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A B S T R A C T   

Machine learning (ML) has become the most successful branch of artificial intelligence (AI). It provides a unique 
opportunity to make structural engineering more predictable due to its ability in handling complex nonlinear 
structural systems under extreme actions. Currently, there is a boom in implementing ML in structural engi-
neering, especially over the last five years thanks to recent advances in ML techniques and computational ca-
pabilities as well as the availability of large datasets. This paper provides an ambitious and comprehensive 
review on the growing applications of ML algorithms for structural engineering. An overview of ML techniques 
for structural engineering is presented with a particular focus on basic ML concepts, ML libraries, open-source 
Python codes, and structural engineering datasets. The review covers a wide range of structural engineering 
applications of ML including: (1) structural analysis and design, (2) structural health monitoring and damage 
detection, (3) fire resistance of structures; (4) resistance of structural members under various actions, and (5) 
mechanical properties and mix design of concrete. Both isolated members and whole systems made from steel, 
concrete and composite materials are explored. Findings from the reviewed literature, challenges and future 
commendations are highlighted and discussed. With available databases and ML codes provided, this review 
paper serves as a useful reference for structural engineering practitioners and researchers who are not familiar 
with ML but wish to enter this field of research.   

1. Introduction 

Machine learning (ML) is a class of artificial intelligence (AI) that 
focuses on teaching computers how to make predictions from available 
datasets and algorithms. Most importantly, it provides computer systems 
the ability to learn and improve themselves rather than being explicitly 
programmed. Although ML was born in 1943 and first coined in 1959, it 
actually started to flourish in the 1990 s, and has become the most 
successful subfield of AI. ML has also become one of the technology 
buzzwords of our age since it plays a pivotal role in many real-world 
applications such as image and speech recognition, traffic alerts, self- 
driving cars, medical diagnosis, etc. 

In general, ML can be classified into three main categories based on 
the learning process: supervised learning, unsupervised learning, and 
reinforcement learning. Supervised learning is the most basic type of ML 
whose algorithm is trained from a labelled dataset. This method is 
suitable for regression and classification problems, and it has been 
widely used in structural engineering for damage detection (classifica-
tion problems) and strength predictions (regression problems). On the 
contrary, the algorithm used in unsupervised learning is trained from an 
unlabelled dataset. Meanwhile, in the reinforcement learning method, 

the algorithm is trained through a trial-and-error process. A significant 
number of ML algorithms have been adopted in structural engineering 
applications, e.g., neural networks (NN), decision tree (DT), regression 
analysis (RA), support vector machine (SVM), random forest (RF), 
boosting algorithm (BA), etc. Surrogate model, also known as meta-
model, is a special case of supervised ML which has been widely used in 
the field of engineering design to reduce computational time of complex 
black-box ML models with relaxed accuracy. It is an interpretable model 
which is trained to approximate the predictions of a black-box ML 
model. In other words, surrogate models are simple analytical models 
which mimic the behaviour of complex ML models. 

Structural engineering involves the structural analysis and design of 
load-bearing structures. For complex structural systems under extreme 
actions that exhibit highly nonlinear behaviour, the use of structural 
analysis and design methods requires a time-consuming calibration 
process, and they are somehow too complicated for practical imple-
mentation. In this case, ML can provide a promising alternative to save 
time and effort. One of the first structural engineering applications of ML 
was carried out by Adeli and Yeh [1] in 1989 using artificial neural 
network (ANN) to design steel beams [2]. Since then, the ANN algorithm 
has been successfully used in many pioneering works in structural en-
gineering including structural analysis and design [3], structural 
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damage detection [4], structural health monitoring (SHM) [5], struc-
tural optimisation [6-8], strength and resistance predictions [9,10], and 
structural reliability [11]. However, the use of ML in structural engi-
neering is still in its infancy at that time [12] due to the limitations of ML 
algorithms and computing power. This is evidenced by the fact that only 
a few relevant articles were published each year in the early stage of 
structural engineering applications (see Fig. 12a in Section 3). 

Another reason that hinders the application of ML in structural en-
gineering at its early stage is a lack of experimental databases to ensure 
the validation of ML models. However, in recent years, the research 
community has taken the necessary steps towards overcoming this 
barrier by establishing database platforms (e.g., DataCenterHub, 
DesignSafe, Mendeley Data, etc.) to collect data from structural engi-
neering tests. DataCenterHub is a massive repository platform with over 
250 datasets from nearly 50,000 experiments [13]. DesignSafe is 
extended from the network for earthquake engineering simulation 
(NEEShub), a cyberinfrastructure platform to share data and tools for 
earthquake engineering [14,15] and disaster risk management [16,17]. 
Some notable databases for structural engineering include NEEShub 
datasets for earthquake engineering that can be accessed from Data-
CenterHub [18] and image databases for crack damage detection (e.g., 
Structural ImageNet [19] with over 10,000 images, PEER Hub ImageNet 
[20] developed by the Pacific earthquake engineering research (PEER) 
centre with over 36,000 images, bridge crack library [21] with over 
11,000 images, etc.). Detailed databases used in structural engineering 
are given in Section 2.5. 

In addition to the establishment of the database platforms for 
structural engineering, there have also been recent advances in ML 
techniques. BA methods (see Section 2.2.6), especially extreme gradient 
boosting (XGBoost) [22] and categorical gradient boosting (CatBoost) 
[23], offer extremely powerful tools to solve the problems with large 
datasets in a fast and accurate manner. Convolutional neural network 
(CNN) [24] is considered as one of the state-of-the-art ML algorithms for 

image-based crack detection [20] due to its ability in rapidly detecting 
crack damage in structures. Recently, Google team has made a new 
breakthrough when creating a new ML method called AutoML-Zero [25] 
that can evolve itself without human intervention. In addition, the 
availability of open-source ML libraries with hands-on ML algorithms 
and ready-to-run packages (e.g., TensorFlow and Keras developed by 
Google and PyTorch by developed by Facebook) has facilitated the 
development of ML-based models for structural engineering 
applications. 

With the rapid development of ML algorithms and computational 
power combined with the availability of databases collected recently, 
the research community has witnessed a boom in the use of ML in the 
structural engineering domain, especially over the last five years with a 
clear exponential growth in the number of publications each year (see 
Fig. 12a in Section 3). However, practical applications of ML in struc-
tural engineering are still very limited. One of the real-world applica-
tions of ML is to improve design of buildings through generative design, 
where the industry (e.g., Arup) has developed ML-powered tools to 
generate design alternatives that meets requirements of the end-users. 
Although a number of review articles published recently have touched 
on this topic, they just focused on a certain area of structural engineering 
(e.g., structural design and performance assessment [26], reliability and 
safety [27,28], earthquake engineering [29,30], structural design for 
fire [31], SHM and crack detection [32–39], concrete property [40,41], 
concrete mix design [42], capacity prediction of concrete structures 
[43], and design and inspection of bridges [44]). A comprehensive re-
view on all areas of structural engineering is lacking. 

This paper is therefore aims to present a comprehensive review on all 
applications of ML techniques to structural engineering. The present 
review is considered as the most ambitious and comprehensive work 
when covering a wide range of structural engineering applications (i.e., 
structural analysis and design, SHM and damage detection, behaviour 
and capacity of structural members and systems, fire resistance of 

Nomenclature 

ANN Artificial neural network 
AdaBoost Adaptive boosting 
ANFIS Adaptive neuro-fuzzy inference system 
BA Boosting algorithm 
CART Classification and regression tree 
CatBoost Categorial gradient boosting 
CFS Cold-formed steel 
CFST Concrete-filled steel tubes 
CHS Circular hollow section 
CNN Convolutional neural network 
DT Decision tree 
EFB Exclusive feature bundling 
FFNN Feed-forward neural network 
FRC Fibre reinforced concrete 
GBM Gradient boosting method 
GOSS Gradient-based one-side sampling 
GPC Geopolymer concrete 
HPC High performance concrete 
HSC High strength concrete 
kNN k-nearest neighbour 
LRFD Load resistance factor design 
LSTM long short term memory 
LWC Lightweight concrete 
LightGBM Light gradient boosting machine 
MAE Mean absolute error 
MLP Multilayer perceptron 
MSE Mean squared error 

MVS Minimal variance sampling 
NB Naïve Bayes 
NEES Network for earthquake engineering simulation 
NN Neural network 
NSC Normal strength concrete 
PEER Pacific earthquake engineering research 
PHL Plastic hinge length 
RA Regression analysis 
RA1 Linear regression 
RA2 Multivariate regression 
RA3 Polynomial regression 
RA4 Lasso regression 
RA5 Ridge regression 
RA6 Logistic regression 
RAC Recycled aggregate concrete 
RBF Radial basis function 
RBFNN Radial basis function neural network 
RC Reinforced concrete 
RF Random forest 
RHS Rectangular hollow section 
RNN Recurrent neural network 
SCC Self-compacting concrete 
SHM Structural health monitoring 
SHS Square hollow section 
SVC Support vector clustering 
SVM Support vector machine 
SVR Support vector regression 
UHPC Ultra-high performance concrete 
XGBoost Extreme gradient boosting  
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structures, and property and mix design of concrete) and ML algorithms 
(i.e., NN, SVM, DT, RF, BA, and RA). The review looks at both isolated 
structural members (e.g., beam, column, slab/panel, wall, and joint) and 
whole structural systems (e.g., truss, frame, building, and bridge) made 
from different materials (e.g., concrete, steel, cold-form steel (CFS), fibre 
reinforced polymer (FRP) composite, and steel–concrete composite). 
The review also considers different behaviours of structures under shear, 
flexural, torsional, axial, bond, and buckling actions. It should be noted 
that evolutional algorithms (EA) including genetic algorithm and gene 
expression programming are types of ML, and thus the author initially 
intended to cover them in this paper. However, there is a very large 
number of publications (about 125 references) on the application of EA 
to structural engineering found in the literature, and thus the inclusion 
of this topic will make the manuscript too lengthy. In addition, there is 
already one review article published recently on this topic [45]. For this 
reason, this topic is not covered in the manuscript. 

2. ML in a nutshell 

This section provides the concepts and hands-on tools to implement 
ML methods. It covers a wide range of ML algorithms which are widely 
used in the structural engineering domain. In addition, available Python 
libraries, open-source codes and datasets for ML are also provided for 
the readers to practise and execute their ML models. 

2.1. Overview of ML 

ML is the process of teaching a computer system (i.e., ML model) how 
to make an accurate prediction when feeding the new data. Fig. 1 il-
lustrates a typical workflow of ML used in predictive modelling. By using 
a learning algorithm and initial data, the computer system is trained to 
be able to learn and improve until its performance is met. Therefore, the 
accuracy of a ML model strongly depends on the characteristics of initial 
data and the performance of the learning algorithm. There are three 
main steps to build a ML model: preparing database, learning, and 
evaluating the model.  

• Step 1: Initial data used to build a ML model is usually presented in 
the form of input and corresponding output variables which are 
characterised in ML terminology by feature (input variable) and label 
(output variable). When predicting the behaviour of a structure, for 
example, its geometric dimension and material properties are cate-
gorized as features, whilst its ultimate strength and deflection are 
used as labels. Some ML algorithms require all input data to be scaled 
in the range [0,1] for having a better performance [46]. To test the 
performance of ML models, initial data is randomly split into training 

and testing datasets with the large portion being used for training 
purpose. 

• Step 2: The aim of this learning step is to train a selected ML algo-
rithm. A large number of ML algorithms have been developed in the 
literature for specific applications (a detailed explanation of each 
algorithm given in Section 2.2). It is therefore important to compare 
different algorithms to find out the best one for particular problems. 
The selected algorithms are then trained using the training dataset 
obtained from Step 1.  

• Step 3: Once a ML model is completely trained, its performance is 
evaluated using the testing dataset. A loss function is used as a per-
formance indicator to measure how far a predicted value is from its 
actual value. Typical loss functions for regression problems are the 
mean absolute error (MAE) and mean squared error (MSE). Loss 
functions play a critical role in evaluation ML models, and thus 
choosing the right loss function also dictates how well the model will 
be. 

2.2. ML algorithms 

Nowadays, plenty of ML algorithms have been developed in the 
literature as shown in Fig. 2. Each algorithm with its strength and 
weakness is designed for a certain types of learning methods and 
problems. However, this section only looks at the algorithms that are 
commonly used in structural engineering. In each algorithm, its concept 
is clearly explained which is found helpful in practice for structural 
engineering people without ML background. 

2.2.1. Regression techniques 
RA is a predictive modelling technique which was first developed in 

statistics to study the relationship between independent variables (pre-
dictors) and dependent variables (targets). This method was then 
applied in ML under the supervised learning algorithm to predict the 
output values based on the values of the input variables. There are 
different types of regression models developed in ML based on (i) the 
number of variables, (ii) the type of variables, and (iii) the shape of the 
regression line. RA models commonly used in structural engineering 
include: 

2.2.1.1. Linear regression (RA1). This is the simplest regression model 
in ML where the output variable and the input variable(s) are best fitted 
in a straight line (linear function). The coefficients of the linear equation 
are determined by minimising the cost function (e.g., MSE and MAE) 
defined as the difference (error) between the predicted value and the 
actual value. If a single input variable is used, the model is called the 
simple linear regression. In the case of more than one input variable, it is 
called the multiple linear regression. 

Fig. 1. Typical workflow of ML.  
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2.2.1.2. Multivariate regression (RA2). Multivariate regression is an 
extension of the multiple linear regression when dealing with the 
problem that has more than one output variable. The word “multivar-
iate” refers to more than one output variable, whilst the word “multiple” 
refers to more than one input variable. The merit of this method is that it 
helps to understand the correlation between input and output variables. 
This method is also widely used in ML for regression problems. 

2.2.1.3. Polynomial regression (RA3). The difference between RA3 
model and RA1 model is the shape of the regression line. The best fit line 
in RA3 is a curved line (polynomial function) with the power of input 
variables more than one. Overfitting might occur in this model if the 
input variables are fitted by a higher degree polynomial to obtain a 
lower error. Therefore, it is useful to plot the model to make sure 
reasonable results are obtained. 

2.2.1.4. Lasso regression (RA4). Least absolute shrinkage and selection 
operator (LASSO) regression is a regularized version of RA1 which is 
used when the input variables are highly correlated. In this case, the use 
of linear regression technique might result in overfitting. Therefore, RA4 
is proposed to reduce overfitting by adding a regularisation term in the 
cost function during the training. This keeps the model weight as small 
as possible [47]. The regularisation term used in RA4 is L1-norm (ab-
solute value of the weight). 

2.2.1.5. Ridge regression (RA5). Similar to RA4, RA5 is also a 

regularized version of RA1. However, the regularisation term used in 
RA5 is L2-norm (squared value of the weight) instead of L1-term used in 
the case of RA4. The aim of the RA5 technique is to try to eliminate the 
weight of the least important features [47]. 

2.2.1.6. Logistic regression (RA6). This regression technique was 
developed for classification problems when the output variable is binary 
or discrete in nature (e.g., True/False, 1/0, Yes/No, etc.). In RA6, the 
relationship between the input and output variables is expressed by a 
logistic function also known as sigmoid function. This method is based 
on the concept of probability. It means that RA6 outputs a binary value 
of 0 (when the estimated probability is less than 50%) or 1 (when the 
estimated probability is greater than 50%) rather than a numerical 
value. 

2.2.2. Neural network and its variants 
Artificial neural network (ANN) is developed to mimic how biolog-

ical neurons work. The first ANN was invented by Rosenblatt [48] in 
1958 called perceptron for pattern recognition problems. Thanks to 
improving in computing power, ANN has become one of the most pop-
ular ML algorithms nowadays with various variants such as feed- 
forward neural network (FFNN) [49] improved by multilayer percep-
tron (MLP), radial basis function neural network (RBFNN) [50], CNN 
[24], recurrent neural network (RNN) [51] improved by long short term 
memory (LSTM) [52], and adaptive neuro-fuzzy inference system 
(ANFIS) [53]. FFNN is the first and simplest type of ANN in which the 

Fig. 2. ML algorithms grouped by learning type.  
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information transfers only in one direction (forward) from input nodes 
to output nodes, whilst MLP is an improved version of FFNN with 
multiple layers of computing units including one input layer, one or 
more hidden layers and one output layer as shown in Fig. 3a. RBFNN is 
an ANN in which a radial basis function (RBF) is used as activation 
function. CNN is specifically developed for image recognition (see 
Ref. [36] for a critical review on the use of CNN in image-based crack 
detection), whilst RNN is designed to interpret temporal or sequential 
information. ANFIS is a combination of the learning ability of an 
adaptive neural network and reasoning capabilities of a fuzzy inference 
system. A detailed historical review of ANN and its variants can be found 
in Schmidhuber [54]. 

2.2.2.1. ANN. An ANN structured like the human brain consists of 
artificial neurons also known as units or nodes. These nodes are fully 
interconnected and arranged in three different layers as shown in 
Fig. 3a. The input layer receives the input data x, whilst the output layer 
represents the predicted results y of the network. Sandwiching between 
the input and output layers is one or more hidden layers of computing 
units (Fig. 3b) which performs the main mathematical computations on 
the input data. When an ANN is designed with two or more hidden 
layers, it is called multilayer perceptron or deep learning (DL), a specific 
subfield of ML based on NNs [54,55]. 

The behaviour of each neuron unit is defined by the weights w 
assigned to it. When the data xi is fed to the input layer, they are 
multiplied by corresponding weights wi. Then, a transfer function is used 
to calculate the weighted sum of the input plus a bias b, which is 
gradually adjusted to minimise the difference between the predicted and 
actual outputs. The value of the transfer function is then passed through 
an activation function f to check if the node should transmit data to the 
output layer or not. When an ANN is trained, random values of weights 
are assigned to all nodes. Once the activation function passes the pre-
dicted value y to the output layer, an error function is used to calculate 
the difference between the predicted and actual outputs. Based on the 
result, the ANN model adjusts the weights of all its nodes to minimise the 
error. Such training process known as back-propagation [56] is iterated 
until the convergence condition is satisfied. 

There are a number of hyper parameters that need to be optimised 
when training an ANN model because they control the learning and 
training process of the network. They include the architectural choices 
of an ANN (i.e., the number of hidden layers used, the number of nodes 
per hidden layers, and the type of activation functions) and the training 
variables (i.e., leaning rate, the number of epochs, momentum, and 
batch size). Increasing the number of hidden layers and hidden nodes 
can increase the accuracy of the network, but it causes computational 
cost. The activation function is used to account for the nonlinearity of 

models. The learning rate defines how quickly the ANN model updates 
its parameters. The use of a high learning rate will speed up the learning, 
but it may fail to converge. Epoch controls the number of iterations for 
the training dataset, while momentum is used to choose the direction of 
the next step from the previous step which can help to prevent oscilla-
tions. Such hyper parameters are tuned during the testing and validation 
stages. 

