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a b s t r a c t

One of the major challenges in the construction industry is the detection of cracks in concrete structures
and identification of failure types of these structures that lead to their degradation. Manual quality
checks are prone to human error, and require longer response time and specialist experience and knowl-
edge. Therefore, visualizing the cracks and identifying failures in concrete structures using computer
techniques is now a preferred option. The present work focuses on identifying the cracks using image
processing and failure pattern recognition technique by employing suitable machine learning algorithms,
and validating the techniques using Python programming. For this purpose, M30 grade geopolymer and
conventional concrete beams were cast using Basalt Fibre Reinforced Polymer/Glass Fibre Reinforced
Polymer and Steel bars. The beams were subjected to four point static bending test by varying the shear
span to the effective depth ratio. The experimental images were used for image processing and failure
pattern recognition in Python language. Employing six machine learning classifiers, the failures in the
structures were classified into three classes namely, flexure, shear, and compression. The machine learn-
ing classifiers were also adopted to determine the confusion matrix, accuracy, precision, and recall scores.
It was found that among the six classifiers used, the support vector classifier gave the best performance
with 100% accuracy in identifying the failure patterns.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Concrete is the main base material for constructing a building
with cement being the major ingredient of concrete. Cement man-
ufacturing industries release large amounts of carbon dioxide into
the atmosphere. Geopolymer concrete is an innovative and sus-
tainable construction material which consists of three components
namely, a source of aluminosilicate materials, fine and coarse
aggregate, and an alkali activating solution. Examples of alumi-
nosilicate materials are fly ash, Ground Granulated Blast furnace
Slag, slag cement, slag, metakaolin and silica fume. Alkali solution
is a mixture of sodium silicate and sodium hydroxide along with
water or a mix of potassium silicate and potassium hydroxide
along with water. It is used for casting of structural members,
pavement construction, brick/ block manufacturing work, etc.
When buildings are exposed to aggressive environments in the
long term, damages occur which cause degradation of the build-
ings. The factors involved in degradation of concrete are salt ero-
sion, frost damage, dry shrinkage, earthquakes, and rain water
[1]. The degradation levels and carrying capacity of reinforced
concrete structures are mainly influenced by the width, length,
type, and the number of cracks in the structures [2]. Hence, the
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assessment of cracks in concrete structures is important for inspec-
tion, diagnosis, maintenance, and safety life prediction. Crack
detection by visual inspection requires more experience, special-
ist’s knowledge, and is tedious, time consuming, and subjective.

Currently, automatic image-based crack detection methods are
used along with visual inspection. Many automatic crack detection
methods have been proposed during the past few years [3,4]. Due
to irregularities in crack size, shape, unevenly elucidated condi-
tions, and blemishes, crack segmentation from the crack images
is very difficult. Hence, crack detection is very important, specifi-
cally for the variety of cracks in complicated backgrounds. In this
study, a crack detection technique is proposed which employs
pre-processing of images for extracting crack patterns and classi-
fiers for segregating the class of crack patterns.

The paper is organized as follows: Section 2 presents the rele-
vant review of literature, section 3 describes the materials and
methods, section 4 presents the crack analysis, section 5 presents
results and discussion, and section 6 concludes the paper.
2. Related work

Several research works have been carried out in the field of
crack detection in geopolymer concrete and the techniques used
to measure the crack dimensions. Most recently, Amer Hassan
et al. have performed an intensive study on geopolymer concrete.
Based on their study, it has been concluded that geopolymer con-
crete is a sustainable construction material thus presenting a new
technology that is of significance in the construction industry [5].
Also, as a popular material it has garnered significant attention in
the construction industry due to its useful by-product materials,
eco-friendly (low ‘embodied energy’ and low ‘embodied CO2 emis-
sion’) nature, non-requirement for water curing, economic viabil-
ity, and conventional concrete-like properties [6,7,8]. Geopolymer
concrete has better compressive strength, develops minor cracks,
and undergoes only slight damage in the mass at elevated temper-
atures as compared to Ordinary Portland Cement (OPC) concrete
[9,10]. It contains more amorphous phases, less porosity and more
pores in the mesopores range than concrete with OPC [11]. The
previous research methods for determining the crack width and
depth used ultrasound, which is inconvenient to operate since it
requires a coupling agent [12]. Fibre optics approaches employed
to determine the crack width and location create complexity in
measurement [13]. Image-based crack detection methods have
been developed in the past 25 years and have been applied to test
civil structures such as pavements, bridges, and water retaining
structures. Crack detection techniques used in research include
image processing methods such as Canny, Fast Fourier Transform,
Fast Haar Transform, and Sobel implemented by MATLAB [14],
percolation-based approach [4,15,16], stereovision-based
approach [2], computational approach [17], image processing
methods such as morphological approach and integrated algorithm
[18], and Principal Component Analysis (PCA) based algorithm
[19]. Another crack detection technique used in concrete bridges
is Spatially Tuned Robust Multifeature (STRUM) classifier-based
algorithm that uses on-site robotic scanning that delivers 90%
accuracy [20].

