
collided areas involving buckling, yielding, crushing, and fracture are modeled by finer
meshes, while other areas (far away from the collided areas) are modeled by coarse
meshes. As the striking ship’s bow is also deformable rather than behaving as a rigid
body, it also needs to be modeled by finer meshes in that case.

12.5 Material Modeling

Nonlinear structural consequences usually involve material nonlinearity in association
with plasticity or yielding, among other factors. For nonlinear finite element analysis,
therefore, the characteristics of material behavior should be defined precisely in terms
of the true stress–true strain relationship as described in Section 1.3. It is of course desir-
able to determine the realistic relationship between these stresses and strains bymeans of
tensile coupon testing, which covers pre-yielding behavior, yielding, post-yielding behav-
ior including the strain-hardening effect, ultimate strength, and post-ultimate strength
behavior, including the necking effect described. It is emphasized that the material prop-
erties are also significantly affected by temperatures.
The current industry practice for ultimate limit state assessment uses a simpler mate-

rial model, although the realistic characteristics of the material have been applied to
assess the accidental limit state. For example, the effects of strain hardening and necking

H

H

H

H

Figure 12.6 Crushing behavior of a plated structure and the necessary size of the finite elements.
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(a)

(b)

(c)

Figure 12.7 An example of the structural crashworthiness analysis model for a ship–ship collision:
(a) finite element model with fine meshes in both struck ship side and striking ship bow (areas in
black color); (b) zoomed model before collision starts; (c) deformed view during collision; (d) deformed
view in struck ship side.
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(strain softening) are often not considered in ultimate strength analysis. This simplified
type of material model is the elastic–perfectly plastic material model and represents the
material’s elastic behavior until the yield strength has been reached, as described in
Section 1.3.2. Neither strain hardening nor necking is considered in the post-yielding
regime. This approximationmay be useful for steel when the primary concern is buckling
and when the plastic strain is only moderate, in contrast to structural crashworthiness,
which involves crushing and rupture with large plastic strains. However, it is cautioned
that the elastic–perfectly plastic model does not always give sufficiently accurate solu-
tions for aluminum alloy materials.
In accidental situations, structures may be exposed to fracture caused by progressive

cracking damage. In this case, rupture or fracture behaviormust be considered as described
in Chapter 10. One factor that affects the critical fracture strain of plate-shell-type finite
elements is the element size. This is important for analyzing ruptures or ductile fractures.
The following formula can be used to predict the critical fracture strain of the material as a
function of the finite element size (Paik 2007a, 2007b, Hughes & Paik 2013):

εfc = γd1
t
s

d2
εf 12 2

where εfc is the critical fracture strain used in the finite element model for the ultimate
strength analysis, εf is the fracture strain obtained from the tensile coupon test data, t is
the element thickness, s is the mesh size, γ is the correction (knock-down) factor asso-
ciated with localized bending effects, and d1 and d2 are the coefficients which may be
taken as d1 = 4.1 and d2 = 0.58 for mild steel at room temperature when t = 2mm
(Hughes & Paik 2013). The correction factor, γ, will take much smaller value than unity,

(d)

Figure 12.7 (Continued)
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such as 0.3–0.4, with increase in the element thickness because the localized bending
effect becomes more significant.
The strain-rate sensitivity plays an important role in the analysis of structural crashwor-

thiness and/or impact response. Therefore, material modeling in terms of the dynamic
yield strength and dynamic fracture strain must be considered. The Cowper–Symonds
equation, as described in Sections 10.3.2 and 10.3.3, is generally used for this purpose.With
the Cowper–Symonds equation, the strain rate ε can be calculated approximately by
assuming that the initial speed V0 of the dynamic loads is linearly reduced to zero until
the loading is finished, with average displacement δ as indicated in Equation (1.29):

ε=
V0

2δ
12 3

For ship–ship collision accidents, the strain rate, ε (1/s), may be approximately deter-
mined as a function of the collision velocity as follows (Paik et al. 2017; Ko et al. 2017):

ε= 2 970V0−0 686 forV0 ≥ 0 231 m s 12 4

where V0 is the velocity of the striking ship in m/s which may vary with time, but for the
sake of simplicity, V0 may be taken by the initial collision velocity.
In structural crashworthiness and/or impact response analysis, strain-rate sensitivity

plays a significant role and thus it should be taken into account. As described in
Chapter 10, the Cowper–Symonds equation is usually applied for this purpose.

σYd = 1 +
ε

C

1 q

σY 12 5

εfd = 1 +
ε

C

1 q −1

εfc 12 6

where σYd is the dynamic yield stress, σY is the static yield stress, εfd is the dynamic frac-
ture strain used in the finite element model, εfc is the static fracture strain used in the
finite element model that is obtained from Equation (12.2). C and q are test constants
that are described in Chapter 10.

12.6 Boundary Condition Modeling

When the target structure’s boundaries are linked to adjacent structures, the condition of
these boundaries must be idealized realistically. This problem most often occurs with a
partial analysis conducted by cutting a section out of the target structure, thus producing
artificial boundaries. A similar situation may occur inside the target structure when cer-
tain structural modeling simplifications are attempted. For example, rigid restraints can
be replaced with a strong support member that is regarded as undeforming and is
thought to prevent displacement and/or rotation, and a weak support member may
be ignored (zero restraint). However, when the degree of restraint at the boundaries
is neither zero nor infinite, a more detailed set of boundary conditions is required.
A clear understanding of the reality of these boundaries is very important before idea-

lizations are made. If the correct boundary conditions for replacing a portion of structure
create uncertainty, it is probably better to include that portion in the structural model,
even though it would require more computation.
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As an illustrative example of a stiffened plate structure as modeled in Figure 12.2f, the
one-bay model is relevant only when the restraints at the transverse frame location are
either zero or infinite (i.e., simply support or fixed). However, the rigidity of these frames
is neither zero nor infinite, and the decision depends entirely on the required level of
accuracy. When the model of Figure 12.2f is adopted, such as with a two-bay/two-span
model, Table 12.1 indicates the boundary conditions to be applied as similar to Table 4.3.

12.7 Initial Imperfection Modeling

As described in Section 1.7, welded metal structures always have initial imperfections in
the form of initial distortions and residual stresses. In contrast to steel structures, the
yield stress in the heat-affected zone of welded aluminum structures is less than that
of the base metal. As shown in Figure 12.8, three types of initial distortions are relevant
to welded metal stiffened plate structures:

• Initial deflection of the plating between the support members w0pl =A0 sin
mπx
a

sin
πy
b

• Column-type initial deflection of the support members w0c =B0 sin
πx
a
sin

πy
b

• Sideways initial deflection of the support members w0s =C0
z
hw

sin
πx
a

Table 12.1 Boundary conditions of the stiffened plate structure’s finite element model using the two-
bay/double-span stiffened panel.

Boundary Description

A–D and A –D Symmetric condition with Ry =Rz = 0 and uniform displacement in the x
direction (Ux = uniform), coupled with the longitudinal stiffener

A–A and D–D Symmetric condition with Rx =Rz = 0 and uniform displacement in the y
direction (Uy = uniform), coupled with the transverse frame

A –D , A –D , B–B ,
and C–C

Uz = 0

Note: Ux,Uy and Uz indicate the translational degrees of freedom in the x, y, and z direction, and Rx, Ry and Rz
indicate the rotational degrees of freedom in the x, y, and z direction.

W0c

W0s

W0pl

Figure 12.8 Three types of initial distortion in a stiffened plate structure.
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The magnitude and shape of each type of initial distortion play important roles in
buckling collapse behavior, and thus a better understanding of the actual imperfection
configurations in the target structures is necessary. In fact, precise information
about the initial distortions of the target structure is desirable before structural mod-
eling even begins. Considering the significant amount of uncertainty involved in fab-
rication related initial imperfections, current measurements of the initial distortions
in welded metal structures are often useful in the development of representative
models.
The welding induced residual stress distribution inside the metal plates or stiffeners

can be idealized as described in Section 1.7.3, where the welding residual stress com-
prises the tensile and compressive residual stress blocks. Welding residual stresses
may develop in both the longitudinal and transverse directions because the support
members are usually attached by welding in these two directions. The softening
phenomenon can be modeled to allow the reduced material yield stress in the
softened region, that is, in the heat-affected zone, to be applied as described in
Section 1.7.4.
Figure 12.9 shows examples of the nonlinear finite element methodmodels for the ulti-

mate hull girder strength analysis of a double hull oil tanker or a container ship under
vertical bending moment, accounting for the effects of welding induced initial imperfec-
tions, where the one-bay sliced hull cross-section model is adopted as the extent of the
analysis, as shown in Figure 12.3f.

