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Foreword

The Federal Emergency Management Agency (FEMA) has the goal of 

reducing the ever-increasing cost that disasters inflict on our country.  

Preventing losses before they happen by designing and building to withstand 

anticipated forces from these hazards is one of the key components of 

mitigation, and is the only truly effective way of reducing the cost of these 

disasters.   

As part of its responsibilities under the National Earthquake Hazards 

Reduction Program (NEHRP), and in accordance with the National 

Earthquake Hazards Reduction Act of 1977 (PL 94-125) as amended, FEMA 

is charged with supporting mitigation activities necessary to improve 

technical quality in the field of earthquake engineering.  The primary method 

of addressing this charge has been supporting the investigation of seismic 

and related multi-hazard technical issues as they are identified by FEMA, the 

development and publication of technical design and construction guidance 

products, the dissemination of these products, and support of training and 

related outreach efforts.  These voluntary resource guidance products present 

criteria for the design, construction, upgrade, and function of buildings 

subject to earthquake ground motions in order to minimize the hazard to life 

for all buildings and increase the expected performance of critical and higher 

occupancy structures. 

The linear design procedure contained in modern building codes is based on 

the concept of converting the complicated nonlinear dynamic behavior of a 

building structure under seismic loading to an equivalent linear problem.  

The design process starts with the selection of a basic seismic force resisting 

system for the structure.  The code specifies a series of prescriptive 

requirements for structures based on each such system.  These prescriptive 

requirements regulate configuration, size, materials of construction, detailing, 

and minimum required strength and stiffness.  These seismic design 

performance requirements are controlled through the assignment of a series 

of system response coefficients (R, Cd, Ω0), which represent the material 

properties and design detailing of the selected system.  Based on the linear 

dynamic response characteristics of the structure and these response 

coefficients, design lateral forces are distributed to the building’s various 

structural elements using linear analysis techniques and the resulting member 
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forces and structural deflections are calculated.  Members are then 

proportioned to have adequate capacity to resist the calculated forces in 

combination with other prescribed loads to ensure that calculated 

displacements do not exceed maximum specified values. 

As the codes have improved over the last several decades in how they 

address seismic design, one of the results was an expansion of code-approved 

seismic force resisting systems, with many individual systems classified by 

the type of detailing used.  For each increment in detailing, response 

coefficients were assigned in the code, based largely on judgment and 

qualitative comparison with the known response capabilities of other 

systems.  The result is that today’s code includes more than 80 individual 

structural systems, each with individual system response coefficients 

somewhat arbitrarily assigned.  Many of these recently defined structural 

systems have never been subjected to significant level of earthquake ground 

shaking and the potential response characteristics and ability to meet the 

design performance objectives is untested and unknown. 

What was needed was a standard procedural methodology where the inelastic 

response characteristics and performance of typical structures designed to a 

set of structural system provisions could be quantified and the adequacy of 

the structural system provisions to meet the design performance objectives 

verified.  Such a methodology would need to directly account for the 

potential variations in structure configuration of structures designed to a set 

of provisions, the variation in ground motion to which these structures may 

be subjected and available laboratory data on the behavioral characteristics of 

structural elements. 

The objective of this publication was to develop a procedure to establish 

consistent and rational building system performance and response parameters 

(R, Cd, Ω0) for the linear design methods traditionally used in current 

building codes.  The primary application of the procedure is for the 

evaluation of structural systems for new construction with equivalent 

earthquake performance.  The primary design performance objective was 

taken to minimize the risk of structural collapse under the seismic load of 

maximum considered earthquake as specified in the current NEHRP 

Recommended Provisions for New Buildings and Other Structures (FEMA 

450). Although the R factor is the factor of most concern, displacements and 

material detailing to achieve the implied design ductilities were also 

included. 

It is anticipated that this methodology will ultimately be used by the nation’s 

model building codes and standards to set minimum acceptable design 
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criteria for standard code-approved systems, and to provide guidance in the 

selection of appropriate design criteria for other systems when linear design 

methods are applied.  This publication will also provide a basis for future 

evaluation of the current tabulation of and limitations on code-approved 

structural systems for adequacy to achieve the inherent seismic performance 

objectives.  This material could then potentially be used to modify or 

eliminate those systems or requirements that can not reliably meet these 

objectives. 