Wang and Huang [21] used Otsu threshold segmentation algo-
rithm integrated with a modified Sobel operator for crack detection
Table 1
Chemical composition of fly ash and GGBS.

Materials SiO2 CaO MgO Al2O3

Fly ash (%) 63.32 2.49 0.29 26.76
GGBS (%) 35.05 34.64 6.34 12.5
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in concrete bridges. Deep fully convolution neural network (FCN)
method (using VGG16) was used by Dung and An [22] for detecting
the cracks in concrete. Fujita et al. [23] used two pre-processing
methods namely, subtraction and line extraction, and a threshold
process to separate the cracks from the background in order to
assess their accuracy and firmness [24].

Manufactured sand (M�sand) is used currently due to the scar-
city of river sand. Steel corrosion is a major problem and requires
expensive maintenance, repair, retrofitting, and rehabilitation in
reinforced concrete structures. This problem is overcome by using
reinforced concrete structures such as Fibre-Reinforced Polymer
(FRP) bars that are non-corrosive, light weight, and environment-
friendly in nature. This research mainly focuses on studying the
experimental shear behaviour of geopolymer concrete beams using
BasaltFibre-Reinforced Polymer (BFRP) and Glass Fibre-Reinforced
Polymer (GFRP) bars by varying the shear span to the effective
depth ratio, crack detection using image processing, and analytical
failure pattern recognition using machine learning algorithms in
python script.

3. Materials and methods

This section first details the materials and methods used in the
study. Next, the experimental setup is described. Finally, the anal-
ysis methodology using image processing and machine learning is
presented.

3.1. Materials used

The materials used in the study for making geopolymer and
conventional concrete are described in the following sub-sections.

3.1.1. Geopolymer and conventional concrete
For making geopolymer concrete, aluminosilicate materials, i.e.

fly ash and ground granulated blast furnace slag (GGBS), coarse
aggregate, manufactured sand, alkali activator solutions (sodium
silicate and sodium hydroxide), and super-plasticizer were used.
For making conventional concrete, 53 grade cement, river sand,
coarse aggregate and water were used. The chemical composition
of the aluminosilicate materials and the physical properties of
the concrete materials used for making the geopolymer concrete
are presented in Tables 1 and 2.

3.1.2. BFRP, GFRP, steel bars and stirrups
Steel bars of 12 mm, 10 mm and 8 mm diameter were used as

reinforcement bars and stirrups, both, in the geopolymer concrete
and the conventional concrete. The properties of BFRP, GFRP and
steel bars are presented in Table 3.

3.1.3. Mix proportions and mechanical properties
The mix proportion for M30 grade concrete used in this work

was chosen from the previous work [25] as per IS 10262 [26].
The volume of binder, fine aggregate, coarse aggregate and liquid
used were 380 kg/m3, 660 kg/m3, 1189 kg/m3 and 171 kg/m3,
respectively. In order to produce M30 grade geopolymer concrete,
FA and GGBS were taken in the ratio of 80:20. The ratio of liquid to
binder was chosen as 0.45. In geopolymer concrete, river sand was
fully replaced by M�sand and one percent of naphthalene based
Fe2O3 K2O SO4 Na2O LOI

5.55 0.0002 0.36 0.0004 0.97
0.3 0.6 0.38 0.9 0.26



Table 2
Physical properties of the concrete materials.