12.8 Order of Load Component Application

When combined load components are applied simultaneously, an issue associated with
the order of load component application may arise. For example, the bottom panels of a
ship’s structures are likely subjected to combined lateral pressure and compressive loads;
the former are caused by cargo and water, whereas the latter are caused by the hull girder
bending moment under hogging conditions, as shown in Figure 12.10. In this situation,
lateral pressure is usually applied first, and axial compressive loads are then applied while
keeping the lateral pressure constant.
The shape and magnitude of the initial distortions in the plate panels can vary widely

with the lateral pressure. Figures 12.11 and 12.12 show examples of plate panels under
longitudinal and transverse compression before and after lateral pressure. The pressure
causes effective “clamping” of the plating and changes the deflected shape away from the
buckling mode shape, which may cause the ultimate strength value of the in-plane com-
pression to be greater than if the pressure was small or absent. Therefore, in panels that
may undergo in-plane compression with either high or low lateral pressure (such as
underwater panels in a tanker or bulker), the ultimate strength should be calculated both
for a full load and for the ballasted condition, and the lower value should be taken as the
true ultimate strength.
In linear structural mechanics under a combination of multiple load components, the

principle of linear superposition of structural responses by individual load components
is satisfied, and the final status of structural response is identical regardless of the load
paths. This principle is often adopted even for nonlinear structural mechanics
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problems that focus on buckling or ultimate strength, in which the load effects or
resulting deformations are not large with small strains until the buckling or ultimate
strength is reached. In contrast, the problems of structural crashworthiness in acciden-
tal situations such as collisions and grounding exhibit large strains associated with
crushing and rupture, and therefore the principle of linear superposition is no longer
applicable.

(a)

(b)

Figure 12.9 Examples of the nonlinear finite element method models for the ultimate hull girder
strength analysis of (a) a double hull oil tanker and (b) a container ship, under vertical bendingmoment
accounting for the initial imperfections.
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p = 0.16 MPa
x

z

Figure 12.10 Illustrative example of a stiffened panel under combined axial compression and lateral
pressure.

(a)

(b)

Tran
s. 

floor

Tran
s. 

floor

Longi. stiffener

Longi. stiffener

Figure 12.11 The panel initial deflection shapes under predominantly longitudinal compression
for the two-bay panelmodel: (a) before lateral pressure; (b) after lateral pressure (amplification factor of 30).

Ultimate Limit State Analysis and Design of Plated Structures600



References

Belytschko, T., Liu, W.K., Moran, B. & Elkhodary, K. (2014). Nonlinear finite elements for
continua and structures. Second Edition, John Wiley & Sons, Ltd, Chichester.

Borst, R., Crisfield, M.A., Remmers, J.C. & Verhoosel, C.V. (2014). Nonlinear finite element
analysis of solids and structures. Second Edition, John Wiley & Sons, Ltd, Chichester.

Hughes, O.F. & Paik, J.K. (2013). Ship structural analysis and design. The Society of Naval
Architects and Marine Engineers, Alexandria, VA.

Irons, B.M. & Razzaque, A. (1972). Experience with the patch test. In Proceedings of the
symposium onmathematical foundations of the finite element method, Edited by Aziz, A.R.,
Academic Press, New York, 557–587.

Kim, N.H. (2014). Introduction to nonlinear finite element analysis. Springer, Berlin.
Ko, Y.G., Kim, S.J., Sohn, J.M. & Paik, J.K. (2017). A practical method to determine the

dynamic fracture strain for the nonlinear finite element analysis of structural
crashworthiness in ship-ship collisions. Ships and Offshore Structures, doi.org/10.1080/
17445302.2017.1405584.

(a)

(b)

Tran
s. 

floor

Longi. stiffener

Tran
s. 

floor

Longi. stiffener

Figure 12.12 The panel initial
deflection shapes under predominantly
transverse compression for the two-bay
panel model: (a) before lateral pressure;
(b) after lateral pressure (amplification
factor of 30).

The Nonlinear Finite Element Method 601



Paik, J.K. (2007a). Practical techniques for finite element modeling to simulate structural
crashworthiness in ship collisions and grounding (Part I: Theory). Ships and Offshore
Structures, 2(1): 69–80.

Paik, J.K. (2007b). Practical techniques for finite element modeling to simulate structural
crashworthiness in ship collisions and grounding (Part II: Verification). Ships and Offshore
Structures, 2(1): 81–85.

Paik, J.K. & Hughes, O.F. (2007). Ship structures. InModeling complex engineering structures,
Edited by Melchers, R.E. & Hough, R., ASCE Press, The American Society of Civil
Engineers, Reston, VA.

Paik, J.K., Kim, S.J., Ko, Y.G. & Youssef, S.A.M. (2017). Collision risk assessment of a VLCC
tanker. Proceedings of the 2017 SNAME Maritime Convention, Houston.

Reddy, J.N. (2015). An introduction to nonlinear finite element analysis. Oxford University
Press, Oxford.

Shi, Z.C. (2002). Nonconforming finite element methods. Journal of Computational and
Applied Mathematics, 149(1): 221–225.

Taylor, R.L., Simo, T.C., Zienkiewicz, O.C. & Chan, A.H.C. (1986). The patch test: a condition
for assessing FEM convergence. International Journal of Numerical Methods, 22: 39–62.

Wierzbicki, T. & Abramowicz, W. (1983). On the crushing mechanics of thin-walled
structures. Journal of Applied Mechanics, 50: 727–734.

Wriggers, P. (2008). Nonlinear finite element methods. Springer, Berlin.
Zienkiewicz, O.C. (1977). The finite element method. Third Edition, McGraw-Hill, London.

Ultimate Limit State Analysis and Design of Plated Structures602



13

The Intelligent Supersize Finite Element Method

13.1 Features of the Intelligent Supersize Finite Element
Method

The nonlinear finite element method (NLFEM) described in Chapter 12 is a powerful
technique used to simulate nonlinear structural response. However, a weak feature of
the conventional NLFEM is that it requires enormous modeling effort and computing
time for nonlinear analysis of large structures. In this regard, much effort has been
devoted to reducing modeling and computing time for the nonlinear analyses of struc-
tures. Under extreme or accidental loading, structures can be involved in a highly non-
linear response associated with the yielding, buckling, crushing, and sometimes fracture
of individual structural components.
The most obvious way to reduce modeling effort and computing time is to reduce the

number of degrees of freedom so that the number of unknowns in the finite element
stiffness matrix decreases. Modeling the object structure with very large structural units
may offer the best approach. To avoid loss of accuracy, special-purpose finite elements
must be used. Properly formulated structural units in such an approach can then be used
to efficiently model the actual nonlinear behavior of the corresponding large parts of the
structures.
In one such contribution, the Ueda group (Ueda & Rashed 1974, 1984, 1991, Ueda et al.

1983, 1984, 1986a, 1986b) suggested the idealized structural unit method (ISUM). In the
ISUM, the nonlinear behavior for the so-called idealized structural units is formulated in
closed-form expressions based on analytical solutions that are provided in the incremen-
tal form, and the structural stiffness of individual structural units is assembled for the
entire target structure with a matrix calculation. With increases in the applied loading,
the progressive collapse behavior of the structure can be computed.
In an almost parallel development to the ISUM, Smith (1977) suggested a similar

approach to predict the ultimate bending moment of a ship hull. He modeled the ship
hull as an assembly of plate-stiffener combinationmodels, that is, stiffeners with attached
plating (or beam–column units) as described in Figure 2.2a. The load versus end-
shortening relationships for the plate-stiffener combination models were obtained with
the NLFEM accounting for initial imperfections. The behavior of the larger structure was
then constructed.
In contrast, ISUM is based on analytical engineering models for structural units, and

thus the solutions are quite accurate but its use is sometimes limited to structures with a
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simple shape, and difficulties may be encountered in the analysis of structures with com-
plex three-dimensional shapes.
The intelligent supersize finite element method (ISFEM) proposed by Paik (Hughes &

Paik 2013) uses large elements, and the approach for formulating themethod is similar to
the conventional finite element method. In contrast to the conventional finite element
method, the ISFEM is said to be intelligent because the highly nonlinear behavior of the
large elements is “educated” or formulated in advance, generating a high level of intel-
ligence in terms of judging the failure status and modes of such a large element. This
approach is beneficial for simulating the nonlinear behavior of a structure with a com-
plex shape because the conventional finite element method modeling technique is basi-
cally applied. Figure 13.1 shows a typical stiffened plate structure for which the ISFEM
can model the plating, webs, or flanges using rectangular plate elements, as described in
Figure 2.2d, while the NLFEM model is described in Figure 2.2e.
This chapter describes the formulation of the ISFEM in associationwith the ultimate limit

state analysis using rectangular plate elements. The method can also be developed for the
analysis of structural crashworthiness involving crushing and fracture failures. Applied
examples are presented to demonstrate the method in association with the progressive col-
lapse analysis of plated structures until and after the ultimate strength is reached.

