Ol 908 wiigo O3> g LS (lio 9 53954 41 4

Oy WolS' & 59041 w06 1

www.TheSetosa.com



https://www.thesetosa.com/

ASM Handbook®

Volume 4A

Steel Heat Treating
Fundamentals and Processes

Prepared under the direction of the
ASM International Handbook Committee

Volume Editors
Jon. L Dossett, FASM, Consultant
George E. Totten, FASM, Portland State University

Editorial Committee and Advisors
Madhu Chatterjee, Bodycote
Rafael Colas, Universidad Auténoma De Nuevo Ledn
Edward (Derry) Doyle, RMIT University
Kiyoshi Funatani, IMST Institute (Consultant)
Robert J. Gaster, Deere & Company
Peter Hodgson, Institute for Frontier Materials, Deakin University
Franz Hoffmann, IWT Bremen
D. Scott MacKenzie, Houghton International
Michael ). Schneider, The Timken Company

ASM International Staff
Steve Lampman, Content Developer
Vicki Burt, Content Developer
Amy Nolan, Content Developer
Susan Sellers, Editorial Assistant
Madrid Tramble, Manager of Production
Kate Fornadel, Senior Production Coordinator
Patty Conti, Production Coordinator
Diane Whitelaw, Production Coordinator
Karen Marken, Senior Managing Editor
Scott D. Henry, Senior Manager, Content Development

Editorial Assistance
Elizabeth Marquard
Jo Hannah Leyda
Buz Riley



Copyright © 2013
b

y
ASM International®
All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, November 2013

This Volume is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide
sources to help scientists, engineers, and technicians solve current and long-range problems.

Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM can-
not guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having
technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no
liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publi-
cation, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of
which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER,
AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER
OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material
under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this Volume shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any
method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing
contained in this Volume shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a
defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.
Library of Congress Cataloging-in-Publication Data
ASM International

ASM Handbook
Includes bibliographical references and indexes
Contents: v.1. Properties and selection—irons, steels, and high-performance alloys—v.2. Properties and selection—nonferrous alloys and
special-purpose materials—[etc.]—v.23. Materials for Medical Devices

1. Metals—Handbooks, manuals, etc. 2. Metal-work—Handbooks, manuals, etc. I. ASM International. Handbook Committee. II.
Metals Handbook.
TA459.M43 1990 620.1°6 90-115
SAN: 204-7586

ISBN-13: 978-1-62708-011-8
ISBN-10: 1-62708-011-2

ASM International ®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America



Foreword

In this 100th anniversary year of ASM International, it is especially fitting to release ASM Handbook,
Volume 4A, Steel Heat Treating Fundamentals and Processes. Since its 1913 origin as the Steel Treaters
Club, formed by Detroit blacksmith William Park Woodside, ASM International has grown in scope; yet
steel heat treating remains a core subject of the Society. Woodside’s vision and recognition of the need to
exchange information on steel heat treating are further recognized by many successful publications
including the renowned Metals Handbook.

The ASM Handbook (formerly Metals Handbook) series is being expanded into several volumes on
heat treatment. This reflects the roots of ASM International, as well as the Heat Treating Society (An
Affiliate Society of ASM International) with its ongoing member contributions in the field of heat treat-
ing. ASM International and the Heat Treating Society extend a very special thanks to George E. Totten
and Jon Dossett as Volume Editors. Their initiatives and contributions were instrumental in the develop-
ment of this Volume. We are indebted to them and to the subject editors, authors, and reviewers for this
publication.

Thomas E. Clements
President, Heat Treating Society

Gernant E. Maurer
President, ASM International

Thomas S. Passek
Managing Director, ASM International

il



Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has
adopted the practice of publishing data in both metric and customary
U.S. units of measure. In preparing this Handbook, the editors have
attempted to present data in metric units based primarily on Systeme
International d’Unités (SI), with secondary mention of the corresponding
values in customary U.S. units. The decision to use SI as the primary sys-
tem of units was based on the aforementioned resolution of the Board of
Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables
are presented in Sl-based units with the customary U.S. equivalents in
parentheses (text) or adjoining columns (tables). For example, pressure,
stress, and strength are shown both in SI units, which are pascals (Pa)
with a suitable prefix, and in customary U.S. units, which are pounds
per square inch (psi). To save space, large values of psi have been con-
verted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric
tonne (kg x 10%) has sometimes been shown in megagrams (Mg). Some
strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on art-
work. References in the accompanying text to data in the illustrations are
presented in both SI-based and customary U.S. units. On graphs and
charts, grids corresponding to SI-based units usually appear along the left
and bottom edges. Where appropriate, corresponding customary U.S.
units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing
group may be given in only the units used in that specification or in dual
units, depending on the nature of the data. For example, the typical yield
strength of steel sheet made to a specification written in customary U.S.

v

units would be presented in dual units, but the sheet thickness specified
in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the
standard recommends a particular system of units are presented in the
units of that system. Wherever feasible, equivalent units are also pre-
sented. Some statistical data may also be presented in only the original
units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/
ASTM SI-10, with attention given to the number of significant digits in
the original data. For example, an annealing temperature of 1570 °F con-
tains three significant digits. In this case, the equivalent temperature
would be given as 855 °C; the exact conversion to 854.44 °C would
not be appropriate. For an invariant physical phenomenon that occurs at
a precise temperature (such as the melting of pure silver), it would be
appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some
instances (especially in tables and data compilations), temperature values
in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several
exceptions to strict conformance to IEEE/ASTM SI-10; in each instance,
the exception has been made in an effort to improve the clarity of the
Handbook. The most notable exception is the use of g/cm® rather than
kg/m® as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units
formed by combination of several basic units. Therefore, all of the units
preceding the virgule are in the numerator and all units following the vir-
gule are in the denominator of the expression; no parentheses are required
to prevent ambiguity.
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Preface

The ASM Handbook, Volume 4A, Steel Heat Treating Fundamentals
and Processes, represents the first of several Volumes to be published
on heat treating. As indicated in the title, Volume 4A focuses on the
fundamental aspects of steel heat treating and the many processes of
steel heat treating. The Volume 4B, planned for future publication, will
cover the heat treating and behavior of the many types of steels and cast
irons.

As with the last edition of this Volume, the Volume Editors recog-
nized that the researchers, engineers, technicians and students that will
use this Volume 4A have different needs with regard to their level of
understanding. Articles on the fundamentals provide in-depth back-
ground on the scientific principles associated with steel heat treatment,
while articles on the various heat treating processes take a more prac-
tical approach. The Volume Editors have also tried to present a com-
prehensive reference that can be of use to the diverse heat treating
community.

Vi

All sections of this Volume have been reviewed to be sure that they
reflect the current status of the technology. Many sections have been expanded,
such as the sections on fundamentals and processing methods for carburizing
and nitriding of steels. Coverage on the hardenability of steels is expanded,
and several new articles have been added on quenching fundamentals and pro-
cesses. Updates have been done as appropriate, and efforts were taken
to include charts, examples, and reference information from the substantive
archives of the Society—and its predecessors—the American Society for
Metals, and the American Society for Steel Treating. This Volume is
especially fitting in the 100th anniversary year of ASM International.

We wish to thank our many colleagues who served as editors and
authors of the individual articles. In particular, the editors also are
indebted to the Heat Treating Society (An Affiliate Society of ASM Inter-
national) and its members, which give the foundation for this publication
and other events, conferences, and educational programs. This Volume
would not have been possible without their efforts.

Jon Dossett
George Totten
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Introduction to Steel Heat Treatment*

Introduction

Heat treatment is roughly defined as controlled
heating and cooling of a solid material, so as to
change the microstructure and obtain specific
properties. Almost all metals and alloys respond
to some form of heat treatment in the broadest
sense of this definition, but individual metals and
alloys may respond differently. Almost any metal
can be softened by annealing after cold working,
while fewer alloy systems can be strengthened
or hardened by heat treatment. Steel is very nota-
ble, because it is very responsive to hardening and
strengthening by heat treatment.

The responsiveness of steel from heat treat-
ment is due to some important properties of iron
and the metallurgical effects of carbon in iron.
Fundamentally, all steels are mixtures or, more
properly, alloys of iron with a small amount of
carbon (along with varying amounts of other
alloying elements such as manganese, chromium,
nickel, and molybdenum). One important effect
is the size of carbon atoms relative to that of iron
atoms. The carbon atom is only !/3 the size of
the iron atom, and carbon atoms are sufficiently
small to fit between the interstices of the larger
iron atoms. Other atoms small enough to fit in
the interstitial regions of solid iron are hydro-
gen, nitrogen, and boron. In general, interstitial
atoms can easily diffuse—jumping from one
interstitial site to another—unlike larger atoms
(which can only jump by “substitution” into
the vacancies within a crystal lattice). This,
along with the effect of temperature on diffu-
sion, makes the mobility of carbon responsive
during solid-state heating.

Another important metallurgical phenome-
non is the allotropy of iron, which means that
the iron atoms can arrange themselves into
more than one crystalline form or phase. At
room temperature, for example, iron atoms
arrange themselves into a body-centered cubic
(bee) crystal structure—called ferrite or alpha
(o) iron. At higher temperatures, the iron atoms
form a face-centered (fcc) crystal structure—
called austenite or gamma (y) iron. The exis-
tence of these two phases, along with carbon
alloying, are fundamental in the heat treatment
of steel.

One important difference between iron ferrite
and austenite is the spacing of iron atoms. The
iron atoms in austenite are more widely spaced
than in ferrite (Fig. 1). This allows austenite to
accommodate more carbon atoms in the inter-
stitial regions of the crystal lattice. Solid solu-
bility is a measure of how much solute can be
dissolved (or incorporated) into the host lattice.
Temperature influences the extent of solubility,
because higher temperatures expand the host
lattice and thus provide a better opportunity
for the solute to fit in the lattice. However, car-
bon is almost insoluble in o iron—ranging
from only 0.008 wt% near room temperature
to a maximum solubility limit of 0.02 wt% at
727 °C (1340 °F) (Fig. 2).

When the solubility of carbon in either aus-
tenite or ferrite is exceeded, not all the carbon
atoms can be accommodated within the intersti-
tial sites between the iron atoms. In this case,
the excess carbon atoms may combine to
form graphite or, more typical for steels, an
iron-carbide compound (Fe;C) referred to as
cementite or 0-carbide. Cementite has an ortho-
rhombic crystal that can accommodate more

Austenite

Ferrite

1 Crystal structure and lattice spacing of iron
atoms with (a) body-centered cubic and
(b) face-centered cubic crystal structures. Source: Ref 1

Fig.

carbon atoms in its crystal structure. For each
atom of carbon in the compound, there are
three atoms of iron, giving an atomic compo-
sition of 25 at.% C. The corresponding
weight percent carbon in cementite turns out
to be 6.7.

The orthorhombic lattice of cementite is a bit
more complex than either the bec structure of
ferrite or the fcc structure of austenite. Cement-
ite also is not completely stable, because carbon
ultimately decomposes into graphite over time.
However, cementite is sufficiently stable to be
considered as a near-equilibrium phase that
occurs when carbon levels exceed the solubility
limit in iron. The morphology and distribution
of cementite also can be manipulated by heat
treatment. The compound cementite has higher
strength and lower ductility than either ferrite
or austenite and, depending on its morphology
and distribution, contributes in a variety of
ways to the strengthening, deformation, and
fracture of steels.