2.2.2.2. CNN. This algorithm was first introduced in the 1980 s by 
Yann LeCun, a French computer science researcher who built one of the 
early versions of CNN architectures for handwritten digital recognition 
called LeNet [24]. The basic idea of CNN is to create a network in which 
each layer can convert information from the previous layers into more 
complex information and transform to the next layers. As shown in 
Fig. 4, a CNN is built based on two basic blocks: the feature learning 
block and the classification block. The feature learning which is 
composed of a number of alternate layers of convolution and pooling is 
used to extract and learn the feature from the input image. The extracted 
or learned feature is then classified through the classification block. 
Different CNN architectures have also been developed to improve the 
performance of CNN in various applications. Notable among them are 
LeNet, AlexNet, VGG, and ResNet. A comprehensive review on the 
evolution of CNN architectures can be found in Refs. [57,58]. 

CNN is considered as one of the best ML algorithms for image 
recognition. A detailed review on the development of CNN for the 
application of image classification can be found in Wang et al. [59]. In 
the context of SHM, CNN has been widely used to detect crack in 
structures based on either image classification approaches or segmen-
tation techniques. The image classification method detects crack at the 
image level rather than the pixel level used in the segmentation method. 
Reviews on the use of CNN for structural crack detection and condition 
assessment were reported by Ali et al. [39] and Sony et al. [36], 
respectively. 

2.2.2.3. RBFNN. This is a specific ANN that uses RBF as an activation 
function as proposed in one of the early works by Broomhead and Lowe 
[50]. The RBFNN has only one hidden layer called feature vector, and its 
output is a linear combination of RBFs of the inputs and neuron pa-
rameters (i.e., weight and bias). The merit of RBFNN over a regular NN is 
its fast-training ability thanks to the universal approximation of RBFs. 
The only concern when using RBFNN is how to properly choose the 
shape parameters and centres of RBF [60]. 

2.2.2.4. ANFIS. This algorithm combines the adaptive control tech-
nique of neuro-fuzzy systems and the learning ability of ANNs. There-
fore, ANFIS can leverage the merits of both fuzzy logic and NN to 

Fig. 3. Example of an ANN.  
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minimise the errors between the input data and the data predicted by the 
neuro-fuzzy system. A typical ANFIS architecture consists of five layers 
namely fuzzy layer, product layer, normalized layer, de-fuzzy layer, and 
overall output layer. The first layer receives the input values and de-
termines their membership functions using premise parameters. The 
second layer produces the firing strength for the rules, and thus this 
layer is also called the “rule layer”. The firing strength is then normal-
ised in the third layer. The fourth layer receives the normalised values 
and consequence parameters, and then passes them to the last layer for 
the overall final output. The adjustable parameters (i.e., premise and 
consequence) are identified during the learning process to minimise the 
error between the actual output and desired output. Therefore, they play 
a vital role in deciding the performance of ANFIS. 

2.2.3. Support vector machine 
SVM is one of the most powerful and popular algorithms due to its 

accuracy and simplicity. This algorithm was first introduced for classi-
fication problems by Boser et al. [61] in 1992 using nonlinear classifiers. 
Cortes and Vapnik [62] later extended the SVM algorithm to cases where 
data are nonlinearly separable using soft margin classifiers. SVM was 
also expanded for regression problems [63] known as support vector 
regression (SVR) and clustering tasks [64] known as support vector 
clustering (SVC). However, the SVM technique is widely used in clas-
sification purposes. 

The basic idea behind the SVM algorithm is to distinguish between 
groups of data features, called vectors, and then find an optimal sepa-
rating hyperplane that has a maximum margin (i.e., the maximum dis-
tance between support vectors of both groups as shown in Fig. 5a). The 

data points located on the margins are called support vectors which 
influence the position and orientation of the hyperplane. In other works, 
SVM aims to maximise the margin by means of support vectors. SVR 
applies the same principle as SVM, but for regression problems. The SVR 
algorithm finds a function that best fits data points within a decision 
boundary as shown in Fig. 5b using linear regression. The best fit line is 
the hyperplane that has the maximum number of data points within a 
threshold value ε (see Fig. 5b). 

In most real-world applications, data is not linearly separable, and 
thus it is impossible to find a separating hyperplane. In this case, a 
penalty parameter and kernel function are used. When the data point is 
on the wrong side of the margin, the penalty parameter (i.e., the slack 
variable ξ illustrated in Fig. 6a) is introduced to controls the trade-off 
between maximising the hyperplane’s margins and minimising the 
total distance of the slack variables Σξi. This soft margin technique en-
ables SVM to make certain mistakes to keep the hyperplane’s margin 
sufficiently wide so that other points can still be classified correctly. 
Meanwhile, the kernel functions are used to map the original nonlinear 
separable data into a new space where the data are linearly separable as 
illustrated in Fig. 6b. This is called the “kernel trick”. The most 
commonly used kernel functions are linear and nonlinear polynomial 
functions, RBF, and sigmoid function. Both kernel functions and penalty 
parameters have significant effects on the performance of SVM models. 
The selections of penalty parameters and kernel functions were exam-
ined and investigated by Tharwat [65]. 

2.2.4. Decision tree 
DT also known as classification and regression tree (CART) is a tree- 

Fig. 4. Typical CNN architecture.  

Fig. 5. Example of SVM for (a) classification and (b) regression.  
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based model to visualise the decision-making process. It has become one 
of the most popular algorithms due to its simplicity and ability to handle 
both numerical and categorical data. As shown in Fig. 7, a DT has four 
elements including a root node, two or more branches, decision nodes, 
and leaf (terminal) nodes. The root node is the topmost decision node of 
a tree representing the ultimate objective. The leaf node located at the 
end of the branch indicates a decision to be made, whilst the decision 
node represents a condition that makes a dataset split. 

A tree is built by splitting the source data (root node) into many 
smaller subsets. The splitting condition can be based on different metrics 
such as the Gini index, entropy, information gain, and MSE (regression 
problem). The splitting process is repeated on each derived subset until 
it cannot find a split that reduces metrics used or it reaches the 
maximum depth of the tree. 

Although DT offers many merits (e.g., less effort for data pre- 
processing due to no scaling or normalisation of data required), it is 
unstable and relatively inaccurate compared to other tree-based algo-
rithms like RF and BA family. In order to reduce the risk of overfitting in 
DT, the model needs to be regularised to restrict the DT’s freedom during 
training (e.g., the maximum depth of the tree, the maximum number of 
leaf nodes, etc.). More information about tuning regularisation hyper-
parameters can be found in Géron [47]. 

2.2.5. Random forest 
RF developed by Breiman [66] is an ensemble learning algorithm 

using DTs as the weak learners. RF builds DTs using the bagging tech-
nique (parallel training). The basic idea behind this method is to 
construct a forest of individual DT using a random selection of features 
(hence the name “Random Forest”), and then combine the outputs of 
each DT by taking the majority vote (classification problem) or average 
(regression problem) as shown in Fig. 8. Therefore, it reduces the risk of 
overfitting problems in the DT method. 

RF inherits the merits of the DT method. Another advantage of RF 
over DT is that it works well on large databases with thousands of input 
variables. By using a large number of trees, RF can train faster than DT, 
but it is quite slow to create predictions of the trained model. RF is also a 
handy algorithm as its default parameters are often good enough to 
produce good results. However, there are also several hyperparameters 
in RF that can be used to make the model more accurate or faster. 

2.2.6. Boosting algorithm 
BA is an ensemble technique which combines many individual 

models into one predictive model that can boost the performance of the 
individual models [67]. The term “boosting” refers to strengthening the 
week learners (e.g., DT). This can be done by means of sequential ap-
proaches. BA was first introduced in 1996 by Freund and Schapire 
[68,69] with adaptive boosting algorithm (AdaBoost). Since then, a 
number of boosting approaches focusing on enhancing the speed and 
accuracy have been developed including gradient boosting machine 
(GBM) [70] also known as gradient tree boosting, extreme gradient 
boosting (XGBoost) [22], light gradient boosting machine (LightGBM) 
[71], and categorical gradient boosting (CatBoost) [23]. A comparison 
of various BA techniques conducted recently by Bentéjac et al. [72] 
indicated that CatBoost gives the most accurate results, but it is a bit 
slower than others. XGBoost comes second in both accuracy and speed. 
LightGBM is the fastest algorithm, but its accuracy is not good compared 
with others. 

2.2.6.1. AdaBoost. This is the very first stepping-stone in the BA family. 
It is also one of the most popular boosting algorithms (see Ferreira and 
Figueiredo [73] for a detailed historical review of AdaBoost). AdaBoost 
is built based on DT and RF algorithms with the weak learners being the 
DT that has one node and two leaves called decision stumps. The idea 
behind AdaBoost is to improve to the performance of the weak learners 
using an adaptively reweighted data obtained based on the output of the 
previous weak learners (see Fig. 9). 

The implementation procedure of AdaBoost is illustrated in Fig. 9. 
The first weak learner is trained using a uniform weight for all data 
points of the training sample. Then the second weak learner is trained 
using the weighted sample 1 with the weight coefficients being updated 
to account for the mistake from the first weak learner (i.e., increasing the 
weights of misclassified data points (two green points in Fig. 9) and 
decreasing the weights of correctly classified data points). This process is 
repeated until the last weak learner. Finally, the strong learner is formed 
by combining the decision boundaries learnt by all weak learners. 

2.2.6.2. GBM. This algorithm is developed by Friedman [70] by mak-
ing two modifications to the AdaBoost algorithm. The first modification 
is the use of DTs as the weak learners instead of decision stumps. This 

Fig. 6. Illustration of (a) penalty parameters ξ and (b) kernel functions.  

Fig. 7. Example of a DT.  
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means that all trees are not necessary to be the same, and thus they can 
capture different outputs from the data. The second modification in-
volves the training method. Instead of updating the weights of mis-
classified and correctly classified data points as in the case of AdaBoost, 
GBM minimises the loss function of each weak learner using the gradient 
descent procedure, a generic optimisation algorithm which can apply to 
any loss function that is differentiable. As shown in Fig. 10, the residual 
loss (error) of the previous tree is taken into account in training of the 
next tree. By combining all trees, the final model is able to capture the 
residual loss from the weak learners. In addition to its accuracy, GBM 
also offers a lot of flexibility by providing several tuning hyper-
parameters including number of trees, depth of trees, and learning rate 
to control convergence and training speed. 

2.2.6.3. XGBoost. This algorithm was proposed by Chen and Guestrin 
[22] to improve the speed and performance of the GBM algorithm which 
is very slow in implementation due to its sequential model training. 

XGBoost implements several techniques that make it faster than GBM. 
For examples, randomisation technique is used to reduce overfitting and 
increase training speed. Compressed column-based structure is used to 
store data to reduce the cost of sorting which is the most time-consuming 
part of tree learning. Parallel and distributed computing are also 
implemented to enable the use of all CPU cores during training and split 
finding. The implementation of the parallel processing makes XGBoost 
extremely powerful to solve large problems with large datasets in a fast 
and accurate manner. It is therefore considered as one of the most effi-
cient ML methods, and has become a favourite de-facto algorithm today. 

2.2.6.4. LightGBM. This algorithm was developed by Ke et al. [71] 
focusing on computational efficiency with an acceptable level of accu-
racy (up to 20 times faster than GBM [71]). The word “Light” means this 
algorithm is superfast compared with other BAs even XGBoost which 
takes a long time to train when dealing with large amounts of data. The 
main difference between LightGBM and other BAs is the way the tree is 

Fig. 8. Flowchart of RF (parallel training).  

Fig. 9. Graphical representation of implementation of AdaBoost with two weak learners.  
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expanded. LightGBM uses the leaf-wise (best-first) tree strategy to grow 
the leaf with large loss (see Fig. 11). Therefore, when growing on the 
same leaf, it can reduce more loss (i.e., better accuracy) than the level- 
wise (depth-first) strategy used in other BAs. Two additional important 
features implemented in LightGBM that make it fast are: (1) gradient- 
based one-side sampling (GOSS) and (2) exclusive feature bundling 
(EFB). GOSS is an advanced subsampling technique which can signifi-
cantly reduce the number of instances by performing random sampling 
on the instances with small gradients only, whilst EFB is a merging 
technique to reduce the number of features [71]. The use of GOSS and 
EFB can speed up the training process because the computational time 
for split finding is proportional to the number of instances and features. 
Since LightGBM is purposely designed to be used with a large data size, 
it is very sensitive with small data which might cause overfitting. 

2.2.6.5. CatBoost. Similar to XGBoost and LightGBM, CatBoost was also 
developed to improve the training time of GBM, but it focuses on cate-
gorical variables. However, CatBoost also work well with other data 
types such as numerical and text features without requiring any data 
conversion in the pre-processing. Similar to the GOSS subsampling 
technique used in LightGBM, Prokhorenkova et al. [23] also imple-
mented a new sampling technique called minimal variance sampling 
(MVS) in CatBoost to maximise the accuracy of split scoring. In the MVS 
technique, the weighted sampling occurs at the tree-level instead of the 

split-level. This leads to reducing overfitting when data is small. 

2.3. Python libraries for ML 

ML has become very popular nowadays, and anyone with an internet 
connection can use available platforms and cloud services provided by 
firms like Google (e.g., Kaggle.com), Facebook, and Microsoft to build 
their ML models. Among various ML languages, Python has emerged as 
the most popular programming language for coding ML models due to 
having a variety of available ML libraries with hundreds of ML algo-
rithms implemented. Therefore, this paper reviews existing open-source 
Python libraries and platforms developed for ML models. Table 1 sum-
marises a list of Python libraries that are commonly used in ML. 

2.3.1. TensorFlow 
This ML library developed by Google was first released in 2015. 

TensorFlow is an open-source libraries integrated a wide range of the 
state-of-the-art ML algorithms. It is currently hailed as the best platform 
for developing ML models especially with deep NNs. It is a high-level 
framework that contains several hands-on ML models as well as ready- 
to-run packages. 

2.3.2. Keras 
This is also an open-source library used for developing and 

Fig. 10. Illustration of the GBM model.  

Fig. 11. Tree growth methods used in LightGBM and other BAs.  
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evaluating deep NNs. Keras was developed by Chollet [46] in 2015 to act 
as an interface for the TensorFlow library, and thus it is very easy to use. 
Keras can run on top of TensorFlow and Theano platforms. It contains a 
number of features to build NNs as well as a bunch of tools to work on 
images and text data. 

2.3.3. PyTorch 
Upon its first release in 2016 by Facebook, PyTorch has become one 

of the most popular DL libraries after Keras an TensorFlow [47] thanks 
to its ease of learning and use. It has a robust framework to build 
computational graphs, and provides a lot of tools and libraries for ML. 

2.3.4. Scikit-learn 
This library was built in 2007 based on two Python numerical and 

scientific libraries of NumPy and SciPy. Scikit-learn provides a wide 
range of functions for classification, regression, clustering, and dimen-
sionality reduction algorithms. It has become one of the most popular 
ML libraries especially for data mining and data analysis. 

2.3.5. Pandas 
This is the most popular Python ML library for data analysis. Pandas 

was first released in 2008. It offers high-level data structures and options 
to manipulate different types of data including matrix data, tabular data, 
and time series data. It also provides a lot of great features for efficiently 
handling large datasets. 

2.3.6. Spark MLlib 
This ML library was developed to meet the need of handling big data 

size. It was built on Apache Spark (a lightning-fast engine for large-scale 
data processing) with the aim to make practical ML scalable and easy. 
Spark MLlib provides convenient tools for developing ML algorithms 
and applications. It is also simple and easy to use. 

2.3.7. Theano 
Developed by the University of Montreal as a symbolic mathematical 

processor, Theano is considered as a robust library for scientific 
computing. Similar to Spark MLlib, Theano was also designed for fast 
computation of large-scale computationally intensive problems. It is 
considered as the grandfather of DL libraries, and many DL libraries (e. 
g., Keras) have been built on top of it. 

2.3.8. NumPy 
This is a general-purpose library for array processing. NumPy stands 

for “Numerical Python” which is created on the top of an older library 
“Numeric”. It has become one of the essential and popular libraries for 

ML due to having a bunch of mathematical functions to handles large 
multi-dimensional arrays and matrices. It is particularly useful for basic 
algebra, random simulations, and Fourier transform. 

2.3.9. SciPy 
Standing for Scientific Python, this library is developed for scientific 

computation purposes. It is built on the top of the NumPy library. SciPy 
provides a range of mathematical functions for optimization, linear 
algebra, fast Fourier transform, and signal procession. This is the most 
used scientific library due to its ease of use and fast computational 
power. 

2.3.10. Matplotlib 
This is a comprehensively plotting library for visualisations in Py-

thon. It is built on the top of NumPy. Matplotlib offers a wide range of 
plotting functions (e.g., line plots, scatter plots, bar charts, histogram, 
etc.) that help to understand the common patterns and distribution of 
data. It is very simple and easy to use. 

2.4. Open-source ML codes developed for structural engineering 
applications 

This section reviews existing open-source ML codes developed for 
structural engineering examples. These code examples are found helpful 
for structural engineering practitioners and researchers who do not have 
ML background but wish to enter this field of research. Table 2 sum-
marises a list of ML codes written mainly in Python for different struc-
tural engineering applications including shear resistance of structures 
[74–81], axial resistance of columns [82], compressive strength of 
concrete [83], failure mode of structures [84–86], and surface crack 
detection of structures [87–90]. Most of these open-source Python codes 
can be accessed from the GitHub platform with the corresponding links 
provided in Table 2. The databases used in these code examples can also 
be found in the relevant references mentioned in Table 2. More data-
bases of different structural engineering applications are also provided 
in Section 2.5 for further practising purposes. Additional information 
about how to develop ML models using Python can be found in the 
following ML books [46,47,91]. 

Degtyarev and Naser [74] compared five BA algorithms for pre-
dicting the shear resistance of CFS channel sections with staggered web 
perforations. A comparison of various ML algorithms was presented in 
Refs. [78–81] for the shear resistance of different types of structures (e. 
g., reinforced concrete (RC) deep beams [78], RC slabs [79], RC walls 
[80], and bolted connections [81]), compressive strength of concrete 
[83], and failure mode of column base plate connections [84] and RC 
walls and columns [85,86]. Xu et al. [75] looked at the interface shear 
strength of cold joints used in precast structures using XGBoost. The 
SHapley Additive exPlanations (SHAP) technique is also used for inter-
preting the outcome of the XGBoost model. The XGBoost algorithm in-
tegrated with SHAP was also developed by Feng et al. [77] and 
Bakouregui et al. [82], but they looked at different applications (i.e., 
shear resistance of squat RC walls [77] and axial resistance of RC col-
umns strengthened by FRP [82]). Fu and Feng [76] examined the re-
sidual shear resistance of corroded RC beams at various service times 
using GBM, whilst Refs. [87–90] dealt with the crack damage detection 
of concrete and masonry structures using CNN integrated with seg-
mentation technique [87–89] and transfer learning [90]. 

2.5. Database for ML applications in structural engineering 

Database is considered as the backbone of training ML models. It is as 
importance as the algorithm used [92]. In general, the more data are fed 
into the model, the better the model can learn and improve. Therefore, 
the research community has taken the necessary steps towards estab-
lishing platforms for collecting and sharing databases (e.g., Data-
CenterHub, DesignSafe, and Mendeley Data). A sufficient and reliable 

Table 1 
List of commonly used Python ML libraries.  