13.2 Nodal Forces and Nodal Displacements
of the Rectangular Plate Element

The combined in-plane and out-of-plane deformation behavior for a rectangular plate
element can be expressed by the nodal force vector, {R}, and the displacement vector,

Figure 13.1 A typical example of a plated structure—a ship hull structure under construction at
shipyard.
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{U}, with six degrees of freedom at each corner nodal point, which is considered to be
located in the mid-thickness of the element:

R = Rx1 Ry1 Rz1 Mx1 My1 Mz1 Rx4 Ry4 Rz4 Mx4 My4 Mz4
T

13 1a

U = u1 v1 w1 θx1 θy1 θz1 u4 v4 w4 θx4 θy4 θz4
T

13 1b

where Rx, Ry, and Rz are the translational nodal forces in the x, y, and z directions, respec-
tively. Mx and My are the out-of-plane bending moments for the x and y directions,
respectively. Mz is the torsional moment for the z direction. u, v, and w are the transla-
tional displacements in the x, y, and z directions, respectively. θx (= −∂w/∂y), θy (= ∂w/∂x),
and θz are the rotations with regard to the x, y, and z directions, respectively. {}T repre-
sents the transpose of the vector. A digit in subscript indicates the node number of the
rectangular plate element as defined in Figure 13.2.

13.3 Strain versus Displacement Relationship

The strain versus displacement relationship accounting for out-of-plane and in-plane
large deformation effects for the ISFEM rectangular plate element is given in the
Cartesian coordinate system by the following:

εx =
∂u
∂x

−z
∂2w
∂x2

+
1
2

∂u
∂x

2

+
∂v
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+
1
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∂w
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2

13 2a
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∂v
∂y
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∂2w
∂y2
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∂u
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∂v
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1
2

∂w
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13 2b
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Figure 13.2 An ISFEM rectangular plate element.
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γxy =
∂u
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13 2c

where εx, εy, and γxy are the generalized strain components for a plane stress state.
The first term on the right side of the preceding equation represents the small defor-

mation in-plane strain. The second term denotes the small deformation out of plane. The
third and fourth terms are nonlinear strain components due to large deflections in plane
and out of plane, respectively. It is apparent from Equation (13.2) that the component for
rotation with respect to the z axis, which is normal to the plane of the element, does not
affect the strains of the element.
The incremental expressions corresponding to Equation (13.2) are written as follows:
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13 3b
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13 3c

where the prefix, Δ, denotes an infinitesimal increase in the variable.
For the sake of convenience in the formulations of the ISFEM rectangular plate ele-

ment, the nodal displacement vector, {U}, is divided into three components: the in-plane
component, {S}, the out-of-plane component, {W}, and the component for the rotations
about the axis z. Thus, equation (13.3) can be rewritten in matrix form using the vectors,
{S} and {W}, as follows:

Δε = Bp ΔS −z Bb ΔW + Cp Gp ΔS + Cb Gb ΔW

+
1
2

ΔCp Gp ΔS +
1
2
ΔCb Gb ΔW

= B ΔU

13 4

where Δε = ΔεxΔεyΔγxy
T
is the increase in the strain vector, U = S W T is the

nodal displacement vector, S = u1 v1 u2 v2 u3 v3 u4 v4
T is the in-plane displacement
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vector, W = w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3 w4 θx4 θy4
T

is the out-of-plane dis-
placement vector, and [B] is the strain-displacement matrix
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13.4 Stress versus Strain Relationship

The membrane stress increments, {Δσ}, due to strain increments, {Δε}, can be calculated
for a plane stress state as follows:

Δσ = D Δε 13 5

where Δσ = Δσx Δσy Δτxy
T
is the increase in the average membrane stress compo-

nents for a plane stress state and Δε = Δεx Δεy Δτxy
T
is the increase in the average

membrane strain components for a plane stress state.
In Equation (13.5), [D] is the average stress-average strain matrix, which can be deter-

mined differently depending on the failure state, as described in Section 4.13. It is spe-
cified as follows:

• In the pre-buckling or undeflected regime: D = Dp
E
, as defined in Equation (4.94b)

• In the post-buckling or deflected regime: D = Dp
B
, as defined in Equation (4.102)

• In the post-ultimate strength regime: D = Dp
U
, as defined in Equation (4.110)
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The failure status, such as buckling or ultimate strength, is checked by the theory
described in Chapter 4, in which the average membrane stresses and lateral pressure
loads are used for the failure checks as necessary. Figure 13.3 illustrates the behavior
of the ISFEM rectangular plate element with the focus on predominantly axial compres-
sive or tensile loads. It is noted that the elastic-perfectly plastic model of material as
described in Section 1.3.2 is applied by neglecting the strain-hardening effects. The
effects of welding induced initial imperfections and structural damages are accounted
for in association with the average stress-average strain relationship indicated in
Equation (13.5).

13.5 Tangent Stiffness Equation

Two approaches are widely used to calculate the nonlinear finite element stiffness
matrix: the total and updated Lagrangian formulations. The latter can be used for the
ISFEM rectangular plate element formulations. In the following, it is convenient to deal
separately with the matrix components related to the rotations with regard to the axis z,
which is normal to the plane of the element.

13.5.1 The Total Lagrangian Approach

Consider that an elastic structure under the nodal forces, {R}, resulting in the internal
stresses, {σ}, is in equilibrium. Assume that the structure remains in equilibrium even
after the increase of the virtual displacement increments, δ{ΔU}, corresponding to the
virtual strain increments, δ{Δε}, which develop the nodal forces, {ΔR}, and the resultant
stresses, {Δσ}.

σ

σY

σcr
σu

σu

σY

ε

Tension

Compression

σY = Yield strength
σcr = Buckling strength
σu = Ultimate strength

Imperfect

Perfect

Figure 13.3 The behavior of the ISFEM
rectangular plate element with the
focus on predominantly axial
compressive or tensile loads.
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By applying the principle of the virtual work, the following equation should be satisfied:

δ ΔU T R+ΔR =
V
δ Δε

T

σ +Δσ dVol 13 6

where the term on the left side represents the external work undertaken by the virtual
displacement increments and the term on the right side denotes the strain energy dis-

sipated by deformation during the applied loading.
V

dVol indicates the integration

over the entire volume of the element, and δ indicates a virtual value.
The virtual value of strain components, δ{Δε}, can be obtained by the differentiation of

Equation (13.4) with respect to the increase in displacement as follows:

δ Δε = Bp δ ΔS −z Bb δ ΔW + Cp +ΔCp Gp δ ΔS

+ Cb +ΔCb Gb δ ΔW
13 7

Substituting Equations (13.5) and (13.7) into Equation (13.6) and neglecting the infin-
itesimal terms that have higher than second-order increments, the elastic stiffness equa-
tion for the element is given by

L + ΔR = K ΔU 13 8

where [K] is the tangent stiffness matrix for the element. L = R − r is the unbal-
anced forces caused by the differences between the total external forces, {R}, and the total
internal forces, {r}, which in turn is calculated by

r =
V

Bp
T

σ dVol +
V

Gp
T
Cp

T
σ dVol +

V
Gb

T Cb
T σ dVol

13 9

where σ = σx σy τxy
T
are the total average membrane stress components.

The unbalanced forces should be eliminated at every step of the load increments. The
tangent stiffness matrix, [K], in Equation (13.8) can generally be subdivided into
four terms:

K = Kp + Kb + Kg + Kσ 13 10

On the right side of the preceding equation, the first and second terms represent
the stiffness matrices related to the in-plane and out-of-plane small deformations,
respectively. The third term is the so-called initial deformation stiffness matrix,
which in turn consists of three terms that represent the geometric nonlinear effects
associated with the in-plane and out-of-plane deformations and their interactions.
The fourth term is the so-called initial stress stiffness matrix, which is produced
by the initial stresses for the element, in which no term related to their interactions
appears.
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Each term can be developed in more detail as follows:

Kp =
K1 0

0 0
,

Kb =
0 0

0 K2

,

Kg =
K3 K4

K4
T K5

,

Kσ =
K6 0

0 K7

13 11

where K1 =
V

Bp

T

D E Bp dVol, K2 =
V
Bb

T

D e Bb z2dVol, K3 =
V

Gp

T

Cp
T

D E Bp dVol +
V

Bp

T

D E Cp Gp dVol +
V

Gp
T
Cp

T
D e Cp Gp dVol,

K4 =
V

Bp
T
D E Cb Gb dVol +

V
Gp

T
Cp

T
D E Cb Gb dVol,

K5 =
V
Gb

T

Cb
T D E Cb Gb dVol, K6 =

V
Gp

T

σp Gp dVol,

K7 =
V
Gb

T

σb Gb dVol, σp =

σx 0 τxy 0

0 σx 0 τxy

τxy 0 σy 0

0 τxy 0 σy

, σb =
σx τxy

τxy σy
.