FEMA wishes to express its sincere gratitude to Charlie Kircher, Project 

Technical Director, and to the members of the Project Team for their efforts 

in the development of this recommended methodology.  The Project 

Management Committee consisted of Michael Constantinou, Greg Deierlein, 

Jim Harris, John Hooper, and Allan Porush.  They in turn guided the Project 

Working Groups, which included Andre Filiatrault, Helmut Krawinkler, 

Kelly Cobeen, Curt Haselton, Abbie Liel, Jiannis Christovasilis, Jason Chou, 

Stephen Cranford, Brian Dean, Kevin Haas, Jiro Takagi, Assawin 

Wanitkorkul, and Farzin Zareian.  The Project Review Panel consisted of 

Maryann Phipps (Chair), Amr Elnashai, S.K. Ghosh, Ramon Gilsanz, Ron 

Hamburger, Jack Hayes, Rich Klingner, Phil Line, Bonnie Manley, Andrei 

Reinhorn, and Rafael Sabelli, and they provided technical advice and 

consultation over the duration of the work.  The names and affiliations of all 

who contributed to this report are provided in the list of Project Participants.   

Without their dedication and hard work, this project would not have been 

possible.  The American public who live, work and play in buildings in 

seismic areas are all in their debt. 
 
Federal Emergency Management Agency 
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Preface

In September 2004 the Applied Technology Council (ATC) was awarded a 

“Seismic and Multi-Hazard Technical Guidance Development and Support” 

contract (HSFEHQ-04-D-0641) by the Federal Emergency Management 

Agency (FEMA) to conduct a variety of tasks, including one entitled 

“Quantification of Building System Performance and Response Parameters” 

(ATC-63 Project).  The purpose of this project was to establish and document 

a recommended methodology for reliably quantifying building system 

performance and response parameters for use in seismic design.  These 

factors include the response modification coefficient (R factor), the system 

overstrength factor (), and the deflection amplification factor (Cd), 

collectively referred to as “seismic performance factors.”   

Seismic performance factors are used to estimate strength and deformation 

demands on systems that are designed using linear methods of analysis, but 

are responding in the nonlinear range.  Their values are fundamentally 

critical in the specification of seismic loading.  R factors were initially 

introduced in the ATC-3-06 report, Tentative Provisions for the Development 

of Seismic Regulations for Buildings, published in 1978, and subsequently 

replaced by the NEHRP Recommended Provisions for Seismic Regulations 

for New Buildings and Other Structures, published by FEMA.  Original R 

factors were based on judgment or on qualitative comparisons with the 

known response capabilities of seismic-force-resisting systems in use at the 

time.  Since then, the number of systems addressed in current seismic codes 

and standards has increased substantially, and their ability to meet intended 

seismic performance objectives is largely unknown. 

The recommended methodology described in this report is based on a review 

of relevant research on nonlinear response and collapse simulation, 

benchmarking studies of selected structural systems, and evaluations of 

additional structural systems to verify the technical soundness and 

applicability of the approach.  Technical review and comment at critical 

developmental stages was provided by a panel of experts, which included 

representatives from the steel, concrete, masonry and wood material industry 

groups.  A workshop of invited experts and other interested stakeholders was 

convened to receive feedback on the recommended methodology, and input 

from this group was instrumental in shaping the final product.  
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ATC is indebted to the leadership of Charlie Kircher, Project Technical 

Director, and to the members of the ATC-63 Project Team for their efforts in 

the development of this recommended methodology.  The Project 

Management Committee, consisting of Michael Constantinou, Greg 

Deierlein, Jim Harris, John Hooper, and Allan Porush monitored and guided 

the technical efforts of the Project Working Groups, which included Andre 

Filiatrault, Helmut Krawinkler, Kelly Cobeen, Curt Haselton, Abbie Liel, 

Jiannis Christovasilis, Jason Chou, Stephen Cranford, Brian Dean, Kevin 

Haas, Jiro Takagi, Assawin Wanitkorkul, and Farzin Zareian.  The Project 

Review Panel, consisting of Maryann Phipps (Chair), Amr Elnashai, S.K. 

Ghosh, Ramon Gilsanz, Ron Hamburger, Jack Hayes, Rich Klingner, Phil 

Line, Bonnie Manley, Andrei Reinhorn, and Rafael Sabelli provided 

technical advice and consultation over the duration of the work.  The names 

and affiliations of all who contributed to this report are provided in the list of 

Project Participants. 