Name Features 

TensorFlow Can run on a variety of computational platforms, and suit for very 
large numerical computations 

Keras Have a bunch of features to work on image and text, and ease of use 
with neural networks 

PyTorch Have a robust framework to build computational graphs, and ease of 
using and learning 

Scikit-learn Handle wide ranges of ML algorithms for statistical analysis, data 
mining, and data analysis 

Pandas Support for different types of data, and suit for data analysis with 
highly optimised performance 

Spark MLlib Make practical ML easy and scalable with the merits of speed and ease 
of use 

Theano Perform data-intensive computations with mathematical expressions 
and matrix calculations 

NumPy Process large multi-dimensional arrays and matrices, and easily 
integrate with most databases 

SciPy Suit for computational tasks for scientific and analytical computing 
Matplotlib Suit for data visualization with quality image plots and figures in a 

variety of formats  
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dataset should have not only a large number of data points, but also 
cover a wide range of the values of input material and geometry pa-
rameters. This is especially importance in the case of experimental da-
tabases which is characterised by high variance nature caused by 
epistemic errors [92]. This section provides the notable datasets that 
have been widely used in developing ML models for structural engi-
neering applications. A list of notable databases is summarised Table 3. 

One of the early data platforms that have been developed for the 
earthquake engineering community is NEESHub that provides a cyber-
infrastructure platform to share research data and software tools for 
earthquake engineering [14,15] and disaster risk management [16,17]. 
Examples of the NEESHub databases for the resistance of RC structures 
includes (i) ACI 369 circular RC column database with 172 tests, (ii) ACI 
369 rectangular RC column database with 326 tests, (iii) ACI 445 
punching shear of RC slab database with 519 tests, (iv) RC shear wall 
database with 267 tests, and (v) RC column with spiral reinforcement 
database with 92 tests listed in Table 3. These NEES database can be 
accessed from DataCenterHub [18] and DesignSafe. 

Addition to the NEESHub databases, several studies have made 
considerable efforts to develop additional databases for RC structures. 
For example, Telemachos and Michael [93] compiled a dataset of 1,012 
tested specimens on RC members (i.e., beams, columns, and walls) 
subjected primarily to cyclic loading. The database was used to develop 
empirical expressions to predict the lateral drift and chord-rotation of 
RC members under lateral loading. Nguyen et al. [94] collected an 
experimental database of 369 tests on squat flanged RC shear walls 
under a combined action of vertical and lateral loads. The database was 
then used to develop an ANN-based model for predicting the shear 
resistance of RC walls. Another database of the shear strength of squat 
RC shear walls was also developed recently by Feng et al. [77] by 

Table 2 
List of commonly used Python ML libraries.  

Code link Application ML algorithm Ref. 

https://www.kaggle. 
com/vitdegtyare 
v/shear-strength 
-of-slotted-channels 
-using-ml 

Shear strength of 
CFS channel 
sections 

AdaBoost, GBM, 
XGBoost, LightGBM, 
and CatBoost 

[74] 

https://github. 
com/jgxu-njtech 
/XGB-SHAP-concr 
ete-interface-shear- 
strength 

Interface shear 
strength of cold 
joints used in 
precast structures 

XGBoost and SHAP [75] 

https://github. 
com/dcfeng- 
87/Time-dependen 
t-shear-strength-be 
am 

Shear strength of 
corroded RC beams 

GBM [76] 

https://github. 
com/dcfeng- 
87/Interpretable- 
ML-shear-squat- 
wall 

Shear strength of 
squat RC walls 

XGBoost and SHAP [77] 

https://github.com/ 
dcfeng-87/Ense 
mble-learning-deep- 
beam 

Shear strength of RC 
deep beams 

RF, AdaBoost, GBM, 
and XGBoost 

[78] 

https://github. 
com/sujithmangal 
athu/Punching_sh 
ear_flat_slab 

Punching shear of 
RC slabs 

RA1, RA5, kNN, SVM, 
DT, RF, AdaBoost, and 
XGBoost 

[79] 

https://github. 
com/sujithman 
galathu/Explain 
able_AL_Infrastructu 
re_damage 

Shear strength of RC 
walls 

RA5, kNN, SVM, DT, 
RF, AdaBoost, and 
XGBoost 

[80] 

https://github. 
com/zakirsamia 
/Bearing-capacit 
y-prediction-of-d 
ouble-shear-bolted 
-connection 

Shear strength of 
bolted connections 

ANN, RA1, RA4, RA5, 
kNN, SVM, DT, RF, 
AdaBoost, XGBoost, 
and CatBoost 

[81] 

https://github.com/a 
bdoulayesanni/Pr 
ediction-Load-Carr 
ying-Capacity-of-FR 
P-RC-Columns 

Axial strength of RC 
columns 
strengthened by 
FRC 

XGBoost and SHAP [82] 

https://github.com/h 
oangnguyence/hp 
concrete 

Compressive 
strength of concrete 

ANN, SVM, GBM, and 
XGBoost 

[83] 

https://github. 
com/Md-Asif-Bi 
n-Kabir/CBP-Fail 
ure-Mode-Predicti 
on 

Failure mode 
prediction of 
column base plate 
connections 

SVM, NB, kNN, RF, 
DT, XGBoost, 
LightGBM,AdaBoost, 
and CatBoost 

[84] 

https://github.com/s 
ujithmangalathu/Sh 
ear-Wall-Fai 
lure-Mode 

Failure mode of RC 
columns and shear 
walls 

NB, DT, RF, AdaBoost, 
XGBoost, kNN, 
LightGBM, and 
CatBoost 

[85,86] 

https://github.com/ 
OnionDoctor/ 
FCN_for_crack_reco 
gnition 

Crack detection of 
concrete surfaces at 
pixel level 

CNN with 
segmentation 
technique 

[87] 

https://data.mendele 
y.com/datasets/c7c 
pnw32j6/1 

Crack detection of 
concrete surfaces at 
pixel level 

CNN with 
segmentation 
technique 

[88] 

https://github.com/ 
Arenops/CrackSeg 
Net 

Concrete crack 
detection in tunnels 

CNN with 
segmentation 
technique 

[89] 

https://github.com/di 
mitrisdais/crack_de 
tection_CNN 
_masonry 

Crack detection of 
masonry structures 

CNN with transfer 
learning 

[90]  

Table 3 
Notable benchmark databases used for ML applications in structural 
engineering.  

Data size Application Reference 

NEES experimental 
databases 
519 tests 
326 tests 
267 tests 
172 tests 
92 tests 

Strength of RC members 
ACI 445 punching shear of RC slabs 
ACI 369 rectangular RC columns 
RC shear walls 
ACI 369 circular RC columns 
RC columns with spiral 
reinforcements 

[18] 

1,012 tests Deformation of RC members under 
seismic loading 

[93] 

369 tests Shear resistance of squat flanged RC 
shear wall 

[94] 

434 tests Shear resistance of squat flanged RC 
shear wall 

[77] 

285 tests Shear resistance of reinforced 
masonry shear walls 

[97] 

507 tests Shear resistance of steel fibre RC 
beams 

[98] 

185 tests Spalling of RC columns spalling under 
fire 

[99] 

536 tests Shear resistance of RC beam-columns 
joints 

[100] 

264 tests RC infilled and steel frames under 
lateral loading 

[101- 
103] 

3,208 tests Axial resistance of CFST columns [104- 
106] 

1,008 splice tests Bond of steel bars in concrete beam [107] 
1,002 pull-out tests Bond of FRP bars embedded in 

concrete 
[108] 

969 single-lap shear tests Bond of FRP sheet on concrete 
(interfacial bond) 

[109] 

10,000 images (Structural 
ImageNet) 

Image-based crack damage detection [19] 

36,413 images (PEER Hub 
ImageNet) 

Image-based crack damage detection [20] 

11,000 images (bridge crack 
library) 

Image-based crack damage detection 
of bridges 

[21]  
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merging two datasets collected from Ning and Li [95] (182 tests) and 
Massone and Melo [96] (252 tests). Aguilar et al. [97] complied a 
database of 285 tests on the shear resistance of reinforced masonry shear 
walls. Recently, Rahman et al. [98] collected a large experimental 
database of RC beams with steel fibres. This is the most comprehensive 
database composed of 507 tested specimens on the shear resistance of 
steel fibre RC beams collected from 68 publications. In order to examine 
the applicability of ML methods in predicting the fire-induced spalling of 
RC columns, Naser [99] developed a database with 185 columns 
collected from fire tests. Mangalathu and Jeon [100] assembled an 
extensive test dataset of beam-to-column RC joints under shear action. 
The database was collected from 49 references consisted of 536 tested 
joints (294 tests on interior joints, 221 tests on exterior joints, and 21 
tests on knee joints). 

The test database of steel and RC frames subjected to monotonic and 
cyclic loadings was developed by Huang and Burton [101–103] to 
investigate the nonlinear force–deformation responses and hysteretic 
material models. The database comprised of 264 one-storey frame tests 
including 257 tests on one bay and 7 tests on multi bays. In terms of 
materials used, the dataset contained 73 steel frames and 191 RC frames 
incorporated with different types of masonry units. The database can 
also be accessed from the DesignSafe platform [101]. 

For CFST structures, Thai et al. [104] compiled a test database of 
CFST columns to examine the safety and reliability of modern design 
codes including the American code AISC 360-16, Eurocode 4, and 
Australian code AS/NZS 2327. This is the most up-to-date and 
comprehensive database on CFST columns with 2,308 columns (1,305 
circular sections and 1,003 rectangular sections) under concentric 
loading and 900 columns (499 circular sections and 401 rectangular 
sections) under eccentric loading (i.e., beam-column member). The 
database which can be freely downloaded from Mendeley Data [105] 
was extended from their previous database [106] collected from more 
than 180 publications. 

Regarding the bond behaviour, notable test databases were compiled 
by Refs. [107–109]. Hwang et al. [107] collected 1008 splice test 
specimens on steel rebars embedded in concrete beams. Nepomuceno 
et al. [108] collected a comprehensive database with a total of 1002 
pull-out tests on FRP bars embedded in concrete. The interfacial bond 
between FRP sheets and concrete was explored by Zhou et al. [109] by 
collecting a large database of 969 single-lap shear tests on FRP sheets 
attached on concrete. 

In the field of image-based crack damage detection, significant ef-
forts have been made to develop the databases of crack pattern images. 
For example, Gao and Mosalam [19] proposed the concept of Structural 
ImageNet which was inspired by the establishment of ImageNet. The 
Structural ImageNet database was established by narrowing down the 
scope of ImageNet within structural engineering applications. With over 
10,000 relevant images of structural members with both damaged and 
undamaged conditions, the Structural ImageNet database can be used 
for crack damage detection of civil engineering structures such as 
buildings, bridges, and other infrastructures. Gao and Mosalam [20] also 
extended their Structural ImageNet database to construct PEER Hub 
ImageNet, a more comprehensive dataset with over 36,000 images. 
Recently, Ye et al. [21] established an crack image database for bridge 
structures with over 11,000 crack images of different types of structural 
components of bridges collected by using multiple camera devices 
installed on bridges in service conditions. 

3. Bibliometric survey 

In this section, a bibliometric study of the current literature on the 
use of ML methods for structural engineering applications is presented. 
The literature search is limited to Scopus indexed papers collected from 
well recognised academic databases including Web of Science, Scopus, 
Science Direct, Wiley Online Library, Taylor & Francis Online, Springer 
Link, ASCE Library, and SAGE. The keywords used in this search include 

ML and soft computing related terms (e.g., artificial neural networks, 
regression analysis, support vector machine, decision tree, random for-
est, boosting algorithm, etc.) and structural engineering related terms. 
The papers on predicting mechanical properties of concrete are also 
included in the search. The search results have identified over 485 
relevant publications since 1989 when Adeli and Yeh [1] published the 
first relevant article. The search results also indicate that, among the 
Scopus-indexed journals, Engineering Structures and Construction and 
Building Materials are the journals publishing most relevant works with 
66 and 64 papers, respectively. 

The yearly distribution of these relevant publications is also plotted 
in Fig. 12. As can be seen from Fig. 12a, the use of ML in structural 
engineering is not favour at the early stage. However, this topic has 
received much attention from the scientific community in the last five 
years as evidenced by an exponential growth in the number of publi-
cations. The boom of this topic can be explained by recent advances in 
ML algorithms and computational power as well as the availability of 
large datasets collected from laboratory testing or numerical modelling. 

A breakdown percentage of different ML methods used in structural 
engineering is shown in Fig. 13. Seven groups of ML methods have been 
identified including NN, SVM, BA, RA, RF, DT and others (i.e., kNN and 
NB). It can be seen NN is the most widely used method for structural 
engineering with 56%. Ten most cited relevant articles also involve the 
use of NN in damage detection and predicting compressive strength of 
concrete fc as shown in Table 4. Among NN methods, ANN has been 
dominantly used with 84% due to its popularity and simplicity. Simi-
larly, RA1 has also been mostly used among six RA methods. Although 
XGBoost was developed recently by Chen and Guestrin [22] in 2016, it 
has become the most widely used method (contributing up to 40%) in 
the BA family, especially in recent years as shown in Fig. 12b, due to its 
merits in both accuracy and speed [72]. Fig. 12b also indicates that the 
use of BA and SVM methods in structural engineering just becomes 
significant in recent years. 

4. ML applications 

Based on the result of the bibliometric survey (Section 3), seven 
classes of ML methods and five different structural engineering topics 
have been identified as shown in Table 5. The seven groups of ML 
methods are (1) NN methods, (2) SVM methods, (3) BA methods, (4) RA 
methods (i.e., linear regression – RA1, multivariate regression – RA2, 
polynomial regression – RA3, LASSO regression – RA4, Ridge regression 
– RA5, and logistic regression – RA6), (5) RF method, (6) DT method, 
and (7) others. The five structural engineering topics considered are (1) 
member (i.e., predicting load-carrying capacity of isolated structural 
members), (2) material (i.e., predicting mechanical property and opti-
mising mix design of concrete), (3) damage and SHM (i.e., crack 
detection and damage assessment of structures), (4) analysis and design 
(i.e., performing structural analysis to predict the behaviour of struc-
tures and optimising their design), and (5) fire (i.e., predicting the fire 
resistance of structures). 

The five topics of structural engineering applications are defined to 
represent for distinct areas of study. These topics will cover all existing 
works available in the literature on ML applications in structural engi-
neering. The member topic comprises the studies that predict the 
member strength (i.e., shear strength, flexural strength, axial strength, 
torsional strength, buckling strength, and bond strength) and member 
deformation (i.e., deflection, drift, and rotation). The material topic 
covers the works on predicting the mechanical properties (i.e., 
compressive strength fc, tensile strength ft, bending strength fb, Young’s 
modulus E, etc.) and optimising mix design of concrete. 

Table 5 shows the number of publications on five considered topics 
with respect to seven groups of ML algorithms used. It can be observed 
that NN is the most popular ML method that has been dominantly used 
in all five considered topics. The applications of ML to five considered 
topics is also illustrated in Fig. 14. It can be seen that both member and 
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material topics receive the highest attention from researchers, and most 
of the works from these two topics focus on predicting the shear resis-
tance of members (contributing up to 38%) and the compressive 
strength of concrete fc (contributing up to 62%). The following sections 
provide detailed information of different ML algorithms for five struc-
tural topics mentioned above. 

4.1. Prediction of structural members 

4.1.1. Shear resistance 
Shear resistance of structural members has received the most 

attention from the structural engineering community when up to 38% of 
the relevant publications focus on this topic as shown in Fig. 14. This 
might be due to the complex nature of the shear behaviour compared 
with other topics. A huge number of ML-based predictive models have 
been developed for different types of structural members including 

beams, slabs, shear walls, and joints as shown in Table 6. However, most 
papers related to this topic deal with RC beams. 

For beam members, a significant numbers of ANN-based predictive 
models have been developed for different types of beams including RC 
beams [9,110–117], RC beams without stirrups [118–123], RC beams 
with steel fibres [124–126], RC beams strengthened by steel plates 
[127], RC beams strengthened by FRP strips [128–133] (Fig. 15), RC 
beams reinforced by FRP bars [134–136], CFS channel beams [137], and 
cellular steel beams [138] (Fig. 16). A comparison of ML models was 
also conducted for RC beams [78,139,140], RC beams with steel fibres 
[98], and CFS beams [74]. Both Feng et al. [78] and Rahman et al. [98] 
concluded that XGBoost gave the most accurate predictions for the shear 
resistances of RC deep beams with/without stirrups [78] and RC beams 
with steel fibres [98]. Among five BAs, CatBoost has the best perfor-
mance in predicting the shear resistance of CFS beams based on a 
comparison study conducted recently by Degtyarev and Naser [74]. 

Fig. 12. Yearly distribution of articles related to ML applications in structural engineering: (a) all algorithms and (b) three mostly used algorithms.  

Fig. 13. ML methods used in structural engineering domain.  
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For RC beams, Goh [9] and Sanad and Saka [110] explored the shear 
resistance of RC deep beams, whilst Cladera and Marí [111] and El 
Chabib et al. [113] examined RC beams made from both high strength 
concrete (HSC) and normal strength concrete (NSC). The shear resis-
tance of RC deep beams was examined by Mohammadhassani et al. 
[141] using ANFIS and by Pal and Deswal [142] and Chou et al. [143] 
using SVM. Meanwhile, the ANN-based predictive model developed by 
Caglar [116] was applied for circular RC columns. The shear resistance 
of one-way RC slabs under concentrated loads was also explored by 
Abambres and Lantsoght [117] using ANN. Recently, Fu and Feng [76] 
examined the residual shear strength of corroded RC beams at different 

service times using GBM. For RC beams without stirrups, Cladera and 
Marí [118] and El-Chabib et al. [121] developed ANN models to predict 
the shear strength of RC beams with both NSC and HSC. Elsanadedy 
et al. [123] investigated the shear resistance of slender beams with HSC 
using ANN. New empirical design equations were also suggested and 
compared well with existing equations from modern design codes. 
Zhang et al. [144] also explored the shear resistance of RC beams, but 
they used RF instead. 

For slabs, the punching shear behaviour (see Fig. 17) has also been 
received significant attention. Elshafey et al. [145] and Said et al. [146] 
developed one of the first ANN models to predict the punching shear 
resistance of RC slabs without shear rebars. Gandomi and Roke [147] 
also looked at the punching shear of RC slabs using ANN, but they 
focused on investigating the parameters that overfit the ANN model. A 
similar work was also conducted recently by Tran and Kim [148], in 
which ANN-based equations were also proposed. Based on the RA1 
method, Chetchotisak et al. [149] developed a new punching shear 
strength equation and its corresponding strength resistance factor for 
the practical design purpose. Recently, Nguyen et al. [150] explored the 
application of XGBoost to predict the punching shear strength of RC 
slabs. They concluded that XGBoost outperformed both ANN and RF 
models. A similar finding was also reported by Mangalathu et al. [79] 
when comparing seven ML methods including SVM, DT, RF, AdaBoost, 
XGBoost, kNN, and RA5. In addition, ML techniques were also employed 
to predict the punching shear strengths of other types of concrete slabs 
such as RC slabs strengthened by FRP bars [151] and RC slabs with steel 
fibres [152–154] as shown in Table 6. 