Description Fly Ash GGBS Cement River Sand M�Sand Coarse Aggregate

Specific gravity 2.13 2.85 3.13 2.66 2.72 2.73
Fineness modulus – – – 3.04 2.90 –
Water absorption (%) – – – 1.33 1.52 0.64

Table 3
Properties of FRP bars and Steel bars.

Properties BFRP GFRP Steel

Elastic Modulus (GPa) 94 54 200
Tensile Strength (MPa) 513 515 495
Poisson’s ratio 0.23 0.24 0.27
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super plasticizer was used to achieve the workability of the
geopolymer concrete. Geopolymer concrete is mainly made using
class F fly ash obtained from North Chennai Thermal power plant
station, Chennai. Commercially available GGBS was used as part
replacement material for fly ash in this study. The mixture of
sodium silicate and sodium hydroxide solution was used as Alkali
Activated Solution (AAS). The 8M NaOH flakes were mixed with
distilled water a day before its use, to lower down the ambient
temperature and then was mixed with Na2SiO3 solution to produce
alkaline activator solution to accelerate the reactivity of the solu-
tion. The sodium silicate solution with sodium hydroxide ratio by
mass of 2.5 was used. In the mixing process, fine and coarse aggre-
gates were first mixed in Saturated Surface Dry (SSD) condition in a
mixer machine. Then, the binder contents were mixed with the
aggregates. The mixing was continued for about 3 min. The already
prepared AAS was poured in the mixer machine and the mixing
was continued for about 4 min. Finally, the super plasticizer was
added to the mixtures to get the required workability until the
concrete appeared homogenous and had the desired consistency
[27].
Table 4
Mechanical properties of geopolymer and conventional concretes.

Mechanical properties Geopolymer concrete Conventional concrete

Compressive strength (MPa) 40.35 38.95
Split tensile strength (MPa) 3.32 3.17
Flexural strength (MPa) 4.69 4.46
Modulus of elasticity (GPa) 19.10 22.19
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The mechanical properties of the geopolymer and conventional
concretes are tabulated in Table 4 and were validated using the
Levenberg–Marquardt training algorithm using MATLAB software
[28].

3.2. Methods

3.2.1. Beam details and preparation
Nine concrete beams having width, depth, and length of

100 mm, 160 mm, and 1700 mm, respectively, were cast under
four point static bending test with an effective span of 1500 mm.
The beam specimen details are illustrated in Fig. 1. Three beams
each were cast in BFRP and GFRP bars in geopolymer concrete,
and steel bars in conventional concrete. Two 12 mm diameter bars
at the bottom and two 10 mm diameter bars at the top, with 8 mm
diameter bars as stirrups were used in all the nine beams. The BFRP
and GFRP stirrups were prepared by connecting the vertical and
horizontal bars (8 mm diameter) using Anabond resin and the joint
was connected with FRP mats using epoxy resin. The beams were
placed and loaded by varying the ratio of the shear span ‘a’ to
the effective depth ‘d’ from 3.6 to 4.3. The beams were denoted
as follows: BRGC-3.6, BRGC-3.9, BRGC-4.3 for the BFRP bars,
GRGC-3.6, GRGC-3.9, GRGC-4.3 for the GFRP bars, and SRCC-3.6,
SRCC-3.9, SRCC-4.3 for the steel bars.

After mixing the aggregates in saturated surface dry condition
followed by the addition of binders, alkali activated solution, and
super plasticizer to the mixer machine, the mix was poured in
three layers, and vibrated in beam moulds. The specimens were
demoulded after 24 h and kept under ambient curing for geopoly-
mer concrete and under water curing for conventional concrete for
28 days.

3.2.2. Test setup and instrumentation
The details of the loading arrangements with varying ratios of

shear span to effective depth are shown in Fig. 2. Details of the test
setup and instrumentation are shown in Fig. 3.

Nine beams were tested under four point static bending test by
varying the ‘a/d’ ratio as 3.6, 3.9 and 4.3. The load was applied on
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Fig. 2. Details of loading arrangements with ‘a/d’ ratio of 3.6, 3.9, and 4.3.
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the specimens and the cracks for the corresponding load intervals
at the time of testing were marked. The crack pattern until failure
was also noted.
4. Crack analysis

From the experimental tests [29], the failure mode and crack
pattern for all the nine beams subjected to static load by varying
the shear span to the effective depth ratio were observed and are
shown in Fig. 4.