Cementite is hard, ranging in hardness from
800 to 1400 HV, depending on the substitution
of elements for iron. Heat treatment also can
alter the amount, shape, and distribution of the
hard cementite particles in the microstructure
of steel. For example, the hard cementite phase
can be dissolved into a single iron-carbon phase
when the iron phase becomes austenitic. This
process, known as austenitizing, dissolves
cementite, because carbon is much more solu-
ble in austenite, with a maximum solubility of
approximately 2 wt% at 1150 °C (2100 °F).
This is 2 orders of magnitude greater than the
maximum solubility of carbon in alpha ferrite.
Thus, austenitizing is often used as the starting
point to create a single-phase solid solution.
Then, by cooling from the austenite region, a
two-phase formation of ferrite and cementite
can be controlled for strengthening. This allows
plain carbon steel to obtain a wide range of
properties after heat treatment.

Carbon also has two other important effects
on the constitution of iron during heat treat-
ment. Carbon lowers the temperature for com-
plete austenitization (Fig. 2). This allows for
complete dissolution of cementite at lower tem-
peratures and the subsequent manipulation of
carbide formation during cooling. Moreover,

* Portions adapted from G. Krauss, Physical Metallurgy and Steel Heat Treatment, Metals Handbook Desk Edition, American Society for Metals, 1985; T. Ericsson, Principles of Heat Treating
of Steels, Heat Treating, Vol 4, ASM Handbook, ASM International, 1991; and J. Dossett and H. Boyer, Practical Heat Treating, 2nd ed., ASM International, 2006
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when austenitized steel is rapidly cooled
(quenched), a different mechanism of phase
transformation occurs. During rapid quenching
from austenite to ferrite, there is not enough
time for the excess carbon atoms to diffuse
and form cementite along with the bcc ferrite.
Therefore, some (or all) of the carbon atoms
become trapped in the ferrite lattice, causing
the composition to rise well above the 0.02%
solubility limit of carbon in ferrite. This causes
lattice distortion, so much so that the distorted
bece lattice rapidly transforms into a new meta-
stable phase called martensite. Martensite does
not appear as a phase on the iron-carbon equi-
librium phase diagram because it is a metasta-
ble (nonequilibrium) phase that occurs from
rapid cooling.

The unit cell of the martensite crystal is a
body-centered tetragonal (bct) crystal structure,
which is similar to the bee unit cell, except that
one of its edges (called the c-axis) is longer
than the other two axes (Fig. 3). The distorted
form of the bct is a supersaturated condition
that accommodates the excess carbon. The bct
structure also occupies a larger atomic volume
than ferrite and austenite, as summarized in
Table 1 for different microstructural compo-
nents as a function of carbon content. The den-
sity of martensite thus is lower than ferrite (and
also austenite, which is denser than ferrite). The
resulting expansion gives martensite its high
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hardness and is the basis for strengthening
steels by heat treatment.

Constitution of Iron

The atoms in solids typically arrange them-
selves into a unique crystal structure under
equilibrium conditions, but some elements and
compounds have polymorphic (multishaped)
crystal structures. That is, their structure trans-
forms from one crystal structure to another with
changes in temperature and pressure, where
each crystal structure is a distinctively separate
solid-state phase. Heat spurs the movement of
atoms through diffusion, and the heating can
cause atoms to rearrange themselves into differ-
ent types of crystal lattices.

The solid-state change of crystal structure is
referred to as an allotropy (existing in another
form). For example, both iron and carbon have a
number of allotropic forms. Carbon can exist as
diamond, soot, graphite, and the more recently dis-
covered form of fullerenes. However, the allot-
ropy of carbon is not a significant variable as an
alloying element in iron. In contrast, the allotropy
of iron is of fundamental importance in the heat
treating of steel. Iron is an allotropic element that
changes its structure at several temperatures
known as transformation temperatures (Fig. 4).
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Fig. 2 Portion of the Fe-Fe;C phase diagram of carbon steel. fcc, face-centered cubic

The process by which iron (or any material)
changes from one atomic arrangement to
another when heated or cooled is called a phase
transformation. Figure 4 illustrates changes in
the phases of pure iron during very slow
(near-equilibrium) heating or cooling. During
a phase transformation, the temperature stays
constant during heating (or cooling) until the
phase transformation of iron is complete. This
is the same behavior as the temperature plateau
during the phase changes of pure metal during
melting or solidification. The so-called critical
temperatures of the iron phase transformation
are assigned the letter “A,” derived from the
French word arrét, which stands for the arrest
in temperature during heating or cooling
through the transformation temperature. The
letter “A” also is followed by either the letter
“c” or “r” to indicate transformation by either
heating or cooling, respectively. The use of
the letter “c” for heating is derived from the
French word chauffant, meaning warming. If
cooling conditions apply, the critical tempera-
ture is designated as “Ar,” with the letter “r”
being derived from the French word refroidis-
sant for cooling.

Below the melting point of 1540 °C (2800 °F),
there are three temperature plateaus when solid
iron undergoes a phase change. Consider first
the process of solidification as liquid iron cools
from its melting point of 1540 °C (2800 °F). It
begins to freeze, with no further drop in temper-
ature until it transforms itself completely into a
solid form of iron referred to as delta iron or
delta ferrite. Ferrite has a bce crystal structure.
Delta ferrite is the high-temperature bcc phase
of iron. After solidification is complete, the
temperature drops at a uniform rate until the
temperature of 1394 °C (2541 °F) is reached.

Fig. 3 Structure of (a) ferrite (body-centered cubic) and
(b) martensite (body-centered tetragonal)

Table 1 Atomic volumes of selected
microstructural constituents of ferrous
alloys

Phase Apparent atomic volume, A?
Ferrite 11.789
Cementite 12.769

Ferrite + carbides 11.786 + 0.163 C(a)
Pearlite 11916
Austenite 11.401 + 0.329 C(a)
Martensite 11.789 + 0.370 C(a)

(a) C = % carbon. Source: Ref 2




This temperature marks the beginning of a
transformation of the bcc delta iron into an
fcc crystal phase, called austenite or gamma
(y) iron. The temperature stays constant until
the transformation is complete, that is, until
all of the iron has an austenitic (fcc) phase
structure.

Further cooling of the gamma (fcc) iron con-
tinues at a uniform rate until the temperature
reaches 912 °C (1674 °F). This is the transfor-
mation temperature when gamma iron begins
the transformation into a nonmagnetic form of
iron with a bec crystal lattice. The temperature
holds steady during cooling until all the iron
atoms are completely transformed into a bcc
crystal lattice. This low-temperature bcc phase
of iron is referred to as alpha (o) iron or alpha
ferrite. Finally, a similar cooling plateau occurs
at 769 °C (1416 °F), which is the transforma-
tion temperature when the nonmagnetic form
of alpha iron changes into a magnetic form of
alpha iron. This is the Curie temperature. In fer-
romagnetic materials that are below their Curie
temperature, the magnetic moments of adjacent
atoms are parallel to each other, such that all of
the individual magnetic moments are aligned in
one direction.

These phase changes, which can be done
very slowly, are called equilibrium transforma-
tions, meaning that sufficient time is needed for
the metal to reach equilibrium during a given
phase change. Enough energy, referred to
as latent heat, must be added or released
to complete an equilibrium transformation.
Experimental latent-heat values at the transfor-
mation temperatures of pure iron are given in
Table 2 for the phase transformations. In the
case of the Curie temperature (7¢c), the addi-
tional energy needed to disorient the magnetic
dipoles in iron is described by a sharp increase
in specific heat (Fig. 5)

During an equilibrium transformation, the
temperature remains constant until the phase
change is complete for the entire material. This
temperature plateau or arrest is roughly indi-
cated by the small steps at the transformation
temperatures indicated in Fig. 5. All equilib-
rium transformations are based on the move-
ment of atoms by diffusion, which occurs by
pronounced thermal agitation of atoms or mole-
cules. Thus, all equilibrium transformations are
classified as thermal or diffusive (reconstruc-
tive) transformations, because phase growth or
decomposition is activated by the thermal
(kinetic) energy of the atoms in the solid. Slow
changes under near-equilibrium conditions are
also reversible; the very same changes can take
place in reverse order. That is, when iron or
steel is subjected to slow heating from room
temperature, alpha iron first becomes nonmag-
netic alpha iron and then becomes gamma iron
on further heating.

Hysteresis in Heating and Cooling. Under
conditions of very slow heating or cooling
under near-equilibrium conditions, the trans-
formation temperatures for heating and cool-
ing are the same. However, heating rates in

commercial practice usually exceed those in
controlled laboratory experiments, and a
higher rate of heating or cooling can change
the transformation temperature. For example,
when the heating rate is high, the Ac transfor-
mation temperatures will be higher than those
in Fig. 5. Likewise, on slow cooling in com-
mercial practice, transformation changes occur
at temperatures a few degrees below the Ar
transformation temperatures in Fig. 5. Also,
the faster the heating or cooling rate, the
greater the gap between the Ac and Ar
points. Going one step further, transformation
temperatures during cooling can be suppressed
several hundreds of degrees by rapid
cooling or quenching. The rate of cooling and
heating can be a key factor in many heat
treatments.
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Ferrite and Austenite in Pure Iron. Ferrite
and austenite are the two crystal structures of
solid iron under equilibrium conditions. Ferrite
has atoms at each of the four corners of the unit
cell (Fig. 1) with one atom in the center. The
edge length (or lattice parameter) of alpha fer-
rite is approximately 2.87 A at 20 °C (70 °F)
increasing to approximately 2.9 A at 910 °C
(1670 °F) (Table 3). In contrast, the lattice
parameter of the austenitic unit cell is on the
order of approximately 3.57 A at the transfor-
mation temperature of 912 °C (1674 °F). This
provides greater interatomic space for the
greater solubility of carbon in austenite, as
compared to ferrite.

An fcc crystal also is a close-packed struc-
ture, which means that the atoms are packed
together with a minimum total volume.

Temp.
°C
1600 Melt
1540 Melting /\ e . |
1500 point ﬁ_ iron‘\ Solidifying point
Ferrite
1300 +
y -iron
1200 t Austenite
(fce)
1100 ¢
1000 t
912
900 ¥ Acs
800 t 770
———— Acg f~——— - ———————
700 -
600 ¢
Ferromagnetic
500 ¢ y -iron
Ferrite (bcc)
400 A
300 1
200 1
100 ¢
0 -

Time

Fig 4 Equilibrium transformation temperatures of pure iron. fcc, face-centered cubic; bee, body-centered cubic

Table 2 Latent heats of phase transformations for pure iron

Transformation

Temperature, K

Temperature, °C Latent heat, kJ/kg

Alpha ferrite (o) to austenite (y) 1185
Austenite (y) to delta ferrite (3) 1667
Fusion (liquid to solid) 1881

Source: Ref 3

912 16
1394 15
1538 247 £ 17
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Therefore, austenite can pack more atoms into a
given volume than ferrite. One unit cell of the
bce structure consists of two complete atoms,
calculated from the one atom in the center of
the cell, plus the four corners with one-quarter
of each corner atom within the cube of the unit
cell. Like ferrite, austenite also has atoms at the
four corners of the unit cell. However, the fcc
lattice also has six additional atoms of each
face of the unit cell (Fig. 1), where one-half
of each face-centered atom is within the cube
of the unit cell. Thus, the fcc unit cell is equiv-
alent to four complete atoms (4 of each atom
on the six faces, plus 4 of each atom on the

four corners). The packing results in a higher
density of fcc compared to that of a bec lattice
(Table 4). A plot of volume per atoms also indi-
cates a sharp contraction when alpha ferrite
transforms into austenite (Fig. 6).