ATC also gratefully acknowledges Michael Mahoney (FEMA Project 

Officer), Robert Hanson (FEMA Technical Monitor), and William Holmes 

(ATC Project Technical Monitor) for their input and guidance in the 

preparation of this report, Peter N. Mork and Ayse Hortacsu for ATC report 

production services, and Ramon Gilsanz as ATC Board Contact. 
 
Jon A. Heintz     Christopher Rojahn 
ATC Director of Projects   ATC Executive Director 
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Executive Summary

This report describes a recommended methodology for reliably quantifying 

building system performance and response parameters for use in seismic 

design.  The recommended methodology (referred to herein as the 

Methodology) provides a rational basis for establishing global seismic 

performance factors (SPFs), including the response modification coefficient 

(R factor), the system overstrength factor (), and deflection amplification 

factor (Cd), of new seismic-force-resisting systems proposed for inclusion in 

model building codes. 

The purpose of this Methodology is to provide a rational basis for 

determining building seismic performance factors that, when properly 

implemented in the seismic design process, will result in equivalent safety 

against collapse in an earthquake, comparable to the inherent safety against 

collapse intended by current seismic codes, for buildings with different 

seismic-force-resisting systems. 

As developed, the following key principles outline the scope and basis of the 

Methodology: 

 It is applicable to new building structural systems. 

 It is compatible with the NEHRP Recommended Provisions for Seismic 

Regulations for New Buildings and Other Structures (FEMA, 2004a) and 

ASCE/SEI 7, Minimum Design Loads for Buildings and Other 

Structures, (ASCE, 2006a). 

 It is consistent with a basic life safety performance objective inherent in 

current seismic codes and standards. 

 Earthquake hazard is based on Maximum Considered Earthquake ground 

motions. 

 Concepts are consistent with seismic performance factor definitions in 

current seismic codes and standards. 

 Safety is expressed in terms of a collapse margin ratio. 

 Performance is quantified through nonlinear collapse simulation on a set 

of archetype models. 
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 Uncertainty is explicitly considered in the collapse performance 

evaluation. 

The Methodology is intended to apply broadly to all buildings, recognizing 

that this objective may not be fully achieved for certain seismic environments 

and building configurations.  Likewise, the Methodology has incorporated 

certain simplifying assumptions deemed appropriate for reliable evaluation of 

seismic performance.  Key assumptions and potential limitations of the 

Methodology are presented and summarized. 

In the development of the Methodology, selected seismic-force-resisting 

systems were evaluated to illustrate the application of the Methodology and 

verify its methods.  Results of these studies provide insight into the collapse 

performance of buildings and appropriate values of seismic performance 

factors.  Observations and conclusions in terms of generic findings applicable 

to all systems, and specific findings for certain types of seismic-force-

resisting systems are presented.  These findings should be considered 

generally representative, but not necessarily indicative of all possible trends, 

given limitations in the number and types of systems evaluated. 

The Methodology is recommended for use with model building codes and 

resource documents to set minimum acceptable design criteria for standard 

code-approved seismic-force-resisting systems, and to provide guidance in 

the selection of appropriate design criteria for other systems when linear 

design methods are applied.  It also provides a basis for evaluation of current 

code-approved systems for their ability to achieve intended seismic 

performance objectives.  It is possible that results of future work based on 

this Methodology could be used to modify or eliminate those systems or 

requirements that cannot reliably meet these objectives. 
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Chapter 1 

Introduction

This report describes a recommended methodology for reliably quantifying 

building system performance and response parameters for use in seismic 

design.  The recommended methodology (referred to herein as the 

Methodology) provides a rational basis for establishing global seismic 

performance factors (SPFs), including the response modification coefficient 

(R factor), the system overstrength factor (), and deflection amplification 

factor (Cd), of new seismic-force-resisting systems proposed for inclusion in 

model building codes.   

1.1 Background and Purpose 

The Applied Technology Council (ATC) was commissioned by the Federal 

Emergency Management Agency (FEMA) under the ATC-63 Project to 

develop a methodology for quantitatively determining global seismic 

performance factors for use in seismic design. 

Seismic performance factors are used in current building codes and standards 

to estimate strength and deformation demands on seismic-force-resisting 

systems that are designed using linear methods of analysis, but are 

responding in the nonlinear range.  R factors were initially introduced in the 

ATC-3-06 report, Tentative Provisions for the Development of Seismic 

Regulations for Buildings (ATC, 1978), and their values have become 

fundamentally critical in the specification of design seismic loading.   