From Fig. 4 it was observed that when the ratio of the shear
span to the effective depth in SRCC was increased, new cracks
4

developed in the outer region of the Constant Bending Moment
(CBM) zone (i.e. in the shear zone). But no shear cracks were devel-
oped in SRCC-3.6. It was also evident that the mode of failure for
SRCC comprises of both flexure and compression with little shear
failure as the shear span to effective depth ratio was increased.

The crack patterns were similar in all the beams at initial load
intervals. But in BRGC and GRGC beams, it was found that inclined
cracks developed from flexural cracks. As compared to BRGC-3.6
and BRGC-4.3, more inclined cracks developed in the shear zone
in BRGC-3.9. The same pattern was also observed in GRGC-3.9
when compared to GRGC-3.6 and GRGC-4.3. When the shear span
to the effective ratio was 4.3, the beam deflection re-cambered to
20 mm at the ultimate load level after releasing the load for both



Fig. 3. Details of test setup and Instrumentation.
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the beams. But for BRGC-3.6, BRGC-3.9, GRGC-3.6, and GRGC-3.9,
sudden failure was observed after attaining 95% of the ultimate
load level. Thus it can be concluded that sudden shear and flexure
failure at premature has occurred. The sudden shear failure
observed in GRGC and BRGC beams can be attributed to the insuf-
          (a). Crack pattern and failure mode of St

          (b). Crack pattern and failure mode of Ba

          (c). Crack pattern and failure mode of G

SRCC-3.6 

SRCC-3.9 

SRCC-4.3 

Fig. 4. (a). Crack pattern and failure mode of Steel reinforced conventional concrete. (b).
pattern and failure mode of Glass reinforced geopolymer concrete.
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ficient shear reinforcement. The modes of failure and shear
strength at ultimate load levels for the steel and geopolymer
beams are shown in Table 5.

Table 5 indicates that the ultimate load-carrying capacity and
the shear capacity at ultimate load level in the steel and FRP rods
decreased as the ratio of the shear span to the effective depth
increased. Further, in both the FRP rods, the failure pattern chan-
ged from shear to flexure on increasing the ‘a/d’ ratio from 3.6 to
4.3 while no such change was seen in SRCC.

From the Table 6, it was observed that the number of cracks for
steel increased as the ratio of the shear span to the effective depth
increased to 3.9, and then decreased with further increase in the ‘a/
d’ ratio to 4.3. The same trend was observed for both the FRP bars.
In the case of steel and glass rods, the crack propagation decreased
with increase in the shear span to the effective depth ratio while
for the basalt reinforced geopolymer concrete beams, the crack
propagation reached a high value with increase in this ratio. The
spacing of crack decreased when the numbers of cracks and loads
increased. The spacing of cracks was constant during the loading
and unloading of the ultimate load level for SRCC-4.3 and GRGC-
4.3. From table 6, it was observed that the crack spacing decreased
suddenly when the load level for SRCC-3.9 increased. When the
eel reinforced conventional concrete.

salt reinforced geopolymer concrete. 

lass reinforced geopolymer concrete. 

BRGC-3.6 

BRGC-3.9 

BRGC-4.3 

GRGC-3.6 

GRGC-3.9 

GRGC-4.3 

Crack pattern and failure mode of Basalt reinforced geopolymer concrete. (c). Crack



Table 5
Modes of failure and shear strength at ultimate load levels.

Sl.No Specimen id Ultimate Load (kN) Shear Strength at Ultimate load (MPa) Failure mode

1 SRCC-3.6 49.80 3.56 Flexure & compression
2 SRCC-3.9 47.95 3.43 Flexure & compression
3 SRCC-4.3 40.20 2.87 Flexure & compression
4 BRGC-3.6 33.45 2.39 Shear compression
5 BRGC-3.9 32.55 2.33 Shear compression
6 BRGC-4.3 32.05 2.29 Flexure
7 GRGC-3.6 32.40 2.31 Shear compression
8 GRGC-3.9 26.65 1.90 Shear compression
9 GRGC-4.3 26.20 1.87 Flexure

Table 6
Behaviour of cracks under static load with varying ‘a/d’ ratio.