Diffusion Coefficient of Carbon in Iron.
As noted, carbon readily diffuses as an intersti-
tial atom. The activation energy for diffusion of
carbon in iron is small (Table 5), and the diffu-
sion coefficient is larger than that of typical
substitutional elements (Fig. 7), where the dif-
fusion coefficient (D) is a function of tempera-
ture according to an Arrhenius equation, such
that:

Temperature, K
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Flg 5 Specific heat of iron from 0 to 3200 K. T¢, Curie

temperature. Source: Ref 4, 5

Table 4 Density of austenite, alpha ferrite, and delta ferrite at selected temperatures

Temperature
Phase °C °F Density, g/cm®
Alpha ferrite 20 68 7.870(a)
Alpha ferrite 910 1670 7.47(b)(c)
Austenite 912 1673 7.694(a)
Austenite 1390 2534 7.66(b)(d)
Delta ferrite 1394 2541 7.406(a)

(a) Source: Ref 7. (b) Source: Ref 8. (c) Computed from the following relation for alpha iron (to 912 °C, or 1673 °F): K (Kelvin) x Ap/pg x 10°=4.3.

(d) Computed from the following relation for gamma iron (912 to 1394

°C, or 1673 to 2541 °F): K (Kelvin) x Ap/py x 10° = 6.7

Table 5 Activation energies for diffusion of

selected elements in iron

Diffusing element Diffusing through

Diffusion activation energy (Q), cal/mol

Diffusion frequency factor (D), cm*/s

Carbon Ferrite (o iron)
Carbon Austenite (y iron)
Nickel Austenite (y iron)
Manganese Austenite (y iron)
Chromium Ferrite (o iron)
Chromium Austenite (y iron)

Source: Ref 1

18,100 0.0079
33,800 0.21
66,000 0.5
67,000 0.35
82,000 30,000
97,000 18,000

Table 3 Effect of temperature on lattice
parameters of ferrite and austenite in pure
iron

Temperature,
°C °F Lattice parameter, nm
20 68 0.28665 o-Fe
53 127 0.28676
154 309 0.28708
248 478 0.28750
315 599 0.28775
378 712 0.28806
451 844 0.28840
523 973 0.28879
563 1045 0.28882
588 1090 0.28890
642 1188 0.28922
660 1220 0.28920
706 1303 0.28923
730 1346 0.28935
754 1389 0.28940
764 1407 0.28940
772 1422 0.28943
799 1470 0.28946
862 1584 0.28988
898 1648 0.29012
907 1665 0.29005
950 1742 0.36508 y-Fe
1003 1837 0.36535
1076 1969 0.36599
1167 2133 0.36660
1249 2280 0.36720
1361 2482 0.36810
1390 2534 0.29315 &-Fe
1439 2622 0.29346
1480 2696 0.29378
1508 2746 0.29396
Source: Ref 6
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Table 6 Representative data for diffusion of carbon in ferrite and austenite

Calculated values

Temperature
Diffusing species Solvent metal Dy, m*/s Activation energy, kJ/mol °C °F D, m%/s
Fe a-Fe (body-centered cubic) 28 x 1074 251 500 930 3.0 x 1072!
900 1650 1.8 x 107"
Fe v-Fe (face-centered cubic) 5.0 x 1073 284 900 1650 1.1 x 1077
1100 2010 7.7 x 107'©
C a-Fe 62 x 1077 80 500 930 24 x 10712
900 1650 1.7 x 107'©
C y-Fe 23 x 1070 148 900 1650 5.9 x 1072
1100 2010 53 x 107"
Source: Ref 11

D = Dy exp {71%}

where Dy is the frequency factor (in units of
cm?/s), Q is the activation energy (kJ/mol),
T is absolute temperature (K), and R is the gas
constant (8.31 J/mol - K).

Typical values for D are given in Table 6,
and the temperature dependence of D is shown
for a number of material systems in Fig. 8.
The change of the diffusion coefficient of carbon
as the concentration of carbon changes in iron at
930 °C (1700 °F) is shown in Fig. 9. The activa-
tion energy, Q, reflects the energy required to
move an atom over a barrier from one lattice site
to another; the barrier is associated with the
requirement that the atom must vibrate with a
sufficient amplitude to break the nearest neigh-
boring bonds to move to a new location.

Phases of Heat Treated
Steel (Ref 14)

The heat treatment of steel is based on the
physical metallurgical principles that relate pro-
cessing, properties, and structure. In heat treat-
ment, the processing is most often entirely
thermal and modifies only structure. Thermo-
mechanical treatments, which modify compo-
nent shape and structure, and thermochemical
treatments, which modify surface chemistry
and structure, are also important processing
approaches that fall into the domain of heat
treatment. Scientific principles link the proces-
sing parameters to structure and properties and
are increasingly necessary for proper applica-
tion of the equipment and instrumentation now
available for control of heat treatment pro-
cesses. Examples of scientific efforts that
directly support the technology of heat treat-
ment include characterization of mechanisms
of phase transformations that produce desired
structures and properties of heat treated parts;
determination of phase transformation and
annealing kinetics that establish processing
times, temperatures, and cooling rates for heat
treatments; and evaluation of mechanisms of
deformation and fracture of the structures pro-
duced by heat treatment.

In view of the importance of structure and its
formation to heat treatment, the purpose of this
section is to describe the various microstruc-
tures that form in steels, the various factors that
determine the formation of microstructures dur-
ing heat treatment processing of steel, and some
of the characteristic properties of each of the
microstructures. Structure-sensitive properties
such as strength, ductility, and toughness estab-
lish the ease of manufacturing, service perfor-
mance, and limitations to service conditions of
heat treated steels. The descriptions of the
microstructures and principles presented here
should be considered only introductory.

The Iron-Carbon Phase Diagram

The microstructures that result from heat
treatment of steel are composed of one or more
phases in which the atoms of iron, carbon, and
other elements in steel are associated. Figure 10
shows a portion of the iron-carbon phase
diagram from pure iron through the carbon
concentration of cementite, 6.67 wt%. The
temperature and composition ranges in which
the various phases exist are shown on the dia-
gram. Alloys containing up to 2 wt% C are
classified as steels; alloys containing more than
2 wt% C are classified as cast irons. The solid
lines represent conditions where carbon, when
it exceeds its solubility in ferrite and austenite,
is present in the form of cementite (Fig. 10).
This is invariably the case in steels. The
dashed lines represent the conditions where
carbon is present as graphite rather than as
cementite, a situation much more common in
cast irons than in steels.

As noted, the temperatures that are the
boundaries of the various phase fields are fre-
quently referred to as critical temperatures.
Because the critical temperatures are often
identified by changes in slope or thermal arrests
in heating and cooling curves, they are given
the designation “A.” If equilibrium conditions
are applicable, the designations Ae;, Aes, and
Aeen, or simply A, Asz, and A, are used, as
shown in Fig. 10. If heating conditions (which
raise the critical temperatures relative to equi-
librium) apply, Ac;, Ac,, and Ac, are used,
the subscript “c” being derived from the French
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word chauffant. If cooling conditions (which
lower the critical temperature relative to equi-
librium) apply, the designations Ar;, Ars, and
Ar., are used, the subscript “r” being derived
from the French word refroidissant. There is
hysteresis in the transformation temperatures
because continuous heating and cooling leave
insufficient time to accomplish the diffusion-
controlled phase transformations at the true
equilibrium temperatures.

The symbols used to designate the different
critical temperatures are summarized in Table 7.
The A, transformation temperature (whether
Ae;, Acy, or Ary) is referred to as the lower
critical temperature, while the Aj transforma-
tion temperature (whether Aes, Acs, or Ars) is
referred to as the upper critical temperature.
As noted, carbon lowers the Aj transformation
temperature. Carbon also lowers the freezing
point of iron (which is important for cast irons).
Steels and cast irons contain, in addition to iron
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and carbon, many other elements that shift
the boundaries of the phase fields in the iron-
carbon diagram. Some alloying elements such
as manganese and nickel are austenite stabili-
zers and extend the temperature range over

which austenite is stable. Elements such as
chromium and molybdenum are ferrite stabili-
zers and restrict the ranges of austenite stabil-
ity. Therefore, care must be taken in the direct
use of the iron-carbon diagram to predict
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Table 7 Definitions of critical transformation temperatures in steel

phase relationships in commercial alloys that
contain elements in addition to iron and carbon.
Nevertheless, the iron-carbon diagram is the
most important reference for understanding the
relationships between structure and heat treat-
ment of steels and, subject to the aforemen-
tioned limitations, is used in this article to
illustrate the basis for microstructural formation
in steels as well as iron-carbon alloys.

The phase diagram shown in Fig. 10 assumes
equilibrium, that is, that the carbon and iron
have had sufficient time to distribute themselves
in the various phases as shown. Sometimes,
equilibrium is difficult to achieve, especially in
steels that contain elements which diffuse only
sluggishly, and, in fact, certain heat treatments
such as hardening are designed to prevent forma-
tion of equilibrium structures. Thus, the fact that
equilibrium may not be achieved, together with
the shift of the phase-field boundaries by alloy-
ing elements, place limitations on the direct use
of the iron-carbon phase diagram.

Austenite, also referred to as y-iron, is the fcc
crystal form or phase of iron that is stable at
high temperatures. Figure 10 shows that carbon
in iron-carbon alloys is soluble in austenite up
to just over 2 wt%, and that the single-phase
austenite field dominates the iron-carbon dia-
gram at high temperatures. In all low-alloy
steels, therefore, it is possible to produce a
single-phase austenite microstructure. This
characteristic is perhaps the most important fea-
ture of steels in that it enables steels to be hot
worked or wrought. Also, cooling from the sin-
gle-phase austenite field makes possible a wide
variety of heat treatments based on transforma-
tion of the austenite.