Since then, the number of structural systems addressed in seismic codes has 

increased dramatically.  The 2003 edition of the National Earthquake 

Hazards Reduction Program (NEHRP) Recommended Provisions for Seismic 

Regulations for New Buildings and Other Structures (NEHRP Recommended 

Provisions), (FEMA, 2004a), includes more than 75 individual systems, each 

having a somewhat arbitrarily assigned R factor.   

Original R factors were based largely on judgment and qualitative 

comparisons with the known response capabilities of relatively few seismic-

force-resisting systems in widespread use at the time.  Many recently defined 

seismic-force-resisting systems have never been subjected to any significant 

level of earthquake ground shaking.  As a result, the seismic response 

characteristics of many systems, and their ability to meet seismic design 

performance objectives, are both untested and unknown.   
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As new systems continue to be introduced during each code update cycle, 

uncertainty in the seismic performance capability of the new building stock 

continues to grow, and the need to quantify the seismic performance 

delivered by current seismic design regulations becomes more urgent.  

Advances in performance-based seismic design tools and technologies has 

resulted in the ability to use nonlinear collapse simulation techniques to link 

seismic performance factors to system performance capabilities on a 

probabilistic basis.    

The purpose of this Methodology is to provide a rational basis for 

determining building system performance and response parameters that, 

when properly implemented in the seismic design process, will result in 

equivalent safety against collapse in an earthquake, comparable to the 

inherent safety against collapse intended by current seismic codes, for 

buildings with different seismic-force-resisting systems. 

The Methodology is recommended for use with model building codes and 

resource documents to set minimum acceptable design criteria for standard 

code-approved seismic-force-resisting systems, and to provide guidance in 

the selection of appropriate design criteria for other systems when linear 

design methods are applied.  It also provides a basis for evaluation of current 

code-approved systems for their ability to achieve intended seismic 

performance objectives.  It is possible that results of future work based on 

this Methodology could be used to modify or eliminate those systems or 

requirements that cannot reliably meet these objectives. 

1.2 Scope and Basis of the Methodology 

The following key principles outline the scope and basis of the Methodology. 

1.2.1 Applicable to New Building Structural Systems 

The Methodology applies to the determination of seismic performance 

factors appropriate for the design of seismic-force-resisting systems in new 

building structures.  While the Methodology is conceptually applicable (with 

some limitations) to design of non-building structures, and to retrofit of 

seismic-force-resisting systems in existing buildings, such systems were not 

explicitly considered.  The Methodology is not intended to apply to the 

design of nonstructural systems. 

1.2.2 Compatible with the NEHRP Recommended Provisions 
and ASCE/SEI 7 

The Methodology is based on, and intended for use with, applicable design 

criteria and requirements of the most current editions of the NEHRP 
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Recommended Provisions for Seismic Regulations for New Buildings and 

Other Structures (NEHRP Recommended Provisions), (FEMA, 2004a), and 

the seismic provisions of ASCE/SEI 7-05, Minimum Design Loads for 

Buildings and Other Structures, (ASCE, 2006a).  The Building Seismic 

Safety Council has adopted ASCE/SEI 7-05 as the “starting point” for the 

development of its 2009 and future editions of the NEHRP Recommended 

Provisions.  At this time, ASCE/SEI 7-05 is the most current, published 

source of seismic regulations for model building codes in the United States.1 

ASCE/SEI 7-05 provides the basis for ground motion criteria and “generic” 

structural design requirements applicable to currently accepted and future 

(proposed) seismic-force-resisting systems.  ASCE/SEI 7-05 provisions 

include detailing requirements for currently approved systems that may also 

apply to new systems.  By reference, other standards, such as ACI 318, 

Building Code Requirements for Structural Concrete (ACI, 2005), 

AISC/ANSI 341, Seismic Provisions for Structural Steel Buildings (AISC, 

2005), ACI 530/ASCE 5/TMS 402, Building Code Requirements for 

Masonry Structures (ACI, 2002b), and ANSI/AF&PA, National Design 

Specification for Wood Construction (ANSI/AF&PA, 2005) apply to 

currently approved systems, and may also apply to new systems. 