For shear walls, Aguilar et al. [97] used ANN to develop predictive 
models for the shear resistance of reinforced masonry walls used in 
seismic regions. ANN-based predictive expressions were also developed 
and compared with existing empirical equations. Zhou et al. [155] 
explored the shear resistance of fully grouted RC masonry walls 
(Fig. 18a) using both ANN and ANFIS methods. Their models were 
compared well with existing design code equations. The shear resistance 
of RC walls under seismic loading as shown in (Fig. 18b) was also 
explored using ANN [94], SVM [156,157], RA1 [158], and XGBoost 
[77]. Based on 246 tests on RC walls under cyclic loading, Zeynep Tuna 
and Cagri [158] proposed new shear strength equations using the RA1 
method. Their proposed equations also outperformed existing empirical 
equations and seismic design code expressions. Recently, Feng et al. [77] 
presented an interpretable ML model for shear resistance prediction of 
squat RC walls using XGBoost. An experimental database of 434 tests 
was also collected for training and testing purposes. By comparing with 

Table 4 
List of ten most cited articles (Scopus by 11/2021) on ML for structural 
engineering.  

Reference Topic Cite Year 

Cha et al. [323] Image-based damage crack 
detection using CNN 

1,111 (2 7 
8)* 

2017 

Yeh [403] Predicting fc of concrete using ANN 645 (28) 1998 
Wu et al. [4] Vibration-based damage detection 

using ANN 
450 (16) 1992 

Cha et al. [326] Image-based damage crack 
detection using CNN 

396 (1 3 2) 2018 

Topçu and Sarıdemir  
[428] 

Predicting fc of fly ash concrete 
using ANN 

315 (24) 2008 

Ni and Wang [421] Predicting fc of concrete using ANN 286 (14) 2000 
Lee [422] Predicting fc of concrete using ANN 253 (14) 2003 
Öztaş et al. [405] Predicting fc and slum of concrete 

using ANN 
244 (16) 2006 

Dung and Anh [324] Image-based damage crack 
detection using CNN 

246 (82) 2018 

Gao and Mosalam  
[19] 

Image-based damage crack 
detection using CNN 

208 (69) 2018 

* Citation per year 

Table 5 
Number of publications for different ML algorithms and applications.  

Application topic ML algorithm 

NN SVM BA RA RF DT Other 

Member 155 23 22 16 13 9 5 
Material 114 33 16 18 11 15 2 
Damage and SHM 68 15 8 4 10 8 7 
Analysis and design 41 8 9 4 7 5 3 
Fire 20 2 2 2 2 3 2  

Fig. 14. ML applications in the structural engineering domain.  
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ANN, DT, RF, and GBM models, they concluded that XGBoost provided 
the best performance overall. A similar conclusion was also made by 
Mangalathu et al. [80] when comparing XGBoost with other ML 
methods including AdaBoost, RF, DT, SVM, RA5, and kNN. The shear 
resistance of steel plate shear walls (Fig. 18c) was also explored by 

Moradi et al. [159] using RBFNN. 
For joints, Jeon et al. [160] used three regression methods (i.e., RA1, 

RA2, and RA6) to develop predictive models for the shear strength of RC 
beam-to-columns joints. The proposed models were based on a 
comprehensive experimental database of 516 tests on reinforced joints 
and 204 tests on unreinforced joints. Based on ANN, Kotsovou et al. 
[161] developed the shear resistance models for RC beam-to-column 
joints under seismic loading as shown in Fig. 19. The ANN-based 
model was found to be more accurate than existing mechanics-based 
models and design code equations. A similar work was also conducted 
by Alwanas et al. [162] and Park et al. [163] to predict the shear ca-
pacity of RC joints using ANN. A comparison on the performance of 
different ML techniques was also reported in Refs. [100,160,164]. ML 
was also used in predicting the shear transfer strength of RC joints [165] 
and the interface shear strength of cold RC joints used in precast con-
crete construction [75]. Recently, Zakir Sarothi et al. [81] compared the 
performance of 11 ML models (i.e., kNN, ANN, SVM, DT, RF, RA1, RA4, 
RA5, AdaBoost, XGBoost, and CatBoost) in predicting the bearing ca-
pacity of shear bolted connections based on a database of 443 tested 
specimens. 

4.1.2. Axial resistance 
The axial behaviour of structural members is not complex compared 

to the shear behaviour, and thus it is reasonably predictable using 
traditional mechanics-based models. However, in some cases where the 
structural members are made from composite forms such as concrete- 
filled steel tubular (CFST) columns (Fig. 20) or RC columns strength-
ened by FRP (Fig. 21), their axial behaviours are very complex due to 
composite actions. Typical failure modes of CFST columns and FRP- 
strengthened RC columns under axial compression are illustrated in 
Figs. 20 and 21, respectively. Therefore, most of the studies on axial 
resistance focus on such composite members (see Table 7). 

The first application of ML for CFST columns was conducted by 
Ahmadi et al. [166] using ANN. However, their ANN model was trained 
by a small database with only 272 tests on short CFST columns with 
circular sections. One of the most comprehensive ML models were 
developed recently by Vu et al. [167] and Lee et al. [168] using GBM and 
CatBoost. Vu et al. [167] developed the GBM model for circular CFST 
columns under concentric load based on 1,017 tests, whilst Lee et al. 
[168] developed CatBoost model for both circular and rectangular CFST 
columns under both concentric and eccentric loads based on 3103 tests 
collected by Thai et al. [106]. Both GBM and CatBoost models are 
demonstrated to be more accurate than existing design code expressions. 

A comparison of various ML algorithms in predicting the axial 
resistance of CFS columns was conducted by Xu et al. [169]. They 
compared the performance of seven ML models including ANN, ANFIS, 
SVM, RF, XGBoost, RA1, and RA5. It was concluded that RF gave the 
most accurate prediction, whilst XGBoost came second among seven ML 
methods considered. Their ML-based predictive models are also more 
accurate than the design model proposed in Eurocode. 

4.1.3. Bond strength 
Another application of ML is to predict the bond strength of rein-

forcing members such as steel bars and FRP sheets/bars as shown in 
Fig. 22. Understanding the bond behaviour and estimating the bond 
strength of such reinforcing members in concrete plays an important 
role in the design and practical application of such members. A shown in 
Table 8, ML applications for bond strength focus on three groups: (1) the 
bond between steel and concrete (i.e., steel bar embedded in concrete or 
structural steel encased in concrete), (2) the bond between FRP sheets/ 
bars and concrete, and (3) the bond between FRP sheets and steel plates. 
It is also observed from Table 8 that ANN was dominantly used for bond 
strength prediction, and most of relevant works were devoted to the 
bond strength of steel bars embedded concrete. 

Different ANN models have been developed to predict the bond 
strength of steel bars in concrete. The first ML-based bond strength 

Table 6 
Applications of ML in predicting the shear resistance of members.  

Member Type ML algorithm Reference 

Beams RC beams ANN [9,110- 
117]  

ANFIS [141]  
SVM [142,143]  
GBM [76]  
ANN, SVM, kNN [139]  
XGBoost, RA2 [140]  
RF, AdaBoost, GBM, 
XGBoost 

[78] 

RC beams without 
stirrups 

ANN [118-123]  

RF [144] 
RC beams with steel 
fibres 

ANN [124-126]  

SVM [529,530]  
RF [531]  
ANN, SVM, DT, RF, 
AdaBoost, XGBoost, 
CatBoost, kNN, RA1, RA4, 
RA5 

[98] 

RC beams 
strengthened by 
steel plates 

ANN [127] 

RC beams 
strengthened by FRP 
strips 

ANN [128-132]  

ANFIS [532] 
GBM [133] 

Concrete beams 
reinforced by FRP 
bars 

ANN [134-136]  

SVM [533] 
CFS beams with C- 
section 

ANN [137]  

AdaBoost, GBM, XGBoost, 
LightGBM, CatBoost 

[74] 

Cellular steel beams ANN [138]  

Slabs 
(punching 
shear) 

RC slabs ANN [145–148]  
RA1 [149]  
XGBoost [150]  
SVM, DT, RF, AdaBoost, 
XGBoost, kNN, RA5 

[79] 

Slabs strengthened 
by FRP bars 

SVM [151] 

RC slabs with FRC ANN, RA1 [152]  
ANN, SVM [153]  
DT, RF [154]  

Walls Reinforced masonry 
walls 

ANN [97]  

ANN, ANFIS [155] 
RC shear walls ANN [94]  

SVM [156,157]  
RA1 [158]  
XGBoost [77,80] 

Steel plate shear 
wall 

RBFNN [159]  

Joints RC beam-to-column 
joints 

ANN [161-163]  

ANN, ANFIS [164]  
RA1, RA2, RA6 [160]  
RA1, RA4, RA5, RF [100] 

Bolted connections kNN, ANN, SVM, DT, RF, 
RA1, RA4, RA5, AdaBoost, 
XGBoost, CatBoost 

[81] 

Shear transfer XGBoost [75]  
SVM, RF [165]  

H.-T. Thai                                                                                                                                                                                                                                        



Structures 38 (2022) 448–491

463

model was developed by Dahou et al. [170] using ANN to predict the 
pull-out load of a steel bar embedded in concrete. Their ANN model was 
trained using a database of 112 pull-out tests. A similar ANN model was 
also developed by Makni et al. [171] using 117 pull-out tests. Golafshani 
et al. [172] examined the bond strength of steel bars embedded in 
concrete using 179 splice beam tests, whilst the ANN-based bond models 
developed by Ahmad et al. [173] for different types of steel bars were 
based on 138 pull-out tests and 108 splice tests. Hwang et al. [107] 
adopted a large database with 1,008 splice tests to develop their ANN 
model for bond strength of steel bars in concrete. Recently, Amini Pishro 
et al. [174] employed both ANN and RA1 to develop the bond stress 
models for steel bars embedded in ultra-high performance concrete 
(UHPC). ML techniques are also used to predict the bond strength of 
steel bars under corrosion. For example, Shirkhani et al. [175] and Wang 
et al. [176] adopted ANN to predict the bond strength of corroded bars, 
whilst Hoang et al. [177] used SVM with a dataset of 218 tests. The post- 
fire bond strength of steel bars embedded in steel fibre rubberised 
concrete under fire as shown in Fig. 23 was explored by Nematzadeh 
et al. [178] using ANN and a database of 108 pull-out test results. Wang 
et al. [179] developed an ANN model for bond strength of a steel I-beam 

encased in RC concrete columns using 191 push-out tests. 
FRP composites in the forms of FRP sheets and rebars have been 

increasingly used in retrofitting of RC structures such as buildings and 
bridges due to their high strength-to-weight ratios. In such applications, 
the bond behaviour of FRP and concrete plays a critical role, and thus 
several ML-based predictive models have been developed for this pur-
pose. For example, the interfacial bond models between FRP sheets and 
concrete substrates as shown in Fig. 22b were developed in Refs. 
[109,180–183] using the ANN model with different sizes of the test 
datasets (e.g., 969 test results in [109], 150 tests in [180], 203 tests in 
[181], 440 pull-out tests in [182], and 656 tests in [183]). Based on a 
dataset of 150 experimental results, Naderpour et al. [184] and Zhang 
and Wang [185] developed their bond models using ANFIS and SVM, 
respectively. Chen et al. [186] developed the GBM model for the 
interfacial bond using a database of 520 tests. A comparison of three ML 
models including ANN, SVM, and RA1 in predicting the interfacial bond 
between FRP sheets and concrete was also performed by Su et al. [187] 
using 255 tests. They concluded that the SVM model has the best per-
formance among three models considered. 

The bond strength of FRP rebars embedded in concrete was 

Fig. 15. Shear failure of RC beams strengthened by FRP strips [129].  

Fig. 16. Web-post buckling of steel cellular beams under shear action [563].  

Fig. 17. Shear failure RC slabs [79].  
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examined in Refs. [188–191] using ANN. Basaran et al. [192] compared 
the performance five ML methods including ANN, SVM, DT, RA1, and 
RA2 using a database of 874 tests. They also compared their derived ML- 
based models with the bond equations from design codes and found that 

the design equation from ACI 440.1R-15 gave the best result. Chen et al. 
[193] used both RF and GBM to develop bond models for FRP sheets 
stick to steel plates. By comparing with three other ML models including 
ANN, SVM, and DT, they concluded that the GBM model gives the best 

Fig. 18. Shear failure of (a) masonry wall [155], (b) RC wall [564], and (c) steel plate wall [159].  

Fig. 19. Shear failure of RC beam-to-column joints [565].  

Fig. 20. Failure of CFST columns: (a) short column with local buckling [566], (b) intermedia column with local and global buckling [567], and (c) long column with 
global buckling [567]. 
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accuracy for the considered problem. 

4.1.4. Buckling strength 
Structural members made from CFS and thin-walled sections under 

compression usually buckle and fail before reaching the yield stress due 
to its slender nature of their cross-section. The strengths of such mem-
bers are therefore governed by the instability associated with local 
buckling, distortional buckling (see Fig. 24), and lateral-torsional 
buckling (see Fig. 25). In this case, the derivations of empirical or 
closed-form solutions using experiments or physics-based models are 
time consuming and very complex. Therefore, the use of ML-based 
models is an alternative approach to overcome the limitations of 
physics-based models. A list of ML applications for predicting the 

buckling resistance of members under different buckling modes is pre-
sented in Table 9. It is observed that most of ML applications in this area 
focus on local buckling and distortional buckling modes due to their 
complexity. In addition, ANN is the only method used in this topic due to 
its ease of use and higher interpretability. 

The first ML-based predictive model for buckling strength of mem-
bers was developed by Mukherjee et al. [194] in 1996 to predict the 
global buckling curve of columns. Sheidaii and Bahraminejad [195] also 
examined the global buckling of columns, but they focused on the post- 
buckling behaviour and equilibrium paths. The global buckling of col-
umns under various boundary conditions and tapered I-sections was 
investigated by Kumar and Yadav [196] and Nguyen et al. [197], 
respectively. 

Pala [198] and Pala and Caglar [199] developed ANN models to 
predict the distortional buckling stress of CFS channel sections. Tohidi 
and Sharifi [200] also used ANN to predict the moment capacity of steel 
I-beams due to inelastic distortional buckling. Their equation was 
demonstrated to be more accurate than the existing design equations in 
American code AISC 360-16, Australian code AS 4100, and Eurocode 3. 
A similar work was also carried out recently by Hosseinpour et al. [201] 
for castellated steel beams. Dias and Silvestre [202] employed the ANN 
method to derive equations for the distortional buckling of elliptical 
tubes. 

The local buckling of steel plates under axial compression was 
investigated by Refs. [203-206] using ANN. Pu and Mesbahi [203] 
considered both elastic and inelastic local buckling of plates using a 
database of 143 tests, whilst Sonmez and Komur [204] only examined 
the elastic buckling of perforated steel plates under linearly varying 
compression. Sadovský and Guedes Soares [205] included initial im-
perfections, whilst Sun et al. [206] considered the effect of hat-stiffeners. 
The local buckling of thin cylindrical shells under axial compression was 
considered by Tahir and Mandal [207]. Guzelbey et al. [208] developed 
an ANN model to examine the buckling strength of CFS sheetings due to 
web crippling. The web crippling strength was also examined by Fang 
et al. [209], but they looked at CFS channel sections using 17,281 nu-
merical data points generated by ABAQUS. Fang et al. [210,211] also 
used ANN to develop design equations for the strength of CFS channel 
sections under axial compression. Their ANN-based equations are able 
to capture all local buckling, distortional buckling, and global buckling 
modes of CFS channel sections in short, intermediate, and long columns. 
To cover a wide range of geometric parameters, comprehensive nu-
merical databases of 10,500 columns without stiffeners and web holes 
[211] and 50,000 columns with stiffeners and web holes [210] were 
developed in ABAQUS considering the effects of both residual stresses 
and initial geometric imperfections. Gholizadeh et al. [212] looked at 
the shear strength of castellated steel beams considering local buckling 
of the web post. Recently, Kaveh et al. [213] looked at the buckling 
strength of laminated composite cylinders subjected to bending 

Fig. 21. FRP-strengthened RC columns under (a) concentric load [568] and (b) eccentric load [569].  

Table 7 
Applications of ML in predicting the axial strength of members.  

Member Type ML algorithm Reference 

CFST 
columns 

CFST columns with 
circular sections 

ANN [166,524,534- 
540]  

ANFIS [536]  
SVM [541]  
RF [539]  
DT [538]  
GBM [167,538]  
CatBoost [168]  
RA2 [536] 

CFST columns with 
rectangular sections 

ANN [524,542-547]  

ANFIS [548]  
RBFNN [549]  
CatBoost [168] 

CFST columns with 
elliptical sections 

ANN [550]  

ANFIS [551,552] 
CFST columns with 
CFS 

ANN [525] 

CFST columns 
strengthened by FRP 

ANN [553]  

Concrete 
columns 

RC columns ANN [554] 
RC columns 
strengthened by FRP 

ANN [555-558] 

RC columns reinforced 
by FRP bars 

XGBoost [82]  

Steel 
columns 

Steel columns with 
single angle sections 

ANN [559] 

Steel tube columns 
strengthened by FRP 

ANN [560] 

CFS columns RF, XGBoost [561]  
ANN, ANFIS, SVM, 
RF, XGBoost, RA1, 
RA5 

[169]  

Walls Masonry walls ANN [562]  
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moments using different ML methods including ANN, RA1, DT and RF. 
The lateral-torsional buckling of simply supported cellular I-beams 

under transverse loads was examined in Refs. [214-216] using the ANN 
method. Sharifi et al. [215] developed an empirical equation to predict 
the lateral-torsional buckling strength of simply supported beams under 
point loads using an experimental database of 99 tests. Meanwhile, the 
ANN-based predictive model developed by Abambres et al. [214] is 
applicable for simply supported beams under uniform loads using a 
numerical database of 3,645 beams generated by ABAQUS. Recently, 
Ferreira et al. [216] developed a numerical database of 768 beams to 
build an ANN-based predictive equation for lateral-torsional buckling 
design including post-buckling and distortional buckling of the web. 

4.1.5. Flexural and torsional resistances 
The flexural and torsional behaviours of RC beams have been well 

understood. Their resistance is also predictable using design equations 
derived from physics-based models since they are not complex 
compared with the shear behaviour. Therefore, the use of ML methods in 
predicting the flexural and torsional resistance of RC members is not 
significant compared with that in predicting the shear strength. As 
shown in the breakdown of members in Fig. 14, the use of ML methods 
for flexure and torsion contributes only 5% and 3%, respectively, 
compared with 38% in the case of shear. Table 10 lists all relevant works 
on the use of ML for flexural and shear resistances of structural members. 
It can be seen that the ANN method has been dominantly used in this 
topic. 

The first ML application in this topic was conducted by Shahin and 
Elchalakani [217] using ANN and a dataset of 104 tests on bending of 

Fig. 22. Bond of (a) steel bar embedded in concrete [570], (b) FRP sheet attached to concrete [571], and (c) FRP bar embedded in concrete [572].  

Table 8 
Applications of ML in predicting the bond strength and behaviour.  