The single-phase austenite, without the
obstacles that second phases present to disloca-
tion motion and without the sites for fracture
initiation that second-phase particles offer,
deforms and recrystallizes readily so that sub-
stantial reductions in section size by hot rolling
or forging may be accomplished. Traditionally,
hot deformation is performed in the upper tem-
perature range of the austenite field. Hot defor-
mation of austenite at lower temperatures or
even in the two-phase ferrite-austenite field
(controlled rolling) and the addition of small
amounts of alloying elements (microalloying)

[

The temperature when all austenite has decomposed into ferrite or a ferrite-cementite mix during cooling, with the “r” being derived from the French refroidissant

In hypereutectoid steel, the critical temperature under equilibrium conditions between the phase region of an austenite-carbon solid solution and the two-phase region of austenite with

Ae; The critical temperature when some austenite begins to form under conditions of thermal equilibrium (i.e., constant temperature)
Ac;  The critical temperature when some austenite begins to form during heating, with the “c” being derived from the French chauffant
Ary
Ae;  The upper critical temperatures when all the ferrite phase has completely transformed into austenite under equilibrium conditions
Ac;  The temperature at which transformation of ferrite to austenite is completed during heating
Ar;  The upper critical temperatures when a fully austenitic microstructure begins to transform to ferrite during cooling
Aeem
some cementite (Fe;C)
Ac., In hypereutectoid steel, the temperature during heating when all cementite decomposes and all the carbon is dissolved in the austenitic lattice
Ar.,, In hypereutectoid steel, the temperature when cementite begins to form (precipitate) during cooling of an austenite-carbon solid solution
Ar,  The temperature at which delta ferrite transforms to austenite during cooling
M;  The temperature at which transformation of austenite to martensite starts during cooling
M, The temperature at which martensite formation finishes during cooling

Note: All of these changes, except the formation of martensite, occur at lower temperatures during cooling than during heating and depend on the rate of change of temperature.




such as niobium and vanadium, which precipi-
tate as fine alloy carbonitrides at low tempera-
tures, are new approaches to processing of
steels (Ref 15, 16). The low-temperature defor-
mation and/or precipitation retard or prevent
austenite recrystallization and grain growth
and therefore produce finer austenite grains
and subsequently fine austenite transformation
products during cooling after hot deformation.

Ferrite, also referred to as o-iron, is the bcc
form or phase of iron that is stable at low tem-
peratures. Microstructures in low-carbon steels
that consist largely of polycrystalline ferrite
are highly formable at room temperature; dislo-
cations move readily on the many slip systems
of the bcc structure (Ref 17). However, at low
temperatures, dislocation motion in the bcc
structure is severely restricted (Ref 18, 19). As
a result, ferrite grains fracture in a brittle man-
ner with little plastic deformation at low tem-
peratures. This well-known effect of all bcc
metals is described by the ductile-to-brittle
transition temperature, which refers to the
region in which the toughness drops and the
fracture mechanisms and features change from
ductile to brittle (Fig. 11).

As noted, carbon is dissolved in the octahe-
dral interstitial sites between iron atoms in fer-
rite and austenite and forms cementite when
the carbon is above it solubility limit. Moreover,
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the interstitial sites for carbon in ferrite are
much smaller than those in austenite; therefore,
the solubility of carbon in ferrite is significantly
lower than in austenite. Figure 12 shows an
expanded portion of the iron-rich side of the
iron-carbon diagram. The maximum solubility
of carbon in ferrite is only about 0.02 wt% and
with decreasing temperature becomes almost
negligible. As a result of the decreasing solid
solubility with decreasing temperature, on slow
cooling, cementite forms on ferrite grain
boundaries.

If, for some reason, cooling is too rapid for
cementite formation, the carbon is trapped in
the interstitial sites and contributes to various
aging phenomena unique to ferrite steels
(Ref 18, 20). The one process is associated with
segregation of carbon atoms to dislocations and
grain boundaries and is referred to as strain
aging. The other process is associated with pre-
cipitation of fine carbide particles either on dis-
locations or in the ferrite matrix and is referred
to as quench aging. Figure 13 shows an exam-
ple of fine dendritic cementite particles that
have formed by quench aging on dislocations
in the ferrite of a low-carbon steel. Both strain
aging and quench aging effectively pin disloca-
tions and are responsible for the discontinuous
yielding of low-carbon steels with largely fer-
ritic microstructures.
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Pearlite and Bainite

An iron-carbon alloy containing 0.77 wt% C
is the eutectoid composition, where three equi-
librium phases (austenite with dissolved carbon,
ferrite with dissolved carbon, and cementite)
can coexist at a temperature of 727 °C (1340 °F).
The eutectoid region of the iron-carbon equi-
librium diagram is shown in Fig. 14. If aus-
tenite in an iron-carbon alloy containing
0.77 wt% C is cooled below 727 °C (1340 °F),
then it must transform to ferrite and cementite.
This type of solid-state reaction, in which one
phase transforms to two other phases, is referred
to as a eutectoid reaction. In iron-carbon alloys
and steels, a unique parallel array of ferrite and
cementite lamellae, termed pearlite, develops as
a result of the eutectoid reaction. Figure 15
shows pearlite that has formed in a eutectoid
steel; here, the cementite appears dark and the
ferrite light.

Pearlite in a eutectoid steel is nucleated
at austenite grain boundaries and grows as
spherical-shaped colonies or nodules into the
austenite. Carbon must diffuse to the growing
cementite lamellae of the pearlite. Also, iron
atoms must rearrange themselves by short-
range diffusion from the fcc structure of
austenite to their arrangements in the crystal
structures of ferrite and cementite at the inter-
face of the growing pearlite colonies. The
rate of transport of carbon and iron atoms is
temperature dependent and increases exponen-
tially with increasing temperature.

At temperatures just below the 727 °C
(1340 °F) eutectoid temperature (Fig. 14), the
thermodynamic driving force for the eutectoid
reaction (the decrease in free energy per unit
volume when austenite is replaced by pearlite)
available to offset the increase in energy asso-
ciated with pearlite colony/austenite interfaces
and the ferrite-cementite interfaces within the
pearlite colonies is low. As a result, the nucle-
ation rate of colonies is low and the spacing
of cementite lamellae within the colonies is

-

F|g 13 Transmission electron micrograph showing

cementite precipitated on dislocations in an
0.08C-0.63Mn steel aged 115 h at 97 °C (207 °F).
Courtesy of J.E. Indacochea (Ref 21)
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Fig. 14 Eutectoid region of the iron-carbon phase diagram

large. The coarse interlamellar spacing increa-
ses the diffusion distance for carbon and causes
a low rate of growth for those colonies that
manage to nucleate. Thus, pearlite transforma-
tion at temperatures close to the eutectoid
temperatures is sluggish, and the pearlite micro-
structure that forms is relatively coarse. With
increased undercooling, the thermodynamic
driving force increases, the nucleation rate of
pearlite colonies increases, interlamellar spa-
cings decrease, and the growth rate of colonies
increases. As a result of the latter changes, the
transformation of austenite to pearlite acceler-
ates with decreasing temperature.

Figure 16 shows an isothermal transforma-
tion diagram for a eutectoid steel. The diagram
shows the beginning and end of the eutectoid
transformation of austenite to pearlite for speci-
mens cooled from the single-phase austenite
field and held isothermally at temperatures
between A; and 540 °C (1000 °F). The acceler-
ation of the transformation with decreasing
temperature is apparent.

At temperatures below 540 °C (1000 °F), the
diffusion of iron atoms is reduced to the extent
that they can no longer be readily transferred
even the very short distance across the pearlite-
austenite interface. Therefore, the mechanism

for the change in crystal structure from austenite
to ferrite changes from diffusion to shear.
Instead of an atom-by-atom transfer across an
interface, large numbers of iron atoms shear or
move cooperatively to form lath- or plate-shaped
crystals of ferrite. Carbon diffusion and cement-
ite formation must still occur because of the low
solubility of carbon in the bcc ferrite, but the
cementite forms as separate particles rather than
as continuous lamellae, as in pearlite. The
microstructure produced by both shear and diffu-
sion is termed bainite, after Edgar C. Bain, who
did much pioneering work in the characteriza-
tion of austenite transformation and hardenabil-
ity of steels (Ref 24).

Two forms of bainite develop in steels. One
is termed upper bainite because it forms at rel-
atively high temperatures, just below the range
of pearlite formation. Upper bainite forms
in patches containing many parallel laths of
ferrite. Carbon is rejected from the ferrite and
concentrates to form relatively coarse cementite
particles between the ferrite laths. Figures 17(a)
and (c) are light optical micrographs of
upper bainite in two steels. Figure 18(a) is a
micrograph from 4150 steel with patches of
upper bainite formed by partial transformation
of the austenite at 460 °C (860 °F). The

1.5 1.6 1.7 1.8 L9 20 21 22

austenite that did not transform at 460 °C
(860 °F) formed martensite (light background
phase) on quenching to room temperature. The
general morphology of upper bainite is shown
in Fig. 18(a), but the ferrite laths and cementite
particles are too fine to be resolvable in the
light micrograph.

The other type of bainite is termed lower bai-
nite because it forms at lower temperatures than
does upper bainite. The ferrite takes a plate
morphology, and the cementite is present as
very fine particles within the ferrite plates
(Fig. 17b, d). Figure 18(b) shows lower
bainite that has formed in a 4150 steel. The bai-
nite plates are at angles with respect to each
other, giving an acicular or needlelike appear-
ance to the microstructure rather than the
blocky or feathery appearance of upper bainite.
Again, the very fine carbide particles in the bai-
nite plates are not resolvable in the light
micrograph.

Proeutectoid Ferrite and Cementite
Figure 14 shows that alloys which contain

either less carbon (hypoeutectoid steels) or
more carbon (hypereutectoid steels) than the
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eutectoid composition must first form either fer-
rite or cementite when slowly cooled from the
single-phase austenite field. In hypoeutectoid
steels, the ferrite that forms before
the eutectoid reaction is termed proeutectoid
ferrite (Fig. 19a), while the cementite that
forms before the eutectoid reaction in hypereu-
tectoid steels is termed proeutectoid cementite
(Fig. 19b).

When hypoeutectoid steel is austenitized and
then slowly cooled below the Aj critical tem-
perature, proeutectoid ferrite nucleate in the
austenite grain boundaries. As the ferrite grains
grow, carbon is rejected into the austenite grain.
Eventually, the carbon concentration is suffi-
cient for pearlite formation, and the balance of
the microstructure is transformed to pearlite.
The microstructures of two hypoeutectoid steels
are shown in Fig. 20. They have a mixed fer-
rite-pearlite microstructure, with the amount of
pearlite (dark) depending on the carbon content.
Most of the pearlite colonies appear uniformly
black because the light is scattered by the
lamellar structures, which are too closely
spaced to be resolvable in the light micrograph.
Ferritic-pearlitic steels are common for a host
of structural applications. These steels are rela-
tively inexpensive and are produced in large
tonnages with a wide range of properties. In
most ferrite-pearlite steels, the carbon content
and the grain size determine the microstructure

— e | . .
() 10 um (d) 10 pm and resulting properties.

The growth of proeutectoid ferrite is dependent

F|g 17 Microstructure of (a) upper bainite and (b) lower bainite in a Cr-Mo-V rotor steel. 2% nital + 4% picral etch.  on the rejection of carbon atoms into the austenite

Original magnification: 500x. (c) S5 tool steel austenitized, isothermally transformed (partially) at 540 °C
(1000 °F) for 8 h, and water quenched to form upper bainite (dark); balance of austenite formed martensite. 4% picral
+ 2% nital. Original magnification: 1000x. (d) S5 tool steel austenitized, isothermally transformed at 400 °C (750 °F)

and the transfer of iron atoms across the ferrite/
austenite interface from the fcc to the bee struc-

for 1 h, and air cooled to form lower bainite. 37 to 38 HRC. 4% picral + 2% nital. Original magpnification: 1000 ture. The latter process is dependent on the degree
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(860 °F) and (b) lower bainite (dark plates) in 4150 steel (nital etch). Courtesy of F.A. Jacobs (Ref 25)
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of coherency or disorder in atom arrangement at
the interface. Also under some conditions, substi-
tutional alloying elements must be incorporated
into the ferrite structure if they are ferrite stabili-
zers or rejected from the ferrite if they are austen-
ite stabilizers. Experimental and theoretical work
on the effects of alloy element partitioning and
interface structure on the formation of proeutec-
toid ferrite is reviewed in Ref 27.