In calculating Equation (13.11), the terms involving the first order of the variable, z,
become zero after completing the integration for the entire volume of the element in
the elastic regime. Even in the elastic–plastic regime, the plasticity is condensed into
the plastic nodes, and the inside of the element, with the exception of the plastic nodes,
is in the present method, which is assumed to be elastic. These terms can thus be elimi-
nated from the expressions.

13.5.2 The Updated Lagrangian Approach

The tangent stiffness matrix, [K], in Equation (13.10) is derived by the total Lagrangian
approach considering that the local coordinate system for the element is fixed with
regard to the global coordinate system, which makes possible the use of an identical
transformation matrix throughout the entire incremental loading process.
In contrast, the so-called updated Lagrangian approach requires one to update the

local coordinate system at every incremental loading process, such that the transforma-
tion matrix from the local coordinate to the global system is newly established each time.
The benefit of the updated Lagrangian approach is that the initial deformation matrix,
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[Kg], can be eliminated from Equation (13.10) because the initial deformation at the
beginning of every incremental loading process can be set to zero. Therefore, the tangent
elastic stiffness matrix, [K], can be simplified to

K = Kp + Kb + Kσ 13 12

13.6 Stiffness Matrix for the Displacement Component, θz

The stiffness matrix components for the rotations with regard to the z axis may normally
be set to zero, but this can in some cases produce numerical instability in the computa-
tion of the structural stiffness equation. To obtain a stabilizing effect in the numerical
computation, the stiffness matrix components for the displacement component, θz,
can be added to the stiffness matrix in Equation (13.12). The stiffness equation for
the displacement component, θz, may be given by
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13 13

where t is the plate thickness, A is the surface area of the element, and α is a constant
that may normally be taken to be a very small value, for example, 5 0 × 10−5

(Zienkiewicz 1977).

13.7 Displacement (Shape) Functions

To attain a uniform state of shear stresses inside the element, a nonlinear function is in
the present finite element method assumed for the in-plane displacements, u and v,
whereas a polynomial function is assumed for the out-of-plane displacement, w, which
is expressed in terms of 12 parameters. We thus have

u= a1 + a2x+ a3y+ a4xy+
b4
2

b2−y2 13 14a

v= b1 + b2x+ b3y+ b4xy+
a4
2

a2−x2 13 14b

w= c1 + c2x+ c3y+ c4x
2 + c5xy+ c6y

2 + c7x
3 + c8x

2y

+ c9xy
2 + c10y

3 + c11x
3y+ c12xy

3
13 14c

where a1, a2,…, c12 are unknown coefficients that are expressed in terms of nodal displa-
cements, {U}.
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For a rectangular plate element with a length of a and a breadth of b, the coefficients of
the displacement functions can be obtained by substituting the local coordinates and dis-
placements at the nodes into Equation (13.14).

13.8 Local to Global Transformation Matrix

An exact formulation of the transformation matrix for a rectangular plate element is dif-
ficult to define. In the approximate formulation, it is normally considered that the ele-
ment is in a plane that contains at least three nodal points of the element. The
transformation matrix, [T], from the local coordinate system to the global coordinate
system can then be obtained in Cartesian terms (i.e., as functions of the global coordi-
nates at the nodal points). Therefore, the element stiffness matrix in the local coordinate
system can be transformed to the global system coordinate as follows:

K G = T T K L T 13 15

where [K]L and [K]G are the element stiffness matrices in the local and global coordi-
nates, respectively, and [T] is the transformationmatrix from the local coordinate system
to the global coordinate system.
All of the element stiffness matrices in the global coordinate system are then assembled

in the usual manner for the finite element procedure to obtain the stiffness matrix for the
entire structure. By solving the resulting stiffness equations for the prescribed load incre-
ments and boundary conditions, the structural response is obtained.
The stiffness equation of the target structure in the global coordinate system can then

be given by assembling all of the elemental global stiffness matrices in the incremental
form as follows:

ΔR = K G ΔU 13 16

13.9 Modeling of Flat Bar Stiffener Web and One-Sided
Stiffener Flange

Theweb of flat bar stiffener or one-sided (asymmetrical) flange of angle or Tee stiffener is
supported at three edges and free at one edge, as shown in Figure 5.8. The web of flat bar
stiffener can fail by lateral–torsional buckling (or tripping). The critical strength of lat-
eral–torsional buckling that may occur in the web of flat bar stiffener can be evaluated as
described in Sections 5.6 and 5.9, the latter section being with the Johnson–Ostenfeld
formulation method as described in Section 2.9.5.1. When the one-sided flange of angle
or Tee stiffener buckles locally, the critical buckling strength of the stiffener flange can be
evaluated as described in Sections 5.7 and 5.9.
Until such local buckling occurs in the flat bar stiffener web or one-sided stiffener flange,

the stress–strainmatrix [D] of the plate element associated with Equation (13.5) is taken as

D = Dp
E
, which is available in the pre-buckling strength or undeflected regime, as

defined in Equation (4.94b). In reality, the stiffener flange should be designed to be stocky
enough with a sufficiently low plate slenderness ratio. In this case, such local buckling

Ultimate Limit State Analysis and Design of Plated Structures612



may rarely take place, whereas the ultimate strength is reached by gross yielding. In such
a case, the stress–strain matrix [D] of the ISFEM rectangular plate element associated
with Equation (13.5) may follow the elastic-perfectly plastic material model without local
buckling effect.

13.10 Applied Examples

ISFEM theory has been implemented into the computer program ALPS/GENERAL
(2017) to analyze the progressive collapse of large plated structures. A special version
of the ALPS/GENERAL is ALPS/HULL (2017), which can deal with analysis of the pro-
gressive collapse of a ship’s hull under combined vertical bending, horizontal bending,
shearing force, and torsional moment. In the following, applied examples of the ISFEM
theory are demonstrated for the progressive collapse analysis of a plate, a box column,
a ship’s hull girder, and a bridge structure until and after the ultimate strength is reached.
For more applied examples of the ISFEM, interested readers may refer to Magoga and

Flockhart (2014), Zhang et al. (2016), Faisal et al. (2017), and Youssef et al. (2016, 2017),
among others.

13.10.1 A Rectangular Plate

The ultimate strength behavior of a rectangular plate in longitudinal or transverse
compression is analyzed. The dimension of the plate is length, a = 3000mm, and
breadth, b = 1000mm, with a Young’s modulus of E = 205.8 GPa, a yield stress of σY
= 355MPa, and a Poisson’s ratio of ν = 0.3, while the plate thickness t is varied at t =
15, 20, and 25 mm, which is equivalent to the plate slenderness ratio of
β = b t σY E = 2.768, 2.076, and 1.661, respectively.
Initial deflection distribution in the plate is assumed to be w0pl = 0 05t sin mπx a

sin πy b , where m is the buckling mode half-wave number in the x direction, that is,
m= 3 under uniaxial compression in the x direction and m= 1 under uniaxial compres-
sion in the y direction. It is assumed that no residual stress exists. The plate is considered
to be simply supported along all (four) edges keeping them straight, although unloaded
edges can move freely in plane. This boundary condition is more practical because plate
edges are more likely to keep straight in a continuous plate structure.
Figure 13.4 shows the analysis models by ISFEMALPS/GENERAL and NLFEM. For the

NLFEM analysis, a quarter of the plate is taken as the extent of the analysis considering the
symmetric condition in terms of geometry and resulting behavior. Figure 13.5a and b com-
pares the ultimate strength behavior of the plate under uniaxial compressive loads in the
longitudinal or transverse direction, with varying plate thickness. It is apparent from
Figure 13.5 that the ISFEM solutions are in good agreement with the NLFEM results.

13.10.2 A Box Column

The ISFEM ALPS/GENERAL is now applied to the progressive collapse analysis of a
thin-walled box column under axial compressive loads, and the computational results
are compared with NLFEM solutions.
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Figure 13.6 shows a half of a box column with respect to the mid-span in the length
direction, which is composed of unstiffened rectangular plate elements together with
several diaphragms. The edges of individual plate elements at both ends of the box col-
umn are simply supported, and subsequently both joint translation and moment
restraint can occur after buckling at the ends of the box column, implying that the
end condition of the box column as a system is more likely to be clamped.
In the analysis, the entire length L of the box column is varied at L = 500, 8 000, and 21

000 mm, and the dimensions, material properties, and initial imperfections of the struc-
ture are as follows:

• Geometry of plate elements: a× b× t = 500 × 500 × 7 5 mm

• Thickness of transverse diaphragms = 3.0 mm

• Young’s modulus: E = 205 8 GPa

• Yield stress: σY = 352 8 MPa

• Poisson’s ratio: ν= 0 3

•Maximum plate initial deflection: w0pl = 0 05t

• Column-type initial deflection function of the entire box column: w0c = δ0 sin πx L
where δ0 = 0 0015L

•Welding residual stresses that do not exist: σrcx = σrcy = 0

In the box column, the unloaded edge conditions along the corners of individual plate
elements may play a role in the progressive collapse behavior. Therefore, three different
conditions of unloaded plate edges are considered for the NLFEM analysis, while the
ISFEM analysis presumes that the unloaded plate edges are always kept straight although
they may move in plane of the corresponding plate elements. The unloaded edge con-
ditions along the corners of two adjacent plate elements positioned in the right angle,
considered for the NLFEM analysis, are as follows:

• Case 1: The unloaded plate edges are left free.