Material Structure ML algorithm Reference 

Steel- 
concrete 

Steel bars embedded in 
concrete 

ANN [107,170–173] 

Steel bars embedded in 
UHPC 

ANN [174] 

Corroded steel bars 
embedded in concrete 

ANN [175,176]  

SVM [177] 
Steel bars embedded in 
concrete exposed to fire 

ANN [178] 

Steel beams encased in 
concrete 

ANN [179]  

FRP- 
concrete 

FRP sheets and concrete 
substrates 

ANN [109,180-183]  

ANFIS [184]  
SVM [185]  
GBM [186]  
ANN, SVM, RA1 [187] 

FRP bars embedded in 
concrete beams 

ANN [188-191]  

ANN, SVM, DT, 
RA1, RA2 

[192]  

FRP-steel FRP sheets stick to steel 
plates 

RF, GBM [193]  

Fig. 23. Bond post-fire bond behaviour of steel bar in steel fibre concrete [178].  
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steel beams with circular hollow sections (CHS). Their proposed equa-
tions were also compared well with design equations from American 
code, Eurocode 3, and Australian code. D’Aniello et al. [218] also 
examined the bending resistance of steel beams using ANN. However, 
their model was applied to simply supported and cantilever beams under 
point loads. 

Kotsovou et al. [219] adopted ANN to predict the bending moment 
resistance of RC beams using 296 beam tests and 196 column tests. 
Recently, Naser [220] compared three different ML methods including 
ANN, XGBoost, and LightGBM in predicting the moment resistance of RC 
beams strengthened by FRP sheets. The comparison results indicated 
that XGBoost has the best performance. The bending strength of CFST 
beams was investigated by Hanoon et al. [221] and Basarir et al. [222] 
using ANN and ANFIS, respectively. Koçer et al. [223] and Naderpour 
and Mirrashid [224] employed ML methods to predict the moment ca-
pacity of RC beams under a combined action of axial force and bending 
moment. Koçer et al. [223] used the ANN technique with 79 test results, 
whilst Naderpour and Mirrashid [224] used both ANN and ANFIS 
methods with an experimental database of 202 specimens. Recently, 
Congro et al. [225] and Gopinath and Kumar [226] developed ANN- 
based models to predict the moment resistance of fibre RC slabs under 
point loads and masonry panels strengthened by textile reinforced 
mortar, respectively. 

The first application of ML in predicting the torsional resistance of 

RC beams was carried out by Tang [227] in 2006 using the RBFNN 
method. Since then, a significant work [228–231] has been done to 
predict the torsional strength of RC beams using ANN. For instance, 
Arslan [228] collected 76 experimental results to developed ANN-based 
equations which were more accurate than current design equations in 
predicting the torsional resistance of RC beams. Huang [229] developed 
ANN-based torsional resistance equations and compared them with ACI 
318 code. The ANN-based models developed by Ilkhani et al. [230] were 
based on 112 tests on RC beams under torsion, whilst the model 
developed recently by Haroon et al. [231] was based on an experimental 
databased of 159 tests. The torsional resistance of RC beams with steel 
fibres was also examined by Engin et al. [232] using ANN. 

Fig. 24. Buckling of CFS beams: (a) local buckling and (b) distortional buckling [573].  

Fig. 25. Lateral-torsional buckling of Marcy Bridge [578].  

Table 9 
Applications of ML in predicting the buckling strength of members.  

Buckling mode Member ML algorithm Reference 

Local buckling Steel plates ANN [203–205] 
Steel panels with hat- 
stiffeners 

ANN [206] 

Thin cylindrical shells ANN [207] 
Web crippling of CFS 
sheeting 

ANN [208] 

Web crippling of CFS C- 
section 

ANN [209] 

CFS beams with C-sections ANN [210,211] 
Castellated steel beams ANN [212] 
Composite cylinders ANN, RA1, 

DT, RF 
[213]  

Distortional 
buckling 

CFS beams with C-sections ANN [198,199] 
Steel beams with I-shaped 
section 

ANN [200] 

Castellated steel beams ANN [201] 
Elliptical tubes ANN [202]  

Global buckling Slender columns ANN [194,195] 
Beam-columns with various 
end conditions 

ANN [196] 

Steel columns with tapered 
I-section 

ANN [197]  

Lateral-torsional 
buckling 

Cellular I-beams ANN [214–216]  
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4.1.6. Serviceability 
The application of ML to predict deflection, drift and rotational ca-

pacity of structures are summarised in Table 11. It can be seen that most 
of the works in this topic focus on predicting the deflections of RC beams 
and composite beams considering the long-term effect of concrete. 
Different ML methods were also adopted in predicting the deflections of 
RC beams. 

The use of ML in predicting the deflection of RC beams was con-
ducted in Refs. [233–237] using different ML techniques. Patel et al. 
[233] used ANN to develop their predictive model for RC beams, whilst 
Darain et al. [234] used ANFIS to predict the deflection of RC beams 
strengthened by steel and FRP bars as shown in Fig. 26. Nguyen et al. 
[235] employed XGBoost to predict the long-term deflection of RC 
beams. Bai et al. [236] compared three ML methods including ANN, 
ANFIS, and SVM in predicting the deflection of RC beams based on 120 
experimental tests, whilst Pham et al. [237] compared four ML methods 
(i.e., ANN, SVM, DT, and RA1) in predicting the long-term deflection of 
RC beams using a test database of 181 specimens. The deflection of deep 
beams made from HSC was investigated by Mohammadhassani et al. 
[238,239] using ANFIS [238] and ANN and RA1 [239]. Beljkaš and Baša 
[240] examined the deflection of continuous beams strengthened by 
FRP bars using ANN and 11 tests on continuous beams (see Fig. 27). The 
lateral drift of RC columns under seismic loading was also investigated 
by Inel [241] using 273 tests on rectangular columns. 

The deflection of composite beams is examined in Refs. [242–247] 

using ANN. Pendharkar et al. [242] developed an ANN model for the 
inelastic deflection of continuous composite beams. Gupta et al. [245] 
and Tadesse et al. [244] considered the deflection of multi-span com-
posite bridge girders, whilst Sakr and Sakla [243] and Kumar et al. [246] 
explored the deflection of simply supported composite bridge girders. 
Sakr and Sakla [243] developed a comprehensive numerical dataset of 
4,500 beams, whilst Kumar et al. [246] generated a numerical database 
with 360 beams. Wang et al. [247] explored the deflection of composite 
box girder bridges under construction stage. 

ML techniques especially the ANN method were also used to predict 
rotational capacity required in serviceability design of structures. 
Guzelbey et al. [248] used the ANN method to develop design equations 
for predicting rotation capacity of wide flange beams using 81 tests on 
simply supported beams under point and uniform loads. D’Aniello et al. 
[249] also developed ANN-based equations for predicting rotational 
capacity of steel beams, but they focused on CFS beams with rectangular 
hollow sections (RHS) under point loads. Rotational capacity of semi- 
rigid joints was explored by Iranpour et al. [250] and Al-Jabr and Al- 
Alaw [251] using ANN. Iranpour et al. [250] considered single-plate 
shear steel joints, whilst Al-Jabr and Al-Alaw [251] looked at compos-
ite joints under fire. 

4.2. Prediction of fire resistance of structures 

Under fire conditions, the load-carrying capacity of structures, 
especially steel structures, drops rapidly due to the significant reduction 
in stiffness and strength of the material used. The behaviour of structures 
exposed to fire is extremely complex due to involving highly nonlinear 
behaviour (e.g., large deformation in steel structures as illustrated in 
Fig. 28 and spalling in concrete structures as shown in Fig. 29). In order 
to understand this complex behaviour, a number of experimental tests 
have been conducted in both isolated structural members and the whole 
structural systems (e.g., the Cardington fire test of a full scale eight- 
storey composite steel building in 1996 [252] as shown in Fig. 30). 
The results obtained from experimental tests have enabled the devel-
opment of design guidelines for fire safety design as well as improved 
the understanding of the actual behaviour of structures in fire. 

Fire safety is one of the critical concerns in the design of buildings. 
However, the current design process of buildings under fire is time- 
consuming, and it requires structural engineers to understand the 
complex behaviour of the structure exposed to high temperatures [253]. 
The use of ML is therefore considered as a promising and effective tool to 
tackle this problem. Significant research works have been devoted to 
leveraging ML techniques for structural fire engineering, especially in 
recent years as summarised in Table 12. 

One of the first applications of ML techniques in fire design of 
structures was conducted by Al-Khaleefi et al. [254] in 2002 using ANN 
to predict the fire resistance of CFST columns. Their ANN-based model 
was also well compared with experimental results. Recently, Moradi 
et al. [255] also explored the use of ANN for CFST columns in fire, but 
their study focused on evaluating the fire resistance rating and residual 
strength index of CFST columns after fire. An experimental database of 
266 fire tests was also collected for this purpose, and a graphic user 
interface (GUI) tool of the ANN-based predictive models were also 
developed for the implementation in practical design. Zhao [256] used 
126 test results of steel columns under fire to develop an ANN-based 
model for predicting the resistance of columns at elevated temperatures. 

The fire resistance and explosive spalling of RC columns were 
investigated in Refs. [99,257,258] using different ML algorithms and 
sizes of the test databases. Seitlllari and Naser [257] used both ANN and 
ANFIS with an experimental dataset of 89 fire tests on RC columns, 
whilst Naser et al. [258] and Naser [99] recently compared the perfor-
mance of different ML methods in predicting the fire-induced spalling of 
RC columns using different data sizes (140 tests and 169 numerical data 
[258] and 185 tests [99]). They concluded that the BA methods (i.e., 
GBM, XGBoost, and LightGBM) gave the best performance in terms of 

Table 10 
Applications of ML in predicting the flexural and torsional strengths of members.  

Behaviour Structures ML algorithm Reference 

Flexure Steel beam with CHS ANN [217,218] 
RC beam ANN [219] 
RC beam strengthened by 
FRP 

ANN, XGBoost, 
LightGBM 

[220] 

CFST beam ANN [221]  
ANFIS [222] 

RC beam-column ANN [223,224]  
ANFIS [224] 

Fibre RC slab ANN [225] 
Masonry wall ANN [226]  

Torsion RC beams ANN [228- 
231]  

RBFNN [227] 
RC beams with steel fibre ANN [232]  

Table 11 
Applications of ML in serviceability prediction of members.  

Deformation Members ML algorithm Reference 

Deflection RC beams ANN [233]  
ANFIS [234]  
XGBoost [235]  
ANN, ANFIS, 
SVM 

[236]  

ANN, SVM, DT, 
RA1 

[237] 

Deep beams with SCC ANFIS [238]  
ANN, RA1 [239] 

Concrete beams reinforced by 
FRP bars 

ANN [240] 

Composite beams ANN [242] 
Composite beams with partial 
shear interaction 

ANN [243–246]  

Composite box-girder bridge ANN [247]  

Drift RC columns ANN [241]  

Rotation 
capacity 

Steel I-beams ANN [248] 
Semi-rigid steel joints ANN [250] 
Semi-rigid composite joints in 
fire 

ANN [251] 

Cold-formed hollow beams ANN [249]  
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accuracy. 
The fire resistance of different types of RC columns was also exam-

ined in Refs. [259–261] using ANN. For example, McKinney and Ali 
[259] looked at the failure time and spalling classification of RC columns 
made from HPC using 30 tests. Hisham et al. [260] predicted the tem-
perature variation of FRP-strengthened RC columns under fire using 
1,200 numerical data generated from ANSYS. Li et al. [261] considered 
the fire resistance of encased composite columns using 15,200 data 
generated from an analytical model. 

The fire resistance of RC beams was examined in Refs. [262–265] 
using ANN. Based on a numerical database of 90 RC beams obtained 
from ANSYS, Naser et al. [262] develop an ANN-based model to predict 
the moment resistance of RC T-beams strengthened by FRP under fire. 
Erdem [263] developed ANN-based models to predict the moment 
resistance of RC beams exposed to fire using 280 data generated from an 
analytical model. A similar work was also conducted by Cai et al. [264] 
using 480 numerical data obtained from ABAQUS. Cai et al. [265] 
examined the post-fire shear resistance of RC beams a numerical data-
base of 384 data generated by ABAQUS. 

The application of ML techniques to predict the moment capacity of 
RC slabs under fire was conducted by Erdem [266] using ANN and 
Bilgehan and Kurtoğlu [267] using ANFIS. Erdem [266] developed a 
database of 294 slabs under fire, and derived a predictive model to 

predict the moment resistance of RS slabs. Recently, Panev et al. [268] 
adopted the SVM method to predict the moment resistance of composite 
slim flooring systems. A comprehensive database composed of 182 
configurations of a wide range of composite slabs was also developed for 
training and testing purposes using LSDYNA. 

Fire performance of bolted endplate steel joints with semi-rigid 
behaviour was investigated by Al-Jabri et al. [269] using ANN. A test 
database of 392 fire tests was collected from 15 joint configurations. The 
ANN-based predictive model is capable of predicting the rotation of 
joints under fire with high accuracy. Another application of the ANN 
method in predicting the fire performance of joints was also conducted 
by Xu et al. [270]. However, their work focused on the axial capacity of 
welded T-joints with tubular members under fire. 

In term of the fire performance of the whole structural system, 
Hozjan et al. [271] applied ANN to steel frames under fire. However, 
they just actually employed the ANN method to model the stress–strain 
model of steel at elevated temperatures based on 527 material fire tests. 
This stress–strain model was then incorporated into a nonlinear finite 
element program to predict the behaviour of structures under fire. Fu 
[253] developed a ML framework to predict the failure pattern and 
assess the progressive collapse of steel frames under fire. Three ML 
classifiers of kNN, ANN, and DT were employed. Xu et al. [272] use ANN 
to predict the temperature of tubular planar truss under fire using 120 

Fig. 26. Failure of RC beams strengthened by FRP and steel bars [234].  

Fig. 27. Continuous concrete beams with FRP bars [240].  
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data points generated from ABAQUS using shell elements. 

4.3. ML applications in SHM and damage detection 

SHM is a process of monitoring the health of structures via damage 
detection and condition assessment. The use of ML in SHM has been 
increased significantly especially in recent years. In general, the damage 
detection techniques used in SHM can be classified into two groups: 
vibration-based method and image-based method [34]. Vibration-based 
method is a traditional SHM method in which the structural damage is 
detected indirectly through the change of modal parameters of struc-
tures such as natural frequency and mode shape, whilst image-based 
method is currently one of the most advanced SHM methods that 
directly detect the structural damage via crack detection from images. 
Although a number of reviews have touched on this topic [33–38], they 
just focused on either a specific damage detection method or a ML 
technique, and a comprehensive review on this area is still lacking. For 
example, the reviews reported by Refs. [33,36,37] were only focused on 

the use of NN techniques such as CNN [36,39] and DL [33,37]. Hsieh 
and Tsai Yichang [35] only reviewed the works using the image-based 
detection method. Both vibration-based and image-based methods 
were included in Refs. [34,38], but they limited to ANN and SVM 
methods with a focus on civil engineering structures (i.e., dam, wind 
turbine, stadium, and bridge) [34], and heritage buildings [38]. This 
section will provide a comprehensive review on both vibration-based 
and image-based methods using various ML techniques. Table 13 pre-
sents a breakdown of articles on SHM and damage detections of different 
types of structures using various ML algorithms. 

4.3.1. Bridges 
SHM of steel bridges was considered in Refs. [273–280] using ANN 

and the vibration-based detection method. Hakim and Abdul Razak 
[274] compared the performance of ANN and ANFIS in damage detec-
tion of steel girder bridges. Neves et al. [275] applied ANN in damage 
detection of the steel girder of railway bridges. Kostić and Gül [276] 
considered the effect of temperatures in their ANN model developed for 

Fig. 28. Fire-induced failure of (a) hollow steel truss [272] and (b) steel joint and frame in Cardington test [574].  

Fig. 29. Fire-induced failure of (a) encased composite column [575] and (b) RC slab [576].  
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damage detection of Dowling Hall Footbridge (Fig. 31a), whilst Wein-
stein Jordan et al. [277] considered long-term effects in their model. 
Eftekhar Azam et al. [278] adopted ANN to detect damage of railway 
truss bridges. Tran-Ngoc et al. [279] improved the training parameters 
of ANN models developed for damage detection of a steel truss bridge 
(Fig. 31b). Nick et al. [280] used ANN to estimate damage of steel girder 
bridges. The use of SVM in SHM of steel girder bridges was carried out by 
Hasni et al. [281]. 

SHM of RC bridges was also examined in Refs. [282–285] using 
various ML techniques. For instance, Mangalathu et al. [282] proposed a 
process for rapid assessment of post-earthquake damage of RC bridges 
using four different ML methods of kNN, NB, RF, and DT. Their results 

also indicated that RF has the best performance among four considered 
ML methods. Okazaki et al. [284] also compared five different ML 
models including ANN, SVM, DT, RF, and RA1 in detecting crack in RC 
bridges. Sharma and Sen [283] incorporated the effect of temperatures 
on their ANN model for damage detection of RC bridges, whilst Lim and 
Chi [285] adopted XGBoost technique to proactively estimate the 
damage of RC bridges. 

4.3.2. Frame and truss systems 
One of the first applications of ML in structural damage detection 

was conducted by Wu et al. [4] using ANN to predict damage of three- 
storey RC frames under earthquakes. Similar ANN-based models were 
also developed by Refs. [5,286–291] for damage detection of multi-
storey RC frames under earthquakes. Recently, Lei et al. [292] devel-
oped a CNN-based model for damage detection of RC shears frames 
under seismic excitation. Huang and Burton [293] compared 6 ML 
methods (i.e., ANN, SVM, DT, RF, AdaBoost, and RA6) in predicting the 
failure modes of RC frames with masonry infills. They concluded that 
both AdaBoost and SVM gave the best performance. 

Regarding the SHM and damage detection of steel frames, a large 
number of studies were carried out in this area using different ML 
methods including ANN [294–299], RBFNN [300], CNN [301–304], 
SVM [305], RF [306], and kNN [307]. Szewczyk and Hajela [295] and 
Pillai and Krishnapillai [296] employed ANN to develop damage 
detection models for both frame and truss problems, whilst the ANN 
model developed by Chang et al. [297] was applied for three-storey 
frames. Kao and Hung [298] and Beheshti Aval et al. [299] used ANN 
to develop vibration-based damage detection models and verified with 
an experimental test of a five-storey steel frame [298] and a four-storey 
steel frame [299] as shown in Fig. 32a. Machavaram and Shankar [300] 
adopted the RBFNN method to develop damage detection models for 
both steel frames and truss structures. The CNN algorithm was used in 
Refs. [301–303] to develop vibration-based damage detection models 
for frame buildings. Their models were verified with the benchmark 
steel frames tested by Black and Ventura [308] for four-storey frames 
(see Fig. 32a) and by Wu and Samali [309] for five-storey frames (see 
Fig. 32b). Another CNN model was also developed recently by Kim et al. 
[304] for damage detection of steel frames, but their CNN model was 
based on the image-based detection approach. 

The application of ML methods for SHM and damage detection of 

Fig. 30. Eight-storey Cardington test building under construction [252].  

Table 12 
Applications of ML in predicting fire responses of structures.  