The Methodology requires the seismic-force-resisting system of interest to 

comply with all applicable design requirements in ASCE/SEI 7-05, including 

limits on system irregularity, drift, and height, except when such 

requirements are specifically excluded and explicitly evaluated in the 

application of the Methodology.  For new (proposed) systems, the 

Methodology requires identification and use of applicable structural design 

and detailing requirements in ASCE/SEI 7-05, and development and use of 

new requirements as necessary to adequately describe system limitations and 

ensure predictable seismic behavior of components.  The latest edition of the 

NEHRP Recommended Provisions, containing modifications and 

commentary to ASCE/SEI 7-05, may be a possible source for additional 

design requirements.  

1.2.3 Consistent with the Life Safety Performance Objective 

The Methodology is consistent with the primary “life safety” performance 

objective of seismic regulations in model building codes.  As stated in the 

Part 2: Commentary to the NEHRP Recommended Provisions for Seismic 
                                                           
1  This chapter and other sections of this document refer to ASCE/SEI 7-05 for 

design criteria and requirements to illustrate the Methodology, and to define the 
values of certain parameters used for performance evaluation.  The Methodology 
is intended to be generally applicable, and such references should not be construed 
as limiting the Methodology to this edition of ASCE/SEI 7. 
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Regulations for New Buildings and Other Structures (Commentary to the 

NEHRP Recommended Provisions), (FEMA, 2004b), “the Provisions 

provides the minimum criteria considered prudent for protection of life safety 

in structures subject to earthquakes.”  

Design for performance other than life safety was not explicitly considered in 

the development of the Methodology.  Accordingly, the Methodology does 

not address special performance or functionality objectives of ASCE/SEI 7-

05 for Occupancy III and IV structures. 

1.2.4 Based on Acceptably Low Probability of Structural 
Collapse 

The Methodology achieves the primary life safety performance objective by 

requiring an acceptably low probability of collapse of the seismic-force-

resisting system when subjected to Maximum Considered Earthquake (MCE) 

ground motions. 

In general, life safety risk (i.e., probability of death or life-threatening injury) 

is difficult to calculate accurately due to uncertainty in casualty rates given 

collapse, and even greater uncertainty in assessing the effects of falling 

hazards in the absence of collapse.  Collapse of a structure can lead to very 

different numbers of fatalities depending on variations in construction or 

occupancy, such as structural system type and the number of building 

occupants.  Rather than attempting to quantify uniform protection of “life 

safety”, the Methodology provides approximate uniform protection against 

collapse of the structural system. 

Collapse includes both partial and global instability of the seismic-force-

resisting system, but does not include local failure of components not 

governed by global seismic performance factors, such as localized out-of-

plane failure of wall anchorage and potential life-threatening failure of non-

structural systems.   

Similarly, the Methodology does not explicitly address components that are 

not included in the seismic-force-resisting system (e.g., gravity system 

components and nonstructural components).  It assumes that deformation 

compatibility and related requirements of ASCE/SEI 7-05 adequately protect 

such components against premature failure.  Components that are not 

designated as part of the seismic-force-resisting system are not controlled by 

seismic-force-resisting system design requirements.  Accordingly, they are 

not considered in evaluating the overall resistance to collapse. 
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1.2.5 Earthquake Hazard based on MCE Ground Motions 

The Methodology evaluates collapse under Maximum Considered 

Earthquake (MCE) ground motions for various geographic regions of 

seismicity, as defined by the coefficients and mapped acceleration parameters 

of the general procedure of ASCE/SEI 7-05, which is based on the maps and 

procedures contained in the NEHRP Recommended Provisions.  

While seismic performance factors apply to the design response spectrum, 

taken as two-thirds of the MCE spectrum, code-defined MCE ground 

motions are considered the appropriate basis for evaluating structural 

collapse.  As noted in the Commentary to the NEHRP Recommended 

Provisions, “if a structure experiences a level of ground motion 1.5 times the 

design level, the structure should have a low likelihood of collapse.” 

1.2.6 Concepts Consistent with Current Seismic Performance 
Factor Definitions 

The Methodology remains true to the definitions of seismic performance 

factors given in ASCE/SEI 7-05, and the underlying nonlinear static analysis 

(pushover) concepts described in the Commentary to the NEHRP 

Recommended Provisions.  Values of the response modification coefficient, 

R factor, the system overstrength factor, O , and the deflection amplification 

factor, Cd, for currently approved seismic-force-resisting systems are 

specified in Table 12.2-1 of ASCE/SEI 7-05.  Section 4.2 of the Commentary 

to the NEHRP Recommended Provisions provides background information 

on seismic performance factors. 