• Case 2: The unloaded plate edges are kept straight in the y (horizontal) direction, while
they are left free in the z (vertical) direction, although they can move in plane of the
corresponding plate elements in the y direction.

• Case 3: The unloaded plate edges are kept straight in the y and z directions, although
they can move in plane of the corresponding plate elements in the y or z direction.

(a)

b

a

41

32
t∼

(b)

b
2

b
2

a
2

a
2

Figure 13.4 Structural models for a simply supported rectangular plate by (a) ISFEM with one
rectangular plate element; (b) NLFEM with 400 four-noded plate-shell elements.
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Figure 13.5 The ultimate strength behavior of a simply supported plate under (a) longitudinal
compression and (b) transverse compression (σxav and σyav = average axial compressive stresses in the x
or y direction, εxav and εyav = average axial compressive strain in the x or y direction, εY = yield strain).
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It is noted that axial displacements (i.e., by displacement control) are applied uniformly
over the cross section of the box columns. Also, the global deflection of the box column
will occur in the z direction, and the edge condition of Case 3 should not be applied when
global buckling (as well as local buckling) of the box column is aimed at.

13.10.2.1 A Short Box Column with L = 500mm
The progressive collapse behavior of a short box column with L = 500mm is analyzed.
This structure corresponds to one bay box column that is composed of four rectangular
plate elements. Figure 13.7 shows the structural models used for the NLFEM and ISFEM
analyses. A quarter of the structure is taken as the extent of the NLFEM analysis con-
sidering the symmetric condition in terms of geometry and resulting behavior, while
the entire structure is taken as the extent of the ISFEM analysis. Although a number
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b = 500 mm

C
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(a) (b)

Figure 13.7 Structural models in one bay (short) box column used for (a) the NLFEM analysis and (b) the
ISFEM analysis.
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a

Figure 13.6 A box column simply supported with both joint translation and moment restraint at
both ends.
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of four-noded plate-shell elements with fine mesh need to be used for the NLFEM anal-
ysis, each plate element of the structure is modeled as one ISFEM plate element for the
ISFEM analysis, resulting in a total of four ISFEM rectangular plate elements only. It is
obvious that the computational efforts of the ISFEM analysis are very small compared
with those of the NLFEM analysis.
Figure 13.8 shows the deformed shape of the short box column at ultimate limit state.

In this case, only local failure of individual plate elements of course takes place.
Figure 13.9 shows the progressive collapse behavior of the short box column obtained
by the NLFEM and ISFEM analyses. It is apparent from Figure 13.9 that the progressive
collapse behavior depends on the unloaded plate edge conditions, among others, but the
ISFEM solutions are in between Cases 2 and 3 of the NLFEM results in terms of ultimate
strength predictions.

13.10.2.2 A Medium Box Column with L = 8000mm
The progressive collapse behavior is now computed by NLFEM and ISFEM for a medium
box columnwithL = 8000mmor λ = column slenderness ratio = L πr × σY E = 0.504
where r = I A is the radius of gyration, A is the cross-sectional area, and I is the
moment of inertia of the box column. Figure 13.10 shows the structure models used
for the NLFEM and ISFEM analyses. Again, a quarter of the structure is taken as the
extent of the NLFEM analysis considering the symmetric condition, but the entire struc-
ture is included in the ISFEM structural modeling.
Figure 13.11 shows the deformed shape of the structure at ultimate limit state, as

obtained by the NLFEM analysis. Figure 13.12 shows the ultimate strength behavior

MX

MNMN

Figure 13.8 Deformed shape of a short box column with
L = 500 mm at ultimate limit state (shown for a quarter of
the structure), as obtained by the NLFEM analysis.
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of local plate elements on compressed flanges of the medium box column at the center or
at the end. Figure 13.13 shows the progressive collapse behavior of the medium box col-
umn until and after the ultimate strength is reached. The behavior of the structure in the
post-ultimate strength regime obtained by the NLFEM analysis is very unstable for Case
1 where the unloaded plate edges are left entirely free in terms of the finite element mod-
eling. The ISFEM solutions of ultimate strength are in between Cases 2 and 3 of the
NLFEM results. Again, the unloaded plate edge conditions affect the progressive collapse
behavior of the structure. It is apparent from Figures 13.11 and 13.12 that the progressive
collapse behavior of the box column is still governed primarily by local failure of indi-
vidual plate elements, but the interacting effects between local and global failure modes
of the structure seem to be small.

13.10.2.3 A Long Box Column with L = 21 000mm
The progressive collapse behavior is now computed byNLFEM and ISFEM for a long box
column with L = 21 000mm or λ = column slenderness ratio = L πr × σY E = 1.323
where r = I A is the radius of gyration, A is the cross-sectional area, and I is the
moment of inertia of the box column.
Figure 13.14 shows the analysis models used for NLFEA and ISFEM. Again, a quarter

of the structure is taken as the extent of the NLFEM analysis considering the symmetric
condition, but the entire structure is included in the ISFEM structural modeling.

: ISFEM
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Figure 13.9 The progressive collapse behavior of a short box column with L = 500mm (εxav, average
axial compressive strain in the x direction; εY, yield strain; σxav, average axial compressive stresses in
the x direction).
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Figure 13.15 shows the deformed shape of the structure at ultimate limit state, obtained
by the NLFEM analysis. Figure 13.16 shows the progressive collapse behavior of the long
box column until and after the ultimate strength is reached. It is apparent from the figures
that the progressive collapse behavior of the long box column is significantly affected by
local failure of plate elements, global system failure, and their interacting effects. In this
case, the unloaded edge condition of Case 3 is not applied for the NLFEM analysis, while
the inception of global buckling is allowed in the z (vertical) direction. The unloaded
plate edge conditions again affect the progressive collapse behavior of the structure.

b
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a = b = 500 mm
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L/2

Figure 13.10 Structural models of a medium box column with L = 8000mm used for (a) the NLFEM
analysis and (b) the ISFEM analysis.
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The behavior of the structure in the post-ultimate strength regime obtained by NLFEM is
very unstable and shows “snap-through” behavior for both Cases 1 and 2. The ISFEM solu-
tions of ultimate strength are in good agreement with more refined NLFEM analysis.

13.10.2.4 Global Buckling of a Box Column
The Euler (elastic) global buckling stress of a box column clamped at both ends can be
predicted from Section 7.4 or Section 2.9.3, as follows:

σEG =
4π2EI
AL2

13 17

where σEG is the elastic global buckling stress, I is the moment of inertia, A is the cross-
sectional area, and L is the length of the box column. The critical buckling stress account-
ing for the effect of plasticity can be calculated by the plasticity correction of the elastic
buckling stress defined in Equation (13.17) using the Johnson–Ostenfeld formulation
method described in Section 2.9.5.1.
NLFEM can also be used to predict the global buckling strength. In this section, two

cases are considered, one case for only global buckling mode and the other case for both

Figure 13.11 Deformed shape of a medium box column with L = 8000mm at ultimate limit state
(shown for a quarter of the structure), obtained by the NLFEM analysis.
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Figure 13.12 Average stress versus average strain relations of plate elements under axial compression
in a medium box column with L = 8000mm on (a) compressed upper-flange at center and
(b) compressed lower-flange at end (εxav = average axial compressive strain in the x direction; εY,
yield strain; σxav, average axial compressive stresses in the x direction).



local and global buckling modes, although the effect of plasticity is taken into account in
the two cases. For the purpose of only global buckling analysis, relatively coarse mesh size
of finite elements is adopted so that local buckling of plate elements is not allowed. It is
found from Figure 13.16 that the load-carrying capacity (stress) without local failure of
plate elements is 0.858σY that is much larger than the actual ultimate strength consid-
ering local buckling, global buckling, and their interacting effects. The critical buckling
stress σcrG of the long box column with L = 21 000 mm is obtained as σcrG = 0.882σY,
which is very close to 0.858σY, obtained by NLFEM with 2.8% error.
On the other hand, the actual value of ultimate strength for the box column is smaller

than the load-carrying capacity (0.858σY) obtained by neglecting the effect of local buck-
ling with the error of 31%. This implies that the effects of local failure, global failure, and
their interaction must be taken into account upon calculating the ultimate strength of
box columns.