Generally under conditions of slow cooling,
the proeutectoid ferrite grows uniformly into
austenite and an equiaxed ferrite grain struc-
ture. However, if the austenite in hypereutec-
toid steels is rapidly cooled, the transfer of
iron atoms across ferrite/austenite interfaces is
restricted, and the diffusion-controlled growth
of ferrite is replaced by a shear mechanism.
As a result, a plate-shaped morphology of fer-
rite, frequently referred to as acicular or Wid-
manstitten ferrite, develops in rapidly cooled
low-carbon steels. Substitutional alloying ele-
ments such as manganese tend to retard the for-
mation of equiaxed ferrite grains and promote
acicular ferrite formation.

In hypereutectoid steels, proeutectoid
cementite nucleates and grows on austenite
grain boundaries during cooling from the aus-
tenite phase field (Fig. 19b). Figure 21 shows
a network of proeutectoid cementite that has
formed on austenite grain boundaries of a
hypereutectoid steel. Initial proeutectoid
cementite growth appears to depend only on
diffusion of carbon and therefore can proceed
very rapidly. In alloy steels, later stages of
cementite growth require partitioning of substi-
tutional alloying elements (such as chromium)
and therefore are very sluggish (Ref 28). The
very rapid initial growth of proeutectoid
cementite may occur even during oil quenching
for hardening and is associated with the inter-
granular fracture often observed in high-carbon
steel quenched from temperatures above Ay
(e.g., Ref 29, 30).

In view of the brittleness that continuous
networks of proeutectoid cementite impart,
hypereutectoid steels are reheated intercriti-
cally into the austenite/cementite two-phase
field for annealing (if maximum ductility and
machinability are desired) or for hardening (if
wear and fatigue resistance are required). Dur-
ing the intercritical heating, proeutectoid
cementite networks as well as the lamellae of
cementite in pearlite partially dissolve and
spheroidize. For example, consider a 1095
steel (0.95 wt% C) received from a steel mill.
If this steel is heated to 760 °C (1400 °F), the
temperature-composition point is shown in
Fig. 22 as an open circle with the horizontal
arrowed line passing through it. Because the tem-
perature-composition point lies in the shaded two-
phase region labeled y + Cm, this steel must con-
sist of a mixture of austenite having composition
O (0.85% C) and cementite of composition P
(6.7% C). The schematic diagram illustrates what
the microstructure would look like in the two-
phase (intercritical) region of the phase diagram.
The cementite appears as small, spherically-



Fig. 21

Microstructure of 1.2%C-Fe alloy showing cementite outlining the prior-austenite grain boundaries and

cementite needles in the grains of pearlite. The grain-boundary cementite is called proeutectoid

cementite.
Source: Ref 22

This microstructure represents a hypereutectoid steel. 4% picral etch. Original magnification: 200x.
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Fig. 22 Extension of the iron-carbon phase diagram to alloys illustrating intercritical heating to spheroidized
cementite in a hypereutectoid steel. Source: Ref 31

shaped grains distributed fairly randomly over the
austenite grains.

After quenching, the spheroidized cementite
particles are then dispersed in a matrix of martens-
ite. This improves toughness, because fracture is

initiated at the fine spherical carbide particles, thus
promoting a transgranular fracture morphology
(rather than by intergranular fracture due to proeu-
tectoid cementite along prior-austenite grain
boundaries. With spheroidized cementite particles
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in hypereutectoid steels, toughness is related to
spacing of the particles (Ref 32).

Martensite

Martensite is the phase formed in steels by a
diffusionless, shear transformation of austenite
and is the base structure for hardened steels.
Martensite is not shown on the iron-carbon dia-
gram because it does not form under equilibrium
conditions; generally rapid cooling to tempera-
tures well below A, is required to form martens-
ite. As expected from the iron-carbon diagram,
martensite eventually decomposes to a mixture
of ferrite and cementite if heated below A;.

Shear or the displacive, cooperative move-
ment of many atoms has already been men-
tioned as a mechanism by which bainite and
acicular proeutectoid ferrite form. The forma-
tion of the latter structures, however, occurs
under conditions such that carbon diffusion
accompanies the formation of bce ferrite. When
martensite forms, even the carbon atoms cannot
diffuse. Thus, the carbon atoms are trapped in
the octahedral interstitial sites, creating a super-
saturated ferrite with a bct crystal structure. The
higher the concentration of carbon atoms, the
greater the tetragonality (Ref 33).

Figure 23 shows schematically a martensite
plate that has formed in austenite adjacent to a
free surface. The martensite surface is tilted
by the shear transformation, and the austenite
plane along which the martensite forms is
termed the habit plane. To accomplish the
shape deformation shown, not only must the
fce austenite lattice transform to the bet lattice
of martensite, but the martensite crystal once
formed must accommodate itself to the con-
straints of the surrounding bulk austenite and
the restrictions imposed by the plane-strain
deformation parallel to the habit plane (Ref 34).
This accommodation is accomplished by slip or
twinning of the martensite plate, and as a result,
martensite in steels contains a high residual den-
sity of dislocations and/or fine twins.

The martensitic transformation is characterized
by athermal kinetics; that is, the amount of mar-
tensite formed is independent of time and is a
function only of the amount of undercooling
below the martensite-start temperature (M),
the temperature at which martensite starts to
form on cooling in a given steel. The following
equation has been developed (Ref 35) for esti-
mating the volume fraction of martensite, f,
formed by quenching to any temperature, T

f=1—exp— [0.011(M —Ty)]

Thus, if the M; of a given steel is known, the
amount of martensite formed on quenching to
any temperature below M, can be established.
A plot of martensite percentage versus the
amount of undercooling below the My is in
Fig. 24.

The M, temperature is a function of the car-
bon and alloying-element content of a steel,
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and a number of relationships have been devel-
oped to relate My to composition. Table 8 is
a summary of typically used calculations for
critical temperatures and martensite-start tem-
peratures, although various martensite-start
formulas have been developed over the years
(Table 9, Ref 36). Figure 25 shows M; as a
function of carbon content. The decrease in
M; with increasing carbon content is related
to the increased shear resistance produced
by increasing amounts of carbon in solid solu-
tion in the austenite. An important consequence
of low M temperature, according to the afore-
mentioned equation, is the reduced amount
of martensite that forms on cooling to room
temperature. Therefore, large volume fractions

Region of plastic
accommodation
in austenite

Tilted
martensite
surface

Original
austenite
surface

Austenite

Martensite

F|g 23 Diagram of martensite crystal, showing shear
and surface tilting. Courtesy of M.D. Geib
(adapted from Ref 34)

of austenite may be retained in high-carbon
steels.

Figure 25 indicates that two types of mar-
tensite form in carbon steels. The two cate-
gories are based on morphology and
microstructural characteristics of the martensite
(Ref 36, 41). The lath morphology forms in
low- and medium-carbon steels and consists
of regions or packets where many fine laths
or board-shaped crystals are arranged parallel
to one another. The habit plane of the laths is
close to but not exactly {111}. The width of most
of the laths is less than 0.5 pum, that is, below the
resolution of the light microscope, and therefore
the microstructure appears very uniform, with
only the largest laths resolvable. Figure 26(a) is
a micrograph of lath martensite in a low-alloy
steel. Electron microscopy is required to show
that the fine structure of lath martensite consists
of a high density of tangled dislocations and that
retained austenite is present as thin films between
the martensite laths (Ref 43).
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F|g 24 Extent of martensite formation as a function of

undercooling below the martensite-start

temperature. Source: Ref 36

Table 8 Typical formulas for calculating transformation temperatures of low-alloy steels

Formula Reference
Ae; (°F) ~ 1333 —25 x Mn + 40 x Si+42 x Cr—26 x Ni 37
Ae; (°F) ~ 1570 =323 x C—-25 x Mn + 80 x Si—3 x Cr—32 x Ni 37
Ac; (°C) ~ 723 = 10.7 x Mn + 29.1 x Si+ 169 x Cr—16.9 x Ni + 290 x As + 6.38 x W 38
Ac; (°C) ~ 910 — 203 x VC +447 x Si—152 x Ni +31.5 x Mo + 104 x V+ 13.1 x W 38
M (°F) ~ 930 = 600 x C —60 x Mn —20 x Si =50 x Cr—30 x Ni—20 x Mo -20 x W 39
Mo (°F) ~ M - 18 40
Mso (°F) ~ M, — 85 40
Moo (°F) ~ Mg — 185 40
M (°F) ~ Mg — 387 40
B (°F) ~ 1526 — 486 x C — 162 x Mn — 126 x Cr — 67 x Ni — 149 x Mo 40
Bso (°F) ~ B, — 108 40
B¢ (°F) ~ B, — 216 40

Table 9 Formulas used for calculating martensite-start temperatures

The plate morphology of martensite
(Fig. 26b) forms in high-carbon steels and con-
sists of martensite plates that form at angles
with respect to each other on either {225}, or
{259}, habit planes. Consistent with the low
M of this alloy, a large amount of retained aus-
tenite is present. The fine structure of plate mar-
tensite consists of thin twins, approximately
10 nm thick, and/or dislocation arrays typical
of low-temperature plastic deformation. The
impingement of nonparallel plates during
development of a martensite microstructure
sometimes causes microcracks to form in the
martensite (Ref 44). Examples of microcracks
are shown in the large plate of Fig. 27. The den-
sity of microcracks in plate martensite is
reduced by formation of martensite in fine-
grained austenite, by lowering the carbon con-
centration of the austenite by intercritical auste-
nitizing (thereby developing a more parallel
martensite morphology and less impingement),
and by tempering.

The carbon range in which a mixed morphol-
ogy of lath and plate martensite forms is sensi-
tive to alloy content and is not well known.
Even in the range of carbon contents where lath
martensite forms, there is a gradual decrease in
the definition of packets with increasing carbon
content (Ref 46).

Martensite Hardness and Hardenability.
As-quenched martensite is very hard and
brittle, typically requiring tempering for some
degree of softening. The hardness of martensite
depends solely on the carbon content (Fig. 28).
Its hardness increases monotonically with car-
bon content up to approximately 0.7 wt%. At
the higher levels of carbon, some of the softer
austenitic phase remains stable after quenching,
and so the effect of hardening due to martensite
becomes limited (Fig. 28). Alloying does
not change the hardnesses of martensite. How-
ever, alloying can slow the kinetics of pearlite
formation and thus promote the formation of
martensite at slower cooling rates. If martensite
can form at slower cooling rates, then the depth
of hardening is increased. The ability of steel to
be hardened to greater depths during quenching
is referred to as hardenability (see also the arti-
cle “Hardness and Hardenability of Steels” in
this Volume).