Figures 1-1 and 1-2 are used to explain and illustrate seismic performance 

factors, and how they are used in the Methodology.  Parameters are defined 

in terms of equations, which in all cases are dimensionless ratios of force, 

acceleration or displacement.  However, in attempting to utilize the figures to 

clarify and to illustrate the meanings of these ratios, graphical license is taken 

in two ways.  First, seismic performance factors are depicted in the figures as 

incremental differences between two related parameters, rather than as ratios 

of the parameters.  Second, as a consequence of being depicted as 

incremental differences, seismic performance factors are shown on plots with 

units, when, in fact, they are dimensionless. 

Figure 1-1, an adaptation of Figures C4.2-1 and C4.2-3 from the 

Commentary to the NEHRP Recommended Provisions, defines seismic 

performance factors in terms of the global inelastic response (idealized 

pushover curve) of the seismic-force-resisting system.  In this figure, the 
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horizontal axis is lateral displacement (i.e., roof drift) and the vertical axis is 

lateral force at the base of the system (i.e., base shear).   

In Figure 1-1, the term VE represents the force level that would be developed 

in the seismic-force-resisting system, if the system remained entirely linearly 

elastic for design earthquake ground motions.  The term Vmax represents the 

actual, maximum strength of the fully-yielded system, and the term V is the 

seismic base shear required for design.  As defined in Equation 1-1, the R 

factor is the ratio of the force level that would be developed in the system for 

design earthquake ground motions (if the system remained entirely linearly 

elastic) to the base shear prescribed for design: 

 
V

V
R E  (1-1) 

and, as defined in Equation 1-2, the O factor is the ratio of the maximum 

strength of the fully-yielded system to the design base shear: 

 
V

Vmax
O   (1-2) 
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Figure 1-1 Illustration of seismic performance factors (R, O, and Cd) as 
defined in the Commentary to the NEHRP Recommended 
Provisions (FEMA, 2004b). 

In Figure 1-1, the term E/R represents roof drift of the seismic-force-

resisting system corresponding to design base shear, V, assuming that the 

system remains essentially elastic for this level of force, and the term  

represents the assumed roof drift of the yielded system corresponding to 

design earthquake ground motions.  As illustrated in the figure and defined 
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by Equation 1-3, the Cd factor is some fraction of the R factor (typically less 

than 1.0): 

 RC
E

d 


  (1-3) 

The Methodology develops seismic performance factors consistent with the 

concepts and definitions described above.  Figure 1-2 illustrates the seismic 

performance factors defined by the Methodology and their relationship to 

MCE ground motions. 
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Figure 1-2 Illustration of seismic performance factors (R, , and Cd) as 
defined by the Methodology. 

Figure 1-2 parallels the “pushover” concept shown in Figure 1-1 using 

spectral coordinates rather than lateral force (base shear) and lateral 

displacement (roof drift) coordinates.  Conversion to spectral coordinates is 

based on the assumption that 100% of the effective seismic weight of the 

structure, W, participates in fundamental mode at period, T, consistent with 

Equation 12.8-1 of ASCE/SEI 7-05: 

 WCV s  (1-4) 

In Figure 1-2, the term SMT is the Maximum Considered Earthquake (MCE) 

spectral acceleration at the period of the system, T, the term Smax represents 

the maximum strength of the fully-yielded system (normalized by the 

effective seismic weight, W, of the structure), and the term Cs is the seismic 

response coefficient.  As defined in Equation 1-5, the ratio of the MCE 
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spectral acceleration to the seismic response coefficient, which is the design-

level acceleration, is equal to 1.5 times the R factor: 

 
s

MT

C

S
R 5.1  (1-5) 

The 1.5 factor in Equation 1-5 accounts for the definition of design 

earthquake ground motions in ASCE/SEI 7-05, which is two-thirds of MCE 

ground motions. 