13.10.3 A Ship’s Hull Girder: The Dow Test Model

The extent of the analysis of the ship hull structures between two transverse frames is
taken as shown in Figure 12.3f in association with one-bay sliced hull cross-section model.
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Figure 13.13 The progressive collapse behavior of a medium box column with L = 8000mm (εxav,
average axial compressive strain in the x direction; εY, yield strain; σxav, average axial compressive
stresses in the x direction).
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This method is applied to the one-third-scale Frigate hull model tested at the sagging
bending moment (Dow 1991). Figure 13.17 shows the cross-sectional profiles of the test
hull. Table 13.1 lists the details of the structure, including its dimensions and coordinates.
The structure certainly has initial imperfections, andmeasurements of the initial deflection
and residual stresses due to fabrication were reported by Dow (1991). However, for the
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Figure 13.14 Structural models of a long box column with L = 21 000mm used for (a) the NLFEM
analysis and (b) the ISFEM analysis.
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Figure 13.15 Deformed shape of a long box column with L = 21 000mm at ultimate limit state (shown
for a quarter of the structure), as obtained by NLFEM analysis.
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Figure 13.16 The progressive collapse behavior of a long box column with L = 21 000mm.



sake of simplicity, an average level of initial imperfections of the plating and the stiffeners in
the test model is assumed in the present computations as follows:

w0pl = 0 1t, σrcx = −0 1σY, w0c =w0s = 0 0015a

where w0pl is the maximum initial deflection of the plating, σrcx is the compressive resid-
ual stress of the plating in the longitudinal (x) direction, w0c is the column-type initial
distortion of the stiffeners, w0s is the sideways initial distortion of the stiffeners, a is
the length of the stiffener between the transverse frames, and b is the breadth of the plat-
ing between the stiffeners.
Figure 13.18 shows the NLFEMmodel that uses four-noded plate-shell elements with a

total of 36 432 elements, where 10 elements in the plate width direction, four elements in
the stiffener web height direction, and two elements in the stiffener flange side are
applied. Figure 13.19 shows the model of ISFEM ALPS/HULL (2017) in which the
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Figure 13.17 The one-third-scale Frigate hull model tested in the sagging condition (Dow 1991).
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Table 13.1 Coordinates of the plate-stiffener intersections together with the structural dimensions of
the plating and stiffeners in the one-third-scale Frigate test hull model (Dow 1991).

No. x y (mm) z (mm) Portion Plate (mm) No. Web (mm) Flange (mm)

1 0.0 0.0 0.0 1–2 99.2 × 3 1 228.6 × 3 152.4 × 5

2 0.0 −98.4 13.9 2–3 153.7 × 3 2 38.1 × 1.78 14 × 3.3

3 0.0 −249.3 41.9 3–4 127.2 × 3 3 38.1 × 1.78 14 × 3.3

4 0.0 −373.9 67.7 4–5 100.3 × 3 4 162 × 2 51 × 2

5 0.0 −472.3 87.1 5–6 103.5 × 3 5 38.1 × 1.78 14 × 3.3

6 0.0 −574.0 106.5 6–7 103.5 × 3 6 38.1 × 1.78 14 × 3.3

7 0.0 −675.7 125.8 7–8 100.3 × 3 7 38.1 × 1.78 14 × 3.3

8 0.0 −774.1 145.2 8–9 110.5 × 3 8 117.5 × 2 51 × 2

9 0.0 −882.3 167.7 9–10 104.2 × 3 9 38.1 × 1.78 14 × 3.3

10 0.0 −984.0 190.3 10–11 108.1 × 3 10 38.1 × 1.78 14 × 3.3

11 0.0 −1089.0 216.1 11–12 111.2 × 3 11 38.1 × 1.78 14 × 3.3

12 0.0 −1,197.0 241.9 12–13 101.5 × 3 12 111 × 2 51 × 2

13 0.0 −1292.0 277.4 13–14 108.8 × 3 13 38.1 × 1.78 14 × 3.3

14 0.0 −1394.0 316.1 14–15 109.6 × 3 14 38.1 × 1.78 14 × 3.3

15 0.0 −1492.0 364.5 15–16 109.8 × 3 15 38.1 × 1.78 14 × 3.3

16 0.0 −1588.0 419.4 16–17 123.2 × 3 16 38.1 × 1.78 14 × 3.3

17 0.0 −1686.0 493.5 17–18 78.3 × 3 17 114 × 5 44.5 × 9.5

18 0.0 −1742.0 548.4 18–19 99.0 × 3 18 38.1 × 1.78 14 × 3.3

19 0.0 −1807.0 622.6 19–20 103.4 × 3 19 38.1 × 1.78 14 × 3.3

20 0.0 −1863.0 709.7 20–21 95.6 × 3 20 38.1 × 1.78 14 × 3.3

21 0.0 −1909.0 793.5 21–22 97.3 × 3 21 38.1 × 1.78 14 × 3.3

22 0.0 −1945.0 883.9 22–23 98.1 × 3 22 38.1 × 1.78 14 × 3.3

23 0.0 −1975.0 977.4 23–24 101.9 × 3 23 38.1 × 1.78 14 × 3.3

24 0.0 −1994.0 1077.4 24–25 98.2 × 3 24 38.1 × 1.78 14 × 3.3

25 0.0 −2011.0 1174.2 25–26 100.9 × 3 25 38.1 × 1.78 14 × 3.3

26 0.0 −2024.0 1274.2 26–27 94.0 × 3 26 38.1 × 1.78 14 × 3.3

27 0.0 −2034.0 1367.7 27–28 103.5 × 3 27 114 × 5 44.5 × 9.5

28 0.0 −2040.0 1471.0 28–29 200.2 × 3 28 38.1 × 1.78 14 × 3.3

29 0.0 −2050.0 1671.0 29–30 196.7 × 3 29 38.1 × 1.78 14 × 3.3

30 0.0 −2050.0 1867.7 30–31 196.8 × 3 30 38.1 × 1.78 14 × 3.3

31 0.0 −2050.0 2064.5 31–32 146 × 6 31 – –

32 0.0 −1904.0 2064.5 32–33 146 × 6 32 60 × 6 –

33 0.0 −1758.0 2004.5 33–34 60 × 10 33 – –

34 0.0 −1758.0 2064.5 34–35 60 × 10 34 – –

35 0.0 −1758.0 2124.4 31–36 200 × 3 35 – –

36 0.0 −2050.0 2264.5 36–37 200 × 3 36 38.1 × 1.78 14 × 3.3
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Table 13.1 (Continued)

No. x y (mm) z (mm) Portion Plate (mm) No. Web (mm) Flange (mm)

37 0.0 −2050.0 2464.5 37–38 193.6 × 3 37 38.1 × 1.78 14 × 3.3

38 0.0 −2050.0 2658.1 38–39 141.9 × 3 38 38.1 × 1.78 14 × 3.3

39 0.0 −2050.0 2800.0 39–40 101.7 × 3 39 – –

40 0.0 −1948.3 2800.0 40–41 124 × 3 40 38.1 × 1.78 14 × 3.3

41 0.0 −1824.3 2800.0 41–42 202.7 × 3 41 38.1 × 1.78 14 × 3.3

42 0.0 −1621.6 2800.0 42–43 202.7 × 2 42 38.1 × 1.78 14 × 3.3

43 0.0 −1418.9 2800.0 43–44 202.7 × 2 43 38.1 × 1.78 14 × 3.3

44 0.0 −1216.2 2800.0 44–45 202.7 × 2 44 38.1 × 1.78 14 × 3.3

45 0.0 −1013.5 2800.0 45–46 202.7 × 2 45 38.1 × 1.78 14 × 3.3

46 0.0 −810.8 2800.0 46–47 202.7 × 2 46 38.1 × 1.78 14 × 3.3

47 0.0 −608.1 2800.0 47–48 202.7 × 2 47 38.1 × 1.78 14 × 3.3

48 0.0 −405.4 2800.0 48–49 202.7 × 2 48 38.1 × 1.78 14 × 3.3

49 0.0 −202.7 2800.0 49–50 202.7 × 2 49 38.1 × 1.78 14 × 3.3

50 0.0 0.0 2800.0 – – 50 38.1 × 1.78 14 × 3.3

Figure 13.18 The NLFEM one-bay sliced hull cross-section model with a total of 36 432 four-noded
plate-shell elements (assigned with 10 elements in the plate width direction, four elements in the
web height direction, and twoelements in the flangewithoneelement for each side of Tee stiffener flange).
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plating, webs, and flanges are all modeled using the ISFEM rectangular plate elements
with a total of 345 elements. Figure 13.20 shows the vertical sagging bending moment
versus the curvature curve by comparing the test results of NLFEM and ISFEM.
Table 13.2 summarizes the ultimate sagging moments obtained by the test of NLFEM
and ISFEM. The ISFEM ALPS/HULL method computations agree well with the test
results. Figure 13.21 shows the changes in the neutral axis position of the hull cross sec-
tion. It is apparent from Figure 13.21 that the neutral axis moves down as the sagging
bending moment increases, resulting from the loss of effectiveness at the deck plate
panels due to buckling collapse. The benefit of the ISFEM is obvious in terms of com-
putational cost compared with that of the NLFEM. Another benefit of the ISFEM is that
the progressive failure status and collapse modes of the individual plate elements can be
explicitly captured as the external forces increase. On the other hand, the one (cargo)

Figure 13.19 The ISFEM ALPS/HULL one-bay sliced hull cross-section model for the Dow test hull
with a total of 345 intelligent supersize rectangular plate elements: (a) plan view; (b) three-
dimensional view.
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hold model between two transverse bulkheads as described in Figure 12.3d can be used if
there are possibilities of failures or even deformations at transverse frames before the
entire structure reaches the ultimate strength. Figure 13.22 shows the one hold model
of ISFEM ALPS/HULL for the Dow test hull with a total of 4990 intelligent supersize
plate elements.