Hardenability of steel is usually determined
by the Jominy end-quench test, where a bar of
standard dimension is austenitized and
quenched at one end. This results in different

Investigators Date Equation

Payson and Savage 1944 M; (°F) = 930 — 570C — 60Mn — 50Cr — 30Ni —20Si — 20Mo — 20W

Carapella 1944 M; (°F) =925 x (1 — 0.620C)(1 — 0.092Mn)(1 —0.033Si)(1 — 0.045Ni)(1 — 0.070Cr)(1 — 0.029Mo)(1 — 0.018W)(1 + 0.120Co)
Rowland and Lyle 1946 M; (°F) = 930 — 600C — 60Mn — 50Cr — 30Ni —20Si — 20Mo — 20W

Grange and Stewart 1946 M; (°F) = 1000 — 650C — 70Mn — 70Cr — 35Ni —-50Mo

Nehrenberg 1946 M; (°F) = 930 — 540C — 60Mn — 40Cr — 30Ni —20Si — 20Mo

Steven and Haynes 1956 M; (°C) = 561 — 474C — 33Mn — 17Cr — 17Ni —-21Mo

Andrews (linear) 1965 M; (°C) = 539 — 423C — 30.4Mn — 12.1Cr — 17.7Ni — 7.5Mo

Andrews (product) 1965 M (°C) = 512 — 453C — 16.9Ni + 15Cr — 9.5Mo + 217(C)* — 71.5(C)(Mn) — 67.6(C) (Cr)

Source: Ref 36
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quite unstable and decompose when heated.
A practical benefit of the decomposition is
F|g 25 Effect of carbon content on martensite-start (M) temperature in steels. Composition ranges of lath and plate increased toughness, and for this reason, almost

martensite in iron-carbon alloys are also shown. Source: Ref 15 all hardened steels are heated to some tempera-
ture below Ac, a heat treatment process that is
referred to as tempering.

A wide range of microstructures may be
produced by tempering of martensite. Carbon
atoms rearrange themselves into various con-
figurations and structures within the martens-
ite crystals even at temperatures well below
100 °C (212 °F) (Ref 48). Tempering between
100 °C and Ac; produces various types of
carbide-particle dispersions as well as major
changes in the matrix martensite. The reac-
tions that produce the carbides have long
been recognized and are classified as stages
of tempering: Ty, T», and so on. The reactions
that depend on very short-range rearrange-
Fig. 26 Ligh_t rr}icrogrgghs?fm(;rggoli%j;};f)ftmartinsitgt. (;?)nLr;:]thtrrirlanfrnstitienindIow-tcar:itzoril:teili((:{03i;2.r???nz, ://V\;f)g ment of carbon atoms in the as-quenched
steel at 100(?:.8 (Ig)aMniqxe:egcin;gipllﬁgl'ogy 0>;.Iath mzrfer:s?teea/silt: someaplat: miretleniitea?:’) ein aemegiumg—cgfboﬁ (0.57 wt"/z @) martensite prior to ca.rblde format.lop haye
steel at original magnification: 1000x. All 2% nital etch. Source: Ref 42 only recently been studied, and to distinguish
those reactions from the carbide-forming

reactions, it has been suggested that they be

Carbon, wt%

1100 classified as aging reactions: A, A,, and so
1000 on (Ref 49, 50)

65 Table 10 lists the various reactions and
900 - microstructural changes that may be developed
800 yd by tempering steel (Ref 50). The aging and
" // 1600  tempering classifications serve primarily to
g 700 " Warensitc g mark microstructures that form on the way to
-§ 600 / microstructures S equilibrium, ultimately a microstructure that
@3 / Temered mhrtensiic and | 150 @  consists of spheroidized carbide particles dis-

[%2] N . . . . .
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300 Ferrite + pearlite micro =430 concurrently, and others may yet be discovered.

! structures (air cooled) — . . .
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100! == S= e T SThoroRined fore, steel composition, time, and temperature
carbide microstructures determine where a given tempering treatment
0.20 0.40 060 0.80 1.00 1.20 stops in the sequence of structural changes indi-
Carbon, % cated in Table 10.

Significant increases in toughness are

F|g 28 Martensite hardness as a function of carbon , picuaq by tempering at temperatures above

content for various microstructures in steels.

Fig. 27 Light micrograph (aqueous 10% sodium o o .
8 bisulfide etch) showing plate martensite and ~ Cross-hatched area shows effect of retained austenite. 150 °C (300 F) In genergl, subject to the dev-
retained austenite in an Fe-1.39C alloy. Source: Ref 45 Source: Ref 47 elopment of various embrittlement phenomena,
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Table 10 Tempering reactions in steel

Temperature range

°C °F Reaction and symbol (if designated) Comments

—40 to 100  —40 to 212 Clustering of 2 to 4 carbon atoms on octahedral sites of martensite (A;);  Clustering is associated with diffuse spikes around fundamental electron diffraction
segregation of carbon atoms to dislocations and boundaries spots of martensite.

20 to 100 70 to 212 Modulated clusters of carbon atoms on (102) martensite planes (A,) Identified by satellite spots around electron diffraction spots of martensite

60 to 80 140 to 175  Long-period ordered phase with ordered carbon atoms (Aj) Identified by superstructure spots in electron diffraction patterns

100 to 200 212 to 390  Precipitation of transition carbide as aligned 2 nm diameter particles (T;) Recent work identifies carbides as eta (orthorhombic, Fe,C); earlier studies identified

the carbides as epsilon (hexagonal, Fe, 4C).

200 to 350 390 to 660  Transformation of retained austenite to ferrite and cementite (T,) Associated with tempered-martensite embrittlement in low- and medium-carbon

steels

250 to 700 480 to 1290 Formation of ferrite and cementite; eventual development of well- This stage now appears to be initiated by chi-carbide formation in high-carbon Fe-C
spheroidized carbides in a matrix of equiaxed ferrite grains (T3) alloys.

500 to 700 930 to 1290 Formation of alloy carbides in Cr-, Mo-, V-, and W-containing steels. The alloy carbides produce secondary hardening and pronounced retardation of
The mix and composition of the carbides may change significantly softening during tempering or long-time service exposure at approximately 500 °C
with time (T4) (930 °F).

350 to 550 660 to 1020 Segregation and cosegregation of impurity and substitutional alloying Responsible for temper embrittlement

elements

as tempering temperature increases, toughness
increases and hardness decreases. Therefore,
in applications where high hardness must be
retained, tempering is performed at relatively
low temperatures, usually between 150 and
200 °C (300 and 390 °F). Very fine carbide
particles precipitate from the supersaturated
martensite as a result of low-temperature tem-
pering (Ref 51). The carbides are not cementite
but rather transition carbides. Transition carbides
include epsilon-carbide with a hexagonal struc-
ture as identified by x-ray diffraction (Ref 52),
and another designated eta-carbide with an
orthorhombic structure as identified by electron
diffraction (Ref 53). Both the epsilon-carbide
and eta-carbide have carbon contents substan-
tially higher than that of cementite.

Steels tempered to develop the fine transition
carbides show a modest but significant increase
in toughness. The hardness, however, remains
high because of the extremely fine carbide
dispersion and the retention of much of the dis-
location substructure introduced by the marten-
sitic transformation.

In steels tempered between 200 and 350 °C
(390 and 660 °F), the transition carbide is
replaced by cementite or chi ()-carbide, and
retained austenite transforms to ferrite and
cementite. The yx-carbide is a complex carbide
with a monoclinic structure that forms in tem-
pered high-carbon martensites and is eventually
replaced by cementite. Chi-carbides are coarser
than the transition carbides present at the
interfaces of the martensite plates as well as
within the plates (Ref 54). Tempering between
200 and 350 °C (390 and 660 °F) also leads to
transformation of retained austenite (see the arti-
cle “Tempering of Steels” in this Volume). The
retained austenite is stable throughout the tem-
pering temperature range in which the transition
carbide forms but begins to transform at tem-
peratures above 200 °C (390 °F) (Ref 55). Aus-
tenite in medium-carbon steels is retained
between martensite laths and, when it transforms
on tempering, produces relatively coarse plates
of interlath cementite (Ref 43).

The coarse carbides produced by replace-
ment of the transition carbides and

transformation of the retained austenite,
together with a limited recovery of the disloca-
tion substructure of the martensite, reduce
impact toughness. This decrease in impact
toughness produced by tempering in the range
of 250 to 400 °C (480 to 750 °F) is referred
to as tempered martensite embrittlement (see
the article “Tempering of Steels” in this
Volume).

Tempering at temperatures above 400 °C
(750 °F) produces substantial coarsening of
the microstructure. Not only do the cementite
particles coarsen and spheroidize but also the
martensitic matrix is significantly altered. The
laths are almost dislocation-free and are now
ferrite because all carbon has completely preci-
pitated as carbides. The reduction in dislocation
density is driven by the reduction of the strain
energy that accompanies the elimination of the
dislocations and is accomplished by various
recovery mechanisms.

As tempering temperature increases above
400 °C (750 °F), hardness and strength drop
rapidly and toughness improves significantly.
In alloy steels, the development of fine alloy
carbide dispersions offsets the softening that
accompanies the changing dislocation substruc-
ture and coarsening of the lath and cementite
structure. In fact, if the alloy carbide disper-
sions are sufficiently fine and dense, an increase
in hardness may develop. This increase in hard-
ness due to alloy carbide precipitation high in
the tempering-temperature range is referred to
as secondary hardening.

As noted, toughness increases significantly
with increasing tempering temperature. How-
ever, if impurities such as phosphorus, anti-
mony, and tin are present in a steel, these
elements may segregate to grain boundaries
and/or carbide-matrix interfaces and cause large
reductions in impact toughness (Ref 56).
This phenomenon develops during tempering
in, or slow cooling through, the temperature
range 350 to 550 °C (660 to 1020 °F) and is
referred to as temper embrittlement. The impu-
rity atom segregation may be accompanied by
the cosegregation of the substitutional alloying
elements present in steels (Ref 57).

Transformation Diagrams

The previous sections have shown that the
decomposition of austenite produces a wide
variety of microstructures in response to such
factors as steel composition, temperature of
transformation, and cooling rate. Several fac-
tors determine the rates of austenite decomposi-
tion into pearlite, bainite, primary ferrite,
primary cementite, or martensite. The rates
depend strongly on temperatures and whether
cooling is rapid or slow, because nonequilib-
rium conditions can have marked effects on
the nucleation and growth rates of the constitu-
ents created during austenite decomposition and
the resultant microstructure.

To characterize the conditions that produce the
various microstructures, two types of transforma-
tion diagrams have been developed. Isothermal
transformation (IT) diagrams are based on the
austenite decomposition at constant temperatures,
while continuous transformation diagrams follow
microstructural development as a function of
cooling rate. As an example, Fig. 29 compares
an IT diagram with a continuous cooling transfor-
mation (CCT) diagram of steels with approximate
eutectoid compositions. The main difference
between IT and CCT diagrams is that the
transformation boundaries are shifted due to hys-
teresis with continuous cooling (Fig. 29). Most
heat treatments are performed by continuous cool-
ing, and therefore CCT diagrams are commonly
encountered in commercial practice.