Structures Types ML algorithm Reference 

Columns CFST columns ANN [254] 
Encased composite columns ANN [261] 
RC columns ANN, ANFIS, RA1 [257]  

DT, RF, XGBoost, 
LightGBM 

[258]  

ANN, SVM, DT, RF, 
GBM, RA6, NB 

[99] 

RC columns with HSC ANN [259] 
RC columns strengthened by 
FRP 

ANN [260] 

Steel columns ANN [256]  

Beams RC T-beams strengthened by 
FRP sheets 

ANN [262] 

RC beams ANN [263,264] 
Shear of RC beams ANN [265]  

Slabs RC slabs ANN [266]  
ANFIS [267] 

Steel-concrete composite 
floors 

SVM [268]  

Joints Semi-rigid steel joints ANN [269] 
T-joints with hollow steel 
sections 

ANN [270]  

Systems Steel frames ANN [253,271]  
DT, kNN [253] 

Steel trusses ANN [272]  
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truss systems were conducted by Ghiasi et al. [310] using different ML 
techniques such as ANN, ANFIS, RBFNN, SVM, RA2, and kNN. They also 
provided a comprehensive comparison on the performance of different 
ML methods in damage detection of truss structures. Two large scale 
truss systems were considered. The comparison results indicated that 
SVM outperformed the others in terms of accuracy and model 
construction. 

4.3.3. Beam/column members 
The application of ML for damage detection of beam/column mem-

bers was conducted in Refs. [311–321]. Based on the vibration-based 
detection method, Jeyasehar and Sumangala [311] developed an 
ANN-based detection model for prestressed concrete beams, whilst 
Shimada et al. [312] employed SVM to examine the effect of various end 
conditions. Hakim et al. [313] explored the damage of steel beams. Their 
ANN model was compared with the experimental test of an I-beam as 
shown in Fig. 33a. The ANN method was also employed by Tan et al. 
[320] and Sadeghi et al. [321] to develop vibration-based detection 
models for steel–concrete composite beams as shown in Fig. 33b. 

Based on the image-based approach, Davoudi et al. [314,315] 
developed SVM-based models for crack detection of RC beams and slabs 
under flexure [314] and shear [315]. Their models were trained based 
on two datasets of 862 crack pattern images captured from 127 tested 
specimens [314] and 558 crack images captured from 84 shear tests of 
RC beams and slabs [315]. Another SVM-based model was also devel-
oped recently by Aravind et al. [319] to detect crack in geopolymer 
concrete (GPC) beams. The developed model was verified with the 
experimental test (Fig. 34a). Ye et al. [316] used CNN to develop a 
model called Ci-Net for crack detection of concrete beams. Their model 
was trained using 762 crack pattern images and verified with the 
experimental test of RC beams (Fig. 34b). 

Damage detection of RC beam-column members was examined by 
Mangalathu and Jeon [318], Naderpour et al. [322], and Feng et al. 
[317] by means of failure mode classification. Mangalathu and Jeon 
[318] compared five ML models (i.e., kNN, NB, RF, DT, and ANN) in 
predicting the failure modes of circular RC columns. A database of 311 
tested specimens on circular RC columns was considered. Naderpour 
et al. [322] compared ANN and DT methods in predicting the failure 
modes of circular and rectangular RC columns. Feng et al. [317] also 
developed failure mode classification models for RC columns, but they 
used AdaBoost and a database of 254 tests on RC columns under cyclic 
loading. 

4.3.4. Plate/panel members 
Regarding plate/panel structures, a large number of works on SHM and 

damage detection were conducted using the image-based approach incor-
porated with CNN [87–90,323–337] and LightGBM [338]. In the image- 
based method, CNN can detect cracks using the classification approach 
(detecting cracks at the image level) [90,323,326,327,329,330,332,333] 
and the segmentation technique (detecting cracks at the pixel level) 
[87–90,324,325,328,331,332,334–337]. Detailed reviews on the use of 
CNN for crack detection and structural condition assessment were reported 
by Ali et al. [39] and Sony et al. [36], respectively. 

Cha et al. [323] developed a CNN model for surface crack detection 
of concrete structures. A database of 332 images of cracked concrete was 
used for training and validating purposes of the developed model which 
provided accuracy up to 98%. Cha et al. [326] also developed a CNN 
model for different types of surface damages such as concrete cracks, 
delamination, and corrosion in structural steel and bolts. They employed 
a faster region-based CNN algorithm and, thus their model can provide 
real-time detection. The cracks in materials other than concrete (e.g., 
asphalt road [334,337], masonry walls as shown in Fig. 35 [90], and 
steel gusset plates [327,329]) were also examined by CNN. Dorafshan 
et al. [332] compared the performance of various CNN models, and 
concluded that the CNN model with transfer learning mode provided the 
best results with the ability to predict the crack width up to 0.04 mm. 

Table 13 
Applications of ML in SHM and damage detection.  

Structures Types ML algorithm Reference 

Bridges Steel girder 
bridges 

ANN [273-280]  

ANFIS [274]  
SVM [281] 

RC bridges DT, RF, kNN, NB [282]  
ANN [283]  
XGBoost [285]  
ANN, SVM, DT, RF, 
RA1 

[284]  

Frame/truss 
systems 

RC frames under 
earthquakes 

ANN [4,5,286-291]  

CNN [292]  
RBFNN [289] 

RC frames with 
masonry infill 

ANN, SVM, DT, RF, 
AdaBoost, RA6 

[293] 

Steel frames ANN [295-299]  
RBFNN [300]  
CNN [301-304]  
SVM [305]  
RF [306]  
ANN, kNN [307] 

Steel truss ANN [295,296]  
RBFNN [300]  
SVM [305]  
ANN, ANFIS, RBFNN, 
SVM, RF, RA2, kNN 

[310]  

Beam/ 
column 
members 

Prestressed 
concrete beams 

ANN [311] 

Beams with 
various end 
conditions 

SVM [312] 

Steel beams ANN [313] 
RC beams/ 
columns 

SVM [314,315]  

CNN [316]  
AdaBoost [317]  
ANN, DT [322]  
ANN, DT, RF, kNN, NB [318] 

GPC beams SVM [319] 
Steel-concrete 
composite beams 

ANN [320,321]  

Plate/panel 
members 

RC slabs ANN [339-341] 
RC shear walls RF [86]  

RF, DT, AdaBoost, 
XGBoost, LightGBM, 
CatBoost, kNN, NB 

[85] 

Aluminium 
plates 

SVM [342] 

Concrete panels ANN [343]  
CNN [87-89,323- 

325,328,330- 
333,335,336]  

XGBoost [344]  
LightGBM [338] 

Asphalt roads CNN [334,337] 
Masonry walls CNN [90] 
Corroded steel 
plates and bolts 

CNN [326] 

Steel gusset 
plates 

CNN [327,329]  

Joints RC beam-column 
joints 

DT [345]  

ANN, SVM, RF, 
AdaBoost, GBM, 
XGBoost, RA6, kNN, 
NB 

[346] 

Column base 
plate 
connections 

SVM, DT, RF, 
AdaBoost, XGBoost, 
LightGBM, CatBoost, 
kNN, NB 

[84] 

Steel beam- 
column joints 

CNN [347]  
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Meanwhile, Rao et al. [330] compared the performance of 15 CNN 
classification-based models in detecting surface cracks of concrete 
structures using a large image database composed of 32,704 training 
patches, 2,074 validation patches, and 6,032 test patches. 

Fully CNN, an extended version of CNN, was adopted by Refs. 
[87–89,324,325,328] for semantic segmentation on cracks of concrete at 
pixel level. Yang et al. [87] looked at both crack detection and mea-
surement when developing a fully CNN model capable of reducing 
training time. Dung and Anh [324] used a comprehensive dataset of 
40,000 images of crack concrete to train their model with the accuracy up 
to 90% (see Fig. 36a). Ni et al. [331] proposed a crack delineation 

network integrated with fully CNN to automatically delineate crack 
accurately and rapidly. Liu et al. [88] developed a fully CNN model that 
can reach high accuracy with a small training set. The fully CNN model 
developed by Hoskere et al. [328] can perform multi-task segmentation of 
both material types (i.e., steel, concrete, and asphalt) and structural 
damage. Ren et al. [89] and Huang et al. [336] examined concrete cracks 
in tunnel structures. The transfer learning technique can be used with 
CNN models to reduce computational cost [19,90,325,333,335,337]. For 
example, Li et al. [325] developed a fully CNN model to detect four types 
of damage in concrete structures including crack (Fig. 36b), spalling, hole, 
and efflorescence. A database of 2,750 images of concrete structures in 

Fig. 31. Steel bridges (a) Dowling Hall Footbridge [577] and (b) Nam O Bridge [279].  

Fig. 32. Benchmark frames of (a) four-storey [308] and (b) five-storey [309].  

Fig. 33. Model testing of (a) I-beam [313] and (b) composite beam [320].  
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crack, spalling, efflorescence, and hole was also collected to build the 
model. Miao and Srimahachota [333] also incorporated an image pro-
cessing technique to allow for raw images being detected. 

In addition to the above-mentioned image-based models, the 
vibration-based models were also developed for damage detecting of 
plate/panel structures using ANN [339–341] and SVM [342]. Bakhary 
et al. [339] proposed a statistical ANN model for damage detection of RC 
slabs that considers the uncertainties in numerical modelling and mea-
surement noise. Bakhary et al. [340] incorporated a multi-stage sub-
structure technique in their ANN model to enable detection of small 
damage in RC slabs. They also improved their ANN model to account for 
the uncertainties in vibration frequencies and mode shapes [341]. Xu 
[342] used SVM to develop an impact detection model for aluminium 
plates. 

Damage detection by means of failure mode identification was pre-
sented by Mangalathu et al. [85,86] for RC shear walls and by Refs. 
[343,344] for RC panels under local impact loading. Mangalathu et al. 
[86] used the RF method, whilst Mangalathu et al. [85] compared the 
performance of eight ML methods including RF, DT, AdaBoost, XGBoost, 
LightGBM, CatBoost, kNN, and NB. Their models were developed based 

on a database of 393 experimental tests of RC shear walls. The results 
indicated that RF gives the highest accuracy, followed by CatBoost and 
XGBoost. Doan et al. [343] and Thai et al. [344] recently developed ML- 
based models for detecting failure modes of RC panels under impact 
loading using ANN [343] and XGBoost [344]. 

4.3.5. Joints 
Damage detection of joints by means of failure mode identification 

was examined by Naderpour and Mirrashid [345] and Asif Bin Kabir 
et al. [84] for beam-to-column joints and Gao and Lin [346] for column 
base plate joints. Naderpour and Mirrashid [345] used DT with an 
experimental database of 411 tests on RC joints (171 tests on exterior 
joints and 240 tests on interior joints). Asif Bin Kabir et al. [84] and Gao 
and Lin [346] compared the performance of different ML techniques in 
predicting the failure modes of column base plate connections [84] and 
RC beam-to-column joints [346]. Their models were built based on 
experimental datasets of 189 specimens on column base plate connec-
tions [84] and 580 specimens on RC beam-to-column joints [346]. The 
comparison results indicated that DT outperformed for column base 
plate connections [84], whilst XGBoost outperformed for RC beam-to- 

Fig. 34. Bending test of (a) GPC beam [319] and (b) RC beam [316].  

Fig. 35. Crack in masonry surfaces [90].  
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column joints [346]. The structural damage of joints was also explored 
by Paral et al. [347] using the vibration-based detection method. They 
used CNN to train the data generated by SAP2000. Their model was also 
compared with the stiffness model given in Eurocode 3 for semi-rigid 
steel joints. 

4.4. Structural analysis and design 

The use of ML in the analysis and design of structures commenced 
with the first structural engineering application of ML carried out by 
Adeli and Yeh [1] in 1989. Since then, a significant number of papers 
have been published on this topic as summarised in Table 14. It is 
observed that the ANN method has been dominantly used in this topic. 

4.4.1. Structural design 
Adeli and Yeh [1] were one of the first authors who promoted the 

application of ML to structural engineering [2] when developing an ANN 
model for the design of steel beams. This ANN model was also used by 
Vanluchene and Sun [348] and Hadi [349] for the design of RC beams. 
Adeli and Park [350] later proposed another ANN-based model for the 
lateral-torsional buckling design of steel beams, but they used the 
counter-propagation algorithm. Hung and Jan [351] explored the 
application of ANFIS in the analysis and design of steel and RC beams. 
They concluded that ANFIS outperformed ANN [351]. 

The application of ANN to the design of CFS structures was examined 
by El-Kassas et al. [352,353] and Tashakori and Adeli [354]. They found 
that ANN can provide accurate results compared with equations from 
design codes [353]. Tashakori and Adeli [354] focused on the optimal 
design of space trusses with CFS sections. The optimal design of truss 
systems was also examined by Refs. [6-8] using ANN. Kaveh and Servati 
[355] used ANN to design large truss structures of double layer grids and 
evaluate their maximum deflection and weight, whilst Kaveh and 
Raiessi Dehkordi [356] used both ANN and RBFNN to analysed and 
design space dome trusses. Recently, Charalampakis and Papanikolaou 
[357] used ANN to design RC columns with a wide range of cross- 
sections. Zaker Esteghamati and Flint [358] developed five ML-based 
models (i.e., SVM, RF, XGBoost, RA1, and kNN) for the preliminary 

design of RC framed buildings. 

4.4.2. Structural analysis of joints 
One of the early applications of ML for structural analysis were 

conducted by Abdalla and Stavroulakis [359] and Stavroulakis et al. 
[360], in which they developed ANN models to predict moment-rotation 
curves of semi-rigid beam-to-column steel joints. Similar work was also 
conducted by Kaveh et al. [361,362]. Recently, Horton et al. [363] used 
ANN to predict the hysteresis behaviour of beam-to-column steel joints 
with reduced beam sections under cyclic loading using a dataset of 1,480 
joints generated by ABAQUS. Shah et al. [364] developed both ANN and 
ANFIS models to predict the ultimate moments and rotations of boltless 
steel joints with CFS members. Cao et al. [365] explored the use of ANN 
in predicting the moment capacity of beam-to-column RC joints. 
Recently, Kim et al. [366] used both ANN and SVM methods to predict 
the axial resistance of tubular X-joints composed of CHS members as 
shown in Fig. 37. A numerical database of 4000 joints was also devel-
oped using the ABAQUS software for training and testing purposes. 

4.4.3. Structural analysis of framed structures 
Different ML techniques have been used for the analysis of framed 

structures. For example, Papadrakakis et al. [11] explored the applica-
tion of ANN to the reliability analysis of steel frames, whilst Lute et al. 
[367] explored the use of SVM to the aerodynamic analysis of cable 
stayed bridges. Lagaros and Papadrakakis [368] used ANN to predict the 
nonlinear time-history responses of frames. Their ANN-based model 
compared well with numerical models. Wang et al. [369] predicted the 
load–deflection behaviour of CFST columns using ANN. Recently, Oh 
and Kim [370] adopted CNN to predict the responses of RC frames under 
seismic loading. 

Another application of ML in structural analysis is to predict de-
flections and drifts of frames under gravity and lateral loads. Based on 
ANN, Lee et al. [371] developed an ANN model to analyse steel–concrete 
composite bridge girders. The obtained predictions of deflections, 
member forces, and ultimate loads were compared well with those 
predicted by numerical methods. Meanwhile, Maru and Nagpal [372] 
explored the application of ANN to predict the deflection of RC frames 

Fig. 36. Concrete crack predicted by (a) Dung and Anh [324] and (b) Li et al. [325].  
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considering creep and shrinkage effects. Hosseini and Abbas [373] 
developed an ANN model to predict the deflection of clamped beams 
under impact loading by a mass. Kalman ̌Sipoš et al. [374] examined the 
drift of RC frames infilled with masonry walls. Based on a numerical 
dataset of 621 frames under 240 ground motions, Guan et al. [375] 
developed a RF-based model to predict the drift of steel moment frames 

under earthquakes. Nguyen et al. [376] also examined the drift of steel 
moment frames under earthquakes, but they used ANN and XGBoost 
methods instead. Recently, Hwang et al. [377] compared the perfor-
mance of different ML methods (i.e., RF, DT, kNN, NB, RA1, RA5, 
AdaBoost, and XGBoost) in predicting the drift of RC frames. They found 
that boosting methods (i.e., AdaBoost and XGBoost) outperformed the 
others. 

In addition to predicting deflections and drifts of framed structures, 
ML methods were also used for strength predictions in Refs. 
[374,378–387] (see Table 14). Based on ANN, Fonseca et al. [378] 
examined the ultimate load of steel I-beams under patch load, whilst Hu 
et al. [383] predicted the buckling of I-beams prestressed by FRP bars. 
Truong et al. [386] also examined the strength of steel I-beams under 
patch load, but they used XGBoost instead of ANN. Recently, Taheri 
et al. [387] used ANN to predict the ultimate load-carrying capacity of 
upright frames made of CFS sections. Their ANN model was trained by a 
numerical database generated by ABAQUS. Kim et al. [385] compared 
five ML methods (i.e., ANN, SVM, DT, RF, and GBM) in predicting the 
ultimate load-carrying capacity of steel frames, and they found that 
GBM gave the best performance. The shear resistances of steel frames 
and masonry infilled RC frames under earthquakes were also investi-
gated by Caglar et al. [379] and Kalman Šipoš et al. [374], respectively. 
Luo and Paal [384] also examined the shear resistance of RC columns 
under earthquakes, but they used the SVM method. The ANN-based 
models were also developed by Chaudhary et al. [381] and Patel et al. 
[380] to predict the inelastic moments of continuous composite beams 
[381] and RC beams considering crack effect [380]. Pendharkar et al. 
[382] improved the work in Ref. [381] by considering crack and time 
dependent effects. 

Other applications of ML in structural analysis are to predict the 
natural frequency of structures [388,389] and the hysteresis behaviour 
of RC columns under cyclic loading [390,391]. Charalampakis et al. 
[389] developed both ANN and RF models to predict the natural fre-
quency of masonry infilled RC structures. Somala et al. [388] also looked 
at the natural frequency of masonry infilled RC structures, but they 
focused on comparing the performance of eight ML methods (i.e., SVM, 
DT, RF, AdaBoost, XGBoost, RA1, RA5, and kNN). Their results indicated 
that XGBoost outperformed other ML models considered. Ning et al. 
[390] and Yang and Fan [391] explored the application of ANN in 
predicting the hysteresis loop of RC columns [390] and CHS steel col-
umns [391] under cyclic loading, respectively. 

ML techniques were also employed to improve the performance of 
beam-column finite elements in predicting the nonlinear inelastic re-
sponses of RC columns under static and cyclic loadings. For example, 
Feng et al. [392] used AdaBoost to determine the plastic hinge length 
(PHL) of RC columns. Their AdaBoost-based PHL model was trained 
based on a test database of 133 tests on RC columns, and was also 
compared well with existing empirical PHL models. The AdaBoost-based 
PHL model was then incorporated in a force-based fibre beam-column 
element in OpenSees software to predict monotonic and cyclic behav-
iours of RC columns. Wakjira et al. [393] also explored the application of 
ML in predicting the PHL of RC columns, but they focused on the 
comparison of the performance of different ML techniques including 
SVM, DT, RF, GBM, and XGBoost. Their results indicated that XGBoost 
had the best performance among five ML methods considered. Lee et al. 
[394] recently employed both RA4 and RA5 to predict the parameters of 
the lumped plasticity model for RC circular columns under cyclic using a 
database of 210 tests. 