13.10.4 A Corroded Steel-Bridge Structure

The ultimate bending capacity of a steel bridge supported by pillars as shown in Figure
13.23 is now analyzed. Figure 13.24 shows the ISFEM model using ALPS/GENERAL for
a hypothetical steel-bridge structure, which is composed of 1845 plate elements, where
L= 30a = 75m (span of the bridge), B= 15b = 15m (breadth), H = 1.5 m (height), a is
the spacing of transverse frames, b is the spacing of longitudinal girders, td = 15 mm
(thicknessofdeckplate), tb = 10mm(thicknessofbottomplate), tw = 15mm(web thickness

12
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Figure 13.20 The progressive collapse behavior of the Dow’s one-third-scale Frigate test hull under
vertical sagging bending moment.

Table 13.2 Ultimate sagging bending moments obtained by the test of NLFEM and ISFEM.

Test NLFEM NLFEM/test ISFEM ISFEM/test

9.940MNm 10.618MNm 1.068 10.144MNm 1.020
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Figure 13.21 The change in the neutral axis position of the hull cross section with an increase in the
vertical sagging bending moment.

Figure 13.22 The ISFEM ALPS/HULL one hold model including transverse frames for the Dow test hull
with a total of 4990 intelligent supersize rectangular plate elements.
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of longitudinal girderor transverse frame),σY = 320MPa (yieldstressofmaterial),E = 205.8
GPa (elastic modulus), and ν = 0.3 (Poisson’s ratio).
For a deck plate simply supported by longitudinal girders and transverse frames with

b = 1000 mm and td = 15 mm, the elastic compressive buckling strength σxE and the crit-
ical compressive buckling strength σxcr are calculated from Equations (3.2) and (3.33),
respectively, as follows:

σxE =
a

mob
+
mob
a

2 π2E
12 1−v2

td
b

2

= 172 8MPa

σxcr = σY 1−
σY
4σxE

= 171 9MPa

wheremo is the buckling half-wave number, which is determined from Equation (3.6b) to
be 3 for the deck plate with a = 2500mm and b = 1000mm.
It is considered that the structure has suffered uniform corrosion wastage in the region

indicated in Figure 13.25 where the diminution in plate thickness is 1 mm. It is assumed

td = Deck plate thickness

H

xy
z

tb = Bottom plate thickness
tw = Web thickness

B
 = 15b = 15 m

L  =
 30a = 75 m

Figure 13.24 The ISFEM ALPS/GENERAL model of a hypothetical steel-bridge structure.

L

Figure 13.23 A steel bridge simply supported by pillars.

Corroded region

Figure 13.25 Corroded region and loading and boundary conditions applied for the progressive
collapse analysis.
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that the plate elements have an average level of initial imperfections as those considered
in Section 13.10.3. Figure 13.26 shows the progressive collapse behavior of the bridge
structure clamped at both ends and under lateral loads at the mid-span (see
Figure 13.25), obtained by ISFEM ALPS/GENERAL computer program, which is repre-
sented by the relationship between the applied line load versus the deflection at mid-
span. It is confirmed that the corrosion wastage can significantly reduce the ultimate
bending strength of the bridge structure. Also, the ISFEM is useful to compute the pro-
gressive collapse behavior of large-sized plated structures.
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Appendices

A.1 Source Listing of the FORTRAN Computer Program CARDANO

Consider a third-order equation with regard to an unknown variable, W, given by

C1W
3 +C2W

2 +C3W +C4 = 0

This equation can be solved by the so-called Cardano method. The following is the
source listing of FORTRAN subroutine CARDANO to solve the above equation:

SUBROUTINE CARDANO(Cl,C2,C3,C4,W)
IMPLICIT REAL*8(A-H,O-Z)

C
C*** C1*W**3+C2*W**2+C3*W+C4=0
C*** INPUT: C1,C2,C3,C4
C*** OUTPUT: W
C PROGRAMMED BY PROF. J.K. PAIK
C (C) J.K. PAIK. ALL RIGHTS RESERVED.
C

S1=C2/C1
S2=C3/C1
S3=C4/C1
P=S2/3.0-S1**2/9.0
Q=S3-S1*S2/3.0+2.0*S1**3/27.0
Z=Q**2+4.0*P**3
IF(Z.GE.0.0) THEN
AZ=(-Q+SQRT(Z))*0.5
BZ=(-Q-SQRT(Z))*0.5
AM=ABS(AZ)
BM=ABS(BZ)
IF(AM.LT.1.0E-10) THEN
CA=0.0
ELSE
CA=AZ/AM
END IF
IF(BM.LT.1.0E-10) THEN
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CB=0.0
ELSE
CB=BZ/BM
END IF
W=CA*AM**(1.0/3.0)+CB*BM**(1.0/3.0)-S1/3.0
ELSE
TH=ATAN(SQRT(-Z)/(-Q))
W=2.0*(-P)**0.5*COS(TH/3.0)-S1/3.0
END IF
RETURN
END

A.2 SI Units

A.2.1 Conversion Factors

Quantity SI unit Other unit Inverse factor

Length 1 m = 1000mm 3.28084 feet (ft) 1 ft = 0.3048 m

1 cm = 10mm 0.393701 inch (in) 1 in = 2.54 cm

1 km = 1000m 0.539957 nautical mile
(nm)

1 nm = 1.852 km

0.621371mile 1 mile = 1.609344 km

Area 1 m2 10.7639 ft2 1 ft2 = 0.09290304m2

1mm2 0.00155 in2 1 in2 = 645.16 mm2

Volume 1m3 35.3147 ft3 1 ft3 = 0.0283168 m3

1000 cm3 = 1 L 0.219969 gal (UK) 1 gal (UK) = 4.54609 L

0.264172 gal (US) 1 gal (US) = 3.78541 L

1 bushel (UK) = 8 gal
(UK)

1 gal (UK) = 0.125 bushel
(UK)

1 barrel (US) = 42 gal
(US)

1 gal (US) = 0.02381 barrel
(US)

Mass 1 kg 2.20462 pound (lb) 1 lb = 0.45359237 kg

1 mg 0.0154323 grain (gr) 1 gr = 64.79891mg

1 g 0.035274 ounce (oz) 1 oz = 28.3495 g

1 tonne 0.984204 long tonne (LT)
(UK)

1 LT = 1.01605 tonne

1.10231 short tonne (ST)
(US)

1 ST = 0.907185 tonne

Velocity,
speed

1 m/s = 3.6 km/h 3.28084 ft/s 1 ft/s = 0.3048m/s

2.23694mile/h 1 mile/h = 0.44704m/s

1.94384 knot (kt)
(meter system)

1 kt (meter system) =
0.514444m/s
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(Continued)

Quantity SI unit Other unit Inverse factor

1.94260 knot (kt)
(yard–pound system)

1 kt (Yard–Pound system) =
0.514773m/s

Speed–
length ratio 1

m s
m

0.31933 Froude no.
(V/√Lg) 1 Froude no. = 3.13156

m s
m

1.94384
kt
m

1
kt
m

=0 51444
m s
m

1 07249
kt

ft
1
kt

ft
= 0 93241

m s
m

Acceleration 1 m/s2 100 cm/s2 (Gal) 1 Gal = 0.01 m/s2

0.101972 G 1G = 9.80665m/s2

Density 1 kg/m3 3.61273 × 10–5 lb/in3 1 lb/in3 = 2.76799 × 104 kg/m3

1.00224 × 10–2 lb/gal
(UK)