Isothermal Transformation
Diagrams (Ref 36, 59)

Isothermal transformation diagrams, also
referred to as time-temperature transformation
diagrams, are used to describe either the
decomposition of austenite upon cooling
or the isothermal heating for the formation of
austenite. The latter is often referred to as an
isothermal heating transformation (IHT) dia-
gram. Isothermal transformation curves can
be found in standard graphs obtainable
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Source: Ref 58

from the International Organization for Stan-
dardization (ISO), the Metallurgical Society of
AIME, and ASM International (Ref 60). There
is also a well-known German reference
(Ref 61) that includes a large collection of
IHT diagrams.

The IHT diagram is not as common as the
isothermal cooling diagrams, although heating
diagrams are useful in short-time heat treat-
ments such as induction and laser hardening.
The original microstructure also plays a great
role in heating. A finely distributed structure
such as tempered martensite is more rapidly
transformed to austenite than, for instance,
a ferritic-pearlitic structure. This is particularly
true for alloyed steels with carbide-forming
alloying elements such as chromium and
molybdenum. It is important that the heating
rate to the hold temperature be very high if a
true isothermal diagram is to be obtained.

Isothermal decomposition of austenite is
determined by quenching small specimens in
a lead or salt bath at a proscribed temperature.
Specimens are held at temperature for
different holding times and then quenched to
room temperature (Fig. 30). The amount of
phases formed in the microstructure is then
determined metallographically. An alternative
method involves using a single specimen
and a dilatometer that records the elongation
of the specimen as a function of time. The
basis for the dilatometer method is that the
microconstituents undergo different volumetric
changes (Table 11). A thorough description
of the dilatometric method can be found in
Ref 65.

From this, a series of curves plot the
volume fraction of phases. The C-shaped curve
is typical for transformation curves. The trans-
formation-start curve provides an estimate for
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the upper-limit time (in seconds) for nucleation
time, t. Nucleation time, t,, for a volume frac-
tion (x) can be estimated semiempirically by a
relation of the type (Ref 66):

exp(Q/RT
R 2);/g ./AT3)f 10

where x is the volume fraction of the trans-
formed phase; Q is an activation energy related
to the boundary diffusion activation energies
for the alloying elements; N is the ASTM Inter-
national grain size number for austenite; 7" is
the temperature (in Kelvin); AT is the under-
cooling (A3 — T) for ferrite, (A; — T) for pearl-
ite, and an empirical value for bainite; f is a
linear function of the volume fractions of car-
bon and alloying elements; and / is the volume
fraction integral giving the dependence of the
transformed phase on the volume fraction.

The combined effect of the I/AT> factor,
which increases with decreasing undercooling
(that is, increasing temperature), and the
exp (Q/RT) factor, which increases with
decreasing temperature, results in long nucle-
ation times, t,, for high and low temperatures
and short nucleation times for intermediate
temperatures. The C-shape can thus be obtained
and understood. The factor 2™® is included
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to take into consideration the fact that the trans-
formation rate is larger for smaller austenite
grain sizes.

Time-Temperature Effects of Eutectoid
Transformation. At constant temperature,
growth of pearlite nodules in carbon steels pro-
ceeds by the edgewise advance of the ferrite
and cementite lamellae at a constant rate. How-
ever, the overall transformation rate, which is
defined as the rate of increase of the volume
percentage of pearlite, is not constant. In the
early stages of the transformation, only a few
small pearlite nodules are formed. As the trans-
formation proceeds, new nodules form and
grow, and this growth is accompanied by the
continued growth of the nodules already
present.

Because the overall transformation rate is
proportional to the area of the pearlite-austenite
interface that exists at any time, this rate is rel-
atively low initially and increases as long as
growth of the nodules is unimpeded. Impinge-
ment occurs at a time that depends on the ratio
of the austenite grain size to the rate of nodule
growth. From this time on, the overall rate
decreases until transformation is complete.

The rate of nucleation of colonies and the
rate of growth vary with temperature, as shown
in Fig. 31. These rates are typical of commer-
cial steels, which usually contain 0.3 to 1%
Mn and smaller amounts of other elements.
For a high-purity iron-carbon alloy (0.78% C
and approximately 0.01% total phosphorus,
manganese, silicon), the rate of growth is
6.5 x 107> mm/s at 600 °C (1110 °F), which
is approximately seven times the value shown
at that temperature in Fig. 31. The times
required for the isothermal transformation to
begin and be completed at any temperature are
summarized in Fig. 16.

Interlamellar Spacing. The apparent varia-
tion of interlamellar spacing from colony to
colony can be explained by differences in
lamellar orientation with respect to the polished
surface, but true spacing is approximately the
same in all colonies, at a given temperature of
transformation. This spacing changes from
approximately 0.7 um in pearlite formed at
700 °C (1290 °F) to 0.15 pm in pearlite formed
at 600 °C (1110 °F). Figure 32, which depicts
the effect of suddenly lowering the temperature
of transformation from 700 to 674 °C (1290 to
1245 °F), suggests that there is a unique
spacing at each transformation temperature.
The variation in spacing with temperature of
transformation is summarized graphically in
Fig. 33.

When measuring spacing with a light micro-
scope, one should be wary of results that
approach the limit of optical resolution
(approximately 0.3 pm), because regions of
finer spacing will be overlooked. Electron
microscopy, which has higher resolution,
should then be used. Replica techniques are
subject to uncertainty of measurement due
to variation of lamellar orientation, whereas
both thin-foil and scanning techniques allow
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Table 11 Volume and size changes due to different transformations

Reaction Volume change, % Dimensional change(a), in./in.
Spheroidite (spheroidized pearlite) to austenite (contraction) 2.21 (%C)-4.64 0.0074 (%C)-0.0155
Austenite — martensite 4.64-0.53 (%C) 0.0155-0.00118 (%C)
Spheroidized pearlite to martensite 1.68 (%C) 0.0056 (%C)
Austenite — lower bainite(b) 4.64-1.43 (%C) 0.0156-0.0048 (%C)
Spheroidized pearlite to lower bainite(b) 0.78 (%C) 0.0026 (%C)
Austenite — aggregate of ferrite and cementite(b) 4.64-2.21 (%C) 0.0155-0.0074 (%C)
Spheroidized pearlite to aggregate of ferrite and cementite(c) 0 0

(a) Linear changes are approximately one-third the volume changes. Lower bainite is assumed to be a mixture of ferrite and epsilon-carbide. Upper bainite and pearlite are assumed to be mixtures of ferrite and cementite.
Source: Ref 62, 63-64

Rate of nucleation, nuclei per mm3/s

107* 1072 10 102 04
725 — T LA LN B U B B N
— 0.78 C, 0.63 Mn steel
700 Fomm— @~ | (ASTMgrain 41300
N\size, 5V/a) .
675 RS 41250
Q i v
¢ 650 1200 &
Q [T
g 825 J1150 &
(7 (7]
~ 800 ] "
\ q1100
5751 & Rate of growth )
o Rate of nucleation . \o qreso
550 PR S R N S RS R ' YRS
1078 lond 103 1072 107!

Rate of growth, mm/s

Fig. 31 Temperature versus rates of nucleation and
growth of pearlite colonies in a steel with
eutectoid composition

Fig_ 32 Pearlite that was formed isothermally in steel by partial transformation at 700 °C (1290 °F) and by further

partial transformation at 674 °C (1245 °F). The pearlite at left was formed when the specimen was at the
higher temperature and is coarser than the pearlite at center, which was formed when the specimen was at the lower
temperature. Composition of steel: 0.87 C, 0.44 Mn, 0.17 Si, 0.21 Cr, 0.39 Ni

selection of lamellae that are normal to the
surface.

Transformation Times. The times required
for initiation and completion of the pearlite
transformation in a carbon steel of eutectoid
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the Ae; temperature at very long transformation
times and move to shorter times with decreas-
ing transformation temperature. The IT diagram
for the hypoeutectoid steel has an extra curve to
mark the beginning of proeutectoid ferrite for-
mation. As indicated in Fig. 34, the latter curve
approaches the Ae; temperature for the 0.5% C
steel with increasing transformation time.
Hypoeutectoid steels with lower carbon con-
tents would have higher Ac; temperatures and
therefore expanded regions of proeutectoid fer-
rite coexistence with austenite. Similarly,
hypereutectoid steels would have IT diagrams
with curves for the beginning of proeutectoid
cementite formation.

Figure 34 shows other differences between
the IT diagrams for eutectoid and hypoeutec-
toid steels. One difference is in My tempera-
tures: the lower the carbon content, the higher
the M, temperature. Another difference is the
acceleration of austenite transformation to
proeutectoid ferrite with decreasing carbon con-
tent, as shown by the position of the nose of the
hypoeutectoid steel at shorter times relative to
that of the eutectoid steel. The dotted lines in
Fig. 34(b) and (c) reflect experimental uncer-
tainty in the exact positions of the beginning
of transformation curves.

Slow cooling of a carbon steel with carbon
content other than 0.8 wt% from a temperature
in the austenite region of the phase diagram
yields a proeutectoid constituent, either ferrite
or cementite, until 727 °C (1341 °F) is reached.
The austenite of eutectoid carbon content will
then transform to pearlite. Figure 35(a) shows
the ferrite-and-pearlite mixture in commercially
processed bar after cooling in still air from
805 °C (1480 °F); most of the ferrite has a
rounded or blocky form. Figure 35(b) shows
the same material after forced-air cooling from
805 to 410 °C (1480 to 770 °F); here the proeu-
tectoid ferrite delineates the prior-austenite
grain boundaries and forms a thin envelope
around the pearlite. In both specimens, Wid-
manstitten side plates of ferrite grew into the
prior-austenite grains, but to a greater extent
at the higher cooling rate. A point-count analy-
sis showed that the steel in Fig. 35(a) had a
pearlite volume fraction of 73%, whereas the
specimen shown in Fig. 35(b) had a volume
fraction of 83%. An equilibrium diagram
constructed to reflect the alloy content of this
steel shows that the eutectoid composition of
the steel was 0.67% C. Hence, one would pre-
dict that the final structure would contain 40%
ferrite and 60% pearlite. The larger amounts
of pearlite, which were actually measured, are
examples of suppression of the proeutectoid
reaction with increasing cooling rates.

Substitutional alloying elements affect the
eutectoid reaction in several ways. The result-
ing values of eutectoid temperature and eutec-
toid carbon content are shown, respectively, in
Fig. 36(a) and (b). These curves do not indicate
the carbon or alloy content in either the ferrite
or carbide phase. The strong effects of alloying
on the kinetics of the pearlite reaction result in
the increased hardenability of alloy steels
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Fig 34 Relationship to (a) iron-carbon diagram of isothermal transformation diagrams of (b) eutectoid steel and

(c) steel containing 0.5% C. The regions identified as “N,” “FA,” and “S” in (a) are temperature ranges for
normalizing, full annealing, and spheroidizing heat treatments, respectively.