Specimen Id Total Number
of Cracks –First

Total Number of
Cracks –Ultimate

Crack
Propagation –
First

Crack
Propagation –
Ultimate

Crack spacing –
First (CBZ)

Crack spacing –
Ultimate (CBZ)

Crack Width –First Crack Width –
Ultimate

(Nos.) (Nos.) (mm) (mm) (mm) (mm) (mm) (mm)
SRCC-3.6 5 15 48 116 115 71 0.093 0.4
SRCC-3.9 3 17 70 122 296 126 Nil 0.86
SRCC-4.3 3 11 71 101 97 97 0.355 1.32
BRGC-3.6 9 16 105 130 128 89 0.195 0.56
BRGC-3.9 4 18 85 159 164 75 Nil 1.21
BRGC-4.3 5 16 90 141 123 45 0.064 2.12
GRGC-3.6 6 13 135 153 197 73 0.235 0.78
GRGC-3.9 9 22 95 120 105 57 0.418 1.3
GRGC-4.3 3 11 70 117 135 135 Nil 3.8
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ratio of the shear span to the effective depth was increased, the
average crack width also increased.

The architecture for crack detection and pattern recognition
based on image processing and machine learning algorithm in
python script is depicted in Fig. 5.

Machine Learning method is broadly classified into supervised
and unsupervised learning. Supervised learning includes Logistic
Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest
Neighbors, Decision Tree, Random Forest, Support Vector Classifier
and Deep Learning Neural Network while unsupervised learning
comprises of K-Means Clustering, Gaussian Mixture Model and
Spectral Clustering. Adaboost is used to combine multiple classi-
fiers. In the present work Stochastic Gradient Descent, K-Nearest
Neighbors, Decision Tree and Support Vector Classifier were
selected from the supervised learning and Gaussian Mixture Model
was chosen from the unsupervised learning. Adaboost was used to
combine multiple classifiers. The reason for selecting four machine
learning algorithms from the supervised learning is that the train-
ing set of data contains observations whose category membership
Initialization 

Experimental 

 Study 

Crack Image 

Gathering 

Crack Detection 

Techniques 

Image Pre-processing 

Gray Scale Image 

Image Resizing 

Canny Edge 

Detector 

Feature 

Extraction 

Machine Learning 

Pattern  

Collections 

Training  

Patterns 

Testing 

Patterns 

Different Classifiers 

Accuracy 

Precision 

Recall 

Confusion 

Crack Detection Pattern Recognition 

Fig. 5. Architecture for crack detection and pattern recognition.
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is known. Based on the experimental results, most of the data are
known and few data are unknown. Hence, only one machine learn-
ing was considered from the unsupervised learning. The above
mentioned machine learning applications were used to study var-
ious patterns and determine the accuracy of crack detection and
pattern recognition.

4.1. Crack image gathering

The images from the structure were captured using a camera
and were then subjected to the image pre-processing process and
further analysis.

4.2. Image Pre-processing

Image pre-processing comprises of gray scale image conversion,
image resizing, canny edge detection, and feature extraction.

4.2.1. Gray scale image conversion
A colour image contains lots of data, most of which are not

required for crack detection. Colour images contain RGB (Red,
Green, and Blue) colours with different intensity labels, which
increase the image size as well as consume more time for process-
ing. Hence conversion of the colour image to gray scale image is
necessary to select relevant information, discard unnecessary
information and reduce the processing time. In this work, grayscale
image conversion was carried out on the input image to convert it
from colour to a grayscale image using python package ‘skimage.-
color’. The obtained grayscale image contained a range of black to
white shades. Fig. 6(a) depicts the original colour image of the
crack with its intensity and Fig. 6(b) depicts the corresponding gray
scale image with its intensity. The grayscale image thus obtained
was used for image resizing.

4.2.2. Image resizing
The grayscale image was resized to the standard size using

python package ‘skimage.transform’ to avoid unnecessary content
in the image and make it ready to identify the cracks. The gray



(a)Gray scale image (b)Resized gray scale image 

Fig. 7. Image scale details.

(a)Original colour image and its intensity (b)Gray scale image and its intensity. 