1 lb/gal (UK) = 99.7764 kg/m3

8.3454 × 10–3 lb/gal (US) 1 lb/gal (US) = 119.826 kg/m3

Kinematic
viscosity

1 m2/s 10.7639 ft2/s 1 ft2/s = 9.2903 × 10–2 m2/s

Force 1 N 0.101972 kgf 1 kgf = 9.80665 N

0.1Mdyn lMdyn = 10 N

0.224809 lbf 1 lbf = 4.44822 N

Pressure 1 Pa = 1 N/m2 =
1.01972 × 10–5 kgf/cm2

1.45038 × 10–4 lbf/in2

(psi)
1 psi = 6894.76 Pa

1.0 × 10−5 bar 1 bar = 1.0 × 105 Pa

9.86923 × 10−6 atm 1 atm = 1.01325 × 105 Pa

Stress 1 N/mm2 = 1MPa = 0.101972 kgf/mm2, 1 kgf/mm2 = 9.80665MPa

1 N/mm2 145.038 lbf/in2 1 lbf/in2 = 6.89476 × 10−3

MPa

Impact value 1 J/cm2 = 0.101972
kgf m/cm2

4.75845 lbf ft/in2 1 lbf ft/in2 = 0.210152 J/cm2

Energy 1 J = 1 N m, 1 kJ = 101.972 kgf m, 1 kgf m = 9.80665 J

1 kJ 737.563 lbf ft 1 lbf ft = 1.35582 × 10−3 kJ

0.238889 kcal 1 kcal = 4.18605 kJ

Power 1 kW= 101.972 kgf m/s, 1 kgf m/s = 9.80665 × 10−3 kW

1 kW 1.35962 PS (meter
system)

1 PS (meter system) = 0.7355
kW

1.34102 HP (yard–pound
system)

1 HP (yard–pound system) =
7.457 × 10−3 kW

737.562 lbf ft/s 1 lbf ft/s = 1.35582 × 10−3 kW

0.238889 kcal/s 1 kcal/s = 4.18605 kW

Temperature C = ( F − 32) × 5
9
, F = C × 9

5
+ 32, K = C + 273.15
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A.2.2 SI Unit Prefixes

Exa (E) = 1018 Deci (d) = 10−1

Peta (P) = 1015 Centi (c) = 10−2

Tera (T) = 1012 Milli (m) = 10−3

Giga (G) = 109 Micro (μ) = 10−6

Mega (M) = 106 Nano (n) = 10−9

Kilo (k) = 103 Pico (p) = 10−12

Hecto (h) = 102 Femto (f ) = 10−15

Deca (da) = 10 Atto (a) = 10−18

A.3 Density and Viscosity of Water and Air

Temperature ( C)

Density (kg/m3) Kinematic viscosity (m2/s)

Fresh water Salt water Dry air Fresh water Salt water Dry air

0 999.8 1028.0 1.293 1.79 × 10−6 1.83 × 10−6 1.32 × 10−5

10 999.7 1026.9 1.247 1.31 × 10−6 1.35 × 10−6 1.41 × 10−5

20 998.2 1024.7 1.205 1.00 × 10−6 1.05 × 10−6 1.50 × 10−5

30 995.6 1021.7 1.165 0.80 × 10−6 0.85 × 10−6 1.60 × 10−5

A.4 Scaling Laws for Physical Model Testing

Physical model testing is usually required for the limit state analysis and design of struc-
tures although theoretical and numerical simulations are today becoming increasingly
adopted with reasonable confidence. It is highly desirable to perform the physical model
tests using a full scale prototype or at least large-scale models. It is of course essential to
consider and keep the correct scaling laws for both structural mechanics and hydrody-
namics model tests when small-scale models are used.

A.4.1 Structural Mechanics Model Tests

In physical model testing for the purpose of structural mechanics, a small-scale test
model and a full scale prototype must have certain similarities including the geometric
similarity and the values of Young’s modulus (modulus of elasticity) (E), mass density (ρ),
and Poisson’s ratio (ν). The relationship between the characteristics of a small-scale
model and a full scale prototype is given by the geometric scale factor that is defined
as follows:

ℓ

L
= α A 4 1
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where α is the geometric scaling factor, ℓ is the length dimension for the small-scale
model, L is the length dimension for the full scale prototype. Typically, α ≤ 1 will be con-
sidered although the test model can of course be larger in size than the full scale proto-
type. Table A.4.1 indicates the relationships of various quantities for a small-scale model
and a full scale prototype.

A.4.2 Hydrodynamics Model Tests

A.4.2.1 Froude’s Scaling Law
The Froude scaling law is to ensure the correct relationship between inertial and grav-
itational forces (except for viscous roll damping forces) when the full scale vessel is scaled
down to model dimensions. It is recognized that the Froude law is ensured if the follow-
ing Froude number Fn is the same at both a small-scale model and a full-scale prototype,
namely,

Fn =
V
gL

A 4 2

where Fn is the Froude number, V is the velocity, L is the length, and g is the acceleration
of gravity.
To get the correct Froude number scaling, all lengths in a particular model test must be

scaled by the same factor, as indicated in Table A.4.2. For example, if the water depth is
considered at a scale of 1 : κ, then the same scale should be considered for the vessel’s
length, breadth, draught, wave height, and wave length. The model test is usually under-
taken in fresh water, while the full scale unit will be used in salt water. The density ratio of
salt water to fresh water is considered to be r = 1 025.

Table A.4.1 Similarity considerations for a small-scale model and a full scale prototype.

Quantity Full scale prototype Small-scale model Relationship

Length L ℓ ℓ = αL

Displacement Δ δ –

Strain E =Δ L ε ε= E

Stress Σ= EE σ =Eε σ =Σ

Pressurea P p p=P

Dynamic force F =MΔ T 2 f =mδ t2 f = α2F

Mass M m m= α3M

Time T t t = αT

Velocity V =Δ T v v=V

Acceleration A=Δ T 2 a= δ t2 a=A α

Stress wave speed C c c=C

Note:
a) Force on the boundary of the body under hydrostatic pressure is related to PL2 in the full scale prototype,

while it is related to pℓ2 = pα2L2.
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A.4.2.2 Reynolds Scaling Law
The scaling effect associated with viscous forces, for example, viscous roll damping
moments on a vessel, risers, and mooring lines, is not consistent with the Froude scaling
law, but follows the Reynolds scaling law, which must be the same at both model and full
scales, namely,

Re =
VL
μ

A 4 3

where Re is the Reynolds number, μ is the kinematic viscosity, and L and V are defined in
Equation (A.4.2).
In reality, it is not straightforward to achieve both the Froude and Reynolds scaling

laws simultaneously in a particular model test. This is because the Froude scaling
requires the model velocity to vary with the square root of length, while the Reynolds
law requires an inverse relationship. In practice, the model testing may need to be per-
formed with a high Reynolds number so that a larger model with a faster flow speedmust
be applied specifically when the free surface condition is not relevant due to currents and
wind. However, this is again not easy to achieve because of physical limitations on the
model flow speed and also the model Reynolds number. It is noted that the differences
between model- and full-scale Reynolds numbers may not be significant if the Reynolds
numbers at model and full scales are both high enough.

A.4.2.3 Vortex-Shedding Effects
Vortex-shedding effects are important in flow around bluff bodies where instabilities
in the wake flow result in the periodic creation and shedding of eddies and vortices.
Due to vortex shedding, the body can be subjected to the forces that have the largest

Table A.4.2 The Froude scaling laws for various physical quantities.

Quantity Typical units Scaling parameter

Length m κ

Time s κ0.5

Frequency 1/s α−0 5

Velocity m/s κ0.5

Acceleration m/s2 1

Volume m3 κ3

Water density ton/m3 r

Mass ton r × κ3

Force kN r × κ3

Moment kNm r × κ4

Extension stiffness kN/m r × κ2

Note: κ is the scale factor, r is the density ratio of fresh water to sea water that may
usually be taken as r = 1 025 when the model testing is performed in the freshwater,
while the full scale unit will be used in the salt water.
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components in the direction transverse to the flow and the smallest components in the
line of the flow. Flexible structures with low damping such as risers and mooring lines in
offshore installations can be subject to the phenomenon of vortex-induced vibration
when the excitation frequency corresponds to one of the natural modes of the flexible
structure. Vortex-shedding effects may be considered in model testing by keeping the
following quantity the same at both model and full scales, namely,

S =
λD
V

or Vr =
1
S

A 4 4

where S is the so-called Strouhal number, V is the flow speed, D is the diameter of the
body, λ is the frequency of the eddy shedding, and Vr is the reduced flow speed.

A.4.2.4 Surface-Tension Effects
The effects of surface tension can be important in model testing with a very small scale
compared to the full scale prototype. The primary source of the surface-tension effects
arises from the properties of small waves. This is because a significant straightening effect
on the surface of the water can be caused when the waves become small enough. This can
change the relationship between wave length and phase velocity so that the surface ten-
sion behaves as if an additional effect of gravity. The surface-tension effects are consid-
ered to be important when the wave length of the model is less than 0.1 m, and the waves
are referred to as ripples. In offshore engineering, the waves with a period shorter than 4 s
equivalent to a wave length less than 25 mmay generally not be of interest. Therefore, the
surface tension effects may not be important as long as the model scale is larger than
1 : 250.

A.4.2.5 Compressibility Effects
The effects of water and air compressibility are usually not considered for design of
offshore structures, although they may be important for propellers of trading ships
and thrusters of dynamic positioning systems.
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structural failure 42
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