Fig. 35 Pearlite and proeutectoid ferrite (light areas) in commercially processed bar of a hypoeutectoid steel that

was water quenched from 1050 to 805 °C (1920 to 1480 °F) and then air cooled. (a) Cooled from
805 °C (1480 °F) to room temperature in still air, which resulted in most of the ferrite having a rounded or blocky
form. (b) Cooled from 805 to 410 °C (1480 to 770 °F) in forced air, then to room temperature in still air, which
resulted in the presence of less ferrite than in (a), the ferrite forming only a thin envelope around the pearlite.
Composition of steel: 0.40 C, 1.44 Mn, and 0.22 Si. Nital etch. Original magnification: 500x
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compared with that of carbon steels. Such a
shift of time scale is easily observed metallo-
graphically. Comparative shifts in isothermal
transformation times for different alloying ele-
ments are illustrated in Fig. 37. The appearance
of other low-temperature transformation pro-
ducts on continuous cooling is a major effect
of alloying. Significant departures from the
usual appearance of pearlite have been
observed in highly alloyed steels.

Continuous Cooling Transformation
Diagrams (Ref 71)

Most heat treatments are performed by con-
tinuous cooling, and therefore, CCT diagrams
are commonly encountered in commercial prac-
tice. Few heat treatment processes involve step-
wise cooling. If cooling rates are slow, the
structures correspond more closely to the upper
regions of the IT diagram. Faster cooling rates
have considerable effect on the starting temper-
ature and progress of the transformation. It fol-
lows that some kind of continuous cooling
curve is needed.

In addition, the CCT diagram can be a tool in
evaluating hardenability if one knows the
required cooling rate at the minimum depth
(or an equivalent bar diameter) for hardening.
The CCT diagrams constructed by Atkins
(Ref 71) or Thelning (Ref 72) are particularly
suitable. For example, two diagrams from
Atkins are in Fig. 38. In these charts, the CCT
curves are plotted with cooling rates and equiv-
alent bar diameters with different quenchants.
This provides a comparison for the depth of
martensite formation. For example, 100% mar-
tensite is formed in bar diameters less than
0.18 mm (0.007 in.) with air cooling of the
1038 carbon steel (Fig. 38a), while the alloy
steel (Fig. 38b) would have 100% martensite
in bar diameter up to approximately 1 mm
(0.04 in.) with air cooling. Hardenability is thus
apparent in CCT diagrams and related to the
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F|g 37 Comparative time intervals for 50% isothermal
transformation in steels containing different
amounts of alloying elements. Source: Ref 70

cooling rates on Jominy end-quench test speci-
mens (Fig. 39). Positions along the Jominy bar
are equivalent to cooling rates and can be
expressed as equivalent bar diameters (see the
article “Hardness and Hardenability of Steels”
in this Volume).

The difficulty with CCT diagrams is the time
and effort required in developing them for
alloys of heat-to-heat analysis of hardenability.
Care also should be taken in using CCT
diagrams. Both the austenitizing temperature
and soaking time affect the grain size of
the austenite, thus modifying the subsequent
transformation characteristics on cooling. The
austenitizing temperature also affects the

900

composition of the austenite if the steel con-
tains strong carbide-forming elements, and con-
sequently, undissolved carbides may be present.
Therefore, care should be taken when adapting
the diagrams for austenitizing conditions differ-
ent from those indicated. For this reason, the
diagrams are not readily adapted to surface
hardening by induction or flame heating,
because rapid heating and short thermal cycle
times have a drastic effect on the condition of
the austenite.

Another major factor, which cannot be illu-
strated in the diagram, is the effect of agitation
in the quenching medium, whether it be air,
oil, or water. Agitation is obviously dependent
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Comparison of continuous cooling transformation diagrams for two steels. (a) 1038 steel (0.38 C, 0.20 Si,

0.70 Mn, 0.020 P, 0.020 S) rolled, austenitized at 860 °C (1580 °F), with as-quenched austenite grain
size of 8 to 10. (b) Alloy steel (0.35 C, 0.28 Mo, 1.55 Mn, 0.20 Si, 0.025 P, 0.025 S) rolled, austenitized at 845 °C

(1555 °F), with as-quenched austenite grain size of 7 to 8
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Relationship of continuous cooling transformation (CCT) (shaded area) and isothermal transformation (light
lines) diagrams of eutectoid (0.8 wt% C) steel. Four cooling rates from different positions on a Jominy end-

quench specimen are superimposed on the CCT diagram.

on such practical features as bath size and
component size and shape. These effects can
only be examined experimentally. If, however,
actual cooling curves can be obtained for a
particular combination of operating conditions,
they can then be converted into the corres-
ponding bar diameters by use of the charts
for equivalent diameters for equal cooling
rates in the article “Bar Cooling Correlations”
in a companion Volume (Ref 73) of this
Handbook.

Thermal and Residual Stresses
(Ref 59)

Given the fact that martensite causes expan-
sion, transformation hardening of steel is usu-
ally accompanied by the evolution of large
residual stresses, that is, stresses that exist with-
out any external load on the part considered.
Causes for such stresses include:

® Thermal expansion or contraction of a
homogeneous material in a temperature gra-
dient field

¢ Different thermal expansion coefficients of
the various phases in a multiphase material

® Density changes due to phase transforma-
tions in the metal

® Growth stresses of reaction products formed
on the surface or as precipitates, for exam-
ple, external and internal oxidation

Residual stresses can be divided into three cate-
gories. A macroscale residual stress is the aver-
age of the residual stress in many adjacent
grains of the material. If a workpiece is cut or
material is removed, the presence of macroresi-
dual stress will cause a distortion. The introduc-
tion of macroscale residual stresses into a
workpiece by heat treatment or plastic deforma-
tion may also cause a distortion of the part.
The pseudo-macroresidual stress is the average
of the residual stress in many grains of one
phase in a multiphase material minus the
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macroscale residual stress. The microscale
residual stress in a part is the total residual
stress minus the macroscale residual and the
pseudo-macroscale residual stress. The residual
stresses considered in this section are of the
macro type. Stresses that exist during the entire
heat treatment process are also discussed in the
following paragraphs.

Residual stresses after heat treatment of steel
is a subject of extensive interest and fundamen-
tal import. A brief introduction, the principle
for the creation of thermal stresses on cooling,
is shown in Fig. 40 for a 100 mm (4 in.) diam-
eter bar that was water quenched from the aus-
tenitizing temperature of 850 °C (1560 °F). The
surface temperature (S) decreases more rapidly
than the core temperature (C), and at time w,
the temperature difference between the surface
and core is at a maximum of approximately
550 °C (1020 °F). This means that the specific
volume is greater in the core than in the sur-
face. The volume contraction in the surface is
prevented by the higher specific volume in the
core. The thermal stress is approximately pro-
portional to the temperature difference and is
tensile in the surface and compressive in the
core. Large thermal stresses are favored by
low thermal conductivity, high heat capacity,
and high thermal expansion coefficient. Other
factors increasing the temperature difference
and thermal stresses are large thickness dimen-
sions and high cooling intensity of the cooling
medium. A large yield stress at elevated tem-
peratures will decrease the degree of plastic
flow and thus the residual stress, while the yield
stress at the ambient temperature puts an upper
limit on the residual stress.

The added effect of transformation of austen-
ite to martensite in steel is demonstrated in
Fig. 41. At time ¢4, the surface temperature falls
below the M; temperature, and the surface
starts to transform. The surface expands and
the thermal tensile stresses are counteracted.
The stress reversal takes place earlier than
when transformation stresses are not taken into
consideration. At time f,, the core transforms,
causing another stress reversal. After cooling,
transformation-induced tensile stresses at the
surface dominate over the thermally induced
compressive stresses.

To predict hardening stresses quantitatively,
it is necessary to consider interactions among
various factors. As shown in Fig. 42, these
include: (1) phase transformations, (2) latent
heat, (3) thermal stress, (4) transformation
stress and plasticity, (5) heat generation due to
deformation, and (6) mechanically induced
transformation. The most important of these
are interactions 1, 3, and 5. Interaction 6, how-
ever, is also a very important factor. When dis-
cussing mechanically induced transformation,
at least three different effects should be men-
tioned (Ref 77). The first is that the M temper-
ature is decreased by hydrostatic pressure and
raised by tensile stress (see Fig. 43, which
shows an increase of ~15 °C, or ~27 °F, for
a high-carbon steel). The second effect is the
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Formation of thermal stresses on cooling in a 100 mm (4 in.) steel specimen. C designates the core, S the

surface, u the stress reversal time instant, and w the time instant of maximum temperature difference.

The top graph shows the temperature variation with time at the surface and in the core; the graph below shows the

hypothetical thermal stress, a, which is proportional to the temperature difference between the surface and the core;

the actual stress at the surface, b, which can never exceed the yield stress; and the actual stress in the core, c. To the

right is shown the residual-stress distribution after completed cooling as a function of the specimen radius. Source:

Ref 74
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Fig. 42 Interactions between various factors of importance for residual-stress generation. Source: Ref 76

transformation plasticity, which is a permanent
strain that occurs during an ongoing phase
transformation under applied stress lower than
the yield stress. It is displayed in Fig. 43 as an
increase in the elongation from approximately
1% under an applied stress of 18 MPa (2.6
ksi) to 3% under 285 MPa (41 ksi) applied
stress. The third effect is the incubation time
of the nonmartensitic transformations, which
is prolonged by hydrostatic pressure (Ref 78)
and shortened by tensile stress (Ref 79). This

is particularly important for large dimensions.
It has also been shown that a separate steel
sample that is inserted into a cylinder of the
same hardenable steel (Carney-type test) has a
higher hardness value than the material in the
same position in a homogeneous steel cylinder.
The inserted steel specimen has the same tem-
perature history but is not exposed to hardening
stresses.

Cracking and Distortion due to Harden-
ing. Hardening is usually accompanied by
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distortion of a workpiece. The degree of distor-
tion depends on the magnitude of the residual
stresses. Hardening procedures that minimize
transient and residual stresses are beneficial, as
well as the use of fixtures (press hardening).
Distortion can also occur during tempering or
annealing due to release of residual stresses or
phase transformations during tempering.

There also is a risk for cracking of a work-
piece if large tensile stresses, transient or resid-
ual, are combined with the presence of a brittle



microstructure (particularly martensite).
Quench cracking is a particular issue (see the
article “Quench Cracking” in the upcoming
companion Volume, Ref 73). Thermal stresses
during cooling generally increase with the size
of a workpiece. For phase-transformation-
induced stresses, geometric dimension, harden-
ability of the steel, and quench intensity interact
in a complicated manner, as has been described
in earlier paragraphs. However, as a general rule,
it holds that the use of a more efficient cooling
medium, for example, water as compared to
oil, will lead to larger stresses, as demonstrated
in Fig. 44 to 46. The presence of geometric
stress raisers increases the risk of cracking.
Figure 41 indicates that tensile stresses are
present at the surface when the surface transfor-
mation to martensite is complete and the core
transformation is in progress. As such, there is
the risk of surface cracking. However, it is
shown in Fig. 44 and 45 that through hardening
does not necessarily lead to tensile stresses at
the surface. Large tensile stresses in the core
at lower temperatures may lead to center cracks
even if the microstructure is not martensitic.
Figure 46 shows that such a situation exists
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for larger-diameter cylinders with a martensitic
surface and a ferritic-pearlitic core. Case hard-
ening may also lead to core cracking.
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