Fig. 6. Image and intensity details.
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scale image and the resized gray scale image are shown in Fig. 7(a)
and (b). This resized gray scale image was used for further
processing.
4.2.3. Canny edge detector
Canny Edge detector is very popular method to separate the

background information from the images and to identify the edges
as cracks. Canny Edge detector method was implemented using
python package ‘skimage.feature’.
4.2.4. Work flow of canny edge detector
The Canny edge detector uses the following steps:

i. The image was smoothened using Gaussian filter to elimi-
nate noise.

ii. The intensity gradients of the image were determined.
iii. The false positives in edge detection were eliminated by car-

rying out Non-maximum suppressing.
iv. The potential boundaries were determined by employing

double threshold.
v. Edge tracking was carried out using hysteresis in which edge

detection was done by eliminating all weak edges and
unconnected to strong edges.

Fig. 8(a) shows the resized gray scale image before applying the
canny edge detector function. Fig. 8(b) shows the noise reduced
using canny edge detector function with r = 0.6 and Fig. 8(c) shows
the noise further reduced using canny edge detector function with
r = 1.6. It is clear that the noise is reduced fully when the canny
edge detector function with parameter r = 1.6 was applied. Hence,
r plays a key role in the noise reduction in images while using
canny edge detector.
4.2.5. Percentile method
Percentile method was used to eliminate outliers in the images.

It was implemented using python package ‘numpy’. In the present
work, the height and width percentile were considered to detect
the right crack pattern collection from the image. The resulting
patterns are called feature extractions and are shown in Fig. 9.
7

4.3. Machine learning

Machine learning consists of pattern collection and training,
and testing and classification. In this work the machine learning
methods were implemented using python package ‘sklearn’.

4.3.1. Pattern collection and training
In this stage, the patterns were collected by employing pre-

processing techniques and the collected patterns were used to
train the classifiers and evaluate the models. The failure patterns
of few images is shown in Fig. 10.

4.3.2. Training and testing patterns using different classifiers
To train the patterns and predict the failure pattern in the

images, Support vector machine (SVM), Decision tree classifier,
Gaussian NB classifier, SGD classifier, K- neighbor classifier and
Adaboost classifiers were used. Three classes of pattern failures
were considered: flexure, shear, and compression failure, which
were treated as target values and subjected to processing by each
machine learning classifier.

Of the pattern images, 50% were trained and the remaining 50%
were tested. In addition, the performance of each classifier was
evaluated using confusion matrix and accuracy score. The evalua-
tion results showed that SVM exhibited the highest accuracy when
compared to other classifiers.

4.3.3. Support vector Machine
SVM is a machine learning algorithm used for classifying the

different types of cracks and training the machine to identify the
correct type of crack pattern failure.

Input parameters used for SVM are as follows:

i. Kernel: Linear
ii. Gamma: 0.0001
iii. Test size: 0.4 (40%)

In general, though SVM is considered as a classification method,
it can also be used for regression and classification problems. SVM
offers the advantage of simplicity in handling multiple categorical
and continuous variables. In SVM, a hyperplane is constructed in



          (a). Resized gray scale image before applying canny edge detector function.

          (b). Noise reduced using  =0.6 in canny edge detector function. 

          (c). Noise reduced using =1.6 in canny edge detector function. 

Fig. 8. (a). Resized gray scale image before applying canny edge detector function. (b). Noise reduced using r = 0.6 in canny edge detector function. (c). Noise reduced using
r = 1.6 in canny edge detector function.

Fig. 9. Feature Extraction of images.

Fig. 10. Failure pattern of images.
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multidimensional space for separating various classes. An optimal
hyperplane is generated iteratively and is utilized for minimizing
the errors. A Maximum Marginal Hyperplane (MMH) is located
to perform the division of the dataset as classes in the best manner.
Fig. 11 is a representation of SVM showing the support vectors,
margins, and hyperplanes.
8

Support vectors are the data points that are closest to the
hyperplane. These points define the separating line effectively by
calculating the margins and are more relevant to the construction
of the classifier. Hyperplane is a decision plane which separates a
set of objects having different class memberships. Margin is the
gap between the two lines on the closest class points, which is cal-



Fig. 11. Representation of SVM.
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culated as the perpendicular distance from the line to the support
vectors or the closest points. If the margin between the classes is
larger it is considered good while a smaller margin is considered
bad.

4.3.4. SVM workflow
The main objective is to segregate the given dataset in the best

possible way. The distance between the nearest points is known as
the margin. The objective is to select a hyperplane with the maxi-
mum possible margin between the support vectors in the given
dataset. Fig. 12 explains the work flow of SVM when it searches
for the MMH.