In Figure 1-2, the overstrength parameter, , is defined as the ratio of the 

maximum strength of the fully-yielded system, Smax (normalized by W), to the 

seismic response coefficient, Cs: 

 
s

max

C

S
  (1-6) 

The Methodology calculates the overstrength parameter, , based on 

nonlinear static (pushover) analysis.  Calculated values of overstrength, , 

are different from the overstrength factor, O, of ASCE/SEI 7-05, which is 

specified for design of non-ductile elements.  In general, different designs of 

the same system will have different calculated values of overstrength, and the 

parameter, , will vary.  The single value of  that is considered to be most 

appropriate for use in design of the system of interest, is the value ultimately 

selected for O. 

In Figure 1-2, inelastic system displacement at the MCE level is defined as 

1.5Cd times the displacement corresponding to the design seismic response 

coefficient, Cs, and set equal to the MCE elastic system displacement, SDMT 

(based on the “Newmark rule”), effectively redefining the Cd factor to be 

equal to the R factor: 

 RCd   (1-7) 

The equal displacement assumption is reasonable for most conventional 

systems with effective damping approximately equal to the nominal 5% level 

used to define response spectral acceleration and displacement.  Systems 

with substantially higher (or lower) levels of damping would have 

significantly smaller (or larger) displacements than those with 5%-damped 

elastic response.  As one example, systems with viscous dampers have 

significantly higher damping than 5%.  For such systems, the response 

modification methods of Chapter 18 of ASCE/SEI 7-05 are used to determine 

an appropriate value of the Cd factor, as a fraction of the R factor. 
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1.2.7 Safety Expressed in Terms of Collapse Margin Ratio 

The Methodology defines collapse level ground motions as the intensity that 

would result in median collapse of the seismic-force-resisting system.  

Median collapse occurs when one-half of the structures exposed to this 

intensity of ground motion would have some form of life-threatening 

collapse.  As shown in Figure 1-2, collapse level ground motions are higher 

than MCE ground motions.  As such, MCE ground motions would result in a 

comparatively smaller probability of collapse.  As defined in Equation 1-8, 

the collapse margin ratio, CMR, is the ratio of the median 5%-damped 

spectral acceleration of the collapse level ground motions, ˆ
CTS (or 

corresponding displacement, CTSD ), to the 5%-damped spectral acceleration 

of the MCE ground motions, MTS (or corresponding displacement, MTSD ), at 

the fundamental period of the seismic-force-resisting system: 

 
MT

CT

MT

CT

SD

SD

S

Ŝ
CMR   (1-8) 

In one sense, the collapse margin ratio, CMR, could be thought of as the 

amount MTS must be increased to achieve building collapse by 50% of the 

ground motions.  Collapse of the seismic-force-resisting system, and hence 

CMR, is influenced by many factors, including ground motion variability and 

uncertainty in design, analysis, and construction of the structure.  These 

factors are considered collectively in a collapse fragility curve that describes 

the probability of collapse of the seismic-force-resisting system as a function 

of the intensity of ground motion. 

1.2.8 Performance Quantified Through Nonlinear Collapse 
Simulation on a Set of Archetype Models 

The Methodology determines the response modification coefficient, R factor, 

and evaluates the system over-strength factor, , using nonlinear models of 

seismic-force-resisting system “archetypes.”  Archetypes capture the essence 

and variability of the performance characteristics of the system of interest.  

The Methodology requires nonlinear analysis of a sufficient number of 

archetype models, with parametric variations in design parameters, to 

broadly represent the system of interest. 

The Methodology requires archetype models to meet the applicable design 

requirements of ASCE/SEI 7-05 and related standards, and additional criteria 

developed for the system of interest.  Archetype design assumes a trial value 

of the R factor to determine the seismic response coefficient, Cs.  The 

Methodology requires detailed modeling of nonlinear behavior of archetypes, 

based on representative test data sufficient to capture collapse failure modes.  
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Collapse failure modes that cannot be explicitly modeled are evaluated using 

appropriate limits on the controlling response parameter. 

1.2.9 Uncertainty Considered in Performance Evaluation  

The Methodology defines acceptable values of the collapse margin ratio in 

terms of an acceptably low probability of collapse for MCE ground motions, 

given uncertainty in the collapse fragility.  Systems that have more robust 

design requirements, more comprehensive test data, and more detailed 

nonlinear analysis models, have less collapse uncertainty, and can achieve 

the same level of life safety with smaller collapse margin ratios. 