4.4.4. Structural analysis of truss structures 
Hajela and Berke [3] conducted one of the first studies on the 

application of ANN to the analysis and optimal design of trusses. Chas-
siakos and Masri [395] explored the application of ANN in predicting 
the time-history response of multi degree-of-freedom systems subjected 
to ground motions, whilst Lee et al. [396] explored the effect of 
hyperparameters on the accuracy of their ANN model in analysing a 

Table 14 
Applications of ML in structural analysis and design.  

Type Application ML algorithm Reference 

Design Steel beams ANN [1,350]  
ANFIS [351] 

RC beams ANN [348,349]  
ANFIS [351] 

CFS columns ANN [352,353] 
RC columns ANN [357] 
Truss systems ANN [6- 

8,354,355]  
ANN, RBFNN [356] 

RC framed buildings SVM, RF, XGBoost, 
RA1, kNN 

[358]  

Analysis of 
joints 

Moment-rotation 
curve of steel joints 

ANN [359-362] 

Hysteresis behaviour 
of steel joints 

ANN [363] 

Moment and rotation 
of steel joints 

ANN, ANFIS [364] 

Moment of RC joints ANN [365] 
Axial strength of CHS 
steel X-joints 

ANN, SVM [366]  

Analysis of 
frames 

Reliability analysis of 
steel frames 

ANN [11] 

Aerodynamic analysis 
of cable-stayed bridges 

SVM [367] 

Time history analysis 
of frames 

ANN [368] 

Load-deflection 
behaviour of CFST 
columns 

ANN [369] 

Seismic responses of 
RC frames 

CNN [370] 

Deflection/drift 
prediction 

ANN [371-374]  

RF [375]  
RF, DT, kNN, NB, 
RA1, RA5, 
AdaBoost, XGBoost 

[377]  

ANN, XGBoost [376] 
Strength predictions ANN [374,378- 

383,387]  
SVM [384]  
XGBoost [386]  
ANN, SVM, DT, RF, 
GBM 

[385] 

Natural frequency of 
masonry infilled RC 
frames 

ANN, DT [389] 
SVM, DT, RF, 
AdaBoost, XGBoost, 
RA1, RA5, kNN 

[388] 

Hysteresis behaviour ANN [390,391] 
Plastic hinge length of 
RC columns 

AdaBoost [392]  

SVM, DT, RF, GBM, 
XGBoost 

[393] 

Lumped plasticity 
model for RC columns 

RA4, RA5 [394]  

Analysis of 
trusses 

Truss under static load ANN [3,396,397]  
SVM [399]  
GBM [398] 

Time-history of truss ANN [395]  

Analysis of 
plate/wall 
structures 

Strength of RC shear 
walls 

ANN [400] 

RC slabs ANN [401] 
Deflection of RC slabs 
under blast load 

RF [402]  
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plane truss. Kaveh and Iranmanesh [397] compared the performance of 
two ANNs, namely the back-propagation neural network and the 
improved counter-propagation neural network in the analysis and 
design of large scale space structures. Truong et al. [398] used GBM to 
evaluate the ultimate load-carrying capacity of truss systems based on a 
large numerical database generated by advanced analysis. A similar 
work was also conducted recently by Truong and Pham [399], but they 
used SVM instead of GBM. 

4.4.5. Structural analysis of plate/wall structures 
One of the early applications of ML for the analysis of plate/wall 

structures was conducted by Mo and Lin [400], in which they developed 
an ANN model to predict the stress–strain curves of RC shear walls under 
earthquakes. Hegazy et al. [401] developed different ANN-based models 
to predict the load–deflection curve and crack pattern of RC slabs under 
punching shear actions. Almustafa and Nehdi [402] use the RF tech-
nique to predict the maximum displacement of RC slabs exposed to blast 
loading. They also collected a test database of 150 specimens of RC slabs 
under fire for training and validating purposes. 

4.5. Prediction of mechanical properties of concrete 

Concrete is the most commonly used construction material for 
buildings, bridges, and other infrastructure. Different types of structural 
concrete have been developed for structural and civil engineering ap-
plications, e.g., NSC, HSC, high performance concrete (HPC), recycled 
aggregate concrete (RAC), self-compacting concrete (SCC), lightweight 
concrete (LWC), GPC, fibre reinforced concrete (FRC), etc. One of the 
issues of concrete is that its mechanical properties are strongly depen-
dent on mix design and curing conditions. Due to the paramount 
importance of concrete properties in the design of RC structures, accu-
rate prediction of these properties, especially compressive strength fc 
and Young’s modulus E, has become a critical concern. 

Significant efforts have been made to utilise ML techniques in pre-
dicting mechanical properties of concrete. This is evidenced by the fact 
that this topic contributes nearly one third of the total publications on 
ML applications for structural engineering as shown in Fig. 14. Most of 
ML applications on the material topic focus on predicting the 
compressive strength of concrete (contributing up to 62% as shown in 
Fig. 14). Although a review on ML prediction of concrete properties was 
conducted by Ben Chaabene et al. [41], their review was limited to only 
four types of ML techniques (i.e., NN, SVM, DT, and EA). This section 
therefore provides a comprehensive review on seven groups of ML 
methods as shown in Fig. 13. A breakdown of publications using ML to 

predict mechanical properties of concrete can be found in Table 15. 

4.5.1. Compressive strength 
One of the early applications of ML in predicting compressive 

strength of concrete was conducted by Kasperkiewicz et al. [10] when 
using ANN to predict the compressive strength of HPC. Since then, a 
huge number of studies (over 110 publications) have been conducted to 
develop different ML models for different types of concrete as sum-
marised in Table 15. Based on ANN, Refs. [10,403–412] explored the 
compressive strength of HPC [10,92,403,406,408,409,411,412] and 
HSC [404,405,407,410]. In addition to compressive strength, Dias and 
Pooliyadda [404] and Öztaş et al. [405] also examined the slump of 
HSC, whilst Khan [412] and Bui et al. [409] further examined the tensile 
strength of HPC. Prasad et al. [406] developed ANN-based predictive 
model for SCC. Golafshani et al. [413] compared the performance of 
ANN and ANFIS in predicting the compressive strength of both NSC and 
HSC, whilst Chou and Pham [414] and Chou et al. [415] investigated the 
performance of the base learners (i.e., ANN, SVM, DT, and RA1) and 
ensemble models (i.e., combining from more than two base learners) in 
predicting the compressive strength of HPC. They concluded that 
ensemble technique can enhance the performance of individual base 
learners. Recently, Nguyen et al. [83] compared the performance of four 
ML methods including ANN, SVM, GBM, and XGBoost. They found that 
the BA methods (GBM and XGBoost) outperformed ANN and SVM in 
predicting the compressive and tensile strengths of HPC. The compres-
sive strength of HPC was also investigated using other ML techniques 
such as SVM [416,417], GBM [418], and RF [419]. 

Similar to HSC and HPC, there are also significant works on NSC 
using different ML techniques including ANN [420–435], ANFIS 
[436,437], RBFNN [60], CNN [438], SVM [439], AdaBoost [440], and 
XGBoost [441] as shown in Table 15. Moradi et al. [434] examined the 
compressive strength of concrete containing metakaolin. DeRousseau 
et al. [442] compared the performance of five ML models including RA1, 
RA2, DT, RF, and AdaBoost. Their results indicated that RF gave the 
most accurate prediction among compared models. Recently, Koya et al. 
[443] also compared the performance of five ML model (i.e., SVM, DT, 
RF, GBM, and RA2) in predicting five mechanical properties of concrete 
including compressive strength, tensile strength, bending strength, 
Young’s modulus, and Poisson’s ratio. It was found that SVM out-
performed in most of the cases. 

The potential application of ML methods to predict the compressive 
strength of LWC was explored by Refs. [444–452]. Again, ANN was 
dominantly used in this case [444–449]. In addition to the compressive 
strength, Yoon et al. [447] also examined the Young’s modulus of LWC. 

Fig. 37. CHS X-joints tested by Kim et al. [366].  
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Bonifácio et al. [450] also explored the compressive strength and 
Young’s modulus of LWC, but they used SVM instead of ANN. The 
application of RF to predict the compressive strength of LWC was carried 
out by Zhang et al. [451]. A comparison on the performance of ML al-
gorithms in predicting the compressive strength of LWC was presented 
by Yaseen et al. [452]. They concluded that ANN outperformed SVM, 
DT, and RA2. 

The application of ML to predict the compressive strength of FRC was 
examined by Refs. [453–456]. Based on ANN, Eredm et al. [453] 
developed ANN-based models to predict the compressive strength of 
concrete reinforced by polypropylene fibres [453]. Sultana et al. [454] 
employed both ANN and SVM to predict the tensile and compressive 
strengths of concrete reinforced by jute fibres. Guo et al. [455] 
compared the performance of ANN, SVM, DT, and XGBoost in predicting 
the tensile and compressive strengths of FRC. They concluded that the 
XGBoost method gave the highest accuracy among the considered ML 
methods for all mechanical properties. Recently, Kang et al. [456] pre-
sented a comprehensive comparison study of 11 ML models (i.e., ANN, 
SVM, DT, RF, AdaBoost, GBM, XGBoost, RA1, RA4, RA5, and kNN). Both 
compressive and flexural strengths of steel FRC were considered. The 
results indicated that GBM, XGBoost, RF, and DT had a good accurate 
prediction compared with other ML methods considered. 

GPC is an ecofriendly material in which ordinary Portland cement is 
replaced by geopolymer cement, a sustainable product which can be 
made from industrial waste material containing aluminosilicate mineral 
such as silica fume, fly ash, granulated blast furnace slag, natural zeolite, 
and metakaolin when treated with alkali solutions [457]. A substantial 
amount of research has been dedicated to developing ML-based models 
to predict the mechanical properties of GPC. For example, Özcan et al. 
[458] and Behnood and Golafshani [459] developed ANN models to 
predict the compressive strength of silica fume-based GPC. Han et al. 
[460] and Kandiri et al. [461] also developed ANN models for predicting 
compressive strength of GPC made from granulated blast furnace slag 
concrete. Compressive strength of fly ash-based GPC was examined by 
Refs. [462–464] using ANN methods [462,463] and DT method [464]. 
Recently, Shahmansouri et al. [465] explored the compressive strength 

Table 15 
Applications of ML in predicting mechanical properties of concrete.  

Property Application ML algorithm Reference 

Compressive 
strength 

HPC/HSC ANN [10,92,403-412]  
ANN, ANFIS [413]  
SVM [416,417]  
GBM [418]  
ANN, SVM, DT, 
RA1 

[414,415]  

RF [419]  
ANN, SVM, GBM, 
XGBoost 

[83] 

NSC ANN [420-435]  
ANFIS [436,437]  
RBFNN [60]  
CNN [438]  
SVM [439]  
AdaBoost [440]  
XGBoost [441]  
RA1, RA2, DT, 
RF, AdaBoost 

[442]  

SVM, DT, RF, 
GBM, RA2 

[443] 

LWC ANN [444-449]  
SVM [450]  
RF [451]  
ANN, SVM, DT, 
RA2 

[452] 

FRC ANN [453]  
ANN, SVM [454]  
ANN, SVM, DT, 
XGBoost 

[455]  

ANN, SVM, DT, 
RF, AdaBoost, 
GBM, XGBoost, 
RA1, RA4, RA5, 
kNN 

[456] 

GPC ANN [458-463,465]  
SVM [466]  
DT [464] 

SCC ANN [406,467-470]  
ANFIS [471]  
RBFNN [472,473]  
SVM [474,475] 

RAC ANN [476-486]  
CNN [487]  
XGBoost [488]  
ANN, RA3 [489]  
RA2, SVM, DT [490]  

Tensile 
strength 

HPC ANN [409,412] 
NSC SVM, DT, RF, 

GBM, RA2 
[443] 

FRC ANN [491]  
ANN, SVM [454]  
ANN, SVM, DT, 
RA1 

[492]  

ANN, SVM, DT, 
XGBoost 

[455] 

RAC ANN [476,479,483,486]  
ANN, RA3 [489]  
RA2, SVM, DT [490]  

Flexural 
strength 

FRC ANN, SVM, DT, 
RF, RA1, RA4, 
RA5, kNN, 
AdaBoost, GBM, 
XGBoost 

[456] 

GPC ANN [463] 
RAC ANN [486]  

ANN, RA3 [489]  
RA2, SVM, DT [490]  

Young’s 
modulus 

HSC and 
NSC 

ANN [493]  

SVM [494,495] 
NSC SVM, DT, RF, 

GBM, RA2 
[443] 

LWC ANN [447]  

Table 15 (continued ) 

Property Application ML algorithm Reference  

SVM [450] 
SCC SVM [496] 
RAC ANN [476,486,497,498]  

ANN, RBFNN, 
SVM 

[499]  

ANN, RA3 [489]  
RA2, SVM, DT [490]  

Property Concrete 
slump 

ANN [404,405,470,500,501]  

SVM [474,502] 
Stress and 
strain 

ANN [503,504,506,507,509,510]  

SVM [508] 
ANN, RBFNN, 
ANFIS 

[505] 

ANN, ANFIS, 
RA2, DT 

[511] 

Poisson’s 
ratio 

SVM, DT, RF, 
GBM, RA2 

[443] 

Shrinkage of 
concrete 

ANN [512] 

Creep of 
concrete 

ANN, SVM [513]  

RF, XGBoost, 
LightGBM 

[514]  

Mix design HPC ANN [515] 
NSC ANN [516-518] 
FRC SVM [519]  

RF [520] 
RAC ANN [521]  

H.-T. Thai                                                                                                                                                                                                                                        



Structures 38 (2022) 448–491

479

of silica fume and natural zeolite-based GPC using ANN, whilst Salami 
et al. [466] used SVM to examine the compressive strength of ternary- 
blend concrete. 

SCC is a new type of HPC. One of the benefits of SCC over conven-
tional concrete is that it has super workability, flowability, and pump-
ability. One of the most important characteristics of SCC is its ability in 
compacting itself without using external vibrators. Therefore, SCC has 
been widely used especially in bridges and precast construction. The 
application of ML to predict the compressive strength of SCC was also 
explored by Refs. [406,467–475]. One of the first applications of ANN in 
predicting the compressive strength of SCC was conducted by Prasad 
et al. [406]. They also developed ANN-based models for predicting the 
slump flow of SCC. Similar ANN-based models were also developed by 
Refs. [467–470]. Vakhshouri and Nejadi [471] proposed the use of 
ANFIS for SCC, whilst Golafshani and Pazouki [473] and Pazouki et al. 
[472] explored the application of RBFNN for SCC. The use of SVM for 
SCC was also examined by Siddique et al. [474] and Aiyer et al. [475]. 

ML techniques have also been used to predict the compressive 
strength of RAC in which aggregates are produced from recycled ma-
terials such as rubber tires and construction and demolition waste (e.g., 
concrete, brick, and masonry). A significant work has been dedicated to 
developing ML-based predictive models for RAC using ANN [476–486], 
CNN [487], and XGBoost [488]. Gesoǧlu et al. [476] also looked at the 
tensile strength and Young’s modulus of rubberized RAC in addition to 
its compressive strength. Dantas et al. [477] and Getahun et al. [480] 
focused on RAC made from agriculture, construction, and demolition 
waste, whilst Duan et al. [478] examined RAC made from various types 
and sources of recycled aggregates. Awoyera [479] and Chen et al. [483] 
developed ANN models for both compressive and tensile strengths of 
RAC with steel slag aggregate [479] and permeable RAC [483]. 
Recently, Golafshani and Behnood [486] and Xu et al. [489] explored 
the application of ANN and RA3 to investigate mechanical properties of 
RAC including compressive strength, tensile strength, flexural strength, 
and Young’s modulus. Golafshani and Behnood [486] focused on RAC 
containing waste foundry sand, whilst Xu et al. [489] focused on the 
comparison between their ML-based models and existing code-based 
and empirical equations. Similar work was also conducted by Gho-
lampour et al. [490] using different ML methods. 

4.5.2. Tensile strength 
ML techniques have been used to predict the tensile strength of HPC, 

NSC, FRC, and RAC as summarized in Table 15. The tensile strength of 
HPC was examined by Khan [412] and Bui et al. [409], whilst Koya et al. 
[443] investigated the tensile strength of NSC. It should be noted that 
Khan [412] and Bui et al. [409] used ANN to develop predictive models 
for both compressive and tensile strengths, whilst Koya et al. [443] 
compared the performance of five ML models (i.e., SVM, DT, RF, GBM, 
and RA2) for five different mechanical properties of concrete including 
compressive strength, tensile strength, bending strength, Young’s 
modulus, and Poisson’s ratio. 

Tensile strength of FRC was studied by Ikumi et al. [491] using ANN. 
Their ANN model can predict accurately the tensile strength of FRC for 
different cracking stages. Sultana et al. [454] employed both ANN and 
SVM to predict the tensile strength of concrete reinforced by jute fibres. 
Behnood et al. [492] developed four ML models of ANN, SVM, DT, and 
RA1 to predict the tensile strength of FRC as a function of its compres-
sive strength. Their ML-based models were also compared well with 
existing empirical equations. Guo et al. [455] compared the perfor-
mance of ANN, SVM, DT, and XGBoost in predicting the tensile strength 
of FRC. They concluded that the XGBoost method gave the highest ac-
curacy among the ML methods considered. 

Tensile strength of RAC was examined by Refs. 
[476,479,483,486,489]. Gesoǧlu et al. [476] developed the ANN model 
for the tensile strength of rubberized RAC, whilst Awoyera [479] and 
Chen et al. [483] developed ANN models for the tensile strength of RAC 
with steel slag aggregate [479] and permeable RAC [483]. Golafshani 

and Behnood [486] and Xu et al. [489] explored mechanical properties 
of RAC including compressive strength, tensile strength, flexural 
strength, and Young’s modulus. 

4.5.3. Flexural strength 
Kang et al. [456] presented a comparison study on the performance 

of 11 ML models including ANN, SVM, DT, RF, AdaBoost, GBM, 
XGBoost, RA1, RA4, RA5, and kNN in predicting the flexural strength of 
steel FRC. They found that GBM, XGBoost, RF, and DT outperformed 
other ML methods considered. The flexural strength of fly ash-based GPC 
was examined by Barbuta et al. [463] using ANN. Golafshani and Beh-
nood [486] and Xu et al. [489] explored the flexural strength of RAC 
using ANN and RA3 methods. 

4.5.4. Young’s modulus 
Young’s modulus of concrete is an important property required in the 

design of concrete structures. Existing empirical equations used in cur-
rent design codes of RC structures are obtained from regressive analysis 
of experimental data. These empirical equations might not suitable or 
available for different types of concrete developed recently. Therefore, 
ML techniques can be considered as an efficient tool to predict the 
Young’s modulus of concrete (see Table 15 for a list of publications on 
this topic). 

The Young’s modulus of NSC and HSC was examined by Demir [493] 
using ANN and by Yan and Shi [494] and Yazdi et al. [495] using SVM. 
In their ML-based models, the Young’s modulus was calculated from the 
compressive strength of concrete. Recently, Koya et al. [443] compared 
the performance of five ML models of SVM, DT, RF, GBM, and RA2 in 
predicting the elastic modulus of NSC. They also concluded that SVM 
outperformed other ML models. The elastic modulus of LWC was studied 
by Yoon et al. [447] using ANN and Bonifácio et al. [450] using SVM, 
whilst the elastic modulus of SCC was explored by Cao et al. [496] using 
SVM. 