It is seen in Fig. 12 that the generated hyperplanes segregate the
classes in the best possible way. Four hyperplanes are seen: black,
blue, orange and purple. The blue and orange hyperplanes have
higher classification error while the black and purple hyperplanes
separate the three classes correctly.
5. Results and discussions

5.1. Failure pattern identification

The beam images were taken from the experimentally tested
beams for training and testing of the models. A total of 232 pat-
terns were taken for evaluating the model. Of the 232 patterns,
139 patterns were used for training, and the remaining 93 patterns
were utilized for testing (Fig. 13).
Fig. 12. Work flow of SVM.
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5.2. Evaluating the model

The accuracy of the classifier or model for predicting the type of
failures in the crack was estimated. Accuracy was computed by
comparing the actual test set values and predicted values using
confusion matrix. The accuracies of the different classifiers for flex-
ure, shear and compression pattern are shown in Table 7.

From Table 7, it was observed that the accuracy, precision, and
recall values for all the pattern classes are the best for the support
vector classifier when compared with the other classifiers. The
confusion matrix is a Table which describes the performance of
the classifiers using the test data. The confusion matrix for SVM,
Decision tree classifier, Gaussian NB classifier, SGD classifier, K-
neighbor classifier and Adaboost classifier is depicted in Fig. 14
as normalized values.

Fig. 14 indicates that the confusion matrix for SVM shows very
good performance in all the three classes (compression, flexure,
and shear). The performance and accuracy of SVM is the best
among all the classifiers.

Decision tree classifier can cause a big variation and instability
even with small data variations. Calculations in Decision tree clas-
sifier get more complex than in other algorithms with the model
training time also being longer. The problem with Gaussian NB
classifier is in its implicit assumption that all attributes are mutu-
ally independent, which is impossible in real life. Owing to fre-
quent updates, steps taken by SGD classifier to reach the minima
are most noisy, often leading to falling gradient towards other
directions. The noisy steps make the loss function minima conver-
gence longer. The K- neighbor classifier, on the other hand, does
not perform well when datasets are large. It also performs poorly
with high dimensions, since it is difficult for the classifier to calcu-
late each dimension’s distance and hence works poorly with more
noise in the dataset. Adaboost too is sensitive to outliers and noise.
If the data is imbalanced, the classifying accuracy is affected.

There have been a few studies on crack analysis using SVM. Pra-
sanna et al. [30] proposed a crack detection technique for concrete
bridges. They compared the results of SVM, Random Forest, and
Adaboost classifiers and found that Adaboost was the most accu-
rate with an accuracy of 90.8%. However, the other two classifiers
also performed well. Li et al. [31] studied cracks in bridges using
greedy-SVM for feature selection. They obtained a crack analysis
accuracy of 93.6%. Kim et al. [32] proposed a speeded-up robust
features model for crack detection in concrete. Classification was
done by linear SVM. The model outperformed the other models
by yielding an accuracy of 98%. Another model was proposed by
Liang et al. [33] for concrete crack analysis that used the OTSU
algorithm for segmentation and SVM for classification. The model
gave an accuracy of 100% in the test set identification. Zhang
et al. [34] in their proposal, modeled an automatic crack detection
and classification method for subway tunnel safety monitoring. For
feature extraction, a distance histogram-based shape descriptor
was used while different classifiers were used for classification.
The Extreme Learning Machine classifier worked best with an
accuracy of 91.6%, while the SVM also performed similarly well
(accuracy 91.3%). Xie et al. [35] studied voids within RCC structures
that impact the structure’s safety using GPR images. Their auto-
mated model was based on a novel SVM algorithm. Accuracy of
up to 97.7% for void identification was obtained using this model.

From the present study it is evident that the SVM is generally
more accurate when compared to other classifiers. SVM can easily
manage complex non-linear data points and over-fitting issues are
lesser than that in other classifiers. SVM also shows better perfor-
mance in high dimension spaces and in situations where the num-
ber of dimensions exceeds the number of samples.

Experimental analysis and machine learning model for predict-
ing the crack detection and pattern recognition for the reinforced



             (a). Patterns for model evaluation of beam with Steel bars (SRCC-3.9). 

           (b). Patterns for model evaluation of beam with Basalt bars (BRGC-3.9). 

             (c). Patterns for model evaluation of beam with Glass bars (GRGC-3.9 ). 

Fig. 13. (a). Patterns for model evaluation of beam with Steel bars (SRCC-3.9). (b). Patterns for model evaluation of beam with Basalt bars (BRGC-3.9). (c). Patterns for model
evaluation of beam with Glass bars (GRGC-3.9).
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Table 7
The accuracies of different classifiers for flexure, shear, and compression pattern.

Classifiers/Patterns Flexure pattern Shear pattern Compression pattern

Accuracy (%) Precision Recall Accuracy (%) Precision Recall Accuracy (%) Precision Recall

Support vector 100 1.00 1.00 100 1.00 1.00 100 1.00 1.00
Decision tree 97 1.00 0.94 97 0.93 1.00 88 0.79 1.00
Gaussian NB 99 0.99 1.00 90 1.00 0.82 100 1.00 1.00
SGD 98 1.00 0.96 90 0.82 1.00 100 1.00 1.00
K- neighbor 98 1.00 0.96 100 1.00 1.00 88 0.79 1.00
Adaboost 99 0.99 1.00 96 0.93 1.00 100 1.00 1.00

(a) SVM (b) Decision tree classifier 

(c) Gaussian NB classifier (d) SGD classifier 

(e) K- neighbor classifier (f) Adaboost classifier 

Fig. 14. Confusion matrix for different classifiers.
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concrete without cement and steel reinforcement is the novelty of
the present research work. The cement concrete and steel rein-
forcement were replaced by geopolymer concrete and BFRP/ GFRP
bars, respectively and were used as longitudinal reinforcements for
casting and testing. For reinforced concrete, lots of codes of prac-
tice/ standards are available for the shear, flexure, deflection and
crack width analysis. On the other hand, no code has been pub-
11
lished to date for the geopolymer concrete reinforced with BFRP/
GFRP bars. Machine Learning technique is the only option to pre-
dict the crack detection for the geopolymer concrete and BFRP/
GFRP bars combination. Coefficients of thermal expansion for con-
ventional cement concrete and steel bars are almost the same. In
contrast, the coefficient of thermal expansion of fly ash geopolymer
concrete is in the range of 5 � 10�6/�C to 13 � 10�6/�C. The specific
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properties of geopolymer concrete depend on the source/ raw
materials used for the specimen preparation. Pavalan V. and
Sivagamasundari R have conducted experimental study to deter-
mine the thermal expansion coefficient of various FRP bars. Based
on the studies, the coefficient of longitudinal thermal expansion of
BFRP and GFRP bars are around 2 � 10�6/�C and 9 � 10�6/�C,
respectively [36]. Owing to the variation in the coefficient of ther-
mal expansion, machine learning technique was adopted for the
crack identification and damage pattern recognition of geopolymer
concrete reinforced with BFRP/ GFRP bars.

6. Conclusions

If pre-processing techniques and pattern classifier techniques
are robust, then high accuracy can be obtained for pattern recogni-
tion very easily. In this research, pre-processing techniques such as
Gray-scale image conversion, Image resizing, Canny edge detector
and Percentile method were used and validated for the extracted
crack patterns.

Different classifiers namely, SVM, Decision tree classifier, Gaus-
sian NB classifier, SGD classifier, K-neighbour classifier, and Ada-
boost classifier were used to segregate the compression, flexure,
and shear classes of patterns from the given crack patterns. Among
these classifiers, SVM recorded the best performance and accuracy
for prediction of crack failures across all three classes, whereas
other classifiers performed well only for one or two classes.

The present research work recommends that the geopolymer
reinforced concrete prepared with fly ash, GGBS, manufactured
sand and GFRP/ BFRP bars can be used as alternative/ sustainable
materials for cement, fine aggregates and steel bars, respectively.
Flexural members of concrete structures prepared with GFRP/ BFRP
bars and a geopolymer concrete combination is supportive to avoid
reinforcement corrosion and reduce air pollution. In the present
study, various machine learning methods were adopted to classify
several types of cracks in geopolymer concrete beams. The crack
analysis proved that staged image processing techniques and
machine learning classifiers used in this research work are greatly
advantageous in the detection of tensile, shear, and compression
cracks in reinforced concrete beams.
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