Calculated values of collapse margin ratio are compared with acceptable 

values that reflect collapse uncertainty.  If the calculated collapse margin is 

large enough to meet the performance objective (i.e., an acceptably small 

probability of collapse at the MCE), then the trial value of the R factor used 

in the archetype design is acceptable.  If not, a new (lower) trial value of the 

R factor must be re-evaluated using the Methodology, or other limitations on 

the system of interest (e.g., height restrictions in the design requirements) 

must be considered. 

1.3 Content and Organization 

This report is written and organized to facilitate potential use and adoption 

by the NEHRP Recommended Provisions.  Chapter 2 provides an overview 

of the Methodology, introducing the basic theory and concepts that are 

described in more detail in the chapters that follow. 

Chapters 3 through 7 step through the elements of the Methodology, 

including required system information, structure archetype development, 

nonlinear modeling, criteria for collapse assessment, nonlinear analysis, and 

evaluation of seismic performance factors.   

Chapter 8 defines documentation and peer review requirements, and 

describes recommended qualifications, expertise, and responsibilities for 

personnel involved with implementing the Methodology in the development 

and review of a proposed system.   

Chapter 9 provides example applications intended to assist users in 

implementing the Methodology, and to validate the technical approach.  

Example systems include special and ordinary reinforced concrete moment 

frame systems, and wood light-frame systems.   

Chapter 10 includes supporting studies on non-simulated collapse failure 

modes for steel moment frame systems, and on dynamic response 
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characteristics, performance properties, and collapse failure modes unique to 

seismically-isolated structures.   

Chapter 11 provides summary conclusions, recommendations, and 

limitations on the use of the Methodology. 

Appendices A through F provide background information supporting the 

development of the Methodology, and expanded guidance on key aspects of 

the Methodology.   

A glossary of definitions and list of symbols used throughout this report, 

along with a list of references, are provided at the end of this report. 
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Chapter 2 

 Overview of Methodology 

This chapter outlines the general framework of the Methodology and 

describes the overall process.  It introduces the key elements of the 

Methodology, including required system information, development of 

structural system archetypes, archetype models, nonlinear analysis of 

archetypes, performance evaluation, and documentation and peer review 

requirements.  These elements are specified in more detail in the chapters that 

follow. 

2.1 General Framework 

The Methodology consists of a framework for establishing seismic 

performance factors (SPFs) that involves the development of detailed system 

design information and probabilistic assessment of collapse risk.  It utilizes 

nonlinear analysis techniques, and explicitly considers uncertainties in 

ground motion, modeling, design, and test data.  The technical approach is a 

combination of traditional code concepts, advanced nonlinear dynamic 

analyses, and risk-based assessment techniques.   

Reliable analysis requires valid ground motions and representative nonlinear 

models of the seismic-force-resisting system.  Development of representative 

models requires both detailed design information and comprehensive 

nonlinear test data on structural components and assemblies that make up the 

system of interest.  Figure 2-1 illustrates the key elements of the 

Methodology.   

The Methodology includes fully defined characterizations of ground motion 

and methods of analysis that are generically applicable to all seismic-force-

resisting systems.  Design information and test data will be different for each 

system, and may not yet exist for new systems.  The Methodology includes 

requirements for defining the type of design information and test data that are 

needed for developing representative analytical models of the seismic-force-

resisting system of interest. 

Rather than establishing minimum requirements for design information and 

test data, the use of better quality information is encouraged by rewarding 

systems that have “done their homework.”  Systems that are based on well-

defined design requirements and comprehensive test data will have 
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inherently less uncertainty in their seismic performance.  Such systems will 

need a lower margin against collapse to achieve an equivalent level of safety, 

as compared to systems with less robust data. 

Due to the complexity of nonlinear dynamic analysis, the difficulty in 

modeling inelastic behavior, and the need to verify the adequacy and quality 

of design information and test data, the Methodology requires independent 

peer review of the entire process. 
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Figure 2-1 Key elements of the Methodology. 

2.2 Description of Process 

The steps comprising the Methodology are shown in Figure 2-2.  These steps 

outline a process for developing system design information with enough 

detail and specificity to identify the permissible range of application for the 

proposed system, adequately simulate nonlinear response, and reliably assess 

the collapse risk over the proposed range of applications.  Each step is linked 

to a corresponding chapter in this report, and described in the sections that 

follow.  

2.3 Develop System Concept 

The process begins with the development of a well-defined concept for the 

seismic-force-resisting system, including type of construction materials, 

system configuration, inelastic dissipation mechanisms, and intended range 

of application.   
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