The elastic modulus of RAC also receives much attention from the 
research community. Different ML-based predictive models have been 
developed using ANN [476,486,497,498]. Gesoǧlu et al. [476] exam-
ined the modulus of rubberized concretes, whilst Golafshani and Beh-
nood [486] examined the elastic modulus of RAC containing waste 
foundry sand. Duan et al. [497] developed an ANN-based model for the 
elastic modulus of RAC, and compared it with existing equations in 
design codes. Sadati et al. [498] collected an experimental database of 
over 480 tests to develop an ANN-based model for the elastic modulus of 
RAC. Golafshani and Behnood [499] examined the elastic modulus of 
RAC using ANN, RBFNN, and SVM methods, whilst Xu et al. [489] 
employed both ANN and RA3 methods for the elastic modulus of RAC. 

4.5.5. Other properties 
In addition to predicting the strength and elastic modulus of con-

crete, ML has also been employed to predict other mechanical properties 
of concrete such as slump, confined stress–strain, Poisson’s ratio, 
shrinkage, and creep as summarised on Table 15. The slump of concrete 
was investigated in Refs. [404,405,470,500,501] using ANN and Refs. 
[474,502] using SVM. The ANN models developed by Dias and Poo-
liyadda [404] and Öztaş et al. [405] are applied for HSC, whilst the ANN 
model developed by Yeh [500] is used for HPC. Belalia Douma et al. 
[470] explored the slump of SCC using ANN. Siddique et al. [474] and 
Sonebi et al. [502] also developed ML-based predictive models for the 
slump of SCC, but they used SVM. 

Another application of ML in mechanical properties of concrete is to 
predict the confined stress and strain of RC columns. Oreta and Kawa-
shima [503] explored the confined stress and strain of circular concrete 
columns using ANN, whilst Alacalı et al. [504] used ANN to develop a 
predictive model for confinement coefficient in rectangular RC columns. 
Mansouri et al. [505] examined the confined stress and strain at the peak 
and residual conditions. The stress and strain of RC columns confined by 
FRP sheets were explored by Pham and Hadi [506] and Jiang et al. [507] 
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using ANN and Chen et al. [508] using SVM. Pham and Hadi [506] 
examined the confined stress and strain of rectangular columns, whilst 
Jiang et al. [507] and Chen et al. [508] examined the confined stress and 
strain of circular columns. Naderpour et al. [509] and Jalal and Rame-
zanianpour [510] also developed ANN models to predict the confined 
stress of FRP-strengthened concrete. Mansouri et al. [511] also exam-
ined the application of ML to FRP-strengthened concrete, but focused on 
the strain reduction factor and strength enhancement ratio. In addition, 
ML techniques were also used to predict the Poisson’s ratio [443], 
shrinkage [512], and creep of concrete [513,514]. 

4.5.6. Mix design 
One of the first application of ML in optimising mixture of concrete 

was proposed by Yeh [515] in which ANN was used to develop an 
optimal mixture of HPC with lowest cost for a given workability and 
compressive strength. Yeh [516] also implemented his ANN model in a 
Computer-Aided Design (CAD) platform to develop a CAD tool that 
optimises the mixture of NSC. Similar ANN models were also developed 
by Ji et al. [517] and Ziolkowski et al. [518] to develop optimal mixtures 
for NSC. Optimal mixtures of FRC were also proposed by Huang et al. 
[519] using SVM and Abellán-García and Guzmán-Guzmán [520] using 
RF. The FRC mixture proposed by Huang et al. [519] was optimised for 
compressive and flexural strengths, whilst Abellán-García and Guzmán- 
Guzmán [520] optimised their mixture for ductility requirements of 
ultra-high performance FRC for seismic retrofitting applications. Kal-
man Šipoš et al. [521] also used ANN to develop an optimal mix design 
of RAC with brick aggregates. 

5. Summary, challenges, and future recommendations 

5.1. Summary of the findings from the reviewed literature 

A comprehensive review on the application of various ML algorithms 
for different areas of structural engineering presented in Sections 3 and 4 
indicates the potential of ML in this field. Based on the results of this 
review, the following findings of ML algorithms and structural engi-
neering applications are summarised as below: 

5.1.1. Findings about ML algorithms 

• For regression problems, it has been found that BA methods, espe-
cially XGBoost, have the best performance in general in predicting (i) 
the resistance of most structural members and systems (e.g., shear 
resistance of RC beams [78,98] and squat RC walls [77,80], punch-
ing shear resistance of RC slabs [79], axial resistance of RC columns 
reinforced by FRP bars [82] and CFST columns [167], flexural 
resistance of RC beams strengthened by FRP [220] and I-beams 
under patch load [386], compressive strength of concrete [83,455], 
and load-carrying capacity of truss systems [398]) and (ii) other 
applications (e.g., drift of RC frames [377], natural frequency of 
masonry infilled RC structures [388], and PHL for RC columns under 
seismic [393]). 

• For classification problems, however, there are different ML algo-
rithms which have been found to be best performance in identifying 
the failure mode for specific applications, e.g., ANN outperforming 
for circular RC columns [318], RF outperforming for RC shear walls 
[85], DT outperforming for column base plate connections [84], 
XGBoost giving best results for beam-to-column RC joints [346], etc. 
It should be noted that these findings are based on comprehensive 
comparison studies on a large number of ML algorithms including 
tree-based algorithms (i.e., DT, RF, and BA) and others (e.g., SVM, 
RA, ANN, kNN, NB, etc.).  

• CNN has been emerged as one of the best ML algorithms for image- 
based crack damage detection and SHM due to the development of a 
wide range of CNN architectures (e.g., AlexNet, VGG, U-Net, etc.) 
and the availability of large databases of both crack and non-crack 

structural images (e.g., Structural ImageNet, PEER Hub ImageNet, 
bridge crack library, etc.) [36]. A comparison study conducted 
recently by Ali et al. [39] indicated that CNN outperformed tradi-
tional image processing techniques and other ML algorithms for both 
classification (i.e., cracks detected at the image level) and segmen-
tation (i.e., cracks detected at the pixel level) approaches. In addi-
tion, the use of transfer learning training method can reduce 
significantly training time especially when the CNN model is trained 
on a large database with very deep networks [39]. Therefore, a sig-
nificant amount of research works has been conducted in this area 
recently. A critical review on the use of CNN for structural crack 
detection and structural assessment can be found in Ali et al. [39] 
and Sony et al. [36], respectively.  

• Among the ML algorithms used in structural engineering, NN has 
become the most widely used method (see Fig. 13) due to its popu-
larity and ease of use. Another advantage of ANN is that it can ex-
press or interpret in terms of empirical equations to be implemented 
in design codes. As shown in Fig. 12b, NN is the only ML method that 
adopted in structural engineering since its early stage until 2006 
when the SVM method was first used in structural engineering for 
damage detection [312]. Although the BA methods was introduced 
since 1996 with the AdaBoost version, they were just adopted in 
structural engineering in 2019 to predict the compressive strength of 
concrete [442] and failure modes of masonry-infilled RC frames 
[293]. However, this method, especially the XGBoost version, has 
been extensively used in various areas of structural engineering 
recently as evidenced by an exponential growth in the number of 
publications shown in Fig. 12b. 

• As shown in Table 5, NN has been favourably used in all five struc-
tural engineering topics, especially in the fire and member topics 
where NN has been dominantly used. Among five topics considered, 
SVM and DT have been widely used in the material topic, whilst a 
large amount of BA applications is focused on the member topic. 

5.1.2. Findings about ML applications in structural engineering  

• Among five structural engineering topics identified, the member 
topic has attracted the most attention from the structural engineering 
community with 38% of over 485 relevant publications appearing in 
this topic as shown in Fig. 14. This is followed by the material topic 
which contributes up to 29%. Most of research works conducted in 
these two topics involves in predicting the shear resistance of 
structural members (in the member topic) and the compressive 
strength of concrete (in the material topic). These statistics indicate 
the importance of using ML as an alternative prediction tool in the 
areas that are too complex and time-consuming if traditional physics- 
based methods are utilised.  

• Most of ML applications in the member topic have been devoted to 
predicting the shear resistance of structural members (contributing 
up to 38% of over 190 publications as shown in Fig. 14), especially 
beam structures (mainly RC beams) with 44 publications as shown in 
Table 6. The second most use of ML in this topic is the prediction of 
the axial resistance of columns and walls with 36 articles published 
in this area equivalent to 19% as shown in Table 7 and Fig. 14. Over 
two-thirds of them (25 out of 36 publications) are related to CFST 
columns. This is due to the complex composite action of CFST col-
umns that makes them hard to be predicted or modelled by using 
traditional mechanics-based approach.  

• In the material topic, compressive strength of concrete plays an 
important role in the design of concrete structural members. 
Therefore, most publications in this topic focus on predicting the 
compressive strength of different types of concrete (e.g., HPC, RAC, 
SCC, LWC, GPC, FRP, etc.) whose mechanical properties are strongly 
dependent on a lot of factors such as mix design and curing condi-
tions. Due to the variation and uncertainty in compressive strength of 
concrete, the use of physics-based models is not reliable. Therefore, 
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ML techniques have emerged as a promising tool in predicting the 
compressive strength of concrete as well as optimising the mix design 
of the newly developed concrete materials.  

• The damage and SHM topic has experienced an exponential growth 
in the use of CNN, fully CNN, and transfer learning technique in 
detecting crack damage in structures (see Table 13). With the 
availability of large image databases and recent developments in 
CNN architectures, detecting different types of cracks and damage 
and assessing the condition of different types of civil infrastructure 
made from various construction materials have become more accu-
rate and efficient than traditional techniques [328]. Therefore, CNN 
is expected to be the future of SHM. A detailed review of recent 
developments in CNN for image-based crack detection and SHM can 
be found in Refs. [32,36,39]. 

5.2. Challenges 

With the developments of new ML algorithms (e.g., boosting 
methods and CNN) outperforming other established models, the struc-
tural engineering research community has witnessed a boom in the use 
of ML in structural engineering in the last five years (see Fig. 12a). 
However, there are still several existing challenges that need to be 
addressed so that ML can be effectively and efficiently used in structural 
engineering practice. In general, the two things that mainly affect the 
performance of a ML-based model are the ML algorithm and database 
used. In the context of structural engineering, the following challenges 
are identified:  

• The first challenge involves the selection of a right ML algorithm 
which is not an easy task for the structural engineering community 
which are unfamiliar with ML. There are a large number of ML al-
gorithms that have been adopted in structural engineering (see 
Sections 2.2 and 4). Each ML algorithm might be suitable for a 
particular structural engineering application. Although a number of 
comparison and benchmarking studies have been carried out in the 
literature to find out suitable algorithms for different topics (see 
Section 5.1.1), the findings are somehow not consistent. For 
example, Yaseen et al. [452] confirmed in their comparison study 
that ANN outperformed SVM, DT, and RA2 in predicting the 
compressive strength of LWC, whilst Guo et al. [455] found that 
XGBoost outperformed ANN, SVM, and DT in predicting the tensile 
and compressive strengths of FRC. Whereas, Koya et al. [443] 
concluded that SVM outperformed DT, RF, GBM, and RA2 in pre-
dicting all mechanical properties of concrete. Therefore, non-ML 
background users especially structural engineers and practitioners 
should compare and verify their developed ML-based models before 
recommending them for practical design.  

• Another challenge related to ML algorithms is the use of the right 
hyperparameters. In fact, there are several hyperparameters in each 
ML algorithm that can make the model more accurate and/or being 
trained faster. Therefore, they need to be tuned during the testing 
and validating stages to find the optimal values. This is also a chal-
lenge for structural engineers and practitioners who are not familiar 
with ML.  

• Additional challenge of ML algorithms involves their “black box” 
nature as it is hard to understand how they work. Although some 
simple ML algorithms with limited number of parameters such as 
RA1 and DT can be easily interpreted, complex ML algorithms such 
as deep neural networks with multiple layers and thousands of pa-
rameters are considered as truly black boxes because their behaviour 
is too complex to be comprehended or explained even by ML experts 
[522]. Other ML algorithms that are somehow interpretable such as 
RF and BA also become unfamiliar to structural engineering people. 
In general, the complex algorithm is usually more accurate than the 
simple one, but they are less interpretable. Therefore, it is necessary 
to trade-off between accuracy and interpretability. In other words, 

simpler (and more interpretable) models should be used in the case 
there is no significant benefit gained from a complex alternative. For 
some applications that the use of complex models is unavoidable for 
more accuracy purpose, however, understanding how decisions are 
made by the algorithm is essential to trust the ML-based model 
before recommending it for practical use. 

• The last challenge of ML is the quantity of training data. Each al-
gorithm has different demands on amount of data to achieve an 
acceptably accurate level. Deep neural networks like CNN, for 
example, needs extremely large amount of data compared with other 
algorithms due to using multiple layers of neural networks. Training 
on a small or limited database tends to overfit the data, and thus 
leading to poor generalization. The quality of data is also crucially 
important to be able to generalize ML model. Therefore, the training 
data should cover the scope and domain of applications because ML 
algorithms are usually not good extrapolators. 

5.3. Future research directions 

Despite the recent success of ML applications across a wide range of 
structural engineering topics (see Section 4), additional works are still 
needed to promote further applications of ML for structural engineering. 
Although there are some promising areas in which ML can provide 
benefits to the structural engineering community, future efforts mainly 
focus on addressing the challenges identified in Section 5.2.  

• Calibrating ML algorithms and their hyper-parameters: Determining an 
appropriate algorithm and its optimal hyper-parameters for a 
particular application is one of the most importance tasks that need 
to be done before recommending the ML model for practical use. This 
is due to the fact that each algorithm is only suitable for a particular 
application especially for the case of classification problems. Most of 
existing works did not explain how to select hyper-parameters or 
provide detailed optimal hyperparameters calibrated for ML algo-
rithms used. Therefore, a comprehensive calibration framework is 
needed for ML algorithms to enable its practical use by structural 
engineering people without ML background. 

• Interpretation and explanation of ML models: The need for trans-
parency in ML algorithms is essential to build trust in the structural 
engineering community to ensure decisions made by ML models are 
well-grounded. Therefore, future research needs to focus on devel-
oping interpretable and explainable algorithms in structural engi-
neering to enable the black box to be opened. Various techniques 
have been developed to interpretate ML models such as SHAP, 
feature importance, partial dependence plot, feature interaction, 
surrogate model, and accumulated local effect [80,220]. Among 
them, SHAP is the most widely used approaches in, for example, 
bridge damage evaluation [285], axial resistance of FRP- 
strengthened RC columns [82], shear resistance of RC beams [78] 
and squat RC walls [77], punching shear resistance of RC slabs [79], 
failure modes of RC walls [86] and beam-to-column RC joints [346], 
and PHL of RC columns [393]. Another option is to develop ML 
models that are inherently interpretable (i.e., interpretable at the 
first place) since they are faithful to what the model actually does 
[523].  

• Facilitating practical use in design: Most of ML-based predictive models 
developed in the literature are just used as predictive tools only. In 
order to promote these tools for practical use in design, reliability 
analysis needs to be carried out to assess the safety and reliability of 
these models in design, as well as to determine their corresponding 
resistance reduction factors used in the load resistance factor design 
(LRFD) format. Some initial works have been done in this area for RC 
slabs [149], CFS structures [209-211], and CFST columns [524,525]. 
In addition, more efforts should be devoted to developing ML models 
for structural analysis to predict the load–displacement behaviour of 
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structures which can provide useful information about the structure 
such as failure modes, stiffness, and ultimate load-carrying capacity.  

• Database: Database plays an important role in training ML models. 
Although the work on developing database platforms has been 
initiated (see Section 2.5), most of existing databases are collected 
from the tests or simulations of isolated structural members (e.g., 
beam, column, wall, and joint). The databases required for predict-
ing the behaviour and strength of whole structural systems (e.g., 
truss, frame, building, and bridge) are very limited. These can be 
generated using finite element simulations rather than costly 
experimental tests.  

• Physics-informed ML: This approach was developed for deep neural 
networks without requiring big data. The idea behind it is to inte-
grate mathematical physics models with ML methods. One of the 
greatest merits of this method is that it yields results quickly and 
accurately, and thus it has emerged as a promising alternative for 
structural engineering. The application of this method to the struc-
tural engineering domain was conducted recently for structural 
analysis [526] and damage detection [527]. A review of this method 
can be found in Karniadakis et al. [528]. This is a promising area of 
future research. 

6. Conclusions 

ML has emerged as a promising predictive tool for a broad range of 
structural engineering applications, and thus it can be potential re-
placements for commonly used empirical models. The application of ML 
in structural engineering is booming evidenced by an exponential 
growth of the number of relevant publications in the literature in recent 
years. In this paper, an ambitious and comprehensive review on the 
applications of ML for structural engineering has been presented. The 
review covers a broad range of structural engineering topics (five topics) 
and ML algorithms (seven groups). An overview of ML algorithms along 
with basic concepts, open-source codes, ML libraries, and collected 
datasets is also provided with the aim at assisting the non-ML structural 
engineering community to develop their own ML models for practical 
applications. In addition, challenges and future opportunities for this 
emerging topic are also highlighted and discussed. 

In a nutshell, the accuracy and reliability of ML-based prediction 
models strongly depends on the performance of learning algorithms and 
the characteristics of training databases used. That is why structural 
engineers and practitioners remain reluctant to adopt ML methods as 
structural analysis and design tools. Therefore, it should be used with 
caution by individuals who are familiar with ML because the structural 
safety is one of the primary concerns in structural analysis and design 
tasks. This will require structural engineers and practitioners to have 
background knowledge in ML to know how to develop and justify their 
ML-based predictive models. In the long term, basic ML related subjects 
should be included in curricula of civil and structural engineering 
courses at the university to facilitate and promote the use of ML in the 
structural engineering community. With the inclusion of open-source 
ML codes and structural engineering databases, this paper can serve as 
a useful reference for structural engineering practitioners and re-
searchers to enter this field of research. 
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[271] Hozjan T, Turk G, Srpčič S. Fire analysis of steel frames with the use of artificial 
neural networks. J Constr Steel Res 2007;63:1396–403. 

[272] Xu J, Zhao J, Wang W, Liu M. Prediction of temperature of tubular truss under fire 
using artificial neural networks. Fire Saf J 2013;56:74–80. 

[273] Hakim SJS, Abdul RH. Structural damage detection of steel bridge girder using 
artificial neural networks and finite element models. Steel Compos Struct 2013; 
14:367–77. 

[274] Hakim SJS, Abdul RH. Adaptive neuro fuzzy inference system (ANFIS) and 
artificial neural networks (ANNs) for structural damage identification. Struct Eng 
Mech 2013;45:779–802. 
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[428] Topçu İB, Sarıdemir M. Prediction of compressive strength of concrete containing 
fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 2008; 
41:305–11. 

[429] Al-Salloum YA, Shah AA, Abbas H, Alsayed SH, Almusallam TH, Al-Haddad MS. 
Prediction of compressive strength of concrete using neural networks. Comput 
Concr 2012;10:197–217. 

[430] Yaprak H, Karaci A, Demir I. Prediction of the effect of varying cure conditions 
and w/c ratio on the compressive strength of concrete using artificial neural 
networks. Neural Comput Appl 2013;22:133–41